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Optimizing Experimental Designs Relative to Costs and Effect Sizes

A general model is derived for the purpose of efficiently allocating integral numbers of

units in multi-level designs given prespecified power levels. The derivation of the model

is based on a constrained optimization problem that maximizes a general form of a ratio

of expected mean squares subject to a budget constraint. This model provides more

general closed form solutions than other available formulae. As such, the proposed

methodology allows for the determination of.the optimal numbers of units for studies that

involve more complex designs. Further, the proposed model makes use of effect sizes and

the estimates of variance components to optimize multi-level designs during the budget

formulating stages. Thus, researchers are able to estimate the amount of currency needed

to adjust power to a targeted level while precluding them to request too much or too little

money in the budget planning phase of the study design. A procedure is also described

for optimizing designs when estimates of variance components are unavailable. Case

studies are also provided to demonstrate and examine the methodology.

Keywords: Budget constraint; Effect size; Lagrange multiplier; Level of randomization;

Multi-level design; Optimization; Power; Variance components
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Optimizing Experimental Designs Relative to Costs and Effect Sizes

1. INTRODUCTION

The concern for the efficient allocation of economic resources in experimental

designs has long been a topic of discussion (e.g., see Brooks, 1955; Cochran, 1977;

Deming, 1953; Donner, Brown, & Brasher, 1990; Headrick & Zumbo, 2001; Hsieh,

1988; Marcoulides. 1993: Moerbeek. van Breukelen, & Berger, 2000, 2001; Muller,

LaVange, Ramey, & Ramey, 1992; Overall & Dalal, 1965; Raudenbush, 1997; Snijders

& Bosker, 1993). For example, Brooks (1955) derived a procedure for determining the

optimal subsampling number subject to a budget constraint for a design that involved

two-stage sampling. The constraint consisted of nonzero finite fixed prices for each input

of the design (Brooks, 1955, Equation 2). This constraint was extended to three-stage

sampling (Cochran, 1977, Equation 10.43) and also used to determine optimal sampling

numbers for some multi-level experimental designs (e.g., Headrick & Zumbo, 2001,

Equation 3; Moerbeek et al., 2000, Equation 6).

With this idea of an efficient allocation of resources in mind, let us first consider a

(multi) r level design where ci represents the nonzero fixed price for each of the n, units

used at the i-th level of the design (where i =1,...,r). For any particular r level design, a

number of different null hypotheses,can be formulated and tested. However, in the test of

any particular hypothesis, the form of the ratio of expected mean squares takes on a

general form that can be expressed as follows:

2
Cr

2

cJ
+ mcTo

0-0
2

(la)

where (1) denotes the parametric form of the F ratio. The term o is the total component
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of variance present in both numerator and denominator. The term al is the variance

component associated with some treatment effect. The term m in the numerator is a

general coefficient that denotes the total magnitude of all other coefficients associated

with a-r2 . The noncentrality parameter (8 ) associated with (la) can be expressed as:

km0-2
=

2
r

0. -0

where k is the number of means (from k populations) in the null hypothesis.

(2a)

Consider, for example, a r = 2 level design with three factors: factor A consisting

of k populations each with n2 second level units; factor B, crossed with factor A, and

consisting of n, first level units; and factor C nested under factor B consisting of two

types of observations for each of the n, units. Assuming factors B and C fixed and factor

A random, the ratio of the expected mean squares in (la) and the noncentrality parameter

in (2a) for the omnibus test for a difference across the k populations can be expressed as:

2 2a + zn la-1 + 2n
1
n 2a-2

(13 =
2

, and
2 - 2

Cie zn !al

k2n n cr2
= 1 2 2

, where
+ 2n, a

m= 2n1n2, a-r2 = a-: , and al = o + 2n10-12 in equations (la) and (2a) above.

Because economic resources are scarce, a question to consider is what would be

the optimal numbers of n, and n2 to use in the two level design described above? More

generally, this question can be formulated in terms of r level designs and with respect to

the additional concern for power as: Given a finite budget, what are the optimal integral

units of ni,...,n,,...,nr to use in a r level design such that the selected units of n, yield a
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targeted level power at minimum cost?

