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Stochastic Models of Quality Control on Test Misgrading

Abstract

Stochastic models are developed in this article to examine the rate of test

misgrading in educational and psychological measurement. Limitations of traditional

Poisson models have been reviewed to highlight the need of introducing new models

using well established geometric and negative binomial distributions. Results of this

investigation can be employed to ensure the number of misgraded events below a

threshold k. Features of the quality control measures are discussed in this article in a

context of local and national assessments.
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Stochastic Models of Quality Control on Test Misgrading

In the last decade, essay items have been incorporated in major educational

assessments, such as the National Assessment of Educational Progress (NAEP) and the

Third International Mathematics and Science Study (TIMSS) (Allen, Carlson, & Zelenak,

1999; Martin & Kelly, 1996). Meanwhile, classroom teachers are urged to use essay

questions to complement multiple-choice items. Various responses generated from essay

items demand a large amount of manpower in test grading. While no graders intend to

make mistakes, accidental errors are likely to occur during the human operations (Wang,

1993). The purpose of this study is to examine the chance of test misgrading using

appropriate models in statistics. The estimation of inadvertent grading errors can serve as

a basis for quality control in educational and psychological measurements.

Literature Review

Statistical models have been sought to enhance quality control in various projects.

In industrial statistics, quality control measures are adopted mainly to ensure the total

number of inferior incidents below a threshold k. Bissssell (1970) reviewed,

Incident counts form an important class of data, arising particularly in
manufacturing processes and accident studies. ... It is often assumed that such
events follow the Poisson Law. The assumptions of constant mean level and
independence are often violated in practice. (p. 215)

In educational and psychological measurements, test misgrading can be treated as

a specific type of incidents. In a classroom setting, Lyman (1998) noted that "Every

teacher recognizes that grades are somewhat arbitrary and subjective" (p. 107). In a

large-scale assessment, it is even more difficult to assume the same level of average

performance among various graders. Accordingly, the assumption of a constant mean
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performance level is often violated in small- and large-scale assessments, which makes

the Poisson model unsuitable for most real-life applications (Rasch, 1980; Wang, 1993).

Whenever the assumption of Poisson distribution does not hold, statisticians tend

to adopt alternative models to strengthen the quality control process. In particular,

Johnson and Kotz (1969) pointed out, "The negative binomial distribution is very often a

first choice as alternative when it is felt that a Poisson distribution might be inadequate"

(p. 125). Edward and Gurland (1961) compared a class of distributions applicable tO

accidents, and reported that "the negative binomial gives an appreciably better fit than the

Poisson distribution" (p. 504). Nonetheless, the negative binomial model has yet to be

adopted in education to analyze test misgrading (Rasch, 1980; Wang, 1993).

In contrast, researchers in other fields have applied the negative binomial

distribution on a wide range of topics. Barnwal and Paul (1988) reviewed applications of

negative binomial models on count data, and noted that "Count data which follow the

negative binomial distribution arise in numerous areas of biostatistics (Anscombe, 1949;

Bliss & Fisher, 1953; Bliss & Owen, 1958; McCaughran & Arnold, 1976)" (p. 215). In

military industries, much earlier applications have been made by Greenwood and Yule

(1920). They reported that the negative binomial distribution gave a better fit than did

the Poisson distribution to accidents in munitions factories in England during the First

World War. Besides the count data, Ross and Preece (1985) added that "The negative

binomial distribution is often appropriate for data for aggregated organism; it can arise

from various different models (Anscombe, 1950, p. 360; Bliss, 1953, p. 185M Boswell &

Patil, 1970; Freeman, 1980)" (p. 323). The various applications have resulted in different

presentations of the negative binomial distribution. Consequently, as was noted by

5
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Barnwal and Paul (1988), "Different authors have expressed the negative binomial

distribution in different forms" (p. 215), causing substantial confusion in its applications.

Matloff (1988) further examined connections between the negative binomial

distribution and other statistical models, and reported, "In spite of the fact the name of

this family contains the word binomial, it is related more closely to the geometric family

than to the binomial family" (p. 83). However, various alternative presentations have

also been made in the statistical literature for the geometric distribution (e.g., Casella &

Berger, 1990, p. 74 & p. 625). To avoid the distraction on the notation differences,

geometric and negative binomial models have been introduced in this study to estimate

the rate of test misgrading in education. Criteria of quality control have been considered

to differentiate the models in various settings.

Stochastic Models

In a test scoring process, a contrast can be set to differentiate outcomes of correct-

grading and misgrading. An event with dichotomous outcomes is typically modeled by a

Bernoulli trial. For a well-designed test, the chance of misgrading (p) is not high.

Quality control measures, such as arrangement of schedules for short breaking, can be

introduced in the grading process to ensure that the number of misgraded cases is no

larger than a specific level k. In practice, the grading process may continue until

occurrence of the kth misgrading. By then, a break session can be scheduled to refresh

the graders, and thus, help control the number of misgrading below level k.

To facilitate description of the stochastic model, one may define X to be the total

number of successes before the kth misgrading, and f(x) to be the probability of obtaining

exactly X successes. Accordingly, the total number of trials (X+k) depends on the

6
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threshold level k and the number of correctly-graded cases (X) before reaching the

threshold. Because the event of rhisgrading happens by accident, the number of

correctly-graded cases (X) may vary among the graders. Given a level of the threshold k,

the expected value of X can be employed to schedule break sessions before reaching a

misgrading incident on the (X+k)th trial .

