O

ERIC

Aruitoxt provided by Eic:

DOCUMENT RESUME

ED 459 840 IR 058 376
AUTHOR Lorie, Raymond A.

TITLE Long Term Preservation of Digital Information.

PUB DATE 2001-06-00

NOTE 8p.; In: Proceedings of the ACM/IEEE-CS Joint Conference on

Digital Libraries (1lst, Roanoke, Virginia, June 24-28,
2001). For entire proceedings, see IR 058 348.

Association for Computing Machinery, 1515 Broadway, New York
NY 10036. Tel: 800-342-6626 (Toll Free); Tel: 212-626-0500;
e-mail: acmhelp@acm.org. For full text:
http://wwwl.acm.org/pubs/contents/proceedings/dl/379437/.

AVAILABLE FROM

PUB TYPE Reports - Evaluative (142) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PCO1 Plus Postage.
DESCRIPTORS *Archives; *Electronic Libraries; Information Management;
' Information Processing; Information Storage; Information
Systems; *Preservation
IDENTIFIERS Data Management; *Digital Data; *Digital Technology
ABSTRACT

The preservation of digital data for the long term presents
a variety of challenges from technical to social and organizational. The
technical challenge is to ensure that the information, generated today, can
survive long term changes in storage media, devices, and data formats. This
paper presents a novel approach to the problem. It distinguishes between
archiving of data files and archiving of programs (so that their behaviors
may be reenacted in the future). For the archiving of a data file, the
proposal consists of specifying the processing that needs to be performed on
the data (as physically stored) in order to return the information to a
future client (according to a logical view of the data). The process
specification and the logical view definition are archived with the data. For
the archiving of a program behavior, the proposal consists of saving the
original executable object code together with the specification of the
processing that needs to be performed for each machine instruction of the
original computer (emulation). In both cases, the processing specification is
based on a Universal Virtual Computer that is general, yet basic enough as to
remain relevant in the future. (Author)

Reproductions supplied by EDRS are the best that can be made
from the original document.

,

ED 459 g4

IR058376

ww
—Q
@)

i
%;:
4
o
L]

Long Term Preservation of Digital Information

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED By

D. Cotton

_

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

ABSTRACT

The preservation of digital data for the long term presents a
variety of challenges from technical to social and organizational.
The technical challenge is to ensure that the information,
generated today, can survive long term changes in storage media,
devices and data formats. This paper presents a novel approach to
the problem. It distinguishes between archiving of data files and

archiving of programs (so that their behavior may be reenacted in

the future).

For the archiving of a data file, the proposal consists of specifying
the processing that needs to be performed on the data (as
physically stored) in order to return the information to a future
client (according to a logical view of the data). The process
specification and the logical view definition are archived with the
data.

For the archiving of a program behavior, the proposal consists of
saving the original executable object code together with the
specification of the processing that needs to be performed for each
machine instruction of the original computer (emulation).

In both cases, the processing specification is based on a Universal
Virtual Computer that is general, yet basic enough as to remain
relevant in the future.

Categories and Subject Descriptors
E.7 [Electronic Publishing]: Long-term preservation of digital
information.

General Terms
Standardization, Languages.

Keywords
Digital library, preservation, archival, digital information, digital
documents, emulation.

1. INTRODUCTION

The problem that libraries are facing today is well known [1]. For
centuries, paper has been used as the medium of choice for storing
text and images. Today more than ever, some of the archived
objects (books, newspapers, scientific papers, government and
corporate documents, etc.) are in danger of becoming unreadable.
The preferred solution is to digitize the documents and store the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

JCDL'01, June 24-28, 2001, Roanoke, Virginia, USA.

Copyright 2001 ACM 1-58113-345-6/01/0006...$5.00.

Raymond A. Lorie
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
001-408-9271720

lorie@almaden.ibm.com

346

TMENT OF EDUCATION
thjc'es bPEEdE:aﬁonal Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)
O This document has been reproduced as
received from the person or organization

originating it.
O Minor changes have been made to
improve reproduction quality.

® points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.
binary files in a digital library (DL). As a result, an object can be
copied repeatedly without degradation and its content can be sent
remotely and accessed at will. Also, the physical space needed to
store the object becomes smaller and smaller as storage density
increases.

