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1. Research Objectives

During the last decade, many states have initiated systemic school reform.

Systemic school reform is aimed at improving academic excellence for all students at all

levels of the school system simultaneously (Smith & O'Day, 1991). Evaluation of

systemic school reform calls for coordinated collection of information on student

achievement at the different levels of school system (Roeber, 1995). At the same time,

accountability piece of systemic school reform requires value-added school performance

indicators. These policy imperatives lead us to investigate the adequacy and utility of

methods for assessing and understanding the performance of a school system involved in

systemic school reform.

In light of these concerns, we conduct a systematic analysis of student assessment

data from Maine and Kentuckythe National Assessment of Educational Progress

(NAEP) and state and local assessmentsto address the issues of measurement and

attribution involved in evaluating systemic school reform. This paper consists of three

major sections. First, we examine ways to cope with the challenges of considering

measures from multiple sources of school system and combining multiple measures of

student achievement data (measurement issue). For this analysis, we use state and local

assessment data collected in Maine. Second, we examine ways to tackle the challenges of

considering multiple levels of influences on student achievement and attributing

achievement results to school effects (attribution issue). For this analysis, we use NAEP

data collected in Maine and Kentucky. Third, we discuss the utility and limitations of

multi-level and multi-measure approaches to evaluation of systemic school reform.
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2. Combining Multiple Measures of Achievement

A number of state and federal agencies now recommend or require multiple

measures to assess student achievement (Ardovino, Hollingsworth, & Ybarra, 2000).

However, no criteria about reliability, validity, and weighting in using multiple measures

have been set by states like California (Jang, 1998). Currently available measures of

student achievement are often inadequate for evaluation of systemic school reform,

particularly when they rely on norm-referenced standardized tests and use percentile

ranks as grade level standards. While local assessments are a potentially valuable source

of additional measures, there is often insufficient consistency of the measures across

sites. Despite these problems and challenges, districts have devised their own ways to

combine multiple measures of achievement, which produces a great deal of variation

from district to district (see Jang, 1998; Kalls, 1998; Law, 1998; Novak, Winters, &

Flores, 2000).

In the present climate of standards-based education, school leaders in Maine also

are being asked to think about assessment in new ways. Student achievement of the state

standards, the Learning Results, must be measured by a combination of state and local

assessments. Based on these assessments, local educators soon will be expected to

"certify" a student's attainment of the Learning Results in order for the student to receive

a high school diploma.

How should we approach the challenge of combining multiple measures of

achievement for arriving at a single judgment of, say, "proficiency," or "meeting the
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standard"? Specifically, what is an efficient and defensible method for combining

multiple measures of achievement? This is the general question that we address in this

section.

Data collection and analysis

We collected data from two sites in Maine, which were chosen because of their

similarity in community size and proximity to the University of Maine. In both sites, we

obtained the following achievement information for each student: (a) the mathematics

subscale score on the 8th grade Maine Educational Assessment (MEA-M), (b) the

mathematics subscale score on the locally administered standardized achievement test

(ITBS in Site A and Terrallova in Site B), and (c) the course grade achieved in

mathematics. In Site A (n = 94), all information was taken in the student's 8th grade

year; in Site B (n = 65), the standardized achievement test and mathematics grades were

obtained in the 9th grade (see Table 1). The MEA-M scores provide the only truly

meaningful achievement information for comparing the two sites. From Table 2, one

sees that the MEA-M mean for Site B was 17.76 points higher than that for Site A. With

a pooled within-group standard deviation of 15.77, this mean difference corresponds to

an effect size of d = 17.76 + 15.77 = +1.13.

Creating a Common Scale for Mathematics Course Grade

As can be seen from Table 1, students in each site did not all enroll in the same

level of mathematics. Our first task, then, was to create a single variable for

"mathematics grade," even though it would comprise grades from different classes.

