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In recent years there has been a growing interest in the use of graphing

technology for the teaching of mathematics. This interest has been, in part, sparked by

the recommendations of the NCTM Standards (NCTM, 1989, 2000) and, Everybody

Counts: A Report to the Nation on the Future of Mathematics Education (NRC, 1989).

The Standards call for the use of technology in the classroom; however, they also call

for the integration of the mathematical concepts across the curriculum. This review of

research seeks to examine both of these issues, in particular, to what extent can the use

of graphing technology coupled with data collection devices be beneficial in the

mathematics and science classrooms. This article seeks to provide the reader with an

overview and discussion of some of these results.

To set the stage for this discussion, I will share an experience that illustrates some

of the problems students have in understanding graphical representations. During an

activity where students were asked to reproduce a distance-time graph by walking, it

became exceedingly clear that the students did not understand the information that the

graph was conveying. One graph that the students were asked to reproduce is shown

in Figure 1. A device designed to collect data for an object's distance from a probe,

Calculator-Based Ranger (CBR), was used to generate a distance-time graph in real

time. By moving back and forth along a straight line, students could produce a graph

resembling the given graph. However, instead students typically would walk in a path

resembling the shape of the graph, going completely out of the probe's detecting range
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(see Figure 2). How do we deal with such misconceptions? In addition, what

other misconceptions exist for student understanding of graphs?

Distance

Time

Figure 1: Distance-Time Graph for Student Investigation

2

Probe

0r\,
Figure 2: Path of Walker

1:141;

If we wish students to have a thorough understanding of physical phenomena

such as the motion of objects in space, it appears that the graphical representation has

much to offer. It seems to be the consensus of researchers that the study of graphs can

lead to a deeper understanding of physical concepts (Mokros & Tinker, 1987; Brasell,

1987a, 1987b; Linn, 1987; Goldberg & Anderson, 1989; and McDermott, Rosenquist,
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& van Zee, 1987). However, there are many problems that students have with
3

regard to graphing and modeling (Dunham & Osborne, 1991; Leinhardt, Zaslavsky,

and Stein, 1990; Goldberg & Anderson, 1989). From research we can identify several

major categories of problems.

Difficulties in connecting graphs with physical concepts

Difficulties in connecting graphs with the real world

Transition between graphs and physical events

Student discourse for building graphical concepts

The NCTM Standards (NCTM, 1989, 2000) call for the use of technology in the

classroom; in addition, they also call for the integration of the mathematical concepts

across the curriculum. This review of research seeks to examine both of these issues.

To what extent can the use of graphing technology coupled with data collection devices

benefit the mathematics and science classrooms?

Microcomputer-Based Laboratory (MBL), Calculator-Based LaboratoryTM

(CBL), and Calculator-Based RangerTM (CBR) devices are designed to collect data via

various probes and then store or feed the data into a computer or calculator. The data

are then analyzed and displayed using many different representations, enabling the

student to gather the data and then generate a graph either at a later time or in "real-

time". Figure 3 shows the set-up of a Calculator-Based Laboratory device being used

to collect voltage data for a decaying capacitor over time.

4
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Figure 3: Capacitor Decay Set-Up With CBL2TM

What aspects of graphs contribute to the misconceptions in the categories above?

The research identifies several:

Graph as a Picture students do not see a graph as a

relationship between variables, but rather as one object. (Dunham & Osborne,

1991; Mokros & Tinker, 1987)

Slope/Height Confusion - when students are asked

questions regarding rate of change of a graph, they state

that the fastest change is occurring when the graph is at
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its highest point. (Nemirovsky, Tierney, & Wright, 1998; Mokros &

Tinker, 1987; McDermott, Rosenquist, & van Zee, 1987)

Graph Shape and Path of Motion Confusion students try to

make the graph look like the physical event being observed (Goldberg &

Anderson, 1989; McDermott, Rosenquist, & van Zee, 1987; Monk, 1990,

1994), (see Figures 1 & 2).

These misconceptions are addressed in the literature that follows.

Difficulties in Connecting Graphs with Physical Concepts

One advantage of Microcomputer-Based Laboratory is the ability to display the

graphical representation of the data in real-time. But, to what extent does this feature

play a role? Is the simultaneousness of the physical event and its graphical

representation the main feature that makes MBL effective? Brasell (1987a) found that

the immediacy of graph production is probably the most important feature of MBL. In

fact, using different treatment groups she discovered that even a delay of 20 seconds

between the ending of the physical event and the graph display makes a difference in

the students' ability to link graph with physical concept.