Beside digitization, a high percentage of the data to be preserved
is, today, generated directly in digital form. Spreadsheets, word
processor documents, e-mail messages, as well as audio CD’s or
DVD’s are obvious examples.

Whatever the origin of the digital information is, we are left with
the same challenge: to ensure that the information can survive
long term changes in storage media, devices, and data formats. An
excellent introduction to this problem is given in [2].

2. THE PROBLEM

Suppose we use a computer (identified as M2000) to create and
manipulate digital information today. For the purpose of archiving
the data for preservation, the digital information is catalogued in a
DL index; the content of the document may be stored in the DL
itself, say in a file F2000. Suppose that, in 2100, a client wants to
access the archived data. Assuming the catalog entry is still
accessible and still refers to the document, three conditions must
be met in order to recover its content:

1. F2000 must be physically intact (bit stream preservation)
2. A device must be available to read the bit stream.
3. The bit stream must be correctly interpreted.

Condition 1: some researchers predict very long lifetimes for
certain types of media, but others are much less optimistic.
Anyway, if a medium is good for N years, what do we do for N+1
years? Whatever N is, the problem does not go away. The only
possible solution consists of rejuvenating the information
periodically by copying it from the old medium onto a newer one.

Condition 2: machines that are technologically obsolete are hard
to keep in working order for a long time. Actually, this condition
is more stringent than the previous one. Here also, rejuvenation is
needed: it moves the information onto a new medium that can be
read by the latest generation of devices. Thus, conditions 1 and 2
go hand in hand. Note that rejuvenation is not an overhead
incurred only for preservation; it is also a means of taking
advantage of the latest storage technology.

Condition 3: the two conditions above insure that a bit stream
saved today will be readable, as a bit stream, in the future. But
one must be able to decode the bit stream to recover the
information in all its meaning. This is quite a challenging
problem, and this paper sketches a solution.

BEST COPY AVAILABLE

Q

E

Aruitoxt provided by Eic:

RIC

3. THE TYPES OF DOCUMENTS

We distinguish three cases; by increasing order of complexity:

Case 1: The document is represented as a simple data structure.
The rules to decode and understand the document can be
explained in natural language, and saved in the DL. In 2100, a
program can be written to decode the data',

Case 2: When the data structure and the encoding reach a certain
level of complexity, it becomes impractical or even impossible to
explain them in natural language. The alternative is to save a
program that decodes the data; this may be the only way to be
sure that the decoding is specified completely. The program is
written in some language L. In 2100, the M2100 system must be
able to interpret it.

Case 3: At the end of the spectrum, we may be interested in
archiving a computer program or system for its own sake. In this
case, it is the ability to run that program which must be preserved
by the archiving mechanism. Not only the bit stream that
constitutes the program must be archived, but we must also make
sure that the code can be executed at restore time. Therefore,
enough information on how to execute an M2000 code on an
M2 100 machine must also be archived.

The overall case analysis can be simplified by noting that case 1
can be handled by any method that handles case 2. In both cases 2
and 3, a program is being saved. The only — but very significant -
difference is that, for case 3, the language in which the program is
written must be the native M2000 machine language, while the
language L, used for handling case 2, can be arbitrary. We refer to
case 2 as data archiving and to case 3 as program (or behavior)
archiving.

4. PREVIOUSLY PROPOSED SCHEMES

Two schemes have been proposed earlier; both have serious
drawbacks.

4.1 Conversion

Conversion [1] has been used for decades to preserve operational
data in data processing installations. When a new system is
installed, it coexists with the old one for some time, and all files
are copied from one system to the other. If some file formats are
not supported by the new system, the files are converted to new
formats and applications are changed accordingly.

Conversion is quite reasonable when the information that is being
converted will, most likely, be used in the near future (a bank
account record, for example). However, in the type of archiving
that interests us here, the information may not be accessed for a
long time, potentially much longer than the period between two
system changes. Then, the conversion becomes a burden and is
not really necessary. Another disadvantage of conversion is that
the file is actually changed repeatedly — and it is hard to predict
the cumulative effect that such successive conversions may have
on the document.