Although we followed the same procedure in both sites, we will illustrate this procedure

using data from Site A.
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Site A students received a grade, on a 100-point scale, for either general

mathematics (n = 59), algebra 1 (n = 29), or geometry (n = 6) (see Table 3). Because

we believe that it makes little sense to regard a final grade in general mathematics as

being comparable to the same grade in a higher level class, we weighted algebra 1 and

geometry grades according to how these two groups of students performed on the MEA-

M relative to the general mathematics students (see Table 4). Each of the two mean

differences was converted to an effect size:

531.72 514.64
d21 +1.81

9.46

555.00-514.64
= +4.27

31 9.46

where d21 represents the difference in MEA-M scores between student enrolled in

algebra land those taking general mathematics, and d31 the difference in MEA-M scores

between geometry students and those taking general mathematics. Each effect size was

then used to adjust upwards the mathematics grades for students enrolled in either algebra

1 or geometry. We did this by multiplying the pooled within-group standard deviation

for mathematics grades (8.31) by either d21 or d31, and then adding the product to the

student's math grade. This resulted in an adjustment of +15.04 for each of the 29 algebra

1 students and +35.49 for the 6 geometry students. The resulting scale, which pools the

three mathematics classes, is x = 89.24 and SD = 17.65.

Analyses and Results

Correlational Analyses

To examine the relationships among the results of state and local assessments, we

obtained student-level within-site correlations among the three measures of student
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achievement: (a) MEA-M, (b) the mathematics subscale score on the locally

administered standardized achievement test (which we refer to as "ITBS/TN"), and (c)

the weighted course grade achieved in mathematics ("COURSE").

As Table 5 shows, the three measures of mathematics achievement correlate

substantially. Although these correlations are uniformly high, there is some variation in

magnitude. Interestingly, COURSE correlates more highly with MEA-M than with

ITBS/TN. This is not surprising, insofar as one would expect classroom assessments and

the MEA to align with the Learning Results more than would be expected of a

commercially available standardized test.

Classification Analyses

To explore an efficient and defensible method for combining multiple measures

of achievement, we combined the three measures two different ways and compared the

results by conducting classification analyses. As with the correlational analyses, these

analyses were conducted within site.

Because of the standard setting process that was employed in the development of

the Maine Educational Assessment, MEA-M scores can be stated in terms of

performance levels that are tied to state standards:

exceeds the standard: 561
meets the standard: 541
partially meets the standard: 521
does not meet the standard: <521

The critical score here is 541 (on a scale of 501-580), which is the cutscore that

distinguishes between meeting the standard and not.

Although Maine school leaders soon will be expected to engage in standard
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setting for their local assessments, the two sites in the present study, like most Maine

school districts, have yet to implement standard setting. Consequently, neither COURSE

nor ITBS/TN can be directly expressed as a performance level within the context of the

Learning Results. However, because MEA-M correlates highly with both ITBS/TN and

COURSE (Table 5), we can estimate, using simple regression, the critical cutscore for

each of the latter two measures. We began by regressing ITBS/TN on MEA-M and,

given the resulting equation, determined the predicted value of ITBS/TN for MEA-M =

541 (i.e., the designated cutscore for "meets the standard"). In Site A, for example, this

regression equation is:

ITBS/TN = -676.487 + 1.4(MEA-M)

which, for MEA-M = 541, yields an estimated cutscore of 80.91 (in percentile rank) for

ITBS/TN. The analogous procedure was followed for COURSE. Again, for Site A this

equation is:

COURSE = -443.307 + 1.019(MEA-M)

which yields an estimated cutscore of 107.97 (in weighted grade) for COURSE. Thus,

we identified in each site the score for ITBS/TN and for COURSE that corresponds to the

MEA-M threshold for meeting the state standard.

We then transformed MEA-M, ITBS/TN, and COURSE to z-scores using the

standard formula, but with one modification: We replaced the mean with 541 in the

transformed MEA-M variable and the estimated cutscore (as described above) in the

transformed COURSE and ITBS /TN variables. With this substitution, the sign of az-

score now indicates the student's performance relative to the MEA-M standard (rather

than to the parent variable's mean).
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Next, we formed an unweighted composite by taking the simple mean of the three

transformed variables. A negative value on this composite went to the student who, on

average, fell below the "standard" on all three measures. We also formed a weighted

composite by (a) subjecting the three measures to a principal components analysis and (b)

using the resulting component score coefficients to weight each measure in the formation

of the composite. Each composite was dichotomized at 0, as were the transformed MEA-

M, COURSE, and ITBS/TN variables. We then examined classification similarity by

constructing a series of 2 x 2 tables.