Overall and Dalal (1965) proposed a procedure for obtaining the optimal numbers

of units (ni ) for some multi-level designs based on (la) such that power could be

maximized for a fixed budget. However, the problems with the Overall and Dalal (1965) ,

procedure are its lack of generality and laborious nature. Specifically, the procedure

suggested by clvexall and Thalal CL965) requires the cumbersome task of writing out all

possible experimental situations given fixed prices and a total budget. For each of the

experimental possibilities, the subsequent tasks are (a) refer to previous research to

estimate the variance components, (b) determine the noncentrality parameter, and (c)

refer to power tables to determine the optimal scenario that maximizes power subject to

the total budget. Further, Overall and Dalal (1965) made no attempt to target a particular

level of power. As a result, the optimal solutions may yield an unacceptable level power

because of an inadequate initial budget (e.g., the maximum power for a given initial

budget could be .40).

The methodology of Brooks (1955), Cochran (1977), and Moerbeek et al. (2000)

is based on minimizing error variance i.e., some specific forms of the denominator in (la)

to obtain the optimal sampling units of ni . The problem with this method is that effect

sizes, degrees of freedom, and power are not generally considered. Specifically, while

these models do indeed minimize error variance, but similar to the procedure suggested

by Overall and Dalal (1965), they may in general yield solutions with an unacceptable

low level of power due to an insufficient budget. It should be noted that the procedure

suggested by Moerbeek et al. (2000, p. 281) does allow for an effect size to be used to

determine the minimum amount of dollars needed to achieve a certain level of power.

However, their procedure is limited to two groups.

3
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Moerbeek et al. (2000, Table 2) do offer convenient closed form solutions to

obtain the optimal numbers of units in the context of two and three level designs.

However, these equations are only applicable for some designs. For example, the

equation for the solution to n, given in Moerbeek et al. (2000, Table 2, for two levels,

and randomization at the class level) is not general enough to provide an optimum for n,

nhnlna irt arm, ot; rvrs (lk \
0.41-1,1 V 1.1).

Because of the work of such researchers as Cohen (1988), Glass (1976), and

Hedges (1981), some methodologists (e.g., Kirk, 1996; Rosenthal, Rosnow, & Rubin,

2000) are more concerned with the study and reporting of effect sizes - such as those

related to cr, in (la). Further, effect sizes are available (or can be estimated) to the

investigator who is in the beginning stages of formulating a budget and selecting an

appropriate experimental design (see, for example, Howell, 2000, p. 228).

2. PURPOSE OF THE STUDY

In view of the above, what is needed is a general model that can provide an

estimate of the amount of adjustment to a budget necessary to bring power to a targeted

level. More specifically, the purposes of the study are to (a) derive a procedure using

Lagrange multipliers for determining the optimal numbers of units for multi-level designs

with desired power targets, (b) provide more general closed form formulae that enable the

determination of optimal numbers of units for studies that involve more complex designs,

and (c) provide a method that optimizes multi-level designs when the estimates of

variance components are unavailable. Case studies are provided to demonstrate the

proposed procedure.
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3. MATHEMATICAL DEVELOPMENT

3.1 When Estimates of Variance Components are Available

Let (130 in equation (la) be defined in the context of a design with r levels as

follows:

2 2 2 2

Cfe p1na P2nin20-2,+***+ Prfnni)o-r
T = (r,:j '

2 . 2
CIE 1- )in1cs

.

i P2n1n20-2, Pr-it 11711 j07-1

(3)

where i = 1, . . . , r; the constants p, are nonnegative integers V,<, ; and the constant pr is a

positive integer. Similar to the role of m in (la), the values of p, are general constant

coefficients that denote the total magnitude of all other coefficients associated with their

respective variance component (cr,2 ). The values of tip..., nr in (3) are the variables of

concern to select in such a manner that 43 is maximized subject to a budget constraint.

It can be shown that the ratio of expected mean squares in (lb) is a special case of

(3) when randomization is performed at the (second) highest level. In general, equation

(3) would appear with r = 2 as:

=
2 2a- + p1n1a12 + p2n1n2(72

(1)

(Ye
2

2
(4a)

Setting pi = p2=2 gives equation (lb). If randomization were performed at the (first)

lowest level then setting p1 =0 and p2 =2 in (4a) would give the appropriate expression

for 0:13 as:

=
2cr2 + 2n1n2a2

0:1)
2

(4b)

Let the total finite budget (B) associated with executing a study of the form in (3)

be expressed as follows:
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B=q1c1inj+q2c2fIn + + + + qrc rnr ,
i=I j=2 j=i

(5)

where i = r , j = i,...,r , and the constants q, are positive integers. The values of c,

represent the price per unit of n,. The qi are general constant coefficients that are used to

determine the total cost for each of the r product terms (e.g., c, fln3 ) in (5).

