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Abstract

Bootstrap analysis, both for non-parametric statistical inference, and for describing

sample results stability and replicability, has been gaining prominence among quantitative

researchers in educational and psychological research. Procedurally, however, it is often quite a

challenge for quantitative researchers to implement bootstrap analysis in their research, because

bootstrap analysis is typically not an automated program option in statistical software programs.

This paper uses a few heuristic analytical examples to show how bootstrap analysis can be

accomplished through the use of some commonly available statistical software programs. Until

bootstrap analysis becomes an automated program option in standard statistical software

programs (e.g., SPSS, SAS), quantitative researchers may have to make do with these or other

creative approaches to accomplish bootstrap analysis in their research.

KEY WORDS: bootstrap, resampling, computing-intensive, non-parametric inference, sample

results replicability
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In educational and psychological research and measurement, the traditional over-reliance

on statistical significance testing has been challenged on several grounds. These include issues

related to sample size, the meaningfulness of the traditional null hypothesis, and questions

involving the validity of theoretical assumptions underlying parametric statistical inferences

(e.g., Carver, 1978; Shaver, 1993; Thompson, 1993). As a result of these and other concerns

about traditional statistical significance tests, researchers are increasingly turning to empirically-

grounded resampling procedures.

Bootstrap is probably the best-known resampling method, and it has been applauded by

some as one of the newest breakthroughs in statistics (Kots & Johnson, 1992). The significance

of bootstrapping as a versatile analytic approach to data analysis has been widely recognized not

only by those in the area of statistics, but also by quantitative researchers in social and behavioral

sciences. In the area of education, the recognition for bootstrap method was evidenced by the

invited keynote address delivered by the pioneer in bootstrapping, Bradley Efron, at the 1995

AERA Annual Meeting (Efron, 1995).

Instead of relying upon the theoretical assumptions to derive sampling distributions for

statistical estimators, the bootstrap method estimates these distributions empirically, using

information drawn from the sample of observations used to estimate the statistical model in the

first place (Diaconis & Efron, 1983; Efron, 1979). In doing so, the bootstrap avoids some of the

pitfalls of traditional statistical significance testing. As discussed by Lunnenborg (2000), "Until

inexpensive computing power made replicate data analysis practical, the drawing of statistical

inferences from a set of data almost always required that we accept an idealized model for the

origin of those data. Such models can be either inappropriate or inadequate for the data in our
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study. Resampling techniques allow us to base the analysis of a study solely on the design of

that study, rather than on a poorly-fitting model" (p. xi).

In social and behavioral sciences, bootstrap method has been used in a variety of research

situations, and for many different statistical techniques. For example, bootstrap method has been

applied in psychological measurement for such issues as differential test predictive validity (e.g.,

Fan & Mathews, 1994) and item bias (e.g., Harris & Kolen, 1989), and in sociological research

(e.g., Stine, 1989). The application of bootstrapping method has involved many different

statistical techniques, including correlation analysis (e.g., Mendoza, Hart, & Powell, 1991;

Rasmussen, 1987), regression analysis (e.g., Fan & Jacoby, 1995), discriminant analysis (e.g.,

Dalgleish, 1994), canonical correlation analysis (e.g., Fan & Wang, 1996), factor analysis (e.g.,

Lambert, Wildt, & Durand, 1991; Thompson, 1988), and structural equation modeling (e.g.,

Bollen & Stine, 1990; Yung & Bentler, 1996).

In addition to using bootstrap for nonparametric statistical inference (Efron, 1985),

bootstrap method has also been advocated as a descriptive tool and an internal replication

approach for assessing the stability and replicability of sample results of an individual study

(Thompson, 1993). This descriptive use of bootstrap is meaningful when our interest may not be

about statistical inference, but rather, about getting an understanding about how stable/unstable

the sample results may be.

Bootstrapping is a computing-intensive data resampling strategy, and widespread access

to powerful computing facilities makes bootstrap estimation an attractive and viable procedure

for research practitioners. Unfortunately, although the logic of bootstrapping is conceptually

straightforward to understand, bootstrapping in substantive research has yet to enjoy widespread

use. Because bootstrapping is not typically implemented in the major commercial statistical
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software packages such as SAS and SPSS, researchers who desire to use this strategy will have

to write their own programs for performing bootstrap resampling. This can be a daunting

endeavor for researchers who do not have the programming skills, knowledge, or interest

required to carry out such a task. Consequently, this has become a major obstacle for

implementing bootstrapping in substantive research,

Some methodologists have sensed the need for programs that can be used by other

research practitioners to perform bootstrapping; as a result, some special programs have been

published for different analytic techniques, such as regression analysis (Fan & Jacoby, 1995),

and factor analysis (Thompson, 1988). But overall, bootstrapping remains procedurally difficult

for most research practitioners, because the commonly used major statistical software packages

(e.g., SAS, SPSS) have not implemented bootstrapping as a program analysis option. Many

research practitioners are not aware, however, that bootstrap analysis has been implemented in

some widely available, although more specialized, software programs, and a little creativity is all

that is needed for taking advantage of these program features. Furthermore, bootstrap analysis

can also be accomplished by using a standard statistical analysis package (e.g., SAS) with only a

reasonable amount of effort. This paper attempts to provide some heuristic examples of

implementing bootstrap analysis for some common statistical techniques by using some widely

available statistical software programs.