The fundamental question is whether the unweighted and weighted composites

classified students similarly. That is, when forming an achievement composite, is

anything gained by weighting the measures that enter into the composite? As Table 6

shows, there was perfect agreement between the two sets of classifications. This no

doubt reflects the relatively uniform correlations among MEA-M, ITBS/TN, and

COURSE (Table 5) and, in turn, the relatively uniform component score coefficients that

we obtained from the principal components analysis (see Table 7). In short, the results of

this analysis indicate that weighting each measure is unnecessary. Thus, if the choice is

between weighting or not weighting, the most efficient strategy for combining multiple

measures would appear to be the latter. This assumes that correlations among measures

are similar (which should be examined empirically) and that the measures are of equal

importance. If either assumption does not hold, then weighting would be defensible.

A secondary question concerns the level of agreement between the classification

based on the unweighted composite and that based on a single measure (see Tables 8-10).

Except for the perfect agreement in Site A involving MEA-M, the levels of agreement are
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fairly consistent, ranging from 89% to 92%. In these later cases, single-measure

classification resulted in more students meeting the standard than when classification was

based on the composite.

3. Identifying School Effects on Achievement

Student achievement is critically affected by variables at different levels of school

organization. If academic achievement depends on the characteristics of students and

teachers and/or the organizational context in which teaching and learning occurs, one

cannot meaningfully assess school effects without considering these multi-level sources

of influences (Keeves & Sellin, 1988). Previous studies of school effects in Maine and

Kentucky analyzed aggregate school data to examine variation among schools in their

performance status and gain, and found that poverty was the strongest and most

consistent predictor of school performance in both states (Lee, 1998; Roeder, 2000). The

past school performance indicators tend to focus on average test scores, which possibly

conceal achievement differences among groups of students within each school.

Consequently, these analyses are not sensitive to equity-related issues. Even when the

effects of student-level background characteristics on achievement were considered to

estimate value-added school performance, the effects are often assumed to be uniform

across schools.

Multilevel analysis methods not only provide a means for formulating student-

level and school-level regression models simultaneously, but they also provide more

precise estimates of the relationships between predictors and outcomes at each level
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(Bryk & Raudenbush, 1992). In particular, hierarchical linear modeling (HLM) is popular

among educational researchers and evaluators for estimating school effects (see Phillips

& Adcock, 1997; Weerasinghe, Orsak, & Mendro, 1997; Yen, Schafer, & Rahman,

1999). Because public schools do not randomly assign students and teachers across

schools, multilevel methods that account for student and school context variables are

regarded as the most rigorous means for estimating school effects (Phillips & Eugene,

1997). In fact, HLM has been found to produce more stable school effect estimates than

ordinary least squares (OLS) or weighted least squares (WLS) methods (Yen et. al.,

1999). This is true particularly when schools have few students and, thus, OLS estimates

of the within-school regression parameter have low reliability.

Raudenbush and Willms (1995) discuss two different types of school effects:

Type A and Type B effects. Type A effect is the difference between a child's actual

performance and the expected performance had that child attended a typical school. This

effect doesn't concern whether that effectiveness derives from school inputs (e.g., class

size, teacher quality) or from factors related to school context (e.g., community affluence,

parental support). By contrast, a Type B effect isolates the effect ofa school's input from

any attending effects of school context. The two indicators are appropriate for purposes

of school choice and school accountability, respectively (Meyer, 1997). When HLM

methods have been used to obtain school effect indices, researchers often did control for

the influences of student background variables. However, the corresponding school-level

compositional effects of these variables were not taken fully into account (see

Weerasinghe, Orsak, & Mendro, 1997; Yen, Schafer, & Rahman, 1999). Raudenbush and

Willms (1995) also suggest considering the possibility that a school will influence
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different students differently. Yet there has been little research that systematically

examines the achievement gaps among different groups of students as school effect

indices.

How should we approach the challenge of identifying value-added contribution of

schools to academic achievement for arriving at a judgment of, say, "effective"?