Combining (3) and (5) more generally in terms of a Lagrangean expression is

written as:

Z(n1,...,nr,2)= f (ni,...,n,.)+ AIB g(ni,...,n,.)], (6)

where A is the Lagrange multiplier, (13 = f (n1,...") is the objective function from (3)

that is maximized subject to (5) for exogenous values of c, , p,, qi, o, and a,2 for all

i =1,...,r.

Without loss of generality, the optimal values of n, can be derived from setting

r= 2 in (5) and subsequently substituting the right-hand sides of (4a) and (5) into the

general framework of (6). The optimal solutions of ni ), n2 (n; ), and A (A*) are

expressed as follows (see Appendix 1 for their derivations):

n
*

= q2C2

q1c,

n2 = , and
cre Vq1q2c1c2 0.072c2

2

= P20-2

+0-111131q2c2 )2

In terms of microeconomic analysis, equations (7) and (8) imply that if the

(7)

(8)

(9)

objective function in (6) is at a maximum (assuming that the objective function is quasi-
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concave), then the marginal rate of substitution (MRS) of trading n1 for n2 must be equal

to the price ratio (c1 /c2) of ni and n2. This equality MRS = / c2 holds iff n1 = n: and

n2 = n. It can be shown that n: and n; yield a maximum by showing that the objective

function is quasi-concave on the domain consisting only of the nonnegative orthant

(Arrow & Enthoven, 1961). See Appendix 2 for this derivation.

More generally, if randomization is performed at the (highest) r-th level for r>2,

then in addition to n: from (7) the optimal solutions of n: , n:, and 2* are expressed as

follows:

ni* V 2.5i5r-1
pigiCi

Bar-1 1\17 and
Cfellq1q,.C1C,. + Cfil p,q,+Iqrccr + + ar_jqrcr

r2

2* =
+o-,1 p1q2c2 ++ aiJpiqcr )2

(10)

(12)

If randomization is performed at the i-th lower level (for i= r 1), then to

solve for n: substitute equation (7), i 2 equations of the form in (10), and r

preassigned integers for all n, above the i-th level into the budget constraint of (6) and

subsequently solve (6) for n: . If randomization is performed at the lowest level ( i =1),

substitute r 1 preassigned integers for all n, above the first level into the budget

constraint and then solve (6) for n: . For convenience to the reader, presented in Table 1

through Table 3 are the formulae for the optimal solutions of n: for two, three, and four

level designs at the various possible levels of randomization.



The solutions of n: given by equations (7), (10), and (11) require that they be

integral numbers. However, these equations in general do not yield such numbers.

Therefore, the following rule (Cameron, 1951) for rounding is used with respect to (7)

and (10): if n, are positive integers such that n, <n < n, +1 round up if

(n,$)2 > n,(n, +1) otherwise round down. The values of n: in (11) and Tables 1 through

3 are to be rounded in such a manner that the initial budget estimate (B) is not exceeded.

Thus, the initial realized budget will be less than or equal to the initial estimate of B.

The Lagrange multiplier (2* ) in (12) represents the marginal increase in the

objective function (0 ) of (6) given an exogenous increase of one dollar in the budget

(B). Presented in Table 4 are the solutions for 2* in the context of two and three level

designs under the various levels of randomization. Similar to Tables 1 through 3, the

extension of the results in Table 4 to larger designs should be clear from the structure of

the formulae.

3.2 Targeting a Level of Power

Given a design with randomization at the i-th level, the integral value of n:

determined from (11) (or from Tables 1 through 3) may yield an undesirable level of

power because of an inappropriate initial budget estimate. As such, we define n,(*) as the

integral number of units that yields the targeted level of power Tr(*) that is at least as

large as a prespecified power threshold point denoted as iz-(°) (e.g., ire') =.80). More

specifically, the targeted level of power g(*) is defined to be an element on the following

interval:

(0) < (*) ( +1)

8 1 1
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The level of power denoted as g(-1) in (13) is associated with the ni(*) 1 unit and

considered undesirable because it falls below the prespecified minimum value of

The upper limit of power denoted as ge") is associated with the n;*) +1 unit and

considered to be an unnecessary amount of expenditures i.e., the marginal cost of an

additional unit beyond n,$) exceeds the marginal benefit (or gain) in power.

