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Chapter Three

Responding to Testing Needs in the
Twenty-First Century With an Old Tool

Lawrence M. Rudner

Abstract

Bayes' theorem is introduced as a method for criterion-referenced
testing. This theorem determines the most likely classification for an
examinee from a dichotomous choice or through placement on a
categorical or interval scale. The application of Bayes' theorem to
computer adaptive tests, in which an examinee's ability level is
estimated during the testing process and items selected accordingly, is
discussed. Relative to item response testing, Bayesian adaptive testing
requires less pretesting, needs smaller item pool, can be applied to
criterion-referenced and diagnostic testing, can generate classifications
based on multiple skills, and requires relatively little statistical
knowledge.

Much of modern assessment research and development
concentrates on norm-referenced tests, which by definition are designed
to rank-order students by placing them on broad continua representing
unidimensional traits. The summative information from norm-
referenced assessments serves many purposes, but as we enter the
twenty-first century, there is a rising call for criterion-referenced
information concerning what students know and can do relative to
clearly defmed desired outcomes of instruction. Although criterion-
referenced interpretations of norm-referenced tests are commonplace,
the literature from the 1970s and 1980s on criterion-referenced tests
can provide some insights to guide current research and practice. As
Hambleton and Sireci (1997) point out, the differences between the
performance tests of today and the criterion-referenced tests of the
1970s are not fundamental. Both are focused on assessment of what
students know and can do.

This article introduces ways of responding to the current clamor
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for criterion-referenced information using Bayes' theorema method
that was coupled with criterion-referenced testing in the early 1970s
(see Hambleton and Novick, 1973). After introducing Bayes' theorem,
I provide some detail demonstrating how it can provide the basis for
computer adaptive criterion-referenced tests. I then briefly discuss other
potential classroom applications of Bayes' theorem. Specific advantages
of using this model are that relatively small data sets are required and
that the necessary computations are surprisingly simple.

Bayes' Theorem: A Brief Overview

Rather than placing a student on an ability scale, the goal of a
Bayesian approach is to identify the most likely classification for the
examinee. This classification may be dichotomous (e.g., master/non-
master), polychotomous (e.g., master/at-risk/non-master) or a
placement on a categorical or interval scale. A simple example in which
the goal is to classify an examinee as being either a master or a non-
master is used to illustrate Bayes' theorem. Responses to previously
piloted items are used to determine the probabilities of mastery P(M)
and non-mastery P(N) and then to classify the examinee basedon those
probabilities. Lacking any other information about the examinee, let
us assume equal prior probabilities, i.e., P(M) = .50 and P(N) = .50.
After each item is scored, we will update P(M) and P(N) based on the
response to the item.

As givens, we will start with a collection of items for which we
have determined the following four probabilities:

1. Probability of a correct response given that the examinee has
mastered the material

2. Probability of an incorrect response given that the examinee
has mastered the material

3. Probability of a correct response given that the examinee has
not mastered the material

4. Probability of an incorrect response given that the examinee
has not mastered the material

I will denote these as P(CIM), P(IIM), P(CIN), and P(IIN),
respectively. Note that there are different conditional probabilities for
each item. These conditional probabilities can be determined fromvery
small-scale, low-cost pilot testing; for example, one approach is to use
the percentages of examinees in each group responding correctly or
incorrectly. Suppose that on item 1 of the pilot test, 90% of the masters
and 40% of the non-masters responded correctly. Because a person
responds either correctly or incorrectly, P(CIM) = .90, P(IIM) = .10,
P(CIN) = .40, and P(IIN) = .60.

The task then is to update P(M) and P(N) based on the item

44



responses. The process for computing these updated probabilities is
referred to as Bayesian updating, belief updating (probabilities being
a statement of belief), or evaluating the Bayesian network. The updated
values for P(M) and P(N) are referred to as the posterior probabilities.
The algorithm for updating comes directly from a theorem published
posthumously by Rev. Thomas Bayes in 1763:

P(MIC) x P(C) = P(CIM) x P(M)
Let us suppose our examinee responds correctly to item 1. The

probability of a correct response, P(C), is thus 1.0 and by Bayes'
theorem, the new probability that the examinee is a master given a
correct response is

P(MIC) = (.90 x .5) / 1.0 = .45
Similarly, P(NIC) = P(CIN) x P(N) = .40 x.5 = .20. We can then

divide by the sum of these joint probabilities to obtain posterior
probabilities, as follows:

P'(M) = .45 / (.45 + .20) = .692
and

P'(N) = .20 / (.45 + .20) = .308.
We use these posterior probabilities as the new prior probabilities,

score the next item, and again update our estimates for P(M) and P(N)
by computing new posterior probabilities. This process continues until
all the items have been scored. Equivalently, we could have computed
the product of the relevant probabilities (correct or incorrect) for masters
and non-masters, then divided by the sum to obtain the last posterior
probability.