So, is the simultaneity the only factor affecting the link between graph and

physical event? Beichner (1989, 1990) suggests that this is not enough. In doing a

similar study. Beichner used re-animation along with the graphical representation so

that the student saw the moving object and its graph at the same time. However, this

approach was not as successful as that of Brasell (1987a). Beichner's conclusion is

that the ability of the student to control the environment may play a vital role in the

understanding of the physical event. There may be some affective aspect of the process

of experimentation that drives the student to want some sort of closure on an issue and
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thus actively pursue an understanding. Sometimes this is referred to as the

"black box" effect. We must be careful to remember that technology alone is not

sufficient.

Nakhleh and Krajcik (1991) indicate that "students using MBL activities

appeared to construct more powerful and more meaningful chemical concepts" (p. 19).

In this particular case, concept maps from students in a chemistry class indicated

stronger connections among the concepts of acid, base, and pH. Based on their results

they concluded that students construct more concepts using a MBL, but that students

need careful analysis of the task, directed teaching, and class discussion to counteract

the formation of inappropriate concepts. They also noted that it is reasonable to

speculate that the on-screen graph allowed the MBL students to focus on what was

happening rather than on trying to remember what happened while simultaneously

thinking about why it had happened. The MBL maintained the graph as a constant

reference while students used their short-term memory to make predictions and

construct possible explanations for the graph. This finding is consistent with that of

Brasell (1987b).

The application of the concepts learned by using the MBL also seems to give the

students a sense of confidence in their work. Mokros (1985) reported a group of

females who constructed a velocity-time graph for a cart that was accelerating. The

students knew that the slope of the resulting graph had to be positive. However, when

told by a teacher that the graph was incorrect, and in particular, that the line should be

horizontal, they argued that their graph was indeed correct and that the slope needed to

be non-zero in order for the speed to go up. This demonstrates a resolution of the

slope/height confusion described earlier.

6
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Another implication is that in order to connect graphs to physical

concepts the student needs to see a variety of graphs representing different physical

events (McDermott, Rosenquist, & van Zee, 1987). For example (see Figure 4), if

students are taking readings to study the relationship between time and temperature of a

cooling body, they will see a graph of a decreasing exponential function. Similarly, for

the relationship between time and voltage of a decaying capacitor, they will see another

graph of a decreasing exponential function. Observing isomorphic concepts; that is to

say, concepts that are essentially the same but in different contexts; especially those that

tend to be prevalent.throughout nature, may aid in the abstraction of mathematical

concepts.

7

Figure 4: Exponential Model for Two Different Physical Events

Linn (1987) using MBL observed the transfer of relationships just described.

Students involved in this study were dealing with the relationships of heat energy and

temperature; however, the students gained considerable understanding of graphing and

extended this to interpretation of motion graphs although they had not studied

kinematics or motion within the graphing environment. For example, Linn states,
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As a result of studying graphs about heat and temperature, students could correctly

interpret a graph showing the speed of a bicycle when the bicycle ascended a hill and then

descended the hill. Prior to instruction, many students assumed that when the graph increased,

the bicyclist was going up the hill (p. 8).

Bassok and Holyoak (1989) found that isomorphic concepts in the mathematics

classroom allowed for the transfer of these mathematical concepts from the algebra

classroom to the physics classroom. However, when physics content isomorphic to

that in the mathematics curriculum was addressed in the physics classroom, the transfer

of concepts from physics to mathematics did not occur. For example, if physics

students study Hooke's Law that states the force on a spring is proportional to the

length of its stretch, they see a linear relationship. However, the mathematical ideas

learned from the physics experiment do not readily transfer to the concept of linear

function when taught in the mathematics classroom. But, if linear functions are studied

in a more general sense in the mathematics classroom, students tend to transfer that

understanding into the physics classroom. If we use the mathematics classroom to

help link concepts from other disciplines such as physics, the link of those concepts to

mathematics may be aided.

Difficulties in Connecting Graphs with the Real World

The major misconceptions associated with this category are Graph as a Picture

and Graph Shape and Path of Motion Confusion. In this area, students have difficulty

making distinctions between the functional relationship of two variables and the visual

stimuli received when observing the actual physical event.