To determine the amount of change to the initial realized budget such that power

is at the level of Tr(*) in (13), the estimated F ratio (denoted as F ) is first obtained. In

general, P is computed by substituting the estimates of the variance components, the

constant coefficients of pi, and the optimal numbers of nl* ,...,n; ,...,n based on the

initial realized budget into (3) as follows:

+ pint cr, + p2n, n20"2 + + pr lin; o,2
P =

. An", + p2n, n2(5-2 + + ni 2
r-1

r-1
" 2 * 2

i=1

(14)

The critical point from the central F distribution that corresponds with the degrees

of freedom for P from (14) is subsequently used to determine F(°) which is the point on

the noncentral F distribution that yields power of gm in (13). The value of F(°) is

computed by solving equation (30) in Appendix 3 for the noncentrality parameter ( 6*(0)).

It follows that:

5(0)
F (CI) =1+

k
(15)

where (r) is of the form in (2a). See Appendix 3 for further discussion and an example

for computing gm .

The change in the initial realized budget (denoted as dB) is then determined as:
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dB =F(°)
-fr

X
(16)

If F(°) > F (or if F(°) < P) in (16), then dB is the minimum increase (or maximum

decrease) to the total budget such that power remains greater than or equal to gm in (13).

Listed in Table 5 are the general relationships between the total budget

expenditures and the various levels of power in (13). The value of dB/chi; in Table 5 is

the derivative of the budget constraint in (5) with respect to n, (for randomization at the

i-th level) and reflects the change in the total budget that is associated with a per unit

change in ni.

3.3 When the Estimates of Variance Components are Unavailable

In the absence of estimates of the variance components an approach the

experimenter can take is to ask what would be a minimum effect size worth detecting.

Using Cohen's (1988) definition of a standardized effect size (f ) and a minimum

estimated value of a, , the estimate of a, in (3) can be determined as follows:

(i7 -17)2= -cr, , where cr, =f k
(17)

A very useful contribution from Brooks (1955, Table 1) is the pilot study that

demonstrated the wide range of values that n1 in (7) may take and still maintain at least

90% precision of the true optimum (n; ). With respect to the Brooks (1955) study,

Cochran (1977) noted, "Because of the flatness of the optimum, these [variance

components] ratios need not be obtained with high accuracy...the wide interval between

the lower and upper limits [than maintain 90% precision] is striking in nearly all cases"

(p. 282). Similar points were also made by Moerbeek et al. (2000, p. 278) with respect to



the flatness of the optimal solutions.

In view of this point, it is convenient to estimate of variance components in the

manner suggested by Cochran (1977) as follows:

11F--73T

CI
(18)

where p, is the intraclass correlation between the elements at the i-th level. Estimates of

p, can be obtained from similar studies that report reliability estimates. For example,

reliability coefficients such as KR-21 are often reported on instruments that take repeated

or duplicate measures. Otherwise, if other intraclass correlations are unknown, the

interval considered for estimating the variance components is pi E [05, .50]. Values of

p, outside this interval are considered as unusually low or high intraclass correlations

(Cochran, 1977). Substituting estimates of p1 and a, into (18) and solving for al in

terms of a two level design (i.e., i=1) gives:

crelh731o- =
I pl'

For r level designs, cri can be determined from cr as:

w
Cri = v 2<iSr-1

(19)

(20)

4. CASE STUDIES

Case 1. Consider a researcher formulating a budget to study the effect of

conditioned suppression on animal behavior. Of interest to the researcher is the F test for

differences between groups. The experimenter has data and research results reported by

Howell (2000) of the effects of conditioned suppression on three groups of rats from a



three-factor design with repeated measures. (See Howell, 2000, p. 480-484 for the

complete data set and a discussion on the effects of conditioned suppression. Variance

component estimates were obtained from the data set using Minitab, 2000.)

The researcher desires to give each of the n2 animals in the experiment n1

repeated measures across four different cycles. Suppose the experimenter estimates an

initial budget of B = $5250 and decires a precperified power level nf nt lent 7.7(°) =.80.

Presented in Table 5 is a summary of the steps and numerical information for determining

the optimal solutions for this experiment. As indicated in Table 1, the optimal solutions

are ni* =2 repeated measures and nr =14 animals for each of k = 3 groups. Thus, the

initial realized budget is required to be increased to B = $5880 in order to achieve the

targeted level of power

Case 2. In a study investigating the source of error in viscosity measurements

taken from shipping vessels, Hocking (1996) reported that the source of error was

attributed to the differences between the vessels. The study was a two-factor fully nested

ANOVA that included a single fluid.

