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The Effects Of Minimum Values On Data Transformations.

Jason W. Osborne, Ph.D
North Carolina State University

Data transformations are commonly used tools in quantitative analysis of data.
However, data transformations can be a mixed blessing to a researcher, improving the
quality of the analysis while at the same time making the interpretation of the results
difficult. Further, few (if any) statistical texts discuss the tremendous influence a
distribution's minimum value has on the outcome of a transformation. The goal of this
paper is to promote thoughtful and informed use of data transformations.

Data transformations are the application of a
mathematical m odification to a variable. There
are a great variety of possible data
transformations, from adding constants to
multiplying, squaring or raising to a power,
converting to logarithmic scales, inverting,
taking the square root of the values, and even
applying sine wave transformations.

There are a variety of reasons why
researchers might want to employ data
transformations. First, as many statistical
procedures assume or benefit from normality of
variables, data transformations can be employed
to improve the normality of a variable's
distribution. Authors of prominent statistical
texts, such as Tabachnick and Fidell (2001, p.
81), argue that researchers should "consider
transformation of variables in all situations"
unless there is a specific reason not to. Other
reasons for utilization of data transformations
involve equalizing variance (e.g., Bartlett, 1947),
although this is less commonly the reason
researchers turn to transformation. Our focus
here is explicitly on the former reason, although
many points will apply to variance equalizing as
well.

Data transformation and normality

If a researcher has a variable that is

substantially non-normal, even if analyses
utilized do not assume normality, improving
normality can often enhance the outcome of
analyses by reducing error. In fact, Tabachnick
and Fidell (2001) explicitly state that, even when
normality is not an issue, transformations can
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improve analyses. Zimmerman (e.g., 1995,
1998) pointed out that non-parametric tests can
suffer as much, or more, than parametric tests
when normality assumptions are violated,
confirming the importance of normality in all
statistical analysis, not just parametric analyses.

There are multiple options for dealing w ith
non-normal data. First, the researcher must
make c ertain t hat t he n on-normality is due t o a
valid reason. Invalid reasons include things such
as mistakes in data entry, and missing data
values not declared missing. These are simple to
remedy. Outliers, scores that are extreme
relative to the rest of the sample, are another
reason for non-normality. There is great debate
in the literature about whether outliers should be
removed or not. I am sy mpathetic to Judd and
McClelland's (1989) argument that outlier
removal is desirable, honest, and important.
However, not all researchers feel that way (On,
Sackett, and DuBois, 1991).

Should outlier removal not be an option, or
not produce the desired results, another option is
the use of data transformations. It is beyond the
scope of this paper to fully discuss all options.
Thus, I will focus on three more common data
transformations discussed in texts and the
literature: square root, logarithmic, and inverse
transformations.

How does one tell w hen a variable is violating
the assumption of normality?

There are several ways to tell whether a
variable is substantially non-normal. While
researchers tend to report favoring "eyeballing
the data," or visual inspection (Orr, Sackett, and
DuBois, 1991), this can lead to a mistakes or the
perception that one is "cooking the data." There
are objective methods of assessing normality,
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Figure 1.
The Effect of Transformations on Variables.
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from simple examination of skew and kurtosis to
examination of P-P plots. Finally, there are
inferential methods of comparing distributions to
other known distributions, such as the
Kolmorogov-Smirinov test, which provides a
very sensitive test for deviation from normality.
All of these, and more, are available in
commonly-used statistical packages. Once a
determination of non-normality is made, and
obvious routes such as outlier detection have
been tried, the researcher is faced with the
decision to analyze the data in a non-normal state
or to transform.

Theoretical issues surrounding a data
transformation: How does one interpret
transformed data?

In brief, data transformations should not be
undertaken lightly. Data transformations change
the fundamental nature of the data, and hence the
interpretation of the results. For example, an
analysis involving substantively-interpretable
variables, such as yearly income, age, or IQ test
scores are made tremendously more complicated
once transformations are introduced. Many
people can easily interpret results regarding these
variables, but how many can easily (or correctly)
interpret analyses involving the logarithm of IQ,
the square root of age, or the inverse of income?
Not only are these different variables, many of
them are non-linear transformations of the
original variables. Again, these are issues that
are beyond the scope of this paper to address
sufficiently. However, briefly, all three of these
transformations are curvilinear transformations
that change the nature of the variable you are
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studying to a certain extent. Once a variable,
such as income has been transformed, it is no
longer s traightforward to interpret that v ariable,
as it is now the square root of income, or the log
of income, or the inverse of income. Thus,
researchers must be careful when interpreting
results based on transformed data.

