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A LONGITUDINAL STUDY OF CHILDREN'S FRACTION
REPRESENTATIONS AND PROBLEM-SOLVING BEHAVIOR'

Gerald A. Goldin and Claire B. Passantino
Center for Mathematics, Science, and Computer Education

Rutgers University, Piscataway, New Jersey 08855-1179 USA

As part of a longitudinal study of children's,mathematical development
we analyzed videotapes of 20 elementary-school children solving
problems in two carefully-structured task-based interviews
administered one and one-half years apart. Here we describe and
discuss three individual students' behaviors, with attention to the
external representations and models they employed or constructed in
attempting non-standard problems in the domain of fractions. From
our observations we seek to draw preliminary inferences about the
development of these children's understandings of fractions.

As mathematics education research focuses more on children's processes of
constructing meaning, researchers have sought to describe in greater detail how
particular mathematical concepts develop. Task-based interviews are being used
increasingly to explore students' developing mathematical understandings (Davis,
1984). The observed problem-solving behaviors of children permit conjectures or
theories about the internal representations and conceptual understandings giving rise
to those behaviors (Lesh, Post & Behr, 1987; Goldin, 1987, 1988, 1992).

The research reported here is part of a descriptive longitudinal study conducted at
Rutgers University on the development of mathematical understandings in children
in grades 3-6 (Goldin a al., 1993). Five highly structured task-based interview
scripts were created to investigate how children's internal systems of mathematical
representation develop over time, and the role of such representations in their
changing conceptual knowledge and problem-solving capabilities. Two interviews in
the sequence, #2 and #5, were designed to focus on fraction representations. We
shall describe some behaviors of three individual children. We make use of the
external representations and models they employ or construct as they attempt to
solve non-standard problems in the domain of fractions to draw preliminary
inferences about their developing understandings of fractions.

1 The research reported in this paper was partially supported by a grant from the
U.S. National Science Foundation (NSF), "A Three-Year Longitudinal Study of
Children's Development of Mathematical Knowledge," directed by Robert B.
Davis and Carolyn A. Maher. The opinions and conclusions expressed are those
of the authors, and do not necessarily reflect the views of the NSF.

3 - 3
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Research questions

The overall research questions we investigate fall into the following four areas: (1)
External representations and models: What particular fraction representations or
models are in evidence? Which of these seem to endure over time? Does the
individual child evidence use of a set model, a linear model, some sort of region or
area model, a division model, or a model of a different sort? What external modes
of representationwords, notational symbols, pictures, enactive behavior, gestures,
recall of daily life experiences, etc.predominate, and how do these change over
time? (2) Strategies and problem-solving heuristics: In solving problems about
fractions, what problem-solving strategies, heuristics, or metacognitive activity can
we infer or conjecture? How do the children's internal, strategic representations
facilitate or impede (a) problem solution and (b) conceptual understanding of
fractions? (3) Making connections: How stable are the students' constructs? To what
extent or under what circumstances do children change or abandon representations
or models, or make new connections among representations or models? What
evidence can we find of students making translations or transformations among
fraction representations, of semiotic acts assigning meanings in one representation
to configurations in another? In particular, do their models or representations
change or interact in ways that suggest "reconceptualization cycles" or "local
conceptual development" (Lesh, Hole, & Post, to be published) during the problem-
solving episodes? (4) Learning and teaching: What are the links between "model-
eliciting activities" (Lesh & Kaput, 1988) and the processes of instruction and
assessment? What can be learned or conjectured from exploratory observations of
children's problem solving in the domain of fractions about how to foster overall
development of mathematical competency, and deeper understandings of fractions?

Design and administration of the interviews

Scripts for task-based clinical interviews were designed and developed by a team
including the authors and other graduate students working toward advanced degrees
at Rutgers University, under the leadership of the first author. All members of the
team had professional teaching experience in mathematics or elementary education.

Each script follows explicit principles in its construction (Goldin, 1993). The child
is asked a series of questions of increasing mathematical difficulty, so that the final
task is one that can be attempted by all the children, but is challenging even to the
most skillful. During the interview, the child engages in free problem-solving with
minimal input from the clinician (except for prompts such as, "Can you tell me

12
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more about that?" asking for explanations of what the child is doing or descriptions

of what the child is thinking). All student efforts are "accepted" without
preconceived notions about appropriate solution strategies, and (with a few,

specified exceptions) without distinguishing between "wrong" or "right" answers.

The clinician typically asks follow-up questions to responses without indicating their

correctness. When an impasse is reached, the clinician offers structured heuristic
suggestions, in accordance with each script, and again allows for free, uninterrupted

problein solving by the child. The suggestions continue until the child solves the
problem, or (after an interval of time) the clinician moves on to another section of

the interview. Each interview is designed to take approximately 45 minutes (one

class period) to administer. Materials are available for student use, depending on the

problems posed in the interview: paper and pencil, markers, chips or other
manipulatives, paper cut-outs, string, rulers, calculators, etc. The abundance of
flexibly-applicable materials allows the researcher to observe external
representations made or used by the students, and to explore connections among

representations (Lesh, Post, & Behr, 1987). Each interview includes retrospective

questions and questions to explore the child's affect during problem solving.

Each script was revised several times by the development team. Revisions were

guided by mock interviews with each other, followed by interviews with individual

children of the developers' personal acquaintance, and finally a videotaped, pilot

clinical study with children in a nearby urban elementary school. The pilot sessions

permitted critical evaluation of the draft scripts, and training for clinicians through

mutual critiques of interviewing techniques.

Of 22 children in the longitudinal study, 20 participated in both of the interviews

that focused on fraction concepts, #2 and #5. Two videotapes were made at each of

these interviews. One camera focused on the interaction between the child and the

clinician, showing their faces; the second camera focused on the student's work.
Interview #2 was conducted in January and February 1993, when the children were

in the middle of fourth or fifth grade (ages 9-11 years); interview #5 in the spring

of 1994, when the same children were at the end of fifth or sixth grade. The
students came from a cross-section of New Jersey communities: from one school in

a predominantly blue-collar, "working class" community, one school in a suburban,

upper middle-class district, and two urban schools. Though the group included girls

and boys of differing backgrounds, ethnicity, and ability levels, it was not drawn as

a stratified random sample. The study should be regarded as a set of exploratory or

investigative case studies, not as an experiment yielding valid generalizations for a

wider population.

3 - 5
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We next describe briefly just those portions of the two task-based interview scripts
for which children's behaviors are discussed here. The full interview scripts are
available from the authors on request.

Task-Based Interview #Z: Early in this interview the child is asked several questions
related to his or her understanding of one-half and one-third: ° When you think of
one-half, what comes to mind? ° When you think of one-third, what comes to mind?
The purpose here is to invite freely described representations of fractions, without
yet suggesting a specific context. Other parts of interview. #2 provide opportunities
for the child to describe a region and/or a set model for fractions, e.g.: ° Suppose
you had twelve apples. How would you take one-half/one third? Several different
cut-out shapes are presented, and for each the child is asked: ° Here is a shape. How
would you take one-half/one-third? ° Why is this one-half/one-third? ° Are there
any other ways to take one-half/one-third? The student's ability to write a fraction
and understanding of notational meaning are then explored: ° Can you write the
fraction one-half/one-third? ° What does this fraction mean to you? Another
activity focuses on the way students work with an array of objects. The overall goal
in this part of interview #2 is to investigate various fraction representations and
models the child spontaneously uses or describes, and to observe the child's facility
in making connections or moving from one representation to another. Each main
question is followed by dialogue designed to elicit more specific descriptions or
concrete models with the provided materials. Observation and analysis of interview
#2 also becomes baseline data related to interview #5.

Task-Based Interview #5: This interview begins by asking the child an open-ended
question similar to (but more general than) those asked in interview #2: ° When you
think of a fraction, what comes to mind? The described representations are later to
be compared to those elicited at the beginning of interview #2, when the child was
asked about one-half and one-third. Next the student is engaged in a discussion
about fractions, and the kinds of things he or she has done with fractions in and out
of school. A paper is then shown with five fractions written on it, all with numerals
in large bold prim, in vertical format with a horizontal fraction bar: one-half, one-
third, two-thirds, three-fourths, and four-sixths. Questions asked include: ° What
fractions do you see here? ° Can you explain to me what the fractions mean? ° Why
are they written this way? ° Could you show me what they mean using some of the
materials? ° Which fraction is the smallest (largest) fraction in the group? ° Are
there any fractions in this group that are the same size? Two additional sheets of
paper are shown successively to the student, one with pictorial representations that
can be interpreted as corresponding to various fractions, and another with

14 .. , 3 -6



"improper" fractions written numerically. The child is subsequently asked to show

one-third and then one-fourth of a cut-out circle. A series of questions explores the

child's understandings, including connections made among such external
representations and the stability of the child's described fraction constructs. Later in

this interview a series of problems are posed, each with the possibility of some
fractional interpretation. In one of these, an unmarked piece of wood, measuring

1"x1"x5", is placed in front of the student (recall, that a variety of other materials,

including a ruler, a length of suing, a calculator, pencils and markers, etc. remain
on the table): ° Pretend this is a stick of butter. You need a tablespoon of butter to
make a cake. You don't have a measuring spoon, but you know that there are eight
tablespoons in a stick of butter. Here is the butter. How could you find exactly one
tablespoon?