A researcher is subsequently interested in investigating the effects of differences

between fluids on the measurements of viscosity using k= 2 treatment groups. Based on

the estimates of the variance components (Hocking, 1996, p. 611), the researcher has

decided that a minimum value of o-32 =0.125 would be meaningful to detect with power

prespecified to be at least gm = .80. Assume that the researcher has $150,000 available

for this study. Presented in Table 7 are the estimates of the variance components as well

as the other relevant information that summarizes this example. From Table 7, the

optimal numbers for this example are n; = 2 duplicate trials, n; = 2 independent trials,

12



and nr = 4 shipping vessels. A total budget of $99,520 is required for the targeted

power level with randomization at the shipping vessel level. Thus, only about two-thirds

of the available money to the researcher is required to achieve the desired level of power.

Case 3. Suppose that a difference of 20 units between k= 2 groups (experimental

and control) on a new treatment intervention and the standard treatment is considered

r.4- --(0) nn 9- nooine^'"gfill to detect with ul at. ',am. (11700) definition of

a medium effect size ( f = 0.50 ) and equation (17) gives:

a 10=== 20.f .50

Assume prior research indicates that the instrument taking the duplicate measures

has good reliability, p1= .80. The value of p2 is set equal to p2 = .25 (the approximate

midpoint of the intraclass correlation interval discussed in the previous section). Thus,

from (19) and (20) the variance component estimates are:

20(ad)al= = 40 , and

40(VE)
2

23'094'

An initial budget estimate is set to B= $12,500. The various prices for each input

of the design are listed in Table 8. As indicated in Table 8, the optimal numbers for this

example are n: =1 (duplicate) measure, n2* =3 independent trials, and nr = 65

subjects. A total budget of $36,400 is required with randomization at the subject level. As

indicated in Table 8 the initial budget was substantially underestimated ($12,500) for

achieving the targeted level of power.

In practice, when the variance components are (a priori) unknown, it is prudent to



take an approach that yields conservative (biased downward) estimates of fr in (16). The

consequence of this approach is that it will require a larger total budget to ensure

achieving a minimum targeted level of power.

5. CONCLUSION

The proposed procedure determines the efficient allocation of resources for

experimental designs that include multi-stage sampling at a given level of randomization.

The procedure is based on microeconomic analysis for determining optimal states.

Specifically, given a fixed budget, various prices, and the estimates of variance

components for a design, the Lagrange multiplier method locates the point where the

ratio of expected mean squares is at a maximum. At the optimal state, each unit

purchased will yield the same marginal utility per dollar spent on that unit. As a result,

each unit will have an identical marginal cost to marginal benefit ratio.

The procedure presented simplifies the Overall and Dalal (1965) procedure for

deterinining optimal solutions to the extent that there is no need to list all possible

combinations of potential solutions. The example and discussion in Overall and Dalal

(1965) on the special "zero-overhead" case for a simple repeated measures design is also

subsumed under the proposed method. That is, if there is no cost associated with each

subject (i.e., c2 is arbitrarily close to zero in equations 7 and 8), then test each subject

once and use as many subjects in the design that the budget allows.

From the case studies examined, it is evident that the procedure enables the

researcher to estimate the amount of dollars needed to adjust power to some desired level.

Using effect sizes and Lagrange multipliers from the model precludes the researcher from

requesting either too much or too little money when formulating a budget.
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Table 1. Solutions of n: for a two level design where randomization is at the i-th level.

Level
Randomized Solution for n: , i = 1, 2

1

2

* B q2c2n2
nl =

q1c1n2

B0-11171
n2

Ce Vq1q2c1c2 +0-1q2c21131

Table 2. Solutions of n: for a three level design where randomization is at the i-th level.

Level
Randomized Solution for n: , i = 1 , 2, 3

1

2

3

* B q 2c 2n 2n3 q3c3n3
ni =

q1cin2n3

C r1.\ T31 (B q3c3n3)n2 =
7en3Vq1q2c1c2 + alq2c2n31171

Ba2A1732n3 =
aellq1q3c1c3 + Cri,j pig 2 q3c2 C3 + C72q3 C3

Table 3. Solutions of n: for a four level design where randomization is at the i-th level.