Specifically, what is an efficient and defensible method for determining school

effectiveness? This is the general question that we address in this section.

Data and Methods

In the present study, we use the data collected under 1996 NAEP 8th grade state

math assessments for Kentucky and Maine. This allows us to compare the two states in

terms of their school effects. The NAEP data are hierarchical in nature because students

are nested within schools. HLM addresses the problem of students nested within schools.

Further, the use of HLM on NAEP data copes with the problem of sampling error

resulting from the multi-stage sampling in NAEP (see Arnold, 1993). Using HLM, we

examine the effects of race and socioeconomic status on achievement at the student and

school levels to estimate (a) adjusted school average achievement and (b) within-school

racial and social gaps in achievement. We also examine relationships among the school

performance indices obtained from HLM separately in each state. Finally, we compare

schools in Maine and Kentucky from pooled HLM analyses and discuss implications of

their differences for school effectiveness research.

Taking a multi-level organizational perspective and drawing on the relevant

literature, we test three models of school effects separately for Maine and Kentucky:

Model 1 (no predictors at the student and school levels), Model 2 (predictors at the
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student level only, with grand-mean centering), and Model 3 (predictors both at the

student and school levels, with grand-mean centering). Type A effect is estimated

through Model 2 by removing the effect of student background variables. Type B effect

is estimated through Model 3 by removing the effects of variables beyond a school's

control (e.g., demographic composition). In this study, we consider only race and SES

(socioeconomic status) factors. We believe that students' prior achievement (readiness

for learning measured at the time of entry into current school) and mobility (length of

stay in current school) factors must be considered to estimate authentic school effects but

these data are not available in the NAEP.

All analyses were conducted using the HLM 5 program. Table 11 presents

descriptive statistics for all variables used in these analyses. MRPCM1 through

MRPCM5 are the five plausible values that make up the composite mathematics

achievement outcome variable. WHITE is a dummy variable (1 = white, 0 = minority),

and SES is a composite factor of parental education level, availability of reading

materials at home, and school median income (standardized to have a mean of 0 and a

standard deviation of 1 across states).

Model 1

Model 1, which includes no predictors at the student and school levels, partitions

the total variance in mathematics achievement into its within- and between-school

components. The school-level residual value from this model is used as an indicator of

unadjusted school average performance.

Model 2
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Model 2 adds student-level predictors by regressing mathematics achievement for

student i within school j on race (WHITE) and socioeconomic status (SES). The Level 1

model (student level) is

(MRPCM)ij = Poj + fljj(WHITE)ij + [32j(SES)ij + eij

where (MRPCM)ij is the composite mathematics achievement of student i in school j.;

(WHITE) j ij is the indicator of student i's race in school j; (SES)ij is the indicator of

student i's socioeconomic status in school j; and eij is a Level 1 random effect

representing the deviation of student if s score from the predicted score based on the

student-level model. Level 1 predictors are grand-mean centered so that the intercept,

130j, can be interpreted as adjusted mean achievement for school j. This adjustment is

chosen to sort out the unique effects of school on achievement after controlling for the

influences of student/family characteristics.

The next step in HLM involves fitting an unconditional, or random, regression

model at the school level (Level 2). Notice that all Level 1 regression coefficients are

regarded as randomly varying across schools, and yoo is the mean value of the school-

level achievement outcome beyond the influences of student/family characteristics. roj,

the school-level residual value from this regression, is used as an indicator of school

average performance adjusted for racial and SES mixes of students. Likewise, rlj and r2j

are used as indicators of racial and social achievement gaps respectively. The Level 2

(school level) model is

14
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R Oj = 700 + rOj

13 lj = 710 + rlj

R 2j =0 + r2j

where Poj represents school is average mathematics achievement adjusted for its

composition of students' racial and SES backgrounds; 13 ij represents school i's racial gap

(i.e., the achievement score gap between white and minority students); and 132j represents

school i's social gap (i.e., the extent to which students' SES differentiates their

achievement).