The Bayesian network defined here is a simple diverging graph.
The master/non-master state is causally connected to the set of item
responses. When applied to decision-support systems and other expert
systems, Bayesian networks are typically much more complex,
involving hundreds of interconnected and cross-connected variables
(see Lauritzen & Spiegelhalter, 1988; Pearl, 1986). Evaluating such
networks is computationally complex. As I have shown here, however,
the computations for basic applications are quite simple.

Bayesian Computer Adaptive Testing

Paper-and-pencil tests are typically fixed-item tests in which all
examinees answer the same questions within a given test booklet. This
is terribly inefficient. Bright individuals have to endure items that cover
skills and knowledge they clearly possess. Less able individuals have
to suffer through material that is above their ability. These "too easy"
and "too difficult" items function like adding constants to an
individual's score, providing relatively little if any information about
the examinee's true ability. Consequently, large numbers of items and
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examinees are needed in order to obtain a modest degree of precision,
reliability, and validity.

With a computer adaptive test, the examinee's ability level can
be iteratively estimated during the testing process, and items can be
selected based on a precision-based real-time estimate of the
individual's ability. From the pool of items, examinees can be presented
with those items that maximize the information about their ability levels.
Thus, examinees will receive few items that either are very easy or
very hard for them. This tailored item selection results in reduced
standard errors and greater precision with only a handful of properly
selected items. The time required for testing is greatly reduced, and
examinees receive valid, reliable, and legally defensible estimates of
their ability. In addition, retesting can occur more frequently without
requiring that massive, entirely new item pools be developed and
validated.

With the growth of expert systems and the use of artificial
intelligence, there has been increasing interest in the use of probability
theory and Bayesian networks as a tool to help synthesize observations
and generate probabilistic assumptions about current student ability.
This information, in turn, may be used to guide the presentation,
sequencing, and pacing of instruction. The same mathematical
principles have also been proposed as the basis for an attractive form
of adaptive testing applicable to a wide range of situations. Relative to
item response theory computer adaptive testing (IRT CAT), Bayesian
adaptive testing (B-CAT), requires little pretesting and a small item
pool. B-CAT can be used with criterion-referenced tests, used to make
masterynon-mastery classifications, incorporated into diagnostic
testing, and easily applied to multidimensional assessments. Further,
the mathematics of B-CAT are much simpler than those of IRT CAT.

The traditional paradigm for computer adaptive testing is an
iterative process with the following steps:

1. A tentative ability estimate is made.
2. All the items that have not yet been administered are evaluated

to determine which will be the best one to administer given the
current estimate of ability.

3. The best item is administered and the examinee responds.
4. A new ability estimate is computed based on the responses to

all of the administered items.
5. Steps 2 through 4 are repeated until a stopping criterion is met.
Bayesian computer adaptive testing follows the same five steps.

Instead of estimating ability, however, B-CAT estimates classification
probabilities. Frick (1992), and Madigan, Hunt, Levidow, and Donnell
(1995) explain how Bayesian networks can be used as the CAT
framework. Welch and Frick (1993) provide a excellent and readable
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overview of the topic. With B-CAT, the goal is to determine the most
likely classification for the examinee. This classification may be
dichotomous (e.g., master/non-master) or may involve placement on a
categorical or interval scale. With B-CAT, conditional probabilities
are the givens and posterior probabilities are iteratively estimated.
Possible stopping criteria include time, number of items administered,
or change in ability estimate. With Bayesian adaptive testing, a desired
alpha and beta level can be employed.

To explain B-CAT, I provide an example where the goal is to
classify an examinee as being either a master or a non-master. Basically,
the new posterior probabilities are computed after each item is
administered. One stops administering items when the probability of
mastery is sufficiently high or low. Items are selected from the pool of
remaining items to maximize information or minimize a loss function.

As givens, let us assume a collection of items for which the four
probabilities outlined previously have been determined. We will use
the database of four items shown in Table 3.1 (the data for this example
come from Welch and Frick, 1993). For the example, we will assume
these items are administered sequentially. Ideally, the next item to be
administered would be the item that minimizes P(CilM) P(CilN); that
is, the item most likely to yield the largest change in the posterior
probabilities.

Table 3.1. Sample Probabilities of Correct and
Incorrect Responses by Masters and Non-masters

Masters (M) Non-masters (N)

Item (i) P(C,IM) P(IiIM) P(C,IN) P(I.IN)

1 .89 .11 .65 .35
2 .81 .19 .24 .76
3 .92 .08 .47 .53
4 .98 .02 .86 .14

Note that for each i, P(CilM) + P(IilM) = 1.00 and P(C,IN) +
= 1.00. Responses are dichotomous statesan examinee responds
either correctly or incorrectly. The goal is to classify the examinee as
most likely being a master or a non-master based on his or her responses
to selected items. Again, lacking any other information about the
examinee, we will assume equal prior probabilities of being a master
or non-master (i.e., P(M) = .50 and P(N) = .50). After each item is
given, we will update P(M) and P(N) based on the response to the
item.
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Let us suppose our examinee responds incorrectly to item 1. By
Bayes' theorem, the new probability that the examinee is a master given
an incorrect response is

P(MIL) = P(LIM) P(M) / P(Ii)

We know that the examinee has responded incorrectly, so P(I.) =
1.00 and P(MIL) = .11 x .5 = .055. Similarly, P(NII) = P(LIN) x P(I4) =
.35 x .5 = .175. We can then divide by the sum of these jointiprobabilities
to obtain posterior probabilities, as follows:

P'(M) = .055 / (.055 + .175) = .239
and

P'(N) = .175 / (.055 + .175) = .761
We next use these posterior probabilities as the new prior

probabilities, select a new item, and again update our estimates for
P(M) and P(N) by computing new posterior probabilities. We iterate
the process until some specified stopping criterion is reached. Wald's
(1947) Sequential Probability Ratio Test appears to be favored in the
literature.