! A piece of text encoded in a well known alphabet such as ASCII is a
particularly easy instance of a case 2 document; the only requirement is
that the DL catalog keep the alphabet definition.

347

4.2 Emulation
In [2], Jeff. Rothenberg sketched out an overall method based
exclusively on emulation.

In summary, it consists of saving, together with the data,

e the original program P, also as a bit stream, that was
used to create and manipulate the data (this program
runs on M2000), including the operating system and
other components when necessary,

e the detailed description of the M2000 architecture,

e a mostly textual description of how to use the program
P and what its execution returns.

Then, in 2100, an emulator of the M2000 machine can be built,
based on the architecture description. Once this is done, the
program P can be run and will produce the same results that P
used to produce in 2000. Let us point out right away that building
an emulator from the description of the M2000 architecture is not
a simple endeavor. It can be done only if the description of the
M2000 architecture is perfect and complete (a notoriously
difficult task in itself). But even then, how do we know the
emulator works correctly since no machine M2000 exists for
comparison? In [3], the same author suggests the use of an
emulator specification. Although no particular specification
means is proposed, we can imagine that these specifications could
be prepared in 2000 from the M2000 architecture, facilitating the
actual generation of an emulator in 2100 (by a human or a
machine).

Note that the method hinges on the fact that the program P is the
original executable bit stream of the application program that
created or displayed the document (including the operating
system). This is justifiable for behavior archiving but is overkill
for data archiving. In order to archive a collection of pictures, it is
certainly not necessary to save the full system that enabled the
original user to create, modify and retouch pictures. If Lotus
Notes is used to send an e-mail message in the year 2000, it is
superfluous to save the whole Lotus Notes environment and have
to reactivate it in 2100 in order to restore the note content. But
there is an even worse drawback: in many cases, the application
program may display the data in a certain way (for example,
graphically) without giving explicit access to the data itself, In
such a case, it is impossible to move the actual data from the old
system to the new one.

Other authors have voiced a similar reservation. For example, D.
Bearman in [4] notes that “Rothenberg is fundamentally trying to
preserve the wrong thing by preserving the information system
functionality rather than the record”.

5. OUR PROPOSAL

One important characteristic of the method introduced in [5] and
summarized below, is that it differentiates between data archiving
which does not require full emulation, and program archiving
which does.

For data archival, we propose to save a program P that can extract
the data from the bit siream and return it to the caller in an
understandable way, so that it may be transferred to a new
system. The proposal includes a way to specify such a program,
based on a Universal Virtual Computer (UVC). To be

O

E

Aruitoxt provided by Eic:

RIC

understandable, the data is returned with additional information,
according to the metadata (which is also archived with the data).

For the archival of a program behavior, emulation cannot be
avoided. But here also, the Universal Virtual computer can be
used to write the M2000 emulator in year 2000, without any
knowledge of what M2100 will be.

5.1 Data Archival

Consider fig.1. The data contained in the bit stream is stored in
2000, with an arbitrary internal representation, Ri. In 2100, The
data is seen by a client as a set of data elements that obey a certain
schema Sd, in a certain data model. A decoding algorithm
(method) extracts the various data elements from Ri and returns
them to the client, tagged according to Sd. A language L is used in
2000 to specify the details of the needed decoding. In addition, a
mechanism allows the client to read Sd as if it were data. It relies
on a schema Ss, a schema to read schemas. The schema Ss is
simple and intuitive; it should endure for a long time to come, and
be published in many places so that it remains known. In the
following sections, we describe each component in more detail.

5.1.1 Thelogical data model

The choice of an appropriate data model and a means to describe
Sd is based on the following premises:

1) it must be simple in order to minimize the amount of
description that must accompany the data and decrease the
difficulty of understanding the structure of the data;

2) it is only used to restore the data and not to work with it
(actually, once it is restored, the data will generally be stored in
the repository of the system used at restoration time, maybe under
a different model).

Flat files, or tables similar to those used in the relational model,
certainly satisfy the requirement. So do hierarchies. Simple and
powerful, inherently easy to linearize, they have been used in
many areas, often under a different name: repeating groups or
non-first-normal-forms [6] in databases, Backus-Naur Form [7]
in syntax specification, and - more recently - XML [8). We choose
an XML-like approach.