Model 3

Model 3 adds two school-level predictors, or, school aggregate values of student-

level predictors. Percent white (PWHITE) and average SES (AVSES) are added to

explain between-school variation. rOj, the school-level residual value from this

regression, is used as an indicator of school average performance adjusted for racial and

social composition effects. Model 3 is

R Oj = 700 + yo 1 (PWHITE)j + 702(AVSES)j + rOj

where (PWHITE)j is the proportion of white students (i.e., the mean of WHITE) in

school j.; and (AVSES)j is the mean SES of school i.

Results

Model 1 (fully unconditional model)

Decomposition of variance in the outcome variable shows that the two states have

similar distributions of mathematics achievement between the school and student levels.
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In Maine,18% of variance exists at the school level and 82% at the student level; the

figures are 17% and 83%, respectively, in Kentucky. Residual school means from this

model are called Model 1 average. The reliability estimate of these unadjusted school

achievement averages is .80 in Maine and .79 in Kentucky, indicating that the sample

means tend to be quite reliable as indicators of the true school means.

Model 2 (level-1 predictors only with grand-mean centering)

By using race and SES variables as predictors of math achievement at the student

level (with grand-mean centering), we obtain adjusted school average achievement that

takes into account differences among schools in their students' racial and social mixes. A

residual school mean that is obtained after controlling for the effects of student-level

predictors, as an indicator of value-added school performance, is called Model 2 average.

The reliability of conditional school means (conditional reliability) becomes lower: .67

in Maine and .62 in Kentucky. As shown in Table 12, Model 2 average is correlated very

highly with Model 1 average (rme=.92 and rky=.87).

The effects of race and SES on achievement are used as indicators of academic

inequity, as well as providing the basis for adjusting estimates of school effects. This

assumes heterogeneity of regressions among schools and models the effects of student's

race and SES on achievement as randomly varying at the school level. The within-school

racial gapthe estimated average achievement gap between white and minority students

within schoolsis 12.1 (.41 standard deviations) in Maine and 16.8 (.57 SD) in Kentucky

(see Table 13). The within-school social gapthe estimated effect of SES on

achievement within schoolsis 10.8 (.38 SD) in Maine and 10.6 (.36 SD) in Kentucky

(see Table 13). In both states, these gaps are highly significant.
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Maine and Kentucky show different patterns of relationships between

achievement average and gap estimates (Table 12). In Maine, Model 2 average correlates

positively with racial gap (.72) but negatively with social gap (-.63). Conversely, in

Kentucky, Model 2 average correlates negatively with racial gap (-.28) but positively

with social gap (.57). Higher performing schools in both states tend to have smaller gaps

with regard to one background variable but larger gaps with regard to the other. This

indicates that schools are not very effective in addressing both racial and social

achievement gaps.

We should note that the reliability estimates of racial and social gaps are low: .13

and .21 in Maine, and .30 and .28 in Kentucky. Considering these reliabilities, it appears

that both Maine and Kentucky schools vary little in their racial and social gaps. This is

attributed to the fact that both states are highly homogeneous in racial composition.

However, sufficient variability across schools on racial gap estimates does exist as the

homogeneity of variance tests demonstrate significant variation (see the variance

component chart in Table 13).

Model 3 (both level-1 and level-2 predictors with grand-mean centering)

School-level predictors of racial and social composition were used to make

further adjustment for differences among schools in their average achievement due to

composition effects. In Maine, both racial and social composition effects are not

significant. This indicates that such school-level adjustment of performance for race and

SES factors, in addition to the corresponding student-level adjustment, is not necessary

(see Table 13). In Kentucky, only the social composition effect is significant, adding

about 7 points to the within-school social gap estimate (see Table 13). Model 3
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averageresidual school means after controlling for both student and school-level effects

of race and SEScorrelates .70 with Model 1 average and .94 with Model 2 average (see

Table 12).

Pooled HLM analysis

In order to test differences in school performance between Maine and Kentucky,

we pooled data from the two states and applied the same three models. However, we

added a school-level dummy variable (MAINE) to indicate where a school's location

(Maine = 1, Kentucky =0).