As presented in Figure 1, as variables are
transformed they take a curvilinear relationship
to the original variable. Thus, interpretation is
now more complicated. Not only does the
author need to take into account that there is now
a curvilinear relationship between the original
variable a nd t he new variable, b ut 1 ikely a lso a
curvilinear relationship between the transformed
variable and any other variable in the analysis.
Further, the quality of the variable has now
changed. If it had been ratio or interval, it is no
longer so. If a variable with those qualities were
subjected to a square root transformation, where
the variable's old values were {0, 1, 2, 3, 4) the
new values are now {0, 1, 1.41, 1.73, 2}the
intervals are no longer equal between successive
values. This is addressed more explicitly in
Table 1, below.

Mathematical issues surrounding a data
transformation: Does the minimum value of a
distribution influence the efficacy of a
transformation?

All three of these transformations are
designed to reduce positive skew. Should a
researcher have a negatively skewed variable, the
procedure is to reflect, or reverse the distribution,
apply one of these transformations, and then
reflect again to return the distribution to its
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Table 1.
Effects of various transformations on variables

Original Y 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
SquareRoot(Y) 0.00 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00

gap 1.00 0.41 0.32 0.27 0.24 0.21 0.20 0.18 0.17

Log (Y) 0.00 0.69 1.10 1.39 1.61 1.79 1.95 2.08 2.20
gap 0.69 0.41 0.29 0.22 0.18 0.15 0.13 0.12

Inverse(Y) 1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11

gap -0.50 -0.17 -0.08 -0.05 -0.03 -0.02 -0.02 -0.01

Original Y 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

SquareRoot(Y) 3.16 3.32 3.46 3.61 3.74 3.87 4.00 4.12 4.24 4.36

gap 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.12

Log (Y) 2.30 2.40 2.48 2.56 2.64 2.71 2.77 2.83 2.89 2.94

gap 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.06 0.05

Inverse(Y) 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.05

gap -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00

Original Y 100.00 101.00 102.00 103.00 104.00 105.00 106.00 107.00 108.00 109.00

SquareRoot(Y) 10.00 10.05 10.10 10.15 10.20 10.25 10.30 10.34 10.39 10.44

gap 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Log (Y) 4.61 4.62 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69

gap 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Inverse(Y) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

original order).When a researcher is considering
utilizing a data transformation, that researcher
must be aware of the mathematical
considerations of that transformation. For
example, the square root of a negative number is
undefined, and one cannot take the log of a
negative number or 0, and the inverse of 0 is
undefined. Thus, should one have negative or
zero values in the distribution, the researcher
must first add a constant to the variable to move
the distribution to a point where data
transformations are possible.

Note that adding a constant to a variable
changes only the mean, not the standard
deviation or variance, skew, or kurtosis.
However, the size of the constant and the place
on t he n umber 1 ine t hat t he constant moves t he
distribution to can influence the effect of any
subsequent data transformations. The argument
posited here is that the researcher should only
add a constant in such a way that (a) the
distribution is moved to a point on the number
line where there are no values that will yield
undefined results (i.e., negative numbers for a
square root transformation, or negative numbers
and zeros for log and inverse transformations),
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and ( b) t he minimum value ( left a nchor) o f t he
distribution should be moved to exactly 0 if the
researcher is planning on using a square root
transformation, or exactly 1 if the researcher is
planning to use log or inverse transformations.
This point is one generally not made in
discussions o f transformations; b ut i s c ritical in
determining the efficacy of the transformation.