5.1.2 An example

Consider a file containing a collection of pictures of historical
buildings in Mycity, including both formatted data and gray scale
pictures. The file is a list of records. Each record consists of a
sequence of fields. Each field can itself be a list of records made
of fields that can be records, etc. A table showing the populated
hierarchical structure is shown, much abridged, in fig. 2.

In 2000 In 2100
Application
Metadata 1
’ Method to access Ss Get
4 Metadata P Metadata
Methods 1
Method to Get Dat
@ access Data Sd > et Lata
Data
(Ri)

Figure 1: Overall Mechanism for Data Archival

348

O

E

Aruitoxt provided by Eic:

RIC

building
name address picture
year nbr_lines | dots-per-line line
No gray_value
ABC Building | 12 Main street 1903 1200 2100 1 102
104
116
2 211
234
1924 900 1300 1 125
XYZ Building | 9 North street 1917 2180 2700 1 202

Figure 2: Populated table for a Collection of buildings

A reader is able to understand what the various data elements
mean because the header, displayed at the top of the table,
describes the schema Sd. In addition, the indentation of the data
allows the reader to “parse” the data according to the schema. For
the digital equivalent of the data in fig. 2, a representation of Sd is
also needed. The proposal consists of storing, together with the
data, a representation Ri of Sd. That representation is nothing else
than the linearized form of a construct similar to a Data Type
Definition (DTD) in XML, it defines the application-dependent
tags. The DTD for the application is shown in fig. 3.

In plain English, it would read as:

a collection is a list of buildings; a building is associated with
an address, a name, and a list of pictures; a picture is
associated with a date (year), the number of dot lines in the
picture, the number of dots per line, and a list of lines; a line
has a number and a list of gray values.

The * token stands for 0 or more; + means at least 1; ? means
optional.

The DTD is the metadata to understand the data (it is clearly
application-dependent). At this point, let us assume that the client
knows the DTD.

5.1.3 Invocation and functionality of the methods
The method to access the data supports the retrieval of all values
in the tree according to a depth-first traversal. At a logical level,
the restore application in 2100 simply executes the following
(pseudo-code) statements:

open
while (more) {

get_field (tag, x)
}

DOCTYPE Building_collection [
! This is a collection of gray scale pictures of historical buildings
in Mycity.
! A building has an address, and an (optional) name; it can have
several pictures (for different years).
! The gray value is between 0 (white) and 255 (black).

ELEMENT Collection (building+)

ELEMENT building (name?, address, picture+)
ELEMENT picture (year, nbr_lines, dots-per-line, linet)
ELEMENT line (nbr, gray_value+)

ELEMENT name (CHARr)
ELEMENT address (CHAR)

ELEMENT year (NUM)
ELEMENT nbr_lines (NUM)
ELEMENT dots_per_line (NUM)

ELEMENT nbr (NUM)
ELEMENT gray_value (NUM)

Figure 3: The DTD for our application

" For each field, thie value is returned in variable x, together with a

349

<tag>. The tags, although slightly different from those used in
XML, unambiguously indicate the type of each element. In the
example, the first repetitive calls to get_field would return the

following:
<Collection™>
<building>
<name> ABC_Building
<address > 12 Main street
<picture>
<year> 1903
<nbr_lines> 1200
<dots_per_line> 2100
<line>

5.1.4 A schema to read schemas

Contrary to what we assumed earlier, the client may not know the
information contained in the DTD. Therefore, we need to provide
a way to retrieve that information as well. A simple solution
consists of adopting for the schema a method similar to the one
proposed for the data: the schema information is stored in an
internal representation Ri, and accompanied by a method to
decode it. Logically, the Ss looks like this:

DOCTYPE Metadata [
ELEMENT fields (root_name, comment, field+)
ELEMENT field (level, name, description, type?, attribute?)

ELEMENT root_name (CHAR)

The level specifies the depth of a record in the hierarchy. The
same code ‘“‘open... get_field...” can be used to retrieve the
metadata. Fig. 4 shows the initial section of the results.

The mechanism presented above accomplishes the following: it
defines a simple interface for accessing the archived data. That
interface is simple because the decoding rules are all contained in
the methods; it will therefore easily survive for a very long time
(its definition may have to be stored in more than one place but it
certainly does not need to be stored with each archived object).
The same is true for the mechanism to read schemas.