The paper has two sections. The first section provides bootstrapping examples within the

framework of structural equation modeling. For quantitative researchers who use some of the

widely available structural equation modeling programs (e.g., AMOS, EQS LISREL), it will be

shown that many statistical techniques can be implemented as a structural equation model, and
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subsequently, bootstrap analysis can be accomplished by using the bootstrap routine already built

in these structural equation modeling programs.

The second section provides some bootstrap analysis examples in SAS. For quantitative

researchers who use SAS system for statistical analysis, this section will become especially

handy for implementing bootstrap analysis for a variety of statistical techniques with only a

relatively small amount of effort. For the purpose of illustration, several heuristic statistical

analysis examples will be used in this paper, and a heuristic data set is created and used for these

analyses.

Bootstrap Through Structural Equation Modeling Programs

Many different statistical techniques exist, and these different techniques may be

designed for different purposes, and may have different historical origins. But as many

quantitative researchers are aware, many commonly used statistical procedures are variations of

the general linear model (GLM) (Knapp, 19xx). In the past few decades, structural equation

modeling (SEM) has increasingly been seen as a useful quantitative technique for specifying,

estimating, and testing hypothesized models describing relationships among a set of

substantively meaningful variables. Much of SEM's attractiveness is due to its applicability in a

wide variety of research situations, a versatility that has been amply demonstrated (e.g., Bollen &

Long, 1993; Byrne, 1994; Joreskog & Sorbom, 1989; Loehlin, 1992).

Many widely used statistical techniques may be considered as special cases of SEM,

including regression analysis, canonical correlation analysis, confirmatory factor analysis, and

path analysis (Bagozzi, Fornell & Larcker, 1981; Bentler, 1992; Fan, 1996; JOreskog & Sorbom,

1989). Because of such generality, SEM has been considered as a unified model which joins

methods from econometrics, psychometrics, sociometrics, and multivariate statistics (Bentler,
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1994). In short, for researchers in the social and behavioral sciences, SEM has become an

important tool for testing theories with both experimental and non-experimental data (Bentler &

Dudgeon, 1996). Within the general framework of GLM, some seemingly different statistical

techniques can be implemented as a structural equation model, and the analysis can be

accomplished using any of the available structural equation modeling programs (e.g., AMOS,

EQS, LISREL, PROC CALIS in SAS).

Despite the fact that bootstrapping has not been implemented in any of the standard

statistical software packages (e.g., SAS, SPSS), it has been available from some of the software

packages designed for structural equation modeling for some time. Because of the versatility of

SEM as a general analytic approach for statistical techniques in the GLM family, practically,

many analytical techniques within the GLM family can be translated to SEM models, and thus

conducted by using SEM approach. As a result, bootstrap analysis can be accomplished for

some commonly used statistical techniques through some of these more specialized SEM

software packages.

Several structural equation modeling software programs have implemented bootstrap

routine as an option, and EQS is probably a pioneer to do so (Bentler, 1992). More recently,

AMOS has almost perfected its bootstrap routine by including a fully automated bootstrap

analysis option, including different bootstrap options, and automated bootstrap analysis results

output, thus making bootstrap analysis very accessible and user-friendly (Arbuckle & Wothke,

1999). Because this paper is not about structural equation modeling per se, but rather, it is about

implementing bootstrapping by using SEM software, easiness in implementing bootstrapping is

of the major concern. As a result, I will primarily rely on AMOS for illustrating how bootstrap

I This is when I first acquired EQS software, and bootstrap was already implemented in EQS. This was the earliest
among structural equation modeling software programs I was aware of. EQS may have implemented bootstrap
earlier than that indicated here, but I have not investigated earlier versions of EQS about this.
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analysis can be accomplished through structural equation modeling approach. An EQS program

example for conducting bootstrap analysis will also be provided.