Analysis and comparison of the two task-based interviews for all 20 children with

respect to the four categories of research questions above is presently under way.
Here we summarize some preliminary observations for three of the students.

Preliminary observations and inferences

Fernando: In fifth grade, Fernando (age 10) mentions "two pieces" as essential to
one-half, and "three pieces" as essential to one-third. In finding one-half of a shape,
he only asserts that the pieces have to be equal when discussing the circle. He also
indicates that pieces have to be the same shape. In discussing thirds, he mentions that
the pieces have to be the same size for the square ("you cut them out to see if they
are the same size"), but denies that this is important when discussing vertical slices
into three parts that he has made of the circle and the flower cut-outs. What matters
for Fernando with the latter shapes seems to be only the number of pieces (3).
When shown a wedge shape aligned with the circumference of the circle cut-out
(having 1/3 the circle's area), and asked if this could represent one-half or one-
third, Fernando responds affirmatively: it could represent one-half, because there
are two pieces; it could represent one-third, because there would be three pieces if
you drew the other line. When shown another wedge shape aligned with the
circumference of the circle cut-out (having 1/6 the circle's area), he agrees it
represents one-sixth, but says it is too srnall to be one-half or one-third: it could not

be one-third, because "you need more than three pieces to complete the circle".
When the same wedges are placed inside the circle, rather on the circumference,
Fernando made some interesting adjustments in his thinking. A wedge with half the
area could now represent one-third, because the bottom section of the circle looks

like one-third (as he drew it when he "sliced" the circle into three pieces); the
wedge with 1/3 the area could still represent one-third if you put it back on the edge
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of the circle; and the wedge with 1/6 the area could still represent one-sixth, or
maybe one-fifth, because when it gets put back at the edge, five or six of them could
fit into the circle. At this point in his development Fernando recognizes the number
of pieces as critical to the fraction; he seems to think that the pieces should be the
same shape, though this may not always be true; he is uncertain about whether they
need to be the same size. He switches easily to a set model when asked to take one-
half or one-third of twelve apples (he does this by dividing), or one-half or one-
third of an array of twelve shapes (where he disregards their colors and shapes).

In sixth grade (age 12), when asked to show one-third, he uses the same
model, again slicing the circle and shading the right-most "third". It still does not
trouble him that the pieces are different sizes or shapes. A marked change, though,
is that he now recognizes that the pieces can be split to form more slices; so that 2/6
would be the same as 1/3, or 2/8 would be the same as 1/4. This is clearly related to
his demonstrated ability to find equivalent fractions, by multiplying or dividing the
numerators and denominators by the same number, using 2/2. or 3/3 or 4/4, etc. He
volunteers that you could show one-third by taking one out of three circles. He
solves the butter problem by measuring 12 1/2 cm, then dividing the 12 by 8 to get
11/2 cm. He measures off one tablespoon only, and says the others would be the
same size because he figured it out. It is not clear if he recognizes this as an
approximate solution. But in the butter problem Fernando does recognize that
"same size" can be important; after you get eight pieces, you can "cut them all and
measure them on top of each other".

Graham: In fourth grade (age 10), Graham demonstrates flexibility in representing
fractions meaningfully. What comes to mind with one-half is half the population of
Rhode Island; for one-third he thinks of a pie with three pieces in it "because that's
what we usually say - one slice of a pie". He is versatile in showing halves and
thirds of shapes, emphasizing that the pieces must be the same size, even if they are
not the same shape. He delights in making squiggly shapes, and knows that there are
"infinity ways" to divide the circle or the flower in half by making diameters. He
changes flexibly to a set model when finding one-half or one-third of twelve apples
or twelve mixed shapes.

In fifth grade (age 11), Graham never mentions irregular shapes. When asked
what comes to mind when you think of a fraction, he says "just the fraction, two
numbers with a line in the middle." He easily represents and orders the fractions,
and uses the algorithm for determining equivalence. He has also learned to divide
and to form decimal numbers. This seems to interfere with his solving the butter
problem, because he divides 5 by 8 and ends up with a number in the "hundredths
and thousandths", which he cannot use. He estimates "six tenths", but then has

16
3 8



problems finding this amount in inches. He estimates where this is on the ruler. The
clinician says, "At about the 5/8 mark?" and Graham agrees. Then he goes on to try
centimeters, about 1 3/4 cm, but this is too large so he gives up. He says they don't
do problems like this in school because "when the teacher gives it to you it's usually
easy to solve." It is difficult to escape the implication that schooling is diminishing
rather than enhancing Graham's flexibility of representation, even as his
algorithmic proficiency increases.

Jack: When asked in fifth grade (age 10) what comes to mind when you think of
one-half, Jack says he thinks of half of a circle, because it's the easiest thing to cut
in half; for one-third he thinks of a rectangle, because it's easiest to split into thirds.
When finding halves of shapes he emphasizes going through the middle to make two
equal parts. He makes three vertical slices to find thirds of a square, but says it is
impossible to find thirds of the circle or the flower because when you slice them the
slices are not equal. Curiously, however, he immediately recognizes the wedge-
shaped third of a circle and says that it could be used to represent one-third. He
volunteers that three of the wedges whose size is 1/6 of the circle would make one-
half, and that two of them would make one third. The wedges needed to be in
position at the edge of the circle for Jack to recognize.this: "They don't represent
anything unless you move them back to the edge." He easily finds one-half or one-
third of the apples or the shapes, but insists that each third or half of the shapes
have the same number of circles and flowers, as "a circle does not equal a flower".

In sixth grade (age 12), when Jack thinks of fractions, he mainly thinks of the
numbers. He compares fractions mostly by the algorithmic procedure of finding a
number that "goes into both". When asked to explain he just laughs, and says "It
works and it's right". When pressed further, however, Jack does make rectangular
regions which he compares visually. In fifth grade he could only imagine making
slices of the circle, but in sixth grade he immediately makes an upside-down Y to
trisect it. He says he can't think of any other way to do it. It is difficult to infer
internal representations from Jack's behavior in solving the butter problem, as he
offers little verbally during the twenty minutes he works on it. He appears to be
desperately trying to find a number that works. When pressed he says that one inch
is too big, one-half inch is too small, three-quarters is too big. After some time the
clinician says, "So it's bigger than one-half and smaller than three-quarters". Then
Jack realizes that 1/2 = 4/8 and 3/4 = 6/8, so maybe it's 5/8! He appears thrilled
with this discovery. It is interesting that Jack is "ready" to figure out 5/8 in the
context of his heuristic problem solving, while Graham (above) does not react when
"given" the answer 5/8, even though this puts into words the location he is
indicating on the ruler.
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Conclusion

Our observations suggest that in some situations, increased technical capability of
symbolic mathematical representation of fractions does not imply increased
flexibility of application or depth of conceptual understanding. There is evidence
that for these children exploring various concrete and imagistic representations of
fractions in greater depth would enhance their conceptual development.
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PSYCHOLOGY STUDENTS' CONCEPTIONS OF A STATISTICS COURSE

University of Sydney

ABSTRACT,

We report in this paper the preliminary results from a study to investigate the
conceptions of a compulsory statistics course held by university psychology students.
Phenomenographic research methods were used to analyse responses to
questionnaires administered to 270 students. A set of five categories of description
for the students' conceptions of their statistics course were identified. Relationships
were found between the students' conceptions, their attainments in assessment tasks
and their willingness to study statistics. The results suggest that a majority of
students view statistics as essentially disconnected from other knowledge. Moreover,
a narrowly algorithmic approach was reinforced by assessment requirements.

What do psychology students think they are learning when they are required to study
statistics at university? What conceptions of statistics do their attainments in
statistics examinations reflect? Is there a relationship between students' willingness
to study statistics and their conceptions? What connections do they see between
statistical knowledge and their broader concerns? These are some of the questions
we attempt to answer in this paper for a group of 270 students who were studying
statistics as a compulsory component of second year Psychology. The paper is based
on ongoing research into students' orientations into learning statistics at university
(Gordon, 1993; 1995; In Press).

The prominence of statistics in university courses has generated considerable
research into statistical education in the last fifteen years. This research shows that
many students have difficulties with and misconceptions about statistical ideas (See,
for example, Garfield and Ahlgren, 1988; Green, 1994). Many studies have focussed
on reforms in statistics education by suggesting new and improved ways of teaching
statistics (Eg Garfield, 1993; Hawkins et al, 1992; Romero et al, 1995).

In contrast, our perspective focuses on what is learned rather than what is taught. In
order to take the standpoint of the students, that is, take a "second order perspective",
the research adopts a phenomenographic approach (Marton, 1986; Crawford,
Gordon, Nicholas & Prosser, 1994). This approach is described by Marton (1988) as
"a research specialisation to study the different understandings or conceptions of
phenomena in the world around us." Such an approach views phenomena
systemically and avoids the boundaries between person and context. It is consistent
with a Vygotskian view that there is no assumption of a duality between self and
contest; between thinking and acting (Vygotsky, 1978). The use of a

3 -11 1
9



phenomenographic approach to this research has allowed us to describe the
experience of learning statistics at university from the point of view of the students
themselves. We have attempted to give our students a voice, a voice not normally
heard in statistical education.