It should be noted that the examples used above are
oversimplified, but they are sufficient for illustrating the proposed
mechanism. It is clear that the DTD’s will need identifiers and
references such as those available in XML.

5.1.5 Specification of methods

The responsibility of extracting the logical data elements from the
data stream lies with the methods, supposedly written in L. But
what should L be? Let’s try some possibilities:

1. A natural language. The difficulties are well known; and
computer scientists have invented all kinds of codes and pseudo-
codes to avoid them, leading to the next item:

2. A high level language. High-level languages are designed to
facilitate the writing of programs by large communities of

ELEMENT comment (CHAR) programmers. Language developers, then, always try to
ELEMENT level (NUM) incorporate the latest features that may facilitate program
ELEMENT name (CHAR) development. Every five or ten years, something new seems to
ELEMENT description (CHAR) come along and the current language gets obsolete.
ELEMENT type (CHAR) 3. The machine language of the computer on which the algorithm
ELEMENT attribute (CHAR) runs in 2000. This is the option that requires a full emulation of
] the M2000 to be written at restore time; we have discussed its
difficulties earlier in this paper.
<fields>
<name> Collection
<comment> this is a set of pictures of historical buildings
<field>
<level> 0
<name> building
<description> list of building(s) which have pictures
<attribute> +
</field>
<field>
<level> 1
<name> name
<description> name of the building
<type> CHAR
<attribute> ?
</field>
<field>
<level> 1
<address> postal address of building
</fields>

Figure 4: Retrieving a schema definition (partial results)

350

ERIC 6

Aruitoxt provided by Eic:

Q

ERIC

Aruitoxt provided by Eic:

Instead, we propose to describe the methods as programs written
in the machine language of a Universal Virtual Computer (UVC).
The UVC is a Computer in its functionality; it is Virtual because
it will never have to be built physically; it is Universal because its
definition is so basic that it will endure forever.

The UVC program is completely independent of the architecture
of the computer on which it runs. It is simply interpreted by a
UVC Interpreter. A UVC Interpreter can be written for any target
machine.

This approach does not have the drawbacks of the method 3
above. If a UVC program is written in M2000, it can be tested on
a UVC interpreter written in 2000 for an M2000 machine. If x
years later, in 2000+x, a new machine architecture comes up, a
new UVC interpreter can be written. For quality control, a set of
UVC programs can be run through both the 2000 and 2000+x
interpreter, and should return exactly the same sequence of tagged
data elements. Also, a flaw in the interpreter will never damage
any archived document; a programmer may simply have to refer to
the UVC specifications to fix the problem. Actually, it is safe to
assume that the source code used to implement the year 2000
interpreter can be used as the base for developing the 2000+x
version. Also, the same source can be compiled for various target
computers, still decreasing the size of the task.

In addition, the UVC can be very simple - and at the same time
very general, so that writing an interpreter at any time remains a
simple task, far from the complexity of writing a full machine
emulator.

5.1.6 The UVC Architecture

The details of the UVC specification are not important at this
point. Clearly, its architecture may be influenced by the
characteristics of existing real computers or virtual machines
developed for different purposes, such as Java. What is important
is that it does not need to be implemented physically. Therefore
there is no actual physical cost. For example, the UVC can have a
large number of registers; each register has a variable number of
bits plus a sign bit. The UVC has an unlimited sequential bit-
oriented memory. Addresses are bit-oriented (so that a 9-bit
“byte” computer can be emulated as easily as an 8-bit one). Also,
speed is not a real concern since M2100 will be much faster and
these programs are run mostly to restore the data and store them in
an M2100 system, and a small set of instructions is sufficient.
This reduces the amount of work involved in developing an
interpreter of the UVC instructions onto a real M2100 machine.

The fact that the instruction set is kept to a minimum may
complicate the writing of a program at the machine instruction
level. But, as in any RISC machine, it is anticipated that the
methods will be coded in some high level language and
automatically compiled onto UVC instructions.