A Heuristic Data Set

Table 1 presents a heuristic data set that will be used in bootstrap analysis examples in

this paper. This heuristic data set contains a continuous variable Y, three other continuous

variables X1, X2, and X3, and a categorical variable G with three levels (A, B, C). The three

levels of the categorical variable G are also represented by two dummy coded variables D1 and

D2. The heuristic data set has very small sample size (n=24). This data set will serve as the

"parent" sample from which bootstrap samples will be obtained. Ideally, the size of the "parent"

sample in bootstrap analysis should be larger, so that the sample is more likely to be

representative, and that it is less likely to obtain duplicate bootstrap samples (i.e., identical

bootstrapped samples). For the simplicity of our illustration, however, we will ignore these and

other similar issues associated with small size of the "parent" sample.

Insert Table 1 about here

Example 1: Correlation Analysis

Correlation analysis is very common among educational researchers. Within the

framework of structural equation modeling, applying bootstrapping for correlation analysis is

straightforward. Assuming that for the three variables X1, X2, and X3 in the heuristic data set in

Table 1, we are interested in the correlations among the three variables. We are further

interested in conducting bootstrap analysis for the sample correlation coefficients.
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Using the data provided in Table 1, we can obtain the sample correlations among the

three variables (X1, X2, and X3) as follows:

X1

X2
X3

1.0
.7632
.4928

1.0
.6829 1.0

In structural equation modeling, the correlation analysis for the three observed variables

is essentially a saturated confirmatory factor analysis model with three correlated factors, each

with its own sole error-free indicator. Because it is saturated model, the model has perfect fit.

Using AMOS Graphics, a window graphic interface for model specification, the correlation

model can be specified in AMOS as shown in Figure 1. The heuristic data set in Table 1 can be

read by AMOS in a variety of formats, such as ASCII data, and SPSS system file. One simply

needs to open the data set and specify the data format from the "DATA FILES" under "FILE" of

AMOS Graphics.

Insert Figure 1 about here

Once the model is specified as in Figure 1, and the data set opened by AMOS, one needs

to request bootstrap routine for the specified model analysis. This is easily accomplished by

selecting "ANALYSIS PROPERTIES" under "VIEW/SET' of AMOS, as shown in Figure 2.

Insert Figure 2 about here

Once "ANALYSIS PROPERTIES" is selected, a variety of analysis options can be

specified. One tab under "ANALYSIS PROPERTIES" is "Bootstrap", and click this tab will

show the options available for performing bootstrapping analysis for the specified model, as
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shown in Figure 3. For performing bootstrap analysis, the option "Performing Bootstrap" needs

to be checked. One may choose the percentile confidence interval or the bias-corrected

confidence interval, and the desired confidence interval level (default is 90%). The details about

these bootstrapping confidence intervals are provided elsewhere (e.g., Lunneborg, 2000; Mooney

& Duval, 1993), and are not discussed here. Once these options and the estimation method are

specified (in Figure 3 example, 200 bootstrap samples2, 90% percentile confidence intervals, and

maximum likelihood estimation) for the bootstrap analysis as shown in Figure 3, we are ready to

conduct bootstrap analysis for the model of the three correlations.

Insert Figure 3 about here

To conduct model analysis in AMOS, from AMOS' "MODEL-FIT", select "Calculate

Estimates", as shown in Figure 4. This will start the model and bootstrap analysis as specified by

the graphic model in Figure 1, and all the options requested for bootstrap analysis previously.

Insert Figure 4 about here

Once the analysis is completed, the regular and bootstrap analysis out put can be viewed

under AMOS "View/Set" either in text format output, or in table format output. The following

are the selected bootstrap analysis results (highlighted) for the three correlations among X1, X2,

and X3 in the heuristic data set in Table 1:

2 Bootstrap analysis may require more bootstrap samples, e.g., 1000, to achieve estimation stability for the
distribution of a statistic of interest. In our heuristic example here, we have a very small "parent" sample, and will
only have 200 bootstrapped samples.

1.1
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Estimate SE Mean Lower Upper

x2 <--> xl 0.76 0.09 0.75 0.60 0.89

x2 <--> x3 0.68 0.13 0.68 0.45 0.86

xl <--> x3 0.49 0.19 0.50 0.17 0.78

It is noticed that, based on 200 bootstrapped samples, the empirical standard error for the

correlation coefficient r13 (.19) is twice as large as that for r12 (.09). Consequently, the 90%

confidence interval for r13 is much wider (.17, .78) than that for r12 (.60, .89).

Example 2: Regression Analysis

Regression analysis is probably one of the most widely utilized statistical technique in

educational research. Regression analysis can easily be translated into a structural model, as

shown by many (e.g., Bentler, 1992; Joreskog & Sorbom, 1989). For the heuristic data set, when

Y is used as the dependent variable, and X1, X2, and X3 are used as the three predictors, we have

the following selected regression analysis results:

REGRESSION: Y1 = X1 X2 X3

Parameter Estimates

Parameter Standard Standardized

Variable DF Estimate Error t Value Pr > Iti Estimate

Intercept 1 71.83672 2.26746 31.68 <.0001 0

X1 1 0.35949 0.23032 1.56 0.1343 0.16361

X2 1 0.62252 0.28686 2.17 0.0422 0.27097

X3 1 0.46164 0.06741 6.85 <.0001 0.63503

R-Square 0.9086 F = 66.25, p < .0001

12
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It is shown that, based on statistical theory, and assuming that the data satisfies all the

assumptions of regression analysis, XI does not have statistically significant unique contribution

to Y when X2 and X3 are already in the regression model.