METHOD OF RESEARCH

Over 270 second year Psychology students, at the University of Sydney, completed a
questionnaire on their conceptions of the statistics component of the course and their
attitudes and approaches to learning statistics. The survey was completed
approximately halfway through semester 1, that is, in week 12 of a 21 week semester.
The questionnaire included the following open ended question, designed to elicit
students' own conceptions of the statistics they were currently studying.

What in your opinion is this statistics course about? Please explain as fully as
possible.

The first stage in the analysis of the data was to identify a set of qualitatively
different categories of description to the open ended question. This involved the
following procedure:

1. An initial set of categories was identified, by two independent researchers reading
and classifying the entire set of responses to the above question.

2. The two researchers then compared and discussed the categories and agreed on a
draft set of categories.

3. They, together with a third researcher, independently classified 30 of the
responses in terms of this set of categories.

4. The individual classifications of the three researchers were compared and a final
set of clear statements of each category was agreed upon.

5. All 270 responses were then classified accordingly.

6. All responses were discussed and agreement reached on any classifications that
did not match.

The students were asked whether they would have studied statistics if it had not been
compulsory to do so. Their responses to the questionnaire were then analysed to
explore the relationships between students' conceptions of the statistics course and
their attainment in tests and examinations during the first semester, their expressed
willingness to study the statistics and gender.

RESULTS

Categories of Description of Students' Conceptions of the Statistics Course

3 -12

20



The phenomenographic analysis of the responses to the question yielded a set of five
qualitatively different categories. A label for each of the categories is given below.
Labels are followed by descriptions of that category and illustrative excerpts from
students' written responses.

1) NO MEANING

Students' responses that indicated perceptions of the course as meaningless or
unconnected to their goals in !canting psychology, worthless or set by the university
as a means to confuse or "cull" less able students, were classified in this category.

For example a student responded to the question as follows: Trying to confuse me

2) PROCESSES or ALGORITHMS

Responses were classified in this category if:

a) The student's responses to the question consisted of a list of one or more statistical
procedures such as hypothesis testing or tabulating data.

b) The student's perception of the course was reported in terms of an input- output
machine or black box. That is, the response indicated a perception of the course as
being about mechanical processes or coding.

Examples: Number crunching

and Statistical results from experiments.

... It's not necessary, considering computers do all the work.

3) MASTERY OF STATISTICAL CONCEPTS AND METHODS

Responses were classified in the third category if students reported their perception
of the course in terms of competence or proficiency in the methods of statistics.
Typical responses mentioned some or all of the following class exercises: analysing
or interpreting given data, coming to conclusions on the basis of decontextualised
information, solving practice exercises. In short, reading and/or understanding
statistical information in isolation from the rest of their studies of psychology.

For example a student wrote: To give us the basics in statistics.

Another wrote: Determining the results of experiments in the correct manner ...

4) MASTERY AND A TOOL FOR GETTING RESULTS IN REAL LIFE

Responses in this category included notions of proficiency in statistical methods but
also referred to the use of statistics in conducting research or its use in society.

An example of a response indicating the perception of the course as providing a tool
was: using statistics to apply it to experiments we will use later on in careers in
psychology. A practical course.
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5) The final category was labelled A WAY OF CRITICAL THINKING.

Responses were classified in this category if they included the idea of statistics as a
tool and, in addition, referred to the statistics course as being about a (mathematical,
scientific) way of critically evaluating findings, or organising, communicating and
assessing findings.

An example of a response in this category was: Understanding how numbers can
provide evidence for or against some hypothesis you are testing. As a way of
ensuring the validity & reliability of your own research methods. To understand how
numbers can be used to falsify datalconclusions.

Distribution of Responses

Figure 1 below indicates the distribution of responses into the five categories.

FIGURE 1: Distribution of Students' Conceptions of the Statistics Course
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Interestingly, a large number (1 I go) of the students omitted to answer the question or
responded in a way that indicated a reluctance to think about it. It appears that many
students find it difficult or are unwilling to articulate their conceptions.

Relationship to Other Variables

Performance in Tests and Examinations

22.
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We first consider how students' reported conceptions of the statistics course relate to
their performances in assessments in the first semester. Students had three
assessment tasks. There were two class tests which were open book exercises, in
which students were asked to show all working, and a multiple choice examination.
No books or notes could be used in the examination. Relationships to the
examination marks and the average of the two class tests (which will be referred to as
the class mark) are reported separately.

The means for the students' performances are shown in Table I and Figure 2.

TABLE 1: Average Assessment Marks for Each Conception Group

Conception Means for Class Mar eans for
Examination Marks

No Meaning 64% (N=9) 47% (N=9)

Processes 59% (N=55)* 57%(N=54)

Mastery 59% (N=73) 49% (N=69)

Tool 58% (N=43) 56% (N=41)

Thinking 80% (N=3) 53% (N=4)

*N differs in some cases, as some students did not write both the examination and the class tests.

Figure 2 below shows that students performed better in the class tests than in the
examination. The correlation between these students' class marks and examination
results is 0.6.

When comparing the attainments of the different concept groups on the two different
forms of assessment (problem solving tests and multiple choice examination), an
interesting pattern emerges. No statistically significant differences were found
between students' average attainments on their class tests for the three largest
Conception groups: Processes, Mastery and A Tool. With the exception of the three
students whose conceptions of the statistics course related to a way of thinking, no
mean increase in marks was gained by students who conceived of the course in other
than algorithmic terms. Thus, increased effort to make meaning were not rewarding
under the conditions of the assessment of the class exercises.

The group of students who reported their conceptions of the statistics course as
algorithmic Processes obtained higher marks in the multi choice examination that
any other group. Indeed the Processes group performed significantly better on the
semester 1 examination than those who reported their conceptions in terms of
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Mastery (paired t =8.11, p=0.000I). This result implies that their conception was
associated with an expedient approach to learning, in terms of course grades. For the
vast majority of students, a purely algorithmic or mechanical conception of statistics
was reinforced by successful assessment results.

FIGURE 2: Mean Marks for Class Tests and Examination for Conception Groups
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Seventy four percent of the students surveyed answered "No" to the question: Would
you study statistics if it were not a requirement of your psychology course?

The table below shows the differences in the perceptions of the course between those
that responded in the affirmative and those who expressed an unwillingness to study
statistics. Almost 80% of the "Yes" students reported their conceptions in terms of
mastering the methods and concepts of statistics and/or using it as a tool. Few (14%)
of these students reported thinking of the course as being about statistical procedures.
However, over a third of the "No" students reported their conceptions in terms of
algorithms and processes. Not surprisingly, none of the students who expressed the
opinion that the statistics course had no meaning for them expressed a willingness to
study statistics.
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TABLE 2: Students' Concepts Versus Their Willingness to Study Statistics

Percentage (Number) of Students

No Meaning Processes Mastery Tool Thinking

"No" (N =181) 7% (13) 36% (65) 36%166) 20% (36) 1% (1 )

"Yes" (N=65) 0 14% (9) 45% (29) 34% (22) 8% (5)

The increased interest in statistics of the minority group who felt positive about
studying statistics was reflected in their grades. On average, the "Yes" group
achieved higher marks on both forms of assessment.

Gender

For both sexes, Mastery was the modal category. However, Table 3 below shows
that a considerably higher proportion of females than males reported thinking about
the course as providing a tool which could be used in the future. On the other hand, a
larger proportion of males than females evidently perceived the statistics course to be
about mechanical processes or statistical procedures. In general, males performed
better on the multiple choice examination.

TABLE 3: Students' Concepts Versus Their Sex

Percentage (Number) of Students

No Meaning Processes Mastery Tool Thinking

Females (N=201) 3% (7) 25% (50) 36% (72) 25% (51) 2% (4 )

Males (N=75) 8% (6) 29% (22) 33% (25) 8% (6) 3% (2)

DISCUSSION

There has been some concern about the outcomes of statistics education. This
research has focussed on student conceptions of a compulsory statistics course
their point of view. The majority of the psychology students who were surveyedwere
unwillingly studying statistics at university. Most reported learning mechanical
procedures or decontextualised statistical concepts and methods. Further, these
conceptions appear to be reinforced by success in formal assessment tasks. The
minority group of students who expressed a greater willingness to participate in
statistics courses reported more thoughtful and personally meaningful conceptions of
statistics. Their increased motivation was reflected in higher marks. However, for
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most students, a lack of understanding and interest was no deterrent to their
successful completion of class exercises nor reflected in grades.

Although the course was a component of wider studies in psychology, less than a
quarter of the students expressed an awareness of connections between statistical
knowledge and applications in psychology or any other field. If we regard statistics
as a useful and human endeavour, university educators will need support to ensure
that students receive meaningful experiences of doing statistics that go beyond mere
"number crunching" so that they cannot imagine that "computers do all the work".
Such support will require more time and better resources than are usually allocated.
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Choosing a Visual Strategy: the influence of gender
on the solution process of rotation problems.