In this case, students tend to think that the "looks" of the graph should be

similar to the physical environment of the objects that produce the graph (McDermott,

Rosenquist, & van Zee, 1987; Clement, 1989; Monk, 1990, 1994). If a ball is given a

8
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push on a "frictionless table" that is level (see Figure 5), the student expects
9

the graph of the position versus time graph also to be horizontal rather than a straight

line with nonzero slope (see Figure 6). Choosing the appropriate graph for the student

to explore can be important in reducing this misconception. For example, if the student

used MBL or CBR to examine a velocity-time graph of this same event (see Figure 7),

the graph would be "flat" reinforcing the misconception. Thoughtful use of examples

and nonexamples might be beneficial.

Figure 5: Ball Rolling at Constant Velocity on Tabletop

Figure 6: Distance-Time Graph of Rolling Ball on Tabletop

1 0
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Figure 7: Velocity-Time Graph of Rolling Ball on Tabletop

10

In connecting a graph with the real world experiences of the student, real-time

data collection seems to be the most effective. Brasell (1987b) suggests that the real-

time graphing capabilities of MBL can relieve the additional information-processing

demands on the student and allow for linking of the real world events and the graphical

representation of these events. This stance is consistent with the findings of Nakhleh

and Krajcik (1991) and Laws (1989). Brasell (1987a) suggests that a 20-second delay

between event and graph production can hinder the linking of the graph with visual

stimuli produced by the event. If so, then the immediacy of the graph production can

give students a new way of looking at the world, as relationships, rather than as simple

visual images of an event. Laws states that

MBL stations give students immediate feedback by presenting data graphically in a manner that

students can learn to interpret almost instantly. This provides a powerful link between real

events that can be perceived through the senses and the graph as an abstract representation of the

history of these events. Thus, MBL tools provide an ideal medium to support the development

of physical intuition through direct inquiry. (p. 6).

Monk and Nemirovsky (1994) give a detailed description of a student's interaction

with a physical event and the graph corresponding to the event. The student's
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understanding of rate of change evolves as he interacts with the device and
1 1

graph in a real-time graphing environment. In this instance as well, it is the real-time

graphing that facilitates the deepening of graphical understanding.

Transition Between Graphs and Physical Events

One of the most important skills required in science is the ability to leap back and

forth between a graph and the physical event that the graph describes. The question is

then, how can we, in practice, help students make the leap from the physical event to the

graph and back? As many of us recall from methods classes, Bruner (1966) suggests a

progression from enactive to iconic to symbolic representations. The CBR device, as

well as any form of MBL equipped with a motion probe, makes this progression

possible.

Brasell (1987b) and Mokros (1985) began with an enactive representation by

using activities with MBL to challenge students to reproduce the motion for a given

graph. Mokros, in particular, used the roles of "dancer" and "choreographer" with the

students. The choreographer's job was to explain to the dancer what s/he should do in

order to reproduce the graph given by the teacher. This activity required the students to

take the graphical representation and translate it into a series of verbal directions and

therefore exhibit an understanding of the various aspects of the graph. In both studies,

students were significantly more successful in transferring between a physical event

and the graph representing the event after having used MBL in a real-time graphing

environment.

Goldberg and Anderson (1989) document student difficulty when encountering

negative values for velocity as represented on a velocity-time graph, particularly with

respect to direction of motion. Svec (1995) examined the students' ability to interpret

an object's direction from motion graphs. He concluded that MBL significantly

12



Data Collection Devices

improved the students' ability to determine the direction of motion from a

motion graph, and to qualitatively interpret distance-time, velocity-time, and

acceleration-time graphs.

There is also a need for the student to be flexible when moving between different

types of graphs of the same event, (e.g. position-time and velocity-time graphs of the

same situation), (McDermott, Rosenquist, & van Zee, 1987). Confronting students

with different types of graphs of the same event at the same time emphasizes the

differences in the way the information is displayed. Also, giving the students events

that are obviously different but that produce the same visual representation on a graph

can help make this distinction easier to understand. For example, consider the different

motion experiments producing graphs such as the following (see Figure 8). Here

different physical events produced the visually similar position-time, velocity-time, and

acceleration-time graphs.

12
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TIME

nCCELERATIOfl

TIME

Figure 8: Differing Physical Events Producing the Same Graphical Feedback

Since the events producing the graphs are so different, the students may be concerned

that the graphs appear to be the same. Having to deal with this apparent conflict

between the graphs and different physical events also gives reinforcement to the way

information is obtained from each graph. To find the velocity from the first graph, the

student must calculate the slope at a given time. To find the velocity from the second

13
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graph, the student simply reads the graph at a given time. To find the velocity

from the third graph, the student must approximate the area under the curve from time 0

to the time desired.