Level
Randomized Solution for n: , i = 1, 2, 3, 4

1

2

3

4

n
* B q2c2n2n3n4 q3c3n3n4 q4c4n4

q1c1n2n3n4

n2

n3 =

0 VIMB q3c3n3n4 q4c4n4)

Cren3n411m2c1c2 + (71q2c2n3n4v71

Cr2 -Nr/T2 (B q4c4n4)

c7en411q1q3c1c3 + Cf1n4Vp1q2q3c2c3 + cr2q3c3n41/72

CSEVq1q4c1c4 +0-111p1q2q4c2c4 CY2 Vp2q3q4c3c4 CAS C.4 j-33



Table 4. Solutions for the Lagrange multiplier (7
two and three level designs.

) at various levels of randomization for

Level
Randomized Two level Design Three level Design

1

2

3

20 22

2*

er2
P3" 3

(cY 11T)

=

2

er2
2u 2

(aejc-7)2

2

= P30-3

(Cre VeT1 611/Plq2c2 )2 (0 V.T. + criVplq2c2)2

r2
= P3"3

.(Cie 1F7 + 0-111 p1q2c2 + o-2 Vp2q3c3) 2

Table 5. The relationship between power and total budget expenditures. The power levels
are associated with equation (13). B represents the initial realized budget. The AB
denotes the necessary change to B to bring power to a minimum acceptable level of g(°) .
The number n: is based on B. The value of ni(*) is the optimal number to bring power to

the targeted level of g(*) . Randomization is at the i-th level.'

Power Level
(-1)

Power Level and Expenditures

Insufficient

Minimum

Optimal

Excessive

Total Budget
dBB+ [(nr) 1) n:]
dni

B+ AB
dBB+ [nr) n:

B+ [(*) +1)

dB
'Note: Minimum and optimal levels are equal (i.e., it-(°) = 7r(*)) if AB =[n*) n:]

dn,
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Table 6. Summary of Case 1. The optimal numbers are ni* =2 repeated measures,

n(*) =14 animals for each of the k=3 (treatment) groups, and with a total expenditures of2

$5,880. Randomization is at the animal (second) level.

1. Lagrangean expression:

2

Z = a 2
+ PInlal

2
+ P2nin2a2 + 2[B qInin2c1 q2n2c2]

2 2

1(a). Cost for each animal to enter the experiment: c2 =$100

1(b). Cost for each repeated measure: c
1

=$5

1(c). Initial budget estimate: B= $5,250
1(d). Variance component estimates: al = 0.01908, crI2 =0.00697, cT =0.00244

1(e). Integer values of pi and qi: pl =4, p2 =4, q1 =12, q2 =3

2. Minimum power threshold point: g(°) = .80

3. Initial realized budget: B= $5040 = (12)(2)(12)($5) + (3)(12)($100)

4. Optimal integer solutions based on the initial realized budget:
3(a). Number of repeated measures (eq. 7): n* =2

3(b). Number of animals per group (Table 1, Level 2): n; =12

5. =$420 =(12)(2)($5) + (3)($100)
dn2

6. Lagrange multiplier (Table 4): X = 0 .0 0 0 6 2 2

7. Values of fr and F(0):
7(a). For p1 =4, p2 =4, tzt* =2, n; =12 (eq. 14): fr =4.13

7(b). For'g(0) = .80 (eq. 15 and App. 3 with z(°) = 0.84 ): F(°) =4.47

8. Change to the initial realized budget (eq. 16): AB =$547

9. Total expenditures associated with the power points g(-I), g(0), g(*) , g(+1) in eq.
(13) where r4*) =14 yields the targeted level of power g(*) (see Table 5):

9(a).

9(b). g(°) = .80:

9(c). g(*) :

9(d).

Insufficient

Minimum

Optimal
Excessive

$5040+ [13 12] x $420 =$5,460

$5040+ $547 =$5,587

$5040 + [14 - 12] x $420 = $5,880
$5040 + [15 12] x $420 = $6,300

'7 20



Table 7. Summary of Case 2. The optimal numbers are ni* =2 duplicate trials, n; =2,

trials, 4`) =4 shipping vessels for each of the k= 2 (experimental and control) groups,

and with a total expenditures of $99,520. Randomization is at the vessel (third) level.