1\11iria GorgoriO

Departament de Didatica de les Matenihtiques
Universitat Antanonia de Barcelona, Spain

Abstract

Visualisation in geometry frqUirti the mental manipulation Of visual imagery. Most pr-
vious studies related to visualisation have focused on the processes involved in solving
mathematical problems in general. Little research has been published that takes into ac-
count the occurrence of visual processing when children work on spatial tasks, presented
through figural stimuli. This report discusses the relationship betwen achieve:twst and
struts gie.s used by students aged 12 16 when tackling transformation problems involving
spatial rotations. It compares, as sample groups and not as individuals, the mathematical
behaviour of boys and girls and not solely their performance. The results suggest that gen-
der is not enough an erplanatory variable when analyzing the solving processes involved
in spatial tasks, at least when students face tasks whose geometric focus is a rotation.

.Spatial abilities, visual processing and gender.
One of the most studied aspects among those related to mathematical abilities is the analysis
of difference's among individuals. However, there are two different ways of viewing a person's
various mathematical abilities. One way is to consider the level of accomplishment in sonic
given tasks, which have some common characteristics determined in advance. The second way,
is to consider the individual's cognitive traits that facilitate the solving processes of those tasks.

The construct visualisation appears not only in most of the studies dealing with spatial
abilities, but also in many researches related to the solving processes of mathematical problems
in general. On the studies concerned with spatial abilities, visualisation, even if not always
having the same meaning, is often related to the idea of achievement. The origins of the
research considering visualisation as a trait of the solving processes of mathematical problems in
general, was the individual's characterization, presented in Krutekskii's work (1976), from their
mathematical cast of mind. considered as something different front their level of spatial ability.
Bishop (1983), taking as a starting point the idea that it is impossible to establish a single
definition of spatial ability, and trying to focus attention on the significant learning processes,
suggests we consider two different abilities (op. cit., p. 184): the ability of interpreting figural
information (111), and the ability of visual processing (VP). Bishop emphasizes those aspects
related to processes over those related to the stimuli form and refers to visual processing in the
mathematical context, in its broadest sense, and therefore in a context where visual stimuli are
not always needed.
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Since the beginning of research related to spatial tasks, many studies have attempted to
analyze the variables that influence the degree of achievement that students demonstrate in
those kinds of tasks. Many and varied aspects have been studied: gender, cultural influence,
curriculum content, material manipulation, and so on. Through the years, the amount of
research that demonstrated a superior achievement for boys than girls in spatial tasks is so
impressive that to refer to them all would be cumbersome. The evidence seems so enormous
that it is difficult not to conclude that a characteristic of spatial tasks is masculine superiority.
Nevertheless, there is research pointing out that more variables need to be taken into account:
age of sample people (Hall and Hoff (1988), Nash (1979), ethnic origins (Van Lemiwen (1978),
cultural backgrounds (Hanna 1989), or what is understood as spatial tests (Eliot and Smith
(1982), Halpern (1989), Simard (1982) and Wattanawaha (1977)).

Most of the studies related to gender differences in spatial abilities are concerned with
achievement, and regretfully not with the differences in solving strategies or processes. The
amount of research dealing with differences related to gender in the solving processes of spatial
tasks remains very small. Some of these studies conclude that even if there are not gender
differences in performance, it should not be assumed that strategies used by individuals of both
genders arc the same (Newcombe et al. (1989), Tartre (1990)). The analysis of others do not
lead us to identify any characteristic of the mental procedures of boys and girls that allows
us to suppose the existence of any differences between strategies and solving processes of both
genders (Hattista (1990), Lohman (1979), Presmeg (1985)).

Some of the research quoted above refers to the solving processes of mathematical tasks
in general. However, the content of the visualisation of abstract relationships has a different
nature from that of the visual processing of geometric facts. Actually, most of the studies
that analyze cognitive processes related to visualisation, are interested in the solving processes
of mathematical problems in general. Little has been published regarding the analysis of the
solving processes of spatial tasks, presented through figural stimuli, and taking into account
the possibility of using or not using visual processing.

The solving proceSses of rotation tasks.
This study deliberately proposes to use the construct spatial processing ability instead of the
construct visual processing ability, in order to clearly state the difference between the ability
to solve any situation by means of a visual processing strategy, and the ability to cope with a
spatial task, having already visual roots, using any kind of strategies.

In the present research, spatial processing ability is understood as the ability needed to fulfill
the combined mental operations required to solve a spatial task. It includes not only the ability
to imagine spatial objects, relationships and transformations, but also the ability to encode them
into verbal or mired terms. It also includes the ability not only to manipulate the visual images
of spatial facts, but also the ability to solve the tasks using processes that are not merely visual.

Obviously, the spatial processing ability so defined, even if described with a singular term,
has plural meanings. Spatial processing ability includes at least as many different abilities
as many spatial transformations one may imagine. The present study focussed on one of its
aspects, rotation.

The research (CorgoriO 1995), I am referring to, analyzed and characterized the strategies
used by a sample of students, aged 12-16, when dealing with geometric tasks that required
a spatial rotation. On this report, I present the results concerning the comparison of the
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mathematical behaviour of boys and girls, as sample groups and not as individuals, from the
point of view of strategies used during I he solving processes and not solely their performance.

Taking as a starting point. Burden and Coulson's study (1981), and modifying it to lit the
present research goals, students' strategies were analyzed from three different standpoints: t he
origins and the organizing of the information used, the mental representation mode, and the
focus of attention. Therefore, for every subject add for every task, one may speak of structuring
strategy, processing strategy and approaching strategy, being not three different kind of cognitive
strategies, but three different aspects of the student's solving strategy. Following, there is a
short description of each category, for further details see (lorgoric; (199(i).

For the study of structuring strategics, the student's cognitive strategy was considered from
the standpoint of the different mental ways of facing the task, the mental organization, and
source of the information used to cope with the.lask.

When analyzing proces,4ing strategies, the student's cognitive strategy was considered from
the standpoint of its form of mental representation. The premise was taken that all mathe-
matic-al problems imply reasoning or logic in their solving proce.sses. Furthermore, all the tasks
presented in the present research to sample students had a figural support on its presentation.
Therefore, the fact that determined which kind of processing strategy the strident used was the
use or riot the student made of visual images during the solving process, a fact that could only
be elicited from students explanations and observation.

The analysis of the students' cognitive strategy considering its attention focus over the
geometric object. led to determine his or her approaching strategy.

Method.
Qualitative data obtained through clinical interview was used in the analysis of students' solving
processes. Quantitative analysis was used also, in order to achieve the other goals of the study.
Qualitative and quantitative analysis being complementary generated the results of research
and contributed to the study's validity.

Nine tasks were presented to a sample of students to be solved during the interviews. The
geometric demand of all the tasks was a spatial rotation. All the tasks were presented with
visual support, using both real objects and 2 -i) representations of 3 -I) objects.

As one of the assumptions was that task characteristics influence students strategies, the
tasks' statements were prepared carefully. Among the characteristics that were considered as
being liable to modify or influence students strategies, the most significant turned out to be the
required action. Required action is the action to be done by the subject in order to solve the
task, in the sense established by Leinhardt et al. (Leinhardt et alt. (1990)). Among the tasks,
there were 4 whose required action wasof interpretation, that is to say, where the students had
to react in front of a geometric action presented as accomplished, or to gain meaning from an
object or a representation, without representing or drawing anything. .

Three of the tasks of interpretation I, '1 had the form of a multiple choice
question, where students had to decide which was the correct answer by identifying objects
being or not the same through rotation. Those tasks belonged to a test that has been created
and validated in a previous study. The test content included some 3 -I) geometry items related
to curricular content, and some other items to test the performance of students in spatial tasks
in general.
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The tasks whose required action was of construction were 5. In those tasks, students had
either to draw or to construct, with wooden cubes, an object fulfilling the geometric request.
Civen the initial object, the student had to generate the final one, that means he or she had
to apply a rotation, mentally or through manipulation, over it to generate a new one, real not
imagined. Task presented next, is an example of tasks of construction.

Construct, with the wooden cubes,

the object presented in the figure,as it would remain

after rotating it 180° over its base.

Task 2----A.

The tasks were administered to a sample of 24 students, aged 12 to 16, selected from a
broadest sample of 645, from different types of schools, which had been administered the test
previously mentioned. When selecting the sample to .be interviewed, students' characteristics
were diversified, taking into account theoretical conditions: gender, age and performance at the
spatial test.

For every task, the interviews were prepared beforehand, planning a detailed sketch from the
results and observations of a pilot experiment. Interviews were tape recorded, and drawings and
objects made by the students were put away. Students' processes of drawing and construction
were recorded through codified notes. During the interviews, the researcher also noted actions,
movements and gestures made by the students that were considered to he hints of strategies
used. Students were asked for the description of their solving processes once the task was
accomplished.. The transcription of all interviews, drawings and objects produced by students
during the interview, and researcher's notes were the initial data.