Geomatric Stochastic Process

Under a condition of zero tolerance, one may wish to schedule a break period for

test graders before the first occurrence of misgrading. Using symbol s to represent

successful test grading and m to represent the first misgrading, one may describe the

stochastic process in the following chain of events:

ss s m
X times

This stochastic chain can occur in only one way, i.e., the grader has successfully graded

test questions on the first X trials, and ends up with the first misgrading case on the

(X+1)th trial. Therefore, the chance of obtaining exactly X successes before the first

failure is:

f(x) = (1-p)(1-p) ... (1-p) p
X times

where p is the probability of misgrading in each trial.

This stochastic process can be described by a probability function for

different values of X:

f(x) = (1-13)"13; x = 0, 1, 2, .... . (1)

Equation (1) defines a geometric process "because the probabilities form a geometric

series with a common ratio 1-p" (Kalbfleisch, 1979, p. 118). Since the chance of

7
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misgrading in each trial (p) is less than 1, the total probability follows:

[1+(lp)+(1p)2 1='
p)

=1
1-41-

which confirms the feature of

[f (x)] = 1
x-o

(2)

7

While the expected value of X is an important index for setting break sessions in a

test grading process, it is not so simple to derive E(X) using a definition formula

E(X) = [X f(x)] (Casella & Berger, 1990). Fortunately, equation (2) provides a short

cut for the statistical inference. Take derivatives on both sides of (2), and one may get

= 0
(413 x=o

The left hand side can be adjusted as

x=0 x=0
co

=E-1,7[0--PY P
x=0

= [(1-p)x x (1-p)x-1 p]
x=0

co COE C I py pi
x=0 x=0

f (x)
x=o E( X)

1 p

Following equations (2) and (3), one may get

E(X)
p 1 p v

8
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Thus, the expected number of correctly graded cases is:

E(X) = (4)

Because a break session is arranged before occurrence of the first misgrading (i.e., k=1),

the waiting time for the first misgrading is:

E(X + k)= E(X +1)= E(X)+1=,' +1= -1; (5)

Although the geometric distribution has been discussed in many books, some

books presented the expected value in equation (4) (e.g., Bhat, 1984, p. 106; Casella &

Berger, 1990, p. 74; Feller, 1957, p. 210; Port, 1994, p. 247) and others gave the result in

equation (5) (e.g., Matloff, 1988, p. 83; Ewart, Ford, & Lin, 1974, p. 322; Draper, &

Lawrence, 1970, p. 120). No authors clarified the variable difference between equations

(4) and (5). In this study, the differentiation of X and (X+k) shows agreement of both

presentations in the same stochastic process.

Results in equation (5) can be interpreted in a context of test misgrading. For a

given test, if the chance of misgrading (p) is small, then the waiting time for a break

session can be longer. In an extreme case, multiple-choice tests are graded by a machine

which has p equal to zero in each trial. According to equation (5), the waiting time can

be infinite, and thus, there is no need for a rest unless the grading machine is broken

down.

A Negative Binomial Model

In a more complicated situation, a test is graded by a total number of n graders.

For any grader i, the threshold lc; depends on the quality control requirement, and may

take a value larger than one. To ensure the kith misgrading event occurring on the

(k1+X1)th trial, the previous (k1-1) misgrading events must already happen in the

9
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preceding (k1+X1-1) trials. The probability of obtaining (lc; -1) misgyading cases on the

first (k1-FX1-1) trials is given by

f (x) = pk Xi

ki-1

Xi = 0, 1, 2, ... (6)

where the probability of misgrading on trial (k1+X1) is p.

Equation (6) follows a negative binomial distribution (Feller, 1957). The

probability generation function for the negative binomial distribution is

pki [1- (1- p)t]ki . Because the overall quality control is based on cumulative

performance of the n graders, the stochastic process involves n independent random

variables, X1, X. Thus, the quality control threshold k hinges on the distribution of

y X . Fortunately, the probability generation function for E X follows
i=1 i=1

P (t) plc' [1 p)t]ki pk [l (1 p)t]k
Ex,
7.1

(7)

where k=k1 + + kn. Based on uniqueness of the probability generating function (Port,

1994), E X must have a negative binomial distribution with parameters k and p.
i=1

The expected value for E X can be derived from the negative binomial
i=1

distribution, and the result is k(1-p)/p (see Casella & Berger, 1990). Therefore, the

waiting time before occurrence of the kth misgrading is:

E[( E X ;) + k] = + k =
i.1

(8)

In a comparison between (5) and (8), one may note that the geometric process can be

10
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treated as a special case (k=1) of the negative binomial distribution. Based on the

results in (8), the waiting time for a break period can be longer if the overall tolerance

level k is higher and the chance of misgrading (p) is small.

In summary, partly due to differences in the notation choice, the well-established

geometric and negative binomial distributions have yet to be used in models of test

misgrading. In other fields, Johnson and Kotz (1969) have noted that "the negative

binomial distribution is frequently used as a substitute for the Poisson distribution when it

is doubtful whether the strict requirements, particularly independence, for a Poisson

distribution will be satisfied" (p. 135). Thus, the geometric and negative binomial

models provide alternative choices that are more flexible than the Poisson model in

educational and psychological measurements.

Given the connection between geometric and negative binomial distributions,

applications of these stochastic models hinge on characteristics of a specific setting.

The geometric process is developed from a single-grader scenario under a policy of zero

tolerance for test misgrading. Thus, the result in equation (5) may be more applicable in

a local setting in which a teacher has been assigned to grade tests for an entire class. The

negative binomial process, on the other hand, seems appropriate for state or national

assessment that involves more than one test grader. In both cases, the waiting time for

test misgrading has been derived from the corresponding stochastic processes. The

results can be employed to schedule break periods to ensure the error of misgrading

below a threshold k.

1 1
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