1. Lagrangean expression:

2 2 2a2+1,Ini + P21111220'2 + p3n1n2n3o-3Z = q1n1n2n3c1- q2n2n3c2- q3n3c3]
2 2 2

Cr e P2n1n20-2

1(a). Cost for each shipping vessel: c3 =$9,900

1(b). Cost for each trial: c2 =$770

1(c). Cost for duplicating each trial: c1 =$250

1(d). Initial budget estimate: B = $150,000
21(e). Variance component estimates: o-e2 =0.03470, a-12 =0.02670, o-2 =0.08180,

o-2 =0.1253

1(0. Integer values of p, and q,: p1=1, p2=1, p3=1, q1=2, q2=2, q3 =2

2. Minimum power threshold point: gm = .80

3. Initial realized budget:

B = $149,280 = (2)(2)(2)(6)($250) + (2)(2)(6)($770) + (2)(6)($9900)

4. Optimal integer solutions based on the initial realized budget:
3(a). Number of duplicated trials (eq. 7): n 1* =2

3(b). Number of trials per vessel (eq. 10): n; =2

3(c). Number of vessels per group (Table 2, Level 3): n* =6
3

dB
5. =$24,880 =(2)(2)(2)($250) + (2)(2)($770) + (2)($9900)

dn3

6. Lagrange multiplier (Table 4): 2* = 0.0000484

7. Values of P and F(°) :
7(a). For pl = p2 = p3 =1, n1 =2, n; =2, n; =6 (eq. 14): P =8.22

7(b). For 7z-(°) = .80 (eq. 15 and App. 3 with z(°) = 0.84 ): F(°) =5.75
8. Change to the initial realized budget (eq. 16): AB = -$51,033

9. Total expenditures associated with the power points g") , ir(°) , , g(+1) in eq.

(13) where r4*) =4 yields the targeted level of power g(*) (see Table 5):

9(a).

9(b).

9(c).
9(d).

7r(-1)

7z-(°)

g(*)

:

=.80:

:

Insufficient

Minimum

Optimal
Excessive

$149,280+ [3

$149,280 + (-

$149,280 + [4
$149,280 + [5

6] x $24,880 =$74,640

$51,033 )=$98,247

- 6] x $24,880 = $99,520
6] x $24,880 = $124,400



Table 8. Summary of Case 3. The optimal numbers are ni* =1 duplicate measures, n; =3

repeated measures, n3(*) =65 subjects for each of k=2 groups, and with a total

expenditures of $36,400. Randomization is at the subjects (third) level.

1. Lagrangean expression:

2 2 262 + p2nirz2O-2 + p3n1n2n3a3
Z = q1n1n2n3c 1 -q2n2n3c2 -q3n3c3]

2 2 2
Cr e P1nIci P2n1n2c2

1(a). Cosi for training each subject: c3 =$100

1(b). Cost for each test occasion: c2 =$50

1(c). Cost for duplicating each test: cl =$10

1(d). Initial budget estimate: B=$12,500
1(e). Variance component estimates: o-E2 = 20, c4 =40, cr22 =23.094, o-32 =100

1(f). Integer values of pi and qi: p1 =1 p2=1 p3=1 qi =2 q2=2 q3 =2

2. Minimum power threshold point:

3. Initial realized budget:

B= $12,320 = (2)(1)(3)(22)($10) + (2)(3)(22)($50) + (2)(22)($100)

4. Optimal integer solutions based on the initial realized budget:
4(a). Number of duplicated trials (eq. 7): n1' =1

4(b). Number of test occasions (eq. 10): n2 = 3

4(c). Number of subjects per group (Table 2, Level 3): n; =22

.90

dB
5. =$560 =(2)(1)(3)($10) + (2)(3)($50) + (2)($100)

dn3

6. Lagrange multiplier (Table 4):

7. Values of fr and F(°) :
7(a). For p1= p2 = p3 =1, nis =1, n; =3, n; =22 (eq. 14):

7(b). For gm = .90 (eq. 15 and App. 3 with z(°) = -1.28 ):

8. Change to the initial realized budget (eq. 16):

9. Dollar values associated with the power points r") ,

where nr =65 yields the targeted level of power 7r(*) (see

2 =0.000150

P =2.83

F(°) =6.39

AB =$23,733

7t(*) , ir(") in eq. (13)
Table 5):

9(a). r(-1) : Insufficient $12,320 + [64 22] x $560 =$35,840

9(b). = .90: Minimum $12,320+ ($23,733)=$36,053

9(c). 7T(*) : Optimal $12,320 + [65 - 22] x $560 = $36,400

9(d). 71-(+1) : Excessive $12,320 + [66 22] x $560 =$36,960



APPENDIX 1.
The specific form of the Lagrangean expression in (6) for r=2 is expressed as:

2
Cr

2 + An, a,2 + p2n, n2 a2
Z = + 2.[B q1c1n2n, q2c2n2].