5.1.7 The UVC Interface

In 2100, a machine M2100 will come with a restore program that
will read the bit stream in a virtual memory and then issue
requests to the UVC Interpreter. The interface must be
independent of the conventions used in 2000 or 2100. It uses
software registers, filled with single values (of elementary types),
according to the following list:

- Reg 0: an integer (k) indicating which function is being invoked.

351

- Reg 1. the completion code returned by the function.

- Reg 2: a pointer p-data, pointing to the data bit stream.

- Reg 3: a pointer p_our to some memory set aside to receive a
data element.

- Reg 4: a pointer p_tag to some memory set aside to receive the
tag of the data element.

- Reg 5: a pointer pw to a working area.

There is a single entry point to the beginning of the UVC code for
the methods. That code will branch to the appropriate method
depending upon the value k in Reg 0.

5.1.8 Highlights of the approach for data archiving
The use of the UVC gets rid of the need for a full machine
emulator. It also eliminates the need for agreeing on standardized
formats. Anybody who wants to preserve a file can use any format
but must make sure that the UVC method is supplied to interpret
the format. The only standards needed are now the UVC and the
data model for data and metadata; they are simple enough to
endure. Only the UVC interpreter will have to be written (or re-
compiled) when a new machine architecture emerges. There is no
impact on the archived information.

5.2 Program Archival

When the behavior of a program needs to be archived, the M2000
code must be archived and later emulated. If the program is only a
series of native instructions of the M2000, it may not require the
saving of any other package or operating system. However, if the
object is a full-fledged system with Input/Output interactions, then
the operating system must be archived as well.

We have mentioned earlier the difficulties implied in writing
emulators in the future. The UVC approach can be naturally
extended to support the archiving of programs, providing for a
way to essentially write the emulator in the present. Instead of
archiving the UVC method to decode the data, the actual M2000
program will be archived, together with UVC code that emulates
the instruction set of M2000. This time, in 2100, the UVC
interpreter will interpret that UVC code; that interpretation will
then yield the same results as the original program on an M2000.
This suffices if the program does not have any interaction with the
external world (Input/Output operations or interrupts).

Things get more complicate when Input/Output operations are
involved. Suppose the program prints a black/white document on
an all-point-addressable printer. The program somewhere issues a
Start I/O operation with some data. Clearly the execution of that
instruction is not part of the M2000. The M2000 only sends the
data to an output device processor P which computes an output-
oriented data structure S (such as a bit map), and sends it to the
last process, the one that actually prints the page. Our proposal for
extending the method to support such operations is as follows.

In addition to archiving the UVC program that interprets the
M2000 code, another UVC program that mimics the functioning
of P must also be archived. It will produce the structure S. It is
impossible to anticipate in 2000 the output technology that will
exist in 2100. But, if S is simple and well documented, it will be
relatively easy to write in 2100 a mapping from S to the actual
device. For an all-point-addressable B/W printer, S is simply a bit
map. The bit map becomes the interface to an abstract printer,
independently of what the new technology will be. This
technique, again, ensures that the difficult part (which depends

Q

E

Aruitoxt provided by Eic:

RIC

heavily on the details of the device) is written in 2000 when the
device exists. It can be fully tested in 2000 by mapping the
abstract device into a 2000 device.

Abstract devices must be similarly defined for sequential tapes
(with operations such as R, W, Rewind, Skip), for random access
storage units (R, W at a particular record address), for sequential
character output or input (screen, keyboard), for x/y positioning
(mouse, touch-screen, cursor), etc.

6. SUMMARY AND CONCLUSIONS

In this paper, we analyzed the challenges of archiving digital
information for the very long term.

We made a distinction between the archiving of data and the
archiving of a program behavior.

The same technique is used to solve both problems: both rely on a
Universal Virtual Computer. For archiving data, the UVC is used
to archive methods which interpret the stored data stream. For
archiving a program behavior, the UVC is used to specify the
functioning of the original computer.

In summary, for data archiving:

1) In 2000, whoever creates a new data format needs to produce a
UVC program to decode the data. For at least one platform, a
UVC interpreter must be developed. It can be used to test the
correctness of the UVC program.

2) In 2100, every machine manufacturer needs to produce a UVC
interpreter.

For program emulation,

1) In 2000, for each platform, the manufacturer needs to provide
an emulator of M2000 written as UVC code. Manufacturers of
devices in 2000 need to provide the UVC code that emulates the
device control unit.