Systemic networks, Bliss et- al.(1983), were used to unfold, structure and reduce the data.
Comparing the data corresponding to all time tasks, structured through networks, allowed the
characterization and description of the different kind of strategies. Other goals required a
quantitative analysis to 1w achieved. In such cases, for each task and for each category of

strategies, tables were built summarizing the data. From the tables, the existence of some
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tendencies was observed. Fort her statistical analysis was used to decide which tendencies
were enough significant to be considered. Broader results, for instance those concerning the
differences among strategies used by boys and girls, were attained comparing quantitatively
and qualitatively the evidence obtained through parallel processes done for each task and for
each kind of strategy.

Results.
For each task, students' cognitive strategies were characterized as being structuring, processing
and approaching-strategies. Only a short characterization is presented here. In Corgorio (1996),
the reader will find a detailed description and some examples of the different types of strategies
within each category.

The structuring strategies observed implied the student getting, involved in the context of
the situation, using information obtained from previous experience, or simplifying the task's
structure. .

processing strategies were characterized as being visual or verbal. A processing strategy was
considered to be visual when, from the student's explanations, it was clear enough that he or
she had imagined some of the following aspects: the task's context, a rotation or a position's
change of either the subject or the object. When saying that it was clear enough that a student
had imagined any situation, it is meant that either the student had explicitly said he or she had
imagined it, or it could be elicited from the student's explanations and observation. That would
be the case of some students who said to be performing an action, a physical action, when they
actually did not. A student's processing strategy was considered to be verbal when the student
solved the task without imagining any situation, but relying on facts related to properties of
180° rotation, symmetry, congruence or using information belonging to the context.

Approaching strategies were characterized as being global or partial. An approaching strategy
was considered to be global when the subject focussed his attention over the object or the
situation considered as a Whole: by comparing it with a real life object or situation, or by
referring to the objects' congruence. It was considered to be partial when he or she focussed his
or her attention on some parts of the object, taking into account some of the following aspects:
the existence of significant parts, their characteristics, their relative position, or the elements
resulting of splitting up the object.

In terms of gender differences, some qualitative differences were observed among
structuring and processing strategies used by boys and girls, and no difference
appeared among approaching strategies used by individuals of both genders. When such
differences appeared, related to structuring or processing strategies, they depended on the
required action of the task.

Concerning structuring strategies, when there were qualitative differences and the required
action of the task was-of interpretation, girls tended to use structuring strategies consisting of
simplifying the task's structure, while boys did not use any structuring strategy. For instance,
in one of the tasks of interpretation, where students had to compare four options among them,
girls tended to take one of the options as a model, and compare the others with that one, while
boys tended to deal with all four options simultaneously.

When the required action of the task was of construction, girls (lid not use any structuring
strategy, and boys were distributed aminig those who relied on previous knowledge and those
who did not use any approaching strategy. Boys relying on previous knowledge made use of
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information obtained from previous experiences or information which could explain the situation
or helped to solve the task. For instance, in task 2 -A presented before, one of the students
(A.B.) said, without being asked and just before initiating the solving of the task, that he
should take into account what changes take place when turning 180° an object over its base.

A.B.: I have to built up the object, say... the part behind has to be iu front, and
the right has to yo to the left ... when building it up.

In a similar way, differences appearing on the processing strategies used by [joys and girls,
depended on the required act itni of the task. Moreover, qualitative differences among processing
strategies appeared only when the required action of the task was of interpretation. The
following table presents, for each task, its type of required action, the existence of differences
among genders concerning processing strategies used, and the significance of those differences.

'Task required
action

difference
boys/girls

significance

Stalls interpretation NO
/ / interpretation YES 90%
2 I interpretation NO3I interpretation YES 90%

I ----A construction NO
2A construction NO
3 --A construction NO
I- B construction NO
3 B construction NO

From the table one observes that qualitative differences among processing strategies ap-
peared only on two tasks, where the required action of the task was of interpretation: boys
tended to use visual processing strategies and girls to use verbal processing strategies.

Concerning difficulties and errors, some differences between boys and girls had been ob-
served. Those differencs on the errors observed during the interviews corresponded to the
ones observed on the large sampling test. Girls had more difficulties and made more errors
when interpreting tasks' statements so for the verbal language referred to spatial facts and ob-
jects as for the representational code used. Girls made also more geometric errors than boys. A
significant difference between the number of geometric errors of boys and girls had been found
for three tasks. Girls tended to mistake a 180° rotation for a symmetry.

The differences between erros of both genders can be interpreted through boys and girls using
different strategies. In the task of interpretation, where appeared significant differences among
errors, those were related to the processing strategies used. Verbal processing strategies. which
were on the most used by girls-- led to a biggest number of errors due to missinterpretation
of the task's statement. In the tasks of construction, differences are tied to a distinct use of
structuring strategies.. Structuring strategies on which the subject relies on previous experiences
tended to lead to correct answers. The number of boys who used this kind of strategy is
substantially bigger than that of girls. This 'fact could explain the differences favoring males,
of the number of correct answers.
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Conclusions.
The methodology used Ott a research very much conditions t nature of the results one arrives
at. By large sample testing one may conclude general assert ions. which, on the other hand, give
only information about achievement and 110i. processes. Qualitative analysis of data, obtained
through interviewing a reduced sample, leads ioobtain results of a descriptive nature about,
students' solving processes that can only be used to explain students behaviour on analogous
situations. However, both methodologies may be used on a complementary way as in the
present research, where part of the results obtained through statistical analysis of a big sample
test. may be explained through the answers of a reduced sample.

Another important issue of the present research relates to t he key role tasks' characteristics
have as influencing factors of students' solving processes. The. most relevant concerning gender
differences is, probably, the required action. The studies considering spatial orientation ability
as the achievement level on a spatial test, were presenting to students tasks of interpretation. In
such kind of tasks, qualitative differences in the use boys and girls- do of processing strategies
have been found. and that different use led to differences in the answers' correctness. The
researches studying solving processes, dealt with tasks of construction. In tasks of construction
no differences have been observed neither in processing strategies, nor in approaching strategies
of boys and girls. However, some differences on the structuring strategies used by boys and girls
have been observed. Furthermore, when there are differences among boys' and girls' answers,
those can lee explained through that different use of structuring strategies.

NIoreover, the results of this study add evidence to the fact that sex is not enough a differ-
entiating variable when analyzing the solving processes of spatial tasks, for differences between
genders are less than differences within genders, at least when students face tasks whose geomet-
ric demand is a rotation. It is one of the writer's beliefs that education should help students
to overcome their difficulties, but should not force them to renounce their individual trails.
Therefore I conclude quoting Clements and Batista (1992, p. 458) 'we should eventually be.
able to move beyond studying gender differences to the study of different cognitive profiles that
underlie successful performance in geometry'.
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DISCOURSE IN AN INQUIRY MATH ELEMENTARY CLASSROOM AND THE
COLLABORATIVE CONSTRUCTION OF AN ELEGANT ALGEBRAIC EXPRESSION

Barbara Graves and Vicki Zack
McGill University and St. Georges School/ McGill University

Montreal, Canada

This paper investigates how the discourse practices of two Grade 5 students mediated
their reasoning processes in an inquiry mathematics classroom. The focus is on the
collaborative exchange as a mechanism for conceptual change as the students engaged
in a difficult problem-solving activity. Of particular interest is how students drew on
their shared knowledge and interest to maintain the discussion and how the role of
genuine inquiry within the talk resulted in the construction of what we have designated
an elegant algebraic expression.

This paper investigates the discourse of inquiry as we examine how the discourse
practices of two Grade 5 students mediated their reasoning processes in an inquiry
mathematics classroom. Currently, the study of discourse holds an unprecedented high
profile in research which investigates human cognition as an interaction of individual,
social and cultural processes (Cole, 1991). Many researchers have focused broadly on the
social and functional uses of language in society (cf., Halliday, 1975; John-Steiner, Smith
& Panofsky, 1994; Vygotsky, 1978), while others have focused specifically on classroom
discourse including the mathematics and science classroom (Ball, 1991; Green & Dixon,
1993; Lemke, 1991). In a recent article Hicks (1995) reviews aspects of discourse as an
inherently social construct which mediates children's academic learning, and discusses the
educational reforms in relation to discursive activities (e.g.,. NCTM, 1989). In regard to
the 'appropriation' of mathematical discourse, children become schooled in the practice of
mathematics as they learn to make connections between their own inventions and the
conventions of the culture (Lampert, 1990; Cobb, Wood, & Yackel, 1993). At the same
time as children learn about cultural tools such as algebraic generalization, they come to
appreciate the power and authority inherent in those tools (Wertsch & Rupert, 1993).

hi our investigation of communication in collaborative problem-solving exchanges,
the work of Teasley and Roschelle (in press) is especially pertinent. Teasley and Roschelle
define collaboration as "a coordinated, synchronous activity that is the result of a continued
attempt to construct and maintain a shared conception of a problem." They identify this
shared conceptual structure as the joint-problem-space which has two important features:
1) the joint-problem-space is constructed and maintained by means of conversation in the
context of problem-solving activity; and 2) the joint-problem-space is the structure which
enables the conversation about problem-solving to take place. The underlying assumption
is that while overlap in meaning in the collaborators' common conception of the problem
may be neither complete not certain, it is sufficient to lead to a gradual accumulation of
shared concepts.