The results of the pooled HLM analyses are summarized in Table 4. First, the

comparison of Maine and Kentucky schools without any control for background variables

show that Maine schools perform significantly better than Kentucky schools: a gap of

17.18 (Model 1), or roughly 1.2 SD. The gap between Maine schools and their Kentucky

counterparts in terms of average 8th grade mathematics achievement decreases about 40%

when we control for their differences in students' racial and social background variables

(gap = 9.97, Model 2). When we further control for school composition effects, the

Maine-Kentucky school achievement gap becomes slightly smaller but remains

statistically significant (gap = 6.18, Model 3). As Maine schools turn out to perform

significantly better than Kentucky schools based on both Type A and Type B effect

estimates, their effectiveness gap seems to come from sources related to schooling;

students' prior achievement and mobility factors become less important when we

compare schools across states (vs. within state). Despite the average school performance

gap, it turned out that there are no significant differences between the two states' schools

in terms of their racial and social gap estimates.
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4. Discussion

Evaluation of systemic school reform requires that we evaluate school

performance with multiple measures at mutliple levels of school system. This policy

imperative makes data collection and analysis very challenging and complex. Despite the

imperative, there is a lot of room for us to make technical choices that must be informed

by scientific research. Although our results may not generalize to all states, they are

expected to inform us about desired data and methods for a more systematic evaluation of

systemic school reform. We caution that analytical methods themselves cannot cope with

inherent measurement and attribution problems. We discuss implications of our research

findings below.

Multi-measure Analysis of Student Achievement

Our results suggest that it is not necessary to weight each measure before forming

an achievement composite to classify student performance. This is particularly true

where measures are highly intercorrelated, as was the case here. If intercorrelations vary

in magnitude, however, then it may be advisable to weight each measure to reflect the

measure's association with the underlying principal component. Subsequent research

would throw clarifying light on the merits of this recommendation, especially if the

research involves multiple sites that differ with respect to the relatedness of the

achievement measures they employ.

Having said this, we should acknowledge that high intercorrelations among

measures are not sufficient for deciding in favor of an unweighted composite. That is,
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one also should take into account the announced importance of each measure. For

example, if a school district attaches greater importance to a district-wide assessment

compared to, say, the standardized test that is annually administered, then the former

should receive greater weighteven in the face of a high correlation between the two.

Although there are various reasons why local achievement measures may differ in

importance, a primary reason is the degree to which a measure alignsin various

respects (e.g., see Webb, 1997)with the adopted standards. The reliability of

assessment measures also need to be considered in developing weights.

Our results also point to the possible hazards of classifying student achievement

based on a single measure. As Tables 8-10 illustrate, single-measure classification

tended to result in additional students identified as meeting the standard. Are these

students false positives? Because of two limitations of the present study, we

unfortunately do not know. First, unlike MEA-M, which was designed to align with the

Learning Results, neither ITBS/TN nor COURSE was constructed explicitly to reflect

student attainment of these standards. This clearly is true for ITBS/TN, for no

commercially available standardized achievement test is tailored to the standards of a

particular state. And although teacher-constructed mathematics assessments (COURSE)

in Maine arguably are more responsive to the Learning Results, the task of formally

designing classroom assessments to demonstrably align with these standards still looms

on the horizon for most Maine school districts. Clearly, in a standards-based climate, the

integrity of an achievement composite depends, in part, on the extent to which the

component measures are drawing on the same universe of standards. Without this

assurance, we must interpret with caution the tendency of the single-measure
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classifications to putatively overidentify students who meet the standard. Here, too,

subsequent research could be illuminating, particularly if the research involves multiple

sites that vary with respect to the degree to which each measure is of demonstrable

alignment with the announced standards.

A second, and related, limitation of the present study is that neither site had

engaged in formal standard setting for either ITBS/TN or COURSEhence our decision

to obtain regression estimates of ITBS/TN and COURSE cutscores, given the relationship

between each measure and the MEA-M (for which the minimum score for "meets the

standard" is known).

Multilevel Analysis of School Effects

We have tested three different models of estimating school effects. Model 2 is

regarded as fairer than Model 1 as it considers student background factors that schools

cannot control. Model 3 also may be fairer than Model 2 as it further takes into account

school-level compositional effects beyond individual student-level effects and implies

comparing "like with like." However, this position can be challenged in a situation where

there is systematic covariation between school context and school practice variables.