To continue the example, let us assume that the examinee responds
correctly to item 2, incorrectly to item 3, and incorrectly to item 4.
Table 3.2 shows the resultant probabilities for all four items.

Table 3.2. Calculations for Probability of Mastery
Based on Four Sample Responses

Item (i) Response State(S) Prior P(SIRL) Joint Posterior
(R1) Probability Probability Probability

Master .500 .11 .055 .239

Non-master .500 .35 .175 .761

Master .239 .81 .194 .515
2

Non-master .761 .24 .183 .485

Master .515 .08 .041 .138
3

Non-master .485 .53 .257 .862

Master .138 .02 .003 .024
4

Non-master .862 .14 .121 .976
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At each iteration, the subsequent item can be selected to maximize
the expected change in the posterior probability. After administering
these four items, the probability that our examinee is a non-master
given this response pattern is .976. Had we set a minimum posterior
probability of .975 (1 a/2) as the stopping rule, we could then terminate
item administration.

In theory, this approach to CAT has the advantages of IRT CAT
plus several crucial advantages of its own:

It can incorporate a small item pool.
It is simple to implement.
It requires little pretesting.
It can be applied to criterion-referenced tests.
It can be used in diagnostic testing.
It can be adapted to yield classifications on multiple

skills.
It is easy to explain to non-statisticians.

In recent years there has been growing theoretical interest in B-
CAT among the educational testing community (De Ayala, 1990; Frick,
1992; Lewis & Sheehan, 1990; Segall, 1996; Spray & Reckase, 1996;
van der Linden & Hambleton, 1997). There have also been a handful
of small studies evaluating B-CAT. De Ayala (1990), Jones (1993),
Spray and Reckase (1996), and Welch and Frick (1993) all found
advantages to B-CAT relative to other forms of adaptive testing. These
studies, however, were typically limited to one examination and to
relatively small samples. B-CAT is also featured as the engine behind
at least one large company offering intelligent tutoring system
development services (Gemini Learning Systems Inc.: http://
www.gemini.com).

Classroom Applications

The basic framework described in this article is applicable to a
wide range of settings. For example, the framework can be used to
score a diagnostic pretest. Here the pretest would cover a variety of
skills. A pilot test would determine the probabilities of responding
correctly for people who have mastered each skill and the probabilities
for those that have not done so. After the test is given to an individual,
the probabilities of mastery for each skill could be computed. The
resultant list would identify which skills have been mastered and which
are likely in need of attention. One could go further and model specific
misconceptions (e.g., the examinee sums denominators when adding
fractions). Here the relevant probability would be likelihood of selecting
a particular incorrect option (or generating a particular type of wrong
answer) given that an examinee has a specific misconception. Such a
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test would not only provide mastery information but identify specific
areas to correct.

The framework is also applicable to multidimensional items and
tests. One could write items, for example, that require the application
of mathematical skills to solve a science problem. A pilot test would
need to be administered to compute the probability of responding
correctly to each item given mastery of the mathematics skills and the
probability of responding correctly given mastery of the science skills.
The single test with complex items could then be scored, using the
Bayes' theorem and information about each skill area.

Finally, the framework can be embedded in an intelligent tutoring
system to determine mastery after each instructional unit, tailor
individualized instruction to characteristics of the student, and adapt
that instruction as the student learns material. This would again require
a collection of pretested items that assess the concepts covered by each
instructional unit.

Research Questions

Some concern has been raised concerning the sensitivity of
Bayesian networks to misspecified prior probabilities. This is not really
a concern with B-CAT, as the system will converge after the
administration of only a few items, as it does with IRT CAT. Our
concerns are (a) whether B-CAT truly leads to efficient and accurate
state classifications, and (b) the sensitivity of Bayesian networks to
misspecifications of the conditional probabilities. Probability theory
defines expectations over large data sets and large samples. Yet, with
B-CAT, we are interested in making inferences about individuals based
on small data sets. Thus, B -CAT is a theory that has yet to be
demonstrated to work in realistic situations. Bayesian conditional
probabilities are based on either qualitative judgments or sampled
empirical data. In either case, the specified conditional probabilities
are not the same as true conditional probabilities. One is working with
estimates, not true values, and the resulting inherent error can seriously
bias the results. Shrinkage could be an issue, and the effect that error
in the conditional probabilities may have on the posterior probabilities
and the number of items needed is not clear.
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