In this paper the episodes selected for study illustrate the students' search for
meaning, and their appreciation of an elegant solution in terms of coherence, economy, and
explanatory power. Their engagement with the ideas in their mathematics assignment
seemed to us a prototype of what inquiry is. We will deal with their individual
conceptualizations of the problem, as evidenced through their talk as we consider the
question: "What does it mean for a cognitive process to occur both in and between
individuals?" (Cole, 1991, p. 398-399). We concur with Vygotsky's view that the sign
(word, diagram, algebraic notation) both represents a person's thinking, and transforms it
(Wench & Toma, 1995, p. 163) and we adopt the premise that communication, activity
and representation are mutually constitutive (Teasley & Roschelle, in press).
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The school community and classroom setting
St. George's is a private, non-denominational school, with a middle class

population of mixed ethnic, religious, and linguistic backgrounds; the population is pre-
dominantly English-speaking. The total class size in the 1993-1994 year was 25; the work,
however, is always done in half-groups (12 or 13 children in each group) of heterogeneous
ability. Problem-solving is at the core of the mathematics curriculum in this classroom.

The school and classroom learning site is a community of practice which Richards
(1991) has called inquiry math; it is one in which the children are expected to publicly
express their thinking, and engage in mathematical practice characterized by conjecture,
argument. and justification (Cobb, et al., 1993, p. 98). The students have been tackling
non-routine problems in diverse areas of the curriculum since their entry to the school,
hence six years for many. For a number of the children, it is likely that academic discourse
would be heard at home, as well as in school.

Mathematics class periods are 45 minutes, and twice a week are extended to 90
minutes. In addition to the in-class problem-solving sessions, each week the children also
work on one challenging probkm at home. They are expected to record their work and
reflect on their strategies in a Math Log which serves as the initial basis of their group
discussions in class. In class much of the session is conducted by the children as they
discuss the problem first with a partner, then in a group of four consisting of two pairs,
and finally with the entire group of twelve students. In this way each problem is examined
on four separate occasions in multiple contexts.

The data
The children are videotaped throughout the school year on a rotating basis as they

work in their groups. In addition to the videotape records, data sources include focused
obiervations, student artifacts (math logs), teacher-composed questions eliciting opinions
(written responses), and retrospective interviews.

The mathematical context of the problem/discussion
The focus in this paper is on the final problem, Tunnels revisited, in a series of 4

inter-related problems which are increasingly demanding. Below is the sequence of
problems:

41 Tunnels: 'Nine prairie dogs need to connect all their burrows to one
another in order to be sure that they can evade their enemy, the
ferret. How many tunnels do they need to build?' (February 7, 1994)

42 Decagon Diagonals: How many diagonal lines can be drawn inside a
figure with 10 sides? (April 25, 1994)

43 25-Sided-, 52-Sided Polygons: How many diagonals would there be in a
25-sided polygon? in a 52-sided polygon? (May 16, 1994)

4 Tunnels revisited: Can you write a number sentence or general rule for
the Tunnels problem? (May 24, 1994)

In an earlier paper Zack (1995) described how the children in her 1993-1994 grade
5 class worked together to arrive at an understanding of generalization. The two joint
authors of this paper, Vicki Zack, a teacher-researcher in her homeroom classroom for the
past 7 years, and Barbara Graves, a university researcher, have extended the investigation
by examining how two of those children applied that knowledge to solve an additional
challenging problem. The two boys, Jeff and Micky, both managed to generate a general
rule to solve problem #3, "How many diagonals would there be in a 25-sided polygon? in a
52-sided polygon?" and then used their algebraic expressions as the basis for their ensuing
discussion of and solution to problem #4. (Note: The students had already encountered
this problem as problem #1 in the series. At that time ALL students approached problem
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#1 by using either an iconic graphic to represent the burrows and tunnels or by means of a
chart.)

The collaborative exchange
Following are conversational extracts which have been transcribed from the

videotapes. Overlapping conversation appears between /slashes/. While our goal was to
include portions of dialogue which clearly convey the meaningful aspects of the exchange,
it has been our experience that transcriptions of children's talk from videotapes often appear
less meaningful to the reader than to the researchers who had access to both the visual and
audio record as well as to the context of the activity. We hope the accompanying
descriptions help fill in the gaps.

The pivotal strategy upon which the algebraic expression for problem #3, Decagon
Diagonals (Zack, 1995) was constructed was as follows: Count the number of diagonals
emanating from a vertex, multiply that number by the number of sides, and divide by two.
Hence, in a decagon, there are 35 diagonals. Figure 1 below graphically illustrates this
representation.

X 7
70

Figure 1. Child's representation of diagonals from one vertex in a decagon.

In their solution to problem #3, Jeff and Micky constructed two variations: Jeff constructed
a rule with two components, (S = number of sides):

A * S + 2 = diagonals, where A = sides 3

Micky's rule is equivalent but more direct, (Z = number of sides):

Z - 3 * Z -I- 2 = diagonals
In both solutions it was Z - 3 or sides minus 3 because the connections were made to
all vertices except for three, namely itself, the vertex to the left and the vertex to the right.
The boys agreed on the equivalent nature of these two representations.

Two models of the problem. The boys then went on to tackle problem #4 which
required that they generate a number sentence or general rule to determine how many
tunnels are needed to connect all 9 burrows.

J: .. That was just like saying this is what I know, now how am I gonna put it into a
sentence? So what I did is I did Point A times sides divided by two then plus sides
'cause you get the diagonals plus the sides, and then that's all the lines you can
draw. (emphasis added)

The model of the problem that Jeff has constructed is a component model in terms of
diagonals and sides and this representation explicitly extends the findings from problem #3.
He represents it as:

A * sides 4- 2 sides
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This strategy draws not only on Jeff's mathematics knowledge but also on his
understanding of the pragmatic context in which the problem was assigned: As he states,
"why would she Vicki l mention tunnels" if there was no connection. Micky, in contrast
did not apply his findings from problem #3 to problem #4 as he was under the impression
that a novel solution was required, and he was "looking for something like totally
different." Nevertheless, the boys appear to be in agreement at this point:

M: Okay so it's basically the same thing but you just /add on the sides/.
J: /Add the sides/.
M: Except you add it once more without the minus 3.

The "minus 3" referred to has been an important element in the boys' understanding of
the number of diagonals in a polygon. At this time Micky points out that the sides which
are added to the diagonals to determine the total number of tunnels have not been
diminished by 3. He goes on to suggest

M: See, but once you think of it, the Z minus 3 seems pretty weird.

This is the first hint that M's mental model is not 1's two-component model but rather the
figure as a whole. It seems that if M's model of the problem were in terms of diagonals
plus sides, the two components of J's algebraic expression, (S - 3) S + 2, and +S.
might pose no problem. But now the "weirdness" of the minus 3 is introduced, and M
goes on to suggest a hypothetical solution which maps to his more holistic representation.

M: Z times Z.

This is M's attempt to encode his idea that there are connections from one burrow to all the
other burrows, or 'points'. The glitch here is that at this point neither boy realizes that 'it',
namely the point of origin, does not connect to itself. Jeff completes the representation and
Micky asks about the minus 3.

1: Sides times sides divided by two

M: You're not-, you're not getting back that minus three are you?

J: Ya you are-=

M: When?

J: =You're getting it in a twenty-five 'cause it's times twenty-five times twenty-five
divided by two.

M: Ya, will you get that three back?

1: Yes.

M: When?

Genuine inquiry. The question concerning the "3" puzzles Micky, and is asked a total
of 14 times throughout the exchange. Interestingly, from a rhetorical and affective
perspective, the question is most appropriate and reflects a genuine inquiry pertaining to an
important loose end. As such it neither irritates Jeff nor feels repetitive, but rather it drives
the remainder of their 20 minute discussion which ultimately results in new knowledge. At
this point the boys carry out the calculation which doesn't give them the desired result. This
evidence is not lost on Jeff as Micky repeats the question.

M: =When do we back-, when do we add back that three?

J: We don't.

M: Why not? You have to connect every single line with every single line-burrow.=

= No, not in the diagonals.
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M: Not in diagonals but I'm talking about tunnels. 'leafing through his notebook I

J: Ya I know. Why wouldn't you get it back?

Genuine response. Jeff has gone from "yes you get it back," to "no you don't" and
now seems to reflect more carefully on the problem with "Why wouldn't you get it back?"
Now it appears that the interest in the question is coining to be shared by both boys.

M: When are you gonna get those back? When you're multiplying or something'?
You're not-, you're not gonna get them back.

J: (..) That's a good point. (second instance of reflecting on this problem'

1: It does work, but we're not exactly sure when you get the three to connect it back.

M: /Well if we're not too sure about it, / we can't really say it works.

Metacognitive awareness. Clearly from this previous exchange we can see how the
boys understand the important difference between knowing that it works and knowing why
it works. At the same time they are able to monitor their own problem-solving in terms of
those concepts.

Now the explanation is supported with empirical evidence.

J: /I know/ but you don't get the three back because we just tried it out. Twenty-,
twenty-five times twenty-five /divided by two-/ (working it out on the calculator'

A number of attempts are undertaken to find the "3" all of which prove to be unsuccessful
leaving the boys in the following frame of mind:

M: But when are we gonna get that three back? I'm still wondering. If it has to
connect with every other burrow.