Raudenbush and Willms (1995, p. 332) point out the problem of causal inference:

"Causal inference is much more problematic in the case of Type B effects because

the treatmentschool practiceis typically undefined so that the correlation

between school context and school practice cannot be computed. Thus, even if the

assignment of students to schools were strongly ignorable, the assignment of

schools to treatments could not be."

21



20

Bryk and Raudenbush (1992, p.128) illustrate the problem where there exists

differences in school staff quality that might confound the effects of school staff with the

effects of student composition:

"Suppose that [high SES] schools have more effective staff and that staff quality,

not student composition, causes the elevated test scores. The results could occur,

for example, if the school district assigned its best principals and teachers to the

more affluent schools. If so, [Model 3] would give no credit to these leaders for

their effective practices."

Conversely, one might argue that the differences among schools in school

resources (including class size, teacher/administrator quality and instructional resources),

possibly due to their different student demographic composition, are precisely what we

need to remove for evaluating schools in fair ways. If high SES schools do a better job

simply because they draw better staff, more resources, and better students, then this

advantage should not be considered authentic "school" effectsi.e., differences among

schools due to educational efforts and practices. Then, the task becomes to distinguish

school inputs that are determined outside the school and sort out their effects as external

school-level characteristics (Meyer, 1997). But this strategy can be more problematic

when the school input variables are more highly correlated with school practice variables.

Thus, the fundamental issue is not simply a technical choice of estimation

methods given the available data. Rather, the estimation of school effects requires that

we define "school effects" and formulate an explicit model of these effects. In other

words, this approach requires that the model be fully specified: all variables representing

school input, practice, context, and student background would have to be measured and
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included in the model in order to guarantee that the effects of school practice were

unbiased. Nevertheless, school quality variables are generally more difficult to define and

measure and the relevant data are expensive to collect (Raudenbush & Willms, 1995).

Our analysis of school effects also involved estimating student achievement gaps

with regard to background characteristics (i.e., race and SES in our case). We found that

while average achievement varies significantly among schools in both states, their racial

and social gaps vary little among schools. This means that much of the observed

variability in achievement gaps is sampling variance and, as a result, cannot be explained

by school factors. Thus, at least in our data, it is not sensible to use student achievement

gaps as school effect indices. It remains to be seen whether combination of state and local

assessment measures would produce different results than those based on the NAEP.
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Table 1.
When achievement information was collected, by site.

achievement information
4,

Site A
(n = 94)

Site B
(n= 65)

Maine Educational Assessment
(mathematics score)

Standardized achievement test,
mathematics

course grade, mathematics

8th grade 8th grade

8th grade
(Iowa Test of Basic Skills;

percentile ranks)

9th grade
(Terra Nova;
scaled scores)

8th grade 9th grade

(course grade in
general math, algebra 1,

or geometry)

(course grade in
applied math 1,integrated
math, practical math 1,
algebra 1, or geometry)

Table 2.
Distribution of MEA-M mathematics scores in each
site.

MEA-M performance
course M SD

Site A (n = 94)
Site B (n= 65)

522.49 14.88
540.25 16.97

SDpooled = 15.77

27



Table 3.
Distribution of unweighted mathematics grades for
each of three courses (Site A).

course M SD

general mathematics (n = 59) 78.24 9.26
algebra 1 (n = 29) 88.17 6.58
geometry (n = 6) 94.33 4.50

SDpooled = 8.31

Table 4.
Distribution of MEA-M mathematics scores for
students in each of three mathematics courses (Site A).

MEA-M performance
course M SD

general mathematics (n = 59)
algebra 1 (n = 29)
geometry (n = 6)

514.64
531.72
555.00

9.02
10.82
5.33

SDpooled = .9.46

Table 5.
Correlations among measures of student
achievement in mathematics.

Site A
MEA-M ITBS/TN

ITBS/TN .81
COURSE .86 .72

Site B
ITBS/TN .85
COURSE .84 .77

28
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Table 6.
Classification similarity: unweighted and weighted composites.

Site A

below
standard

unweighted
composite meets

standard

weighted composite

below standard meets standard

82

12

Site B

unweighted
composite

below
standard

meets
standard

weighted composite

below
standard

meets standard

33

32

Table 7.
Component score coefficients.