Figure 5 presents the AMOS structural equation model representation for the regression

analysis conducted above, with three predictors (X1, X2, and X3), and Y as the outcome variable.

Again, this is a saturated model, and model-data fit is perfect.

Insert Figure 5 about here

Once the model specification is complete in AMOS, as shown in Figure 5, specification

of bootstrap options is done in the same fashion as described in the previous correlation analysis

(see Figures 2 and 3, and related discussion). In this analysis, because we are also interested in

the replicability of the sample R2 of the regression model, under the "OUTPUT" tab of AMOS

"ANALYSIS PROPERTIES", the option of "SQUARED MULTIPLE CORRELATIONS" was

checked, as shown in Figure 6.

Insert Figure 6 about here

Based on 200 bootstrapped samples, the following selected bootstrap analysis results

were obtained from AMOS (empirical standard error, bootstrapped mean, 90% confidence

interval):

Regression Weights:

Estimate S.E. C.R. P SE Mean Lower Upper

y1 <-- xl 0.36 0.21 1.67 0.09 0.25 0.35 -.11 0.70

yl <-- x2 0.62 0.27 2.33 0.02 0.28 0.61 0.19 1.11

yl <-- x3 0.46 0.06 7.34 0.00 0.07 0.47 0.38 0.61

1J
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Standardized Regression Weights:

Estimate SE Mean Lower Upper

yl <-- xl 0.16 0.12 0.17 -0.05 0.34

yl <-- x2 0.27 0.11 0.27 0.08 0.46

y1 <-- x3 0.64 0.07 0.65 0.53 0.76

Squared Multiple Correlation (R2):

Estimate SE Mean Lower Upper

yl 0.91 0.02 0.93 0.89 0.96

For regression coefficients, compared with the standard regression analysis results

presented previously, the bootstrapped results are quite similar. For example, the regression

coefficient for X1 could be zero in both analyses, and the theoretically- and empirically-based

standard errors (under S.E. and SE respectively) are reasonably comparable. The bootstrap

analysis also shows that the model R2 is very high (bootstrapped mean of R2 = .93), and it is

likely to be highly replicable across comparable samples (bootstrapped 90% confidence limits:

.89 to .96).

Example 3: Analysis of Variance (ANOVA)

As widely discussed elsewhere, ANOVA is part of the general linear model, and

ANOVA analysis can be viewed as a special case of regression analysis. The research question,

"Do the three groups, as represented by the three levels of the variable G, have the same

population means?", can be readily translated into a regression model through the use of one of

the coding scheme for the group membership (i.e., dummy coding, effect coding, or orthogonal

coding). In this illustrative example, the simple dummy coding (D1 and D2) is used for

14



Conducting Bootstrapping -14-

representing the group membership for the variable G. Using standard regression analysis

approach for this ANOVA problem, we obtained the following results:

REGRESSION APPROACH TO ANOVA: Y1 = D1 D2

TWO DUMMY VARIABLES FOR THREE GROUPS

Parameter Estimates

Parameter Standard Standardized

Variable DF Estimate Error t Value Pr > Itl Estimate

Intercept 1 104.87500 2.02330 51.83 <.0001 0

D1 1 -11.75000 2.86138 -4.11 0.0005 -0.76894

02 1 -6.87500 2.86138 -2.40 0.0256 -0.4499

R-Square 0.4477 F = 8.51, p = .002

The results above show that it is unlikely that the three groups have equal populations

means (F=8.51, R=.0020). The group membership accounts for about 45% of the variance in the

outcome variable Y (R2=.4477). The intercept (104.875) represents the mean of Group C (the

group coded as Os on both dummy variables). Furthermore, the coefficients associated with the

two dummy coded variables (D1 and D2) represent the group mean difference between Groups A

and C, and that between Groups B and C, respectively. The statistical tests for the two

regression coefficients of the dummy variables represent the tests for the contrasts3 between the

group means of A and C, and that between B and C. These two tests (t=-4.11, p=.0005; t=-2.40,

p=.0256) indicate that both Group A and Group B have statistically lower means than Group C.

As shown previously, a regression model is easily translated to a saturated structural

equation model. Figure 7 shows the AMOS model for the ANOVA analysis conducted above.