Likewise, it is also helpful for students to experience visually different graphs of

the same event (see Figure 9). Here I have simply walked back and forth in front of a

CBR producing distance-time, velocity-time, and acceleration-time graphs. The event in

this case was obviously the same since I only conducted the experiment once, but the

graphs are visually different. This sort of experience forces students to challenge many

of the graphical misconceptions stated earlier.

13

Figure 9: Same Physical Event Producing Different Graphical Feedback

Student Discourse for Building Graphical Concepts

There is evidence that pairing CBL technology with student communication can

aid in the development of mathematical and scientific concepts. Svec (1995) concluded

that "activities which emphasis qualitative understanding, requiring written

explanations, cooperative learning, eliciting and addressing students' prior knowledge

and employing the learning cycle are more effective for engendering conceptual

change" (p. 23). In fact, Cooper (1995) concluded that students need to have time to

rehearse their developing communication skills as part of their investigation in order to

effectively construct physics concepts.
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Hale (1996) looked at how students constructed and repaired conceptual

understanding using discourse within a CBL environment. One drawback Hale found

for using CBL in cooperative groups was that sometimes, through discourse, groups

would converge on a misconception. However, she also suggests that the use of

"whole" class discussion following an exploration can be used to promote further

discourse while repairing any misconceptions. In support of the position that

misconceptions can be valuable, Nakhleh and Krajcik (1991) suggest that the high rates

of appropriate and inappropriate conceptual links exhibited by students in their study

indicate that the students were positively engaged in restructuring their knowledge. We

must remember that misconceptions are a part of the construction of concepts and that

it is not necessarily desirable to eliminate misconceptions from the learning process. In

fact, Monk and Nemirovsky (1994) suggest that students' misconceptions are not

simply replaced by correct conceptions, but rather students refine their conceptions in a

gradual and continuous way.

Conclusions

What then are the reasons for success of MBL? Mokros and Tinker (1987) give

several reasons for why MBL is useful in connecting graphs and physical events.

MBL uses multiple modalities

MBL pairs events in real-time with their symbolic representations

MBL provides scientific experiences similar to that of scientists in actual

practice

MBL eliminates the drudgery of graph production.

Thornton and Sokoloff (1990) found strong evidence for significantly improved

learning and retention by students who used the MBL materials. However, they warn

that the tools themselves are not enough, but that the gains in learning concepts appear

15
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to be produced by a combination of the MBL tools and appropriate curricular
15

material that guide the students to examine appropriate phenomena. They believe that

the following five characteristics of the MBL learning environment, made possible by

the tools, the curriculum, and the social and physical setting, are primarily responsible

for the learning gains.

Students focus on the physical world

Immediate feedback is available

Collaboration is encouraged

Powerful tools reduce unnecessary drudgery, and

Students understand the specific and familiar before moving to the more

general and abstract.

Suggestions for Classroom Use

Although the literature suggests great benefits from the use of MBL and CBL

technologies, we must also consider possible problems that arise if we do not pay

careful attention to how the technology is implemented. In a nine-month study of ninth

grade students, Bohren (1988) found that graphing software, by constructing axes for

the students covered up missing links in students' concept of scale. In addition,

without proper precautions, some studies suggest that students may believe any output

given by the machine even when the output gives a conclusion contrary to common

sense (Lapp, 1997; Nachmias & Linn, 1987).

The use of simultaneous graph production to link a graph with a physical concept

seems to be essential with motion phenomena. However, future research needs to

address this issue with regard to other physical phenomena such as temperature. One

might expect that the need for simultaneous graph production is not necessary for all

phenomena since the human senses cannot easily distinguish among varying states all

16



Data Collection Devices

the phenomena. For example, differences in velocity seem to be more easily
16

perceived than differences in temperature by the average person. Two people walking

at, say 2 mph and 4 mph, can easily be distinguished; however, an object with

temperature 2° C and another object with temperature 4° C are very difficult to

distinguish. This issue needs further investigation.

Two other practices that offer promise in connecting graphs with physical events

are the use of prediction and reproduction activities. Students seem to be aided when

they must first communicate what they think will happen before conducting an

experiment. Also, students seem to make connections if they are challenged to

reproduce a given motion graph by acting it out and seeing the results in real time.

The research done in this area suggests that we can be optimistic about the

benefits of MBL and CBL use in the formation of graphical concepts. However, it is

too early to make any final conclusions. Further study is needed before the research

community can make any definitive statements on the advantages of data collection

devices.

17
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