Site A Site B
MEA-M .389 .389
ITBS/TN .368 .376
COURSE .354 .346
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Table 8.
Classification similarity: Unweighted composite and MEA-M

unweighted
composite

below
standard

meets
standard

column total

Site A
(100% agreement)

MEA-M

below standard meets standard

82

12

82 12

row
total

82

12

94

unweighted
composite

below
standard

meets
standard

column total

Site B
(92% agreement)

MEA-M

below standard meets standard

29 4

1 31

30 35

row
total

33

32

65

30
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Table 9.
Classification similarity: Unweighted composite and ITBS /TN.

unweighted
composite

below
standard

meets
standard

column total

Site A
(91% agreement)

ITBS/TN

below standard meets standard

75 7

1 11

76 18

row
total

82

12

94

unweighted
composite

below
standard

meets
standard

column total

Site B
(91% agreement)

ITBS/TN

below standard meets standard

29 4

2 30

31

row
total

33

32

34 65
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Table 10.
Classification similarity: Unweighted composite and COURSE.

unweighted
composite

below
standard

meets
standard

column total

Site A
(90% agreement)

COURSE

below standard meets standard

75 7

2 10

77

row
total

82

12

17 94

unweighted
composite

below
standard

meets
standard

column total

Site B
(89% agreement)

COURSE

below standard meets standard

28 5

2 30

30

TOW

total

33

32

35 65

32
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Table 11.

Descriptive statistics of predictors and outcome variables for HLM analyses of Kentucky

and Maine 1996 NAEP 8th grade math data

Kentucky Maine

n M SD n M SD

Student-level

MRPCM1 2461 267.29 30.88 2258 285.22 30.51

MRPCM2 2461 267.14 31.00 2258 285.89 30.19

MRPCM3 2461 266.85 30.99 2258 284.95 30.17

MRPCM4 2461 267.01 30.87 2258 284.73 30.04

MRPCM5 2461 267.25 30.78 2258 285.11 30.32

WHITE 2535 0.87 0.33 2309 0.95 0.22

SES 2230 -0.40 0.94 2103 0.17 0.83

School-level

PWHITE 101 0.87 0.16 93 0.95 0.06

AVSES 101 -0.42 0.52 93 0.14 0.45
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Table 12.

Correlations among school performance indicators

Model 1 average Model 2 average Model 3 average Racial gap

Model 2 average 0.87

0.92

Model 3 average 0.70 0.94

0.82 0.97

Racial gap -0.24 -0.28 -0.23

0.61 0.72 0.77

Social gap 0.34 0.57 0.53 -0.50

-0.52 -0.64 -0.68 -0.96

Note. Upper values are for Kentucky and lower values are for Maine.
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Table 13.

Summary of HLM Results

Kentucky Maine

Model 2 Model 3 Model 2 Model 3

School-level Effects

Adjusted Mean Outcome

PWHITE

AVSES

Student-level Effects

WHITE

SES

Estimation of Regression Coefficients (Fixed Effects)

266.58***

16.79***

10.58***

267.29***

-.39

7.15**

16.79***

10.58***

283.92***

12.11***

10.78***

283.74***

38.01

3.27

12.11***

10.78***

Estimation of Variance Components (Random Effects)

Adjusted Mean Outcome 90.39*** 81.57*** 91.86*** 81.90***

WHITE 141.66*** 141.66*** 72.60** 72.60**

SES 21.42 21.42 16.50 16.50

Percent of Outcome Variance Explained

school-level 38.4 44.0 37.7 44.5

student-level 15.5 15.5 9.2 9.2

Note. * p < .05, ** p < .01, *** p < .001
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Table 14.

Summary of Pooled HLM Results

34

Model 1 Model 2 Model 3

School-level Effects

Adjusted Mean Outcome

MAINE

PWHITE

AVSES

Student-level Effects

WHITE

SES

Estimation of Regression Coefficients

266.19***

17.18***

270.29***

9.97***

16.77***

10.52***

283.92***

6.18**

4.41

6.72***

17.01***

10.02***

Note. * p < .05, ** p < .01, *** p < .001
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