J: (...) I have no idea.

M: Well neither do I.=

1: = 'Cause we proved it works / but we don't/ know-

Random hypothesis generation. While the discussion to date has been developed
upon some agreed upon principles and has followed each individual boy's
conceptualization, it now veers off into random hypothesis generation:

J: Maybe we've lost one number, then when we divide it we gain it back, or multiply it
we gain it back?

M: Well how can we divide it and get it back'?

J: Well we-, we could multiply it and it goes three over what it should be and then you
divide it by two and it evens out.

J: We even it out, by-, we multiply it and it's three too much to equal diagonals, okay'?
Stay with me here.

M: I'm trying to, believe me, I'm trying to.

Understanding the communicative situation. The "stay with me here" and "believe
me I'm trying to" clearly signal the boys shared understanding of the pragmatic context
surrounding their discussion. In this instance they address their communicative roles
explicitly as a means of maintaining the focus. This sensitivity to the communicative
aspects of constructing a joint-problem-space are revealed on another occasion when M
uses a form of direct address to maintain a focus on the problem.

M: /But you want to still/ add back that three. You still want that 3 Jeff.
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Four days later: Re-establishing the focus. The same question opens the
discussion four days later, but there is a conceptual shift on the part of Jeff which Micky
appears to realize. Using drawings in his notebook he demonstrates that it's not 3, and as
we see below, Micky replies with "it should be minus one." At this point it is difficult to
know if this understanding happened in response to Jeff's explanation or had been
developing elsewhere. (For ease of reading, the following portion of the exchange does
not include Jeff's speech turns which repeat what he has already stated and overlap
completely with Micky's turns.)

M: My only question is where did the three go? Now, that's all I'm wondering about.
/l understand/ the rest.

1: /Okay/. I have no idea where the three went. It probab-, but-, the thing is (..) why
do you need the three?=

M: Well, but you're-

1: = 'Cause it's not three: It's not three. From here [points to drawing in book( it's
three but then you got this point [refers to book drawing]

M: = I know-

M: But that should actually be minus onel= (emphasis added)

M: ='cause it cannot connect with itself, but in the problem it can connect with the
others.

Principled exploration. This is both a new and a key idea for understanding the
problem. Jeff suggests an exploratory hypothesis which incorporates the new
understanding into the previous strategy.

J: I don't know. Try it by subtracting one.

M: /we'll see/

J: /I think you/ wouldn't have-, you could subtract by one and multiply it by sides.

M: Maybe it'll give us uh something.

Test and evaluate. They apply this to solving the problem for a pentagon since they
know the answer is 10.

I: Oh okay. So now watch. Okay, it's-, uh let's do this one. We know it's ten. Four
times uh five [picking out values on calculator as he speaks. He then looks directly
at M and asks] Do you want to do divided by two /or do you want/ to-

M: /Well ya have to-. / Okay, show it
now. Twenty, /and that/ would be ten.

/Twenty/ Divided by two (looks directly at M]

M: Equals ten.=

J: =Equals ten. So you don't need to add on the sides.

M: 'shakes his head( Oh cool.

J: We just found out a new rule.

M: Oh here, wait. We have to try it in like three cases.

J: Ya, we'll try it in three cases, but let me just write it down. Urn, S minus one-
[writing in his notebook(

They then set about checking their new rule, (S - I) S + 2, in a number of situations.
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1: Try it, try it all you want. We've just figured out two ways to figure out tunnels.

Appreciating mathematical elegance. What is striking about the excerpt which
follows is that it demonstrates that their appreciation of the new rule goes far beyond just
"having another way to solve the problem." The boys characterize the new rule as
straightforward and "the simplest way" since it eliminates the addition of the sides, and the
subtraction of the 'extra 2.'. At the same time they acknowledge the explanatory power of
this rule which enables them to understand that it is 2 that they get back not 3. Overall they
both agree that it is better.

M: But that would be the most straightforward, it'll The the simplest/

1: /That'll/ be the most
straightforward because=

M: =You wouldn't have to do an extra, uh, adding on.

J: And an extra subtracting. That's /where you/ get the two back.

M: / ((two extra))/

J: It wasn't three that we were getting back. It was the /two./

M:
better.

/Two./ So this is actually

1: This is better than before.

The exchange concludes with the boys entering the new rule in their math notebooks. Jeff
writes *best way" next to this new entry, and exultantly says, "Perfect," as he Clips his
pencil onto the table as a concluding geSture. These gestures in conjunction with the boys'
language convey their satisfaction and delight in their accomplishment and suggest an
aesthetic appreciation of an elegant solution.

Conclusion
The focus in this paper has been on the way in which genuine inquiry within a

collaborative exchange can serve as a mechanism for conceptual change. In examining the
exchange between two grade 5 boys collaborating to solve a challenging problem we can
see how in order to maintain the focus of the discussion, they drew on their shared
knowledge not only of the task, and of specific mathematical concepts but also of the
communicative context appropriate for this reasoning activity. The students sustained
search for meaning, their quest for coherence, and their appreciation of an elegant solution
in terms of parsimony and explanatory power are behaviors often associated with expert
performance (Patel & Groen, 1991; Graves, 1995). We would like to suggest that the
source of this performance was the establishment of a meaningful problem which really
required a solution and which could be approached jointly. It was M's search for coherence
as he sought to account for the 'loose end' of the 3, which drove the inquiry and
established the problem within the context of the task itself. While J knew that his rule
worked, and he knew why it worked and could explain it, he could not provide a
satisfactory answer to M's question. The collaborative construction of the problem space
provided the structure within which M's repeated quest for coherence was investigated
jointly through the boys' conversational reasoning and which led to new a
conceptualization.
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NUMBER PROCESSING:
Qualitative differences in thinking and the role of imagery
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This paper considers imagery associated with children's mental processing of
basic number combinations. Children's verbal and written descriptions are
used as a means of accessing their imagery and we see how the tendency to
concentrate on different objects leads to qualitative differences in imagery and its
uses. Children described as 'high achievers' provide evidence of an implicit
appreciation of the information compressed into mathematical symbolism. In
contrast, 'low achievers' create images strongly associated with visual stimuli
suggesting that these children, far from encapsulating arithmetical processes,
are mentally imitating them.

INTRODUCTION
"I find it easier not to do it !simple additioniwith my fingers because sometimes I get into a big
muddle with them land] I find it much harder to add up because I am not concentrating on the
sum. I am concentrating on getting my fingers right...which takes a while. It can take longer to
work out the sum than it does to work out the sum in my head." (Emily, age 9)

Although not explicit in Emily's comment, the meaning associated with her notion of
'concentrate' was related to the mental manipulation of a collection of dots. She was
describing the difficulty associated with the simultaneous engagement of external
referentsfingersand the mental scan of a different series of referentsdots. The latter
was preferred but the former was used because:

"If we don't f use our fingers] the teacher is going to think, "why aren't they using their
fingers... they are just sitting there thinking'... we are meant to be using our fingers be-
cause it is easier... which it is not" (Emily, age 9)

There is no doubt that Emily is only one of many children who prefer to do things
'mentally', or as has been described so frequently by children "in my brain". Many do
so because they know things and engage in a form of automatic processing. Others have
to make a conscious effort and do so, not because they realise that such effort, with
practice, may gradually become automatic, but because of the social environment of the
class; "We are not allowed to use fingers", "I am too old Jr counters" and perhaps the
saddest from a boy of 10 who "wanted to do things like the clever children".

Recognising that others do things mentally does not give such children an insight into
how things are done by others. This is the focus of this paper. it considers the relation-
ship between procedures, concepts and images in simple arithmetic. To establish the
latter it assumes that an image is mediated by a description (Kosslyn, 1980; Pylyshyn,
1973). It builds upon the notion that the language and concrete items associated with
objects of thought possess different connotations. These have implications for the qual-
ity of children's imagery (Pitta & Gray, submitted) and their processing ability.
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The evidence suggests that whilst proceptual thinkers focus on the flexibility of the
symbolism and hold symbols as "objects of thought", procedural thinkers may construct
and utilise mental images which support their procedural interpretations of symbolism.
If it is appropriate, they quickly translate the symbol into another object of thought, for
example, finger images, a number track or marbles. It is suggested that mental manipu-
lation with these objects places such strain on the limits of the child's working memory
that it impinge against the continuing compression required for "constructive abstrac-
tion" (Kamii, 1985) and the development of proceptual thinking.

IMAGERY IN NUMBER PROCESSING

The means through which the co-ordination of actions may become mental operations
was of interest to Piaget who believed that new knowledge is constructed by the learner
through the use of "active methods" which required that "every new truth to be learned
be rediscovered or at least reconstructed by the student" (Piaget, 1976, p. 15). Whether
or not all children who display competence in the procedural aspects of early number
activities undergo this process of constructive abstractionwhich Kamii suggests is a
construction of the mind rather than something that exists in objectsor indeed whether
or not they abstract the appropriate thing is a mute point. The abstraction- of a basic
counting unit may form a platform from which children may gradually replace slower
count-based approaches with more efficient fact retrieval processes. However, such pro-
cedural compression may not be so easily achieved by low achievers.