By specifying requested output (see Figure 6) and bootstrap options (see Figure 3) in AMOS, we

obtain the following selected bootstrap analysis results:

3 These contrasts are equivalent to Dunnett's test in ANOVA. For details, see Pedhazur (1997, Chapter 11).
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Regression Weights:

Estimate S.E. C.R. P SE Mean Lower Upper P

yl <-- D1 -11.75 2.73 -4.30 0.00 2.10 -11.41 -14.93 -8.10 0.01

yl D2 -6.88 2.73 -2.51 0.01 2.66 -6.67 -10.84 -1.79 0.05

Squared Multiple Correlations:

Estimate SE Mean Lower Upper

y1 0.45 0.13 0.49 0.28 0.72

Based on 200 bootstrap samples, the bootstrap empirical results related to testing for the

group differences (as represented by the regression coefficients, and statistical tests associated

with the coefficients) indicate that the groups A (represented by D1, with 90% confidence limits

being 14.93 and 8.10) and B (represented by D2, with 90% confidence limits being 10.84 and

1.79) have statistically different means from that of Group C. The bootstrapped R2 appears to

be somewhat larger (mean of R2 = .49) than the original sample R2 (.45). The bootstrap 90%

confidence limits for R2 are .28 and .72.

Example 4: Measurement Reliability Analysis

The widely used Cronbach's coefficient a provides accurate reliability estimate for

composite score that consists of t-equivalent measures (i.e., measures of the same latent

dimension in the same measurement unit, but with possibly different precision). When the

composite score consists of more realistic congeneric measures (i.e., measures of the same latent

dimensions, but in possibly different measurement units and with possibly different precision),

Cronbach's coefficient a provides the lower-bound estimate for the composite score reliability.

It is probably not widely known that structural equation modeling approach can be used for

.16



Conducting Bootstrapping -16-

measurement reliability analysis. As demonstrated Raykov (1997, 1998), such an approach is

reasonably straightforward. In addition, the structural equation modeling approach for

measurement reliability analysis also has the advantage of providing a more accurate reliability

estimate for a composite score consisting of congeneric measures, rather than only the lower-

bound estimate as Cronbach's coefficient a does in the same situation. For this reason, the

reliability estimate from this structural equation modeling approach tends to be higher than

Cronbach's coefficient alpha. The more the measures deviate from ti- equivalent measures, the

more obvious is the difference between Cronbach's coefficient alpha and that estimated from this

structural equation modeling approach.

Assuming that we have a composite consisting of k components, and we are interested in

the composite score reliability estimate. As shown by Raykov (1997), the model in Figure 8

represents a structural equation model for estimating the reliability for the composite consisting

of congeneric measures (X1 to Xk). The correlation between F2 (a phantom variable,

representing "observed score") and F1 (representing "true score") is the reliability index. In the.

model, this is represented by the two asterisks followed by p , indicating that it is a reliability

index, not reliability coefficient itself. The square of this index is the estimated reliability

coefficient for the composite of the k-item scale. For the distinction between reliability index

and reliability coefficient, see Crocker and Algina (1986). For more details for this model of

measurement reliability analysis, see Raykov (1997, 1998). As noted by Raykov, the reliability

index to be estimated in the model in Figure 8 is not an inherent parameter of the model, but is

readily obtained as the correlation between the two latent factors (F2 and F1).

Insert Figure 8 about here

17
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For our heuristic data set in Table 1, we have three X variables (X1, X2, and X3).

Assuming that these are scores on three components of a measurement scale, and we are

interested in estimating the measurement reliability for the composite consisting of these three

components. Using a standard statistical package (e.g., SPSS, SAS), the Cronbach's coefficient

alpha for the component consisting of X1, X2, and X3 can be obtained: a = .647.

Implementing the structural equation model for measurement reliability could easily lead

us to conducting bootstrap analysis for the reliability estimate of the composite consisting of X1,

X2, and X3. Figure 9 is the AMOS model for obtaining measurement reliability estimate in the

form of reliability index. As discussed above, the measurement reliability index is not an

inherent model parameter, but is readily obtained as the correlation between two latent factors of

Fl (analogous to "true score") and F2 ( a phantom variable analogous to "observed score").

Insert Figure 9 about here

In order to obtain the correlation between the two latent factors as the reliability index,

appropriate output option must be selected. Under "OUTPUT" tab in AMOS "ANALYSIS

PROPERTIES", the option of "All Implied Moments" is selected for obtaining the correlation

between Fl and F2, which is the reliability index for the composite consisting of X1, X2, and X3.

Because the correlation between Fl and F2 is sought, the option of "Standardized Estimates"

(i.e., standardized covariance) is also selected, as is shown in Figure 10.

Insert Figure 10 about here

Implementing the model in Figure 9 in AMOS, and the bootstrap options we have

selected, the reliability index (i.e., the correlation between Fl and F2) is estimated to be .847.