The reason behind this assertion has to do
with the effect of these transformations on 0
and/or 1 as opposed to other numbers. For
example, the square root of 0 and 1 are,
respectively, 0 and 1, whereas the square root of
2 is 1.41, and of 3 is 1.73. Thus, a square root
transformation on a distribution anchored at 0
will move a positively-skewed distribution
toward normality because the scores on the "tail"
are moved closer in toward the center of the
distribution, while scores on the leftmost part of
the distribution are not moved at all. This
"compression" of the tail reduces skew.
However, this only works due to the special
properties of 0 or 1, which remain fixed. Should
the minimum score of a distribution be a number
other than 0 (or 1 in the case of the log and
inverse transformations) then the transformation
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Table 2
Variable skew as a function of the minimum score of a distribution

Min = Min = Min = Min = Min = Min = Min =
0 1 2 3 5 10 100

Square Root 0.22 0.93 1.11 1.21 1.31 1.42 1.56
Log --- 0.44 0.72 0.88 1.07 1.27 1.54
Inverse --- 0.12 -0.18 -0.39 -0.67 -1.00 -1.50

Note: Skewness reported. Original variable's skewness was 1.58.

will be less effective, as the entire distribution is
being moved along the number line, rather than
just the right tail.

In Table 1 this becomes evident more
clearly. In the table, some example scores for a
variable, along with the square root, log, and
inverse transformations of these scores are
presented. Additionally, the "gap" between each
two adjacent numbers is calculated. Looking at
the results of a square root transformation, for
example, one can see that transforming the
numbers 0 through 9 changes the relative
distance between those two scores from an
original distance of 1.0 to distances ranging from
1.0 (the gap between the square root of 0 and the
square root of 1) to 0.17 (the gap between the
square root of 8 and the square root of 9). Thus,
one can see how the tail of a positively skewed
distribution is compressed down and the
distribution becomes more normal. However,
looking at the second set of data, 10 through 19,
the gaps are much more even between the
transformed numbers (ranging from 0.16 to
0.12). Thus, while the distance between the
higher numbers is compressed somewhat more
than the lower numbers, it is nowhere near the
magnitude difference as seen in the first set.
Finally, looking at the bottom set of numbers
(100-109), there is virtual uniformity in the
amount of compression across the range (0.05
gap, after rounding). In this case, there would be
virtually no effect of a square root
transformation, as the relative distances between
scores remain almost as constant as the original
data.

Similar effects can be seen for the other two
transformations, indicating that the effectiveness
of the logarithmic and inverse transformations
are most effective when the minimum value of
the distribution is 1.0.

In order to demonstrate the effects of
minimum values on the efficacy of
transformations, data were drawn from the
National Education Longitudinal Survey of
1988. The variable used represented the number

of undesirable things (offered drugs, had
something stolen, threatened with violence, etc.)
that had happened to a student, which was
created b y t he a uthor for a nother p roject. This
variable ranged from 0 to 6, and was highly
skewed, with 40.4% reporting none of the events
occurring, 3 4.9% r eporting o nly o ne e vent, a nd
less than 10% reporting more than two of the
events occurring. The initial skew was 1.58, a
substantial deviation from normality, making this
variable a good candidate for transformation.
The relative effects of transformations on the
skew of this variable are presented in Table 2.

As the results indicate, all three types of
transformations worked very well on the original
distribution, anchored at a minimum of 0 (or 1
for the log and inverse transformations).
However, the efficacy of the transformation
quickly diminished as constants were added to
the distribution. Even a move from 0 to 1, or 1
to 2 dramatically diminished the effectiveness of
the transformation. Once the minimum reached
10, the skew was over 1.0 for all three
transformations, and at a minimum of 100 the
skewness was approaching the original, non-
transformed skew in all three cases. These
results highlight the importance of the minimum
value of a distribution should a researcher intend
to employ data transformations on that variable.

While the initial discussion involved the
necessity of adding constants to variables to
allow for transformations should there be
negative numbers (or in the case of log or inverse
transformations, 0), these results sh ould also be
considered when a variable has a range of, say
200-800, as with SAT or GRE scores where non-
normality might be an issue. In cases where
variables do not naturally have 0 as their
minimum, it might be useful to subtact a
constant to move the distribution to a 0 or 1
minimum.
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Conclusions

The goal of this paper was to explore the
effects of data transformations on variables,
particularly the extent to which the anchor or
starting value affects the effect of the
transformation. This is something that, to my
knowledge, is not adequately addressed in
statistical texts, and may profoundly affect the
benefit or effect of a transformation if
researchers do not attend to this issue.

The examples above demonstrate that as the
leftmost value (anchor value) of a distribution
moves from 0 or 1, the efficacy of the
transformation diminishes exponentially.
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