2 + c1C1
2

(21)

Differentiating (21) with respect to n1, n2, and 2 and equating the partial derivatives to

zero yields:

2 2 2 2az n (c2 (q cr4 + p2q n2a4 2p,q,n1cricje) P2CY 6(72)2 1 1 e 11 (22a)Zn = = 0 =
2anl (Cc + P1/70712 )2

Zn = = 0 = 2(q1n1c1+b2c2)+ 2132"1'' 2 and
2 an2

azz == 0 = B qicin2n1 q2c2n2.
a2

Equation (22c) returns the budget constraint. Solving (22a) and (22b) for 2 gives:

2 2.

2= 132crecr2
, and

2q1c1 (o-, + p1n1Cri2 )2

.2
132."'1'' 2

(q1n1c1 + q2c2)(pinIcr; + cre2)

(22b)

(22c)

(23a)

(23b)

Dividing (23a) by (23b) and multiplying through both sides by the price ratio (c1 )

yields:

2
C1 a- (qnc + q2c2)

2
C2 qInIc2 + pinicr12)

(24)

Solving (24) for n1 gives the optimal number of n; in equation (7). Subsequently

substituting the right-hand side of (7) into the constraint of (21) and into (23a) gives the

optimal numbers of n; and X in equations (8) and (9) respectively.
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APPENDIX 2.

The first and second-order partial derivatives of 0:13 (the objective function) in

(21) with respect to n1 and n2 are as follows:

ao r21.2
/32n2" E'' 2

= fn, = (0.,2 p1n1a,2)2 ,an,

a(13

an2

a 20

an1
2 fno

I

P2n1a22

a, + pinicrj2 '2

2 2 2

=
2A/32M-co-I 62
(7E2

0.12 )3 '

a2e,
=

f2n2

= o , and
an 22

a 20 a 20
= = f

an1n2 an2n1
= fn2n, =

cre2 0.22

(cr: p1n10.12 2

The determinantal test for quasi-concavity is (Chiang, 1984, p. 394):

ITil=

IT321=

0 fni

fn, fno,

ao
2

= < o, and
an,

o fn, fn2

fn, fn,n, fn,n,

fn2 fn2n1 fn2n2

(25)

(26)

(27)

(28)

(29)

2( act. ao a2L) raoyra2oI ra0121a2c1:01
On, an2 an2nI) On2 ) ( ani2 ) an, ) ( a/4 ) >

On substitution of (25) through (29), it follows that:

IcT321= 2[

2 2

(
p2n2cse 0-2

2

p1n10.12 )2 < 0 , and

2 2 2 2
P2n2'

r,72
e `-' 2 132n1a2 P2aeCI-2

(762
0.12 )2 cre2 0.12 (o ,62 n10.12 )2

)
20.62. cri2cjr p2n2cre20.22

( P2n149-22 2( 2P1P2n2
2 + Anlai

)
2 (51 0.12 )3 0.62 111,110.12)2 (o)> o,

because n, , n2, and p2 are positive and p, is nonnegative. Hence, (13 is quasi-concave.



APPENDIX 3.

The value of Fm in equation (15) is based on the following expression (Winer,

1991, p. 136):

11(2v2 1)1)1F0 11(2v, 8)v1
+ 28

+2 I 1

VI FO + VI + 25

11 "2 Vi

(30)

where z(°) is unit normal, 8 is a noncentrality parameter, and v1 and v2 are the degrees

of freedom associated with the numerator and denominator of the F ratio. If F0 in (30) is

a point on the F (v, ,v2 , ) distribution, then the Pr(F> F0 ) = Pr(z > z(°)). Setting z(°) in

(30) to the appropriate value associated with minimum power of 71-(°) in (13) and solving

for 8 gives 8(°) . Because a(°) is of the form in (2a) it follows that:

so)
F(°) =1+ which appears in equation (15).

As an example, from the initial realized budget in case 1, we have degrees of

freedom of v1 =2, v2 =33, and a critical point of F0 =3.28. Because g(°) = .80 in (13) we

set z(°) = 0.84 . Substituting these values into (30) gives:

11[2(33) 1](2)(3.28)
2(2) 8]

2 + 28

33 2 +0.84 =
1/(2)(3.28) 2 + 26

33 2 + 8

Numerically solving (31) for 6, using the equation solver FindRoot (Wolfram,

(31)

Mathematica, version 4.0, 1999), gives 8(e) =10.41. Thus, given that k= 3 for this case

8(0)
we have F(°) =1+ 1+ 10.41

=4.47.
3

25
22
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