18
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Based on 200 bootstrap samples, the bootstrapped 90% confidence interval has lower limit of

.722, and upper limit of .960. If we square these estimates (reliability coefficient is the squared

reliability index, see discussion above), we have the estimated reliability coefficient of .717,

with bootstrapped 90% lower and upper confidence limits of .521 and .922. The width of the

bootstrapped confidence limits (.521 .922) suggests that there tends to be a lack of stability in

sample measurement reliability for the composite score consisting of X1, X2, and X3, and the an

estimate based on a single sample is unlikely to be stable in replication.

Compared with Cronbach's a of .647, the estimated reliability coefficient of .717 through

structural equation modeling approach is higher. As discussed previously, this is expected,

because Cronbach's a is only the lower bound reliability for a composite that does consist of t-

equivalent measures. For the three X variables used in this example, they are obviously on very

different measurement scales, a violation of ti- equivalent measures. As discussed by Raykov

(1997), in this situation, the reliability coefficient from the structural equation modeling

approach will be higher than the classic Cronbach's ot, and is typically a more accurate estimate
I

of measurement reliability than the classic ot.

Conducting Bootstrapping Analysis in Other Structural Equation Modeling Programs

The examples discussed above have relied on AMOS for implementing the bootstrap

analyses, because AMOS is the only program that has automated the bootstrap analysis in terms

of specifying bootstrap options and obtaining bootstrap analysis results. With a reasonable

amount of effort, the same analyses can be conducted through some other structural equation

modeling programs, such as EQS and LISREL. A major difference between using AMOS and

other structural equation modeling programs is in the degree of automation. In AMOS, bootstrap

19
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analysis is fully automated. In EQS, bootstrap is a built-in program option. If this analysis is

requested, the bootstrap analysis results (e.g., parameter estimates) will be exported to an

external data set in ASCII format. Subsequently, any standard statistical software (e.g., SPSS,

SAS) can be used to access this external ASCII data set and to conduct further descriptive

analyses about the bootstrapped estimates (e.g., to obtain the bootstrap confidence interval for a

parameter). As an example, an EQS program for conducting bootstrap analysis for multiple

regression (Y = a + b1 *X1 + b2*X2 + b3* X3) is provided in Table 2.

Insert Table 2 about here

Bootstrapping in SAS

SAS is a very flexible system that provides all kinds of capabilities for data management,

statistical analysis, statistical programming, etc. Although SAS does not provide any automated

program option for conducting bootstrap analysis, bootstrapping can be accomplished through

SAS with a reasonable amount of effort, thanks to its built-in flexibility in programming. For

quantitative researchers who use SAS as the primary data analysis tool, to get to know how to

conduct bootstrap analysis in SAS can become very convenient.

In using SAS for bootstrap analysis, four programming components are needed: 1) draw

bootstrap samples from a given "parent" data set through sampling with replacement, 2) for each

bootstrapped sample, conduct relevant statistical analysis of interest, 3) extract the needed

parameter estimates of interest, accumulate these estimates from all the bootstrapped samples,

and store them in a data file, and 4) conduct analysis for the parameter estimates of all

bootstrapped samples.
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Assuming that we construct a composite measure that consists of X1, X2, and X3 in the

heuristic data in Table 1 as its components. We are interested in conducting bootstrap analysis

for the measurement reliability estimate in the form of Cronbach's coefficient a for this

composite. Table X presents an annotated SAS macro program for bootstrapping Cronbach's

coefficient a for the composite consisting of Xi, X2, and X3. In this SAS macro program, the

purposes of the different clusters of SAS commands are reasonably clear from the comments in

the program.

Insert Table 3 about here

It should be noted that for any statistical analysis conducted in SAS, upon request, SAS

will output a SAS data set that contains the sample statistics for the analysis conducted. For

conducting bootstrap analysis, it is necessary to extract the sample statistic(s) of interest from

this SAS data set. In the SAS program in Table 3, the command "OUTP=STATSOUT" requests

such an output SAS data set that contains sample Cronbach's coefficient a, and name this SAS

data set as "STATSOUT" for future use.

Because different analytic procedures have different statistics, the SAS data output for

sample statistics have different data structure for different statistical analytic procedures . One

needs to understand the data structure of this SAS output data set for the statistical analysis

implemented. To view the data structure of the SAS output data set, one simply needs to use

SAS "PROC PRINT" procedure to display the SAS output data set. To illustrate how the sample

statistic(s) of interest can be extracted, the following is the SAS output data set structure from the

coefficient alpha analysis under "PROC CORR" in SAS:
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X3

1 MEAN 10.5417 14.2083 30.7500

2 STD 3.3490 3.2030 10.1221

3 N 24.0000 24.0000 24.0000

4 RAWALPHA 0.6473 0.6473 0.6473

5 STDALPHA 0.8457 0.8457 0.8457

6 RAWALDEL 0.5641 0.4543 0.8652

7 STDALDEL 0.8116 0.6603 0.8657

8 RAWCTDEL 0.5932 0.7807 0.6238

9 STDCTDEL 0.6846 0.8369 0.6261

The shaded entry in the above data set is the sample coefficient alpha that we need to

extract. A few straightforward SAS statements in Table 3 SAS program accomplish this task.