2) In 2100, every machine manufacturer needs to produce a UVC
interpreter, and every manufacturer of an I/O device needs to
produce an implementation of the abstract device on the real 2100
device.

What the proposed method accomplishes is to provide a reliable

. framework where preparatory work can be done in 2000 - when

the information is well known - rather than in 2100 when the
difficulty would be much greater. It also avoids the cumbersome
need for defining standards under which the data should be stored.
These standards would have to be defined for all types of
applications, and would have to remain valid for centuries; this is
just unpractical. Instead, the proposed solution replaces the need
for a multitude of standards (one for each format) by a single
standard on the UVC method. That standard should cover: the
UVC functional specifications, the interface to call the methods,
the model for the schema and for the schema to read schemas.
Each of these components can be kept general and simple enough
to remain relevant in the future.

In this paper, we couch the preservation issue in the framework of
a digital library. The proposed solution calls for the archiving of
the data bit stream, some UVC code, and some metadata
describing the data schema and the interface to invoke the
methods. A DL system generally contains two databases: the one
that contains the metadata and the one that contains the data itself
(the archive store). Although it is a matter of choice, we suspect

352

all of the items above will be kept in the archive store. But the
meta-database may be used to store some information necessary to
bootstrap the restore process (for example, we need to know the
alphabet before we start reading any text). The longevity of the
meta-database can be ensured by migration and that information
will therefore remain available.

Nevertheless, another environment may be worth considering, in
which the document is not part of a digital library. Then, the
whole information is stored on a removable storage object such as
CD-ROM or tape and needs to be restored in a distant future by
using only information that it contains. The technology presented
here remains applicable, with relatively minor additions to solve
the bootstrap problem.

It would be naive to think that solving the archiving problem is
simply a technical challenge. For example, the success of any
effort would hinge on a minimal agreement of all parties involved
in generating new technologies or creating new types of data. But
this cannot happen before a certain level of technical know how is
reached. Thus, it is important for the computer science community
to start developing the technology, and the purpose of this paper
is to document some initial ideas. Our research project is currently
investigating design issues and developing an early prototype to
prove the validity of the concepts and evaluate our design
decisions. The “real life” aspects of our current work are provided
by a joint study with the Koninklijke Bibliotheek, the national
library of the Netherlands, The Hague.

7. ACKNOWLEDGMENTS

Robert Morris, then Manager of Data Systems Technology at the
IBM Almaden Research Center, brought the importance of the
problem to the attention of the author. His encouragements and
those of Robin Williams are gratefully acknowledged. Many
thanks go to Henry Gladney for many lively discussions on the
subject. -

8. REFERENCES

1. Waters, D, and Garret, J.: Preserving Digital Information.
Report of the Task Force on Archiving of Digital
Information, Commission on Preservation and Access and
the Research Libraries Group, Inc., May 1996.

2. Rothenberg, J. Ensuring the Longevity of Digital Documents.
Scientific American, 272(1), January 1995.

3. Rothenberg, J.: Avoiding Technological Quicksand: Finding
a Viable Technical Foundation for Digital Preservation. A
report to the Council on Library and Information Resources,
January 1999.

4. Bearman, B. Reality and Chimeras in the Preservation of
Electronic Records, D-Lib Magazine, Vol. 5, No 4, 1999,

5. Lorie, R.: Long Term Archiving of Digital information, IBM
Research Report RJ 10185, July 2000.

6. Dadam, P. & al.: A DBMS Prototype to support Extended
NF2 Relations, ACM SIGMOD, May 1986.

7. Aho & al.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986

8. Harold, ER. XML, Extensible Markup Language. IDG
Books Worldwide, 1998.

U.S. Department of Education

Office of Educatonal Research and Improvement (OERI) il i
National Library of Education (NLE) :
Educational Resources Information Center (ERIC)

JC

REPRODUCTION RELEASE Eduetta s o Cexter
(Specific Document)

NOTICE

ODUC

>4 This document is. covered by a signed “Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
‘be reproduced by ERIC without a signed Reproduction Release form
(either “Specific Document” or. “Blanket”).

EFF-089 (9/97)