Finally, the bootstrap sample coefficient alpha is appended to a file of a permanent SAS data set.

With each bootstrap iteration, bootstrap sample statistic(s) of interest are accumulated in this

permanent SAS data set for future analyses.

It should be noted that adapting the SAS program in Table 3 for other statistical analysis

procedures is reasonably straightforward. As a matter of fact, only the shaded SAS statements in

the SAS program in Table 3 need to be replaced. Table 4 presents three groups of SAS codes for

conducting bootstrap analysis for the heuristic data set in Table 1 for i) correlation analysis

among X1, X2, and X3, ii) regression analysis, iii) one-way ANOVA through the use of dummy

coded variables. Using each group of SAS codes in Table 4 to replace the shaded SAS

statements in Table 3 will provide the bootstrap analysis for the examples discussed previously

in this paper as AMOS examples.

Insert Table 4 about here

Conclusions

Bootstrap analysis, both as a tool for non-parametric statistical inference, and as a tool for

describing sample results stability and replicability, has been gaining prominence among
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quantitative researchers in educational and psychological research. Procedurally, it is often quite

a challenge for many quantitative researchers to implement bootstrap analysis in their research,

because bootstrap analysis is typically not an automated program option in statistical software

programs. Creative approaches, however, can be taken to implement bootstrap analysis through

some commonly available software programs. This paper shows a few examples of how this can

be accomplished. Until bootstrap analysis becomes a standard program option in statistical

analysis software programs (e.g., SPSS, SAS), quantitative researchers may have to make do

with the approaches illustrated here if bootstrap analysis is desired.
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Table 1 A Heuristic Data Set

Y Xi X2 X3 G Di D2

93 9 12 20 A 1 0
88 7 10 15 A 1 0

95 8 12 26 A 1 0

95 10 14 21 A 1 0

95 9 12 25 A 1 0

99 10 18 31 A 1 0

99 8 10 34 A 1 0

81 7 9 16 A 1 0

95 5 14 30 B 0 1
88 10 12 15 B 0 1

99 5 11 42 B 0 1
87 9 9 16 B 0 1

101 13 14 29 B 0 1

102 10 15 32 B 0 1

110 18 20 51 B 0 1
102 10 17 31 B 0 1

106 14 18 39 C 0 0

103 12 17 32 C 0 0
103 16 17 34 C 0 0

103 11 14 35 C 0 0

105 12 15 37 C 0 0
107 16 19 39 C 0 0

106 14 16 39 C 0 0

106 10 16 49 C 0 0
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Table 2 An EQS Program Example for Conducting Bootstrap Analysis for Regression

/TITLE
EQS BOOTSTRAP EXAMPLE REGRESSION ANALYSIS

/SPECIFICATIONS
CAS=24; VAR=7; ME=ML; MA=RAW;
DATA='C:\BOOTSTRAP\DATA\ASCII.TXTI;

/LABELS
V1=Y1; V2=X1; V3=X2; V4=X3; V5=G; V6=D1; V7=D2;

/EQUATIONS
V1 = *V2 + *V3 + *V4 + El;

/VARIANCES
V2 TO V4=*; El=*;

/COVARIANCES
V2 TO V4=*;

/SIMULATION
REPLICATIONS=200;
BOOTSTRAP=24;

/OUTPUT
DATA='C:\BOOTSTRAP\EQS\BTRPOUT.TXT';
PARAMETER ESTIMATES;

/END

Note: In the EQS program above, commands for bootstrap analysis are in bold face.
Underlined EQS commands specify the name and location of the file that stores each of
the 200 bootstrap sample results in ASCII format. Once this EQS analysis is complete, a
standard statistical package (e.g., SAS, SPSS) can be used to read the ASCII data set
"BTRPOUT.TXT" and to conduct further analyses for the bootstrapped parameter estimates (e.g.,
constructing bootstrap percentile method confidence interval for a regression coefficient).
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Table 3 A SAS Macro Program for Conducting Bootstrap Analysis for Coefficient Alpha

LIBNAME BTRAP 'C:\AERA2001\BTRAP';

DATA RAWDATA; INFILE 'C:\AERA2001\BTRAP\ASCII.TXT';
INPUT Y X1-X3 G D1 D2;

%LET BTRAPN=200; * <DEFINE INTENDED NUMBER OF BOOTSTRAPPED SAMPLES>;

%LET SMPLN=24; * <EACH BOOTSTRAP SAMPLE N, USUALLY ORIGINAL SAMPLE N>;

%MACRO BTRAP; * <START OF BOOTSTRAP MACRO 'BTRAP'>;

%DO Al = %TO &BTRAPN;

DATA BTDATA; * <BOOTSTRAP SAMPLING WITH REPLACEMENT>;

DROP I;
DO I=1 TO &SMPLN;

IOBS=INT(RANUNI(0)*N) + 1;
SET RAWDATA POINT=IOBS NOBS=N;

OUTPUT;
END;

STOP;

* <CONDUCTING STATISTICAL ANALYSIS, OUTPUT SAMPLE STATISTICS>;

PROC CORR NOCORR NOPRINT NOMISS ALPHA OUTP=STATSOUT;
VAR X1 X2 X3;
RUN QUIT;.

DATA STATS; * <EXTRACT SAMPLE STATISTICS OF INTEREST>;
SET STATSOUT;
IF _TYPE_='RAWALPHA';
ALPHA=X1;
KEEP ALPHA;

* <APPEND EACH BOOTSTRAP SAMPLE STATISTICS TO A SAS DATA SET>;

PROC APPEND DATA=STATS BASE=BTRAP.STATS FORCE;
%END;
%MEND BTRAP; * <END OF BOOTSTRAP MACRO>;

%BTRAP; * <RUNNING BOOTSTRAP MACRO>;

RUN;

* <ANALYZE BOOTSTRAPPED DISTRIBUTIONS OF STATISTICS>;

DATA RESULTS; SET BTRAP.STATS;
PROC UNIVARIATE;

RUN; QUIT;

Note: For conducting bootstrap analysis for other statistical techniques, only the shaded texts in

the above need to be changed.

BEST COPY AVAILABLE
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Table 4 SAS Codes for Conducting Bootstrap Analysis for Three Other Statistical Analysis

i. Correlation Analysis among X1, X7, and X3:

PROC CORR NOPRINT OUTP=STATSOUT;
VAR X1 X2 X3;

RUN;

DATA CORR12;:
SET STATSOUT;
CORR12=X1;-
IF _NAMEL NE 'X2' THEN DELETE;
KEEP CORR12;
RUN;

DATA CORR1323;.
SET STATSOUT;
CORR13=Xl; CORR23=X2;
IF _NAME_ NE 'X3' THEN DELETE;
KEEP CORR13 CORR23;
RUN;

DATA STATS;
MERGE CORR12 CORR1323;

ii. Regression Analysis (Y = X1

PROC REG NOPRINT OUTEST=STATSOUT ADJRSQ RSQUARE;
MODEL Y=X1, X2 X3;
RUN;

DATA STATS;
SET STATSOUT;
KEEP INTERCEPT X1 X2 X3 _RSQ_ _ADJRSQ_;
RUN;

iii. One-Way ANOVA (Y =

PROC REG NOPRINT OUTEST=STATSOUT ADJRSQ RSQUARE;-
MODEL Y=D1 D2;
RUN;

DATA STATS;
SET STATSOUT;
KEEP INTERCEPT D1 D2 _RSQ_ _ADJRSQ_;
RUN;

BEST COPY AVAILABLE
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Figure Captions:

Figure 1: Model Representation for Correlation Analysis in AMOS

Figure 2: Selecting "ANALYSIS PROPERTIES" in AMOS to Request Bootstrap Analysis

Figure 3: Specifying Bootstrap Options

Figure 4: Conducting Model Analysis in AMOS

Figure 5: Regression Analysis Model in AMOS

Figure 6: Selecting Output Options AMOS

Figure 7: AMOS Model for the ANOVA (Two Dummy Variables for Three Groups)

Figure 8: Structural Equation Model for Reliability Index of A Scale of k-Components

Figure 9: AMOS Model for Reliability Index of a Composite with Three Components

Figure 10: AMOS Output Option Selection for Obtaining Reliability Index
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Figure 1: Model Representation for Correlation Analysis in AMOS
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Figure 2 Requesting Bootstrap Analysis Selecting "ANALYSIS PROPERTIES" in AMOS
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Figure 3 Specifying Bootstrap Options
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Figure 4 Conducting Model Analysis in AMOS
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Figure 5 Regression Analysis Model in AMOS
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Figure 6 Selecting Output Options AMOS
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Figure 7 AMOS Model for the ANOVA (Two Dummy Variables for Three Groups)
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Figure 8 Structural Equation Model for Reliability Index of A Scale of k-Components
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Figure 10 AMOS Output Option Selection for Obtaining Reliability Index
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