These observations lead us to consider imagery, though, because of the disguised nature
of mental images it is only possible to make conjectures about them. They may appear to
be well wrapped possessions, covered in many fine layers and sometimes even hidden
in discrete packages. We may believe it is possible to shake the package to find out what
.is inside, but by doing this we run the risk of breaking it. The pitfalls, particularly in
terms of operational definitions and interpretation are clearly identified by Pylyshyn
(1973).

In cognitive psychology, it has been traditional to characterise mental representations as
symbolic: a pattern stored in long term memory which denotes or refers to something
outside itself (Vera & Simon, 1994). Such a characterisation is based on the assumption
that the knowledge structures possessed by humans are symbolic representations of the
world. Images exist, are used and may influence thinking.

It is suggested, though controversially so, that symbolic mental representations divide
into analogical and propositional representationsessentially sensory dependent and lan-
guage like representations. The classical analogical representation is the visual image
though images can be formed from other modalitieswhich appears to have all of the
attributes of actual objects or icons. They take up some form of mental space in the same
way that physical objects take up physical space and they can be mentally moved or
rotated (see Boden, 1988). Propositions, as mental representations, may represent con-
ceptual objects and relations through, for example, mathematical symbols or spoken
words. Gray & Tall (1994) suggest that the symbols of elementary arithmetic serve the
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ambiguous purpose of representing processes and concepts.

Deahenne & Cohen, (1994) suggest that the relationship between different forms of
representations may be seen through the presentation and solution of arithmetic facts.

Symbolic, verbal and the analogical representations support the transcoding of numbers

into whatever internal code is required for the task in hand. It is transcoding approaches

which require the use of working memory in the absence of external representations that

we are particularly interested in this paper. Symbolism promotes direct verbal routines
and flexible transformations by proceptual thinkers. Amongst procedural children, where

symbolism is more iconic (static) we see the occurrence of analogical forms of imagery

which we suggest may inhibit the potential for flexible interpretation.

METHOD

Twenty four children were selected within in a "typical" school of the English Midlands

to represent the chronological ages 8+ to 12+. This provided a sample of six children
from each year, three 'low achievers' and three 'high achievers'. Achievement was meas-
ured levels obtained in the Standard Assessment Tasks of England and Wales ((SCAA,
1994)) or scores obtained from the Mathematical components of the Richmond Attain-

ment Tests (1974). Children were interviewed individually for half an hour on at least
four separate occasions over a period of eight months.

Following the presentation of range of auditory and visual items (Pitta & Gray, submit-
ted) the children were presented with a series of one and two digit addition and subtrac-

tion combinations, for example, 6+3, 9-5, 13+5, 15-9. Children's responses were
obtained using semi-structured interviews recorded through field notes, audio and video

tapes. Children were asked to talk freely about their imagery and what came to mind
during the solution processes for each item. Solution approaches were classified simi-

larly to that of Gray & Tall (1994). Whilst external representations were partially identi-
fied through children's sensory motor activity, evidence of images relied extensively on
verbal and written description by the children. Though no precise claims can be made

about the nature of their imagery it is evident that a pattern does emerge.

RESULTS

First and very briefly, because of space limitations, we draw together the general solu-
tion strategies and associate these with the type of representations used. The

1. Strategies and Representations: Combinations to Ten

Figure I shows the strategies and associated representations used by the low and high

achievers to obtain solutions to the number combinations to ten. The representations are
subdivided to illustrate percentages which indicate:

the use of external referents such as fungers.

where children's verbal description may be associated with conceptual objects
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Figure l: Strategy combinations and representations used to solve
addition and subtraction combinations to ten. (Percentages)

Several features emerge from
the analysis of Figure 1.

Amongst the high achievers
there is the almost complete
absence of procedural meth-
ods associated with counting
and there is. no evidence of the
use of external representa-
tionsverbal enunciation was
associated with images of nu-
merical symbols, either the
expressions themselves or the
final solutions.

Amongst low achievers we
note:

the imagery of 11+ and
12+ children when solving ad-
dition combinations is domi-
nated by symbolism sup-
ported by analogical represen-
tations.

the absence of symbolic
representation amongst these
two year groups when dealing
with subtraction was associ-

ated with the fairly extensive use of external referents by the 11+ group.
the increasing use of external referents amongst the younger children and, in some
instances, we note that these are simultaneously engaged with analogical repre-
sentations.

At this point, the use of only immediate recall and counting methods amongst the 9+
and 10+ "low achievers" indicates qualities which would enable them to be identi-
fied as procedural. The 11+ and 12+, since they collectively display the integrated
mixture of known facts, the use of known facts and some evidence of countingpro-
cedures may be seen to display proceptual qualities when dealing with addition and
subtraction combinations to ten.
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Strategies and Representations: Combinations to Twenty
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Figure 2: Strategy combinations and representations used to solve
addition and subtraction combinations to ten. (Percentages)

The classifications identified
for Figure 2 are as those speci-
fied for Figure 1. We note im-
mediately the greater propor-
tion of derived facts used by
the high achievers and the
more extensive use of count-
ing, particularly with external
referents, by the low achiever.

The proceptual thinking of
the high achievers may be
identified through enuncia-
tion that refers to images of
symbols associated with
the initial expressions, se-
mantic transformations of
the expressions or from the
solutions.
Amongst Low achievers
we see that reference to

symbolic images is far less evident. The fairly extensive use of derived facts
amongst the 11+ and 12+ children is no surprise. Their strategies generally serve
to support the evidence given from different samples cited in Gray and Tall
(1994).
In general, the evidence shows that the high achievers did not use external rep-
resentations to solve any of the problems. They eithe% recalled solutions or pro-
vide extensive evidence of semantic elaboration, both approaches being associ-
ated with "images of arithmetical symbols". Amongst the low-achievers, only
the 11+ and 12+ indicate any reference to imagery without the simultaneous
engagement of external referents.
Amongst low achievers, we detect a decline in symbolic related imagery and a
"regression" from internal to external representations that is both age related
and associated with problem difficulty. On the whole their imagery is associ-
ated with analogical representations which support counting procedures. We
suggest this soon forces them to reach the limits of working memory and makes
life so extremely difficult for them that they recognise the "safety" in using
external referent. Gear et al (1991) have suggested that a component of devel-
opmental difficulties in mathematics is a working memory deficit. In our next
section we provide an alternative reason which suggests that on the contrary
these low achievers may show an extraordinary use of working memory. Their
problem is one associated with its use as well as its capacity.
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DISCUSSION

The verbal reports of the proceptual children provides evidence of the important role
that symbolism plays:

In those instances where we are able to identify known fact responses, these sym-
bols have skeletal qualities, they carry the ideas and offer the potential for process/
concept ambiguity. They require no detail to make them operational. Placed on the
minds scratch pad they are interpretations of input data or precursors to verbal
output but they are associated with retrieval of simple facts without regard to quan-
tities involved. However, our evidence to date does not allow us to contribute to the
controversy that may surround notions of verbal coding (see Dehaene & Cohen,
1994)

The different degrees of complexity associated with the use of derived facts, par-
ticularly with number combinations to 20, provided a variety of examples where
expressions were decomposed into simpler known facts, for example, 9+8=8+8+1,
15-9=15-10+1. Perhaps one of the points of interest was the tendency of the 11+
children to indicate that they "did not see anything" although notions of "thought
it" were strongly in evidence. This is an issue that we feel needs further clarifica-
tion. We suggest that nothing was written on the scratch pad and verbal coding
could have taken place.

Finding solutions to the expressions through derived facts requires two features not necessar-
ily apparent when using known facts. The first is the possession of a good understanding of
the quantities involved in the original problem, for example noticing that 9 is close to 10, and
the second involves the use of working memory. However, we suggest that use of the latter is
minimised because the children almost intuitively recognise cognitive referents associated
with the inputsdisregarding perceptual properties they focus on the relationships associated
with the objects of thoughtthe procept.

It was this ability to recognise the proceptual characteristics of the expressions and their
associated symbolism that highlighted the difference between the low achievers and the
high achievers. The former had proceptual options available to them but we are not in a
position to indicate whether or not their images at this point were functionally significant.
The evidence from the low achievers appears to be quite different; no matter what numbers
they were dealing with, each individual, on failing to recall a fact, generally they evoked a
procedure which they saw common to all combinations. Usually this involved counting,
particularly if external referents were used, but this was not always the case when imagery
was reported. Usually images given by the low achievers appeared to be functionally signifi-
cantthey appeared to have a direct role in the processing procedure.

Pitta & Gray, indicate how low achievers interpretations ofnouns, icons and symbols were
strongly associated with the perceptive aspects of the stimulus. There appeared to be .a need
to concretise objects. It appears that such distinctive behaviour also guides these chikfien's
approach to basic number processing. In the mental worldwe may see an almost automatic
representation of the stimuli as images of countable objects. These may be seen as analogues
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to, for example, fingers, tally's, number tracks or marbles, each providing an image of
the quantity associated with particular numbers. On hearing the expression the children
appear to disregard the semantic aspects and move immediately to analogical magnitude
representations and use these as anchors for mental manipulationnumbers quickly be-
come concrete objects.

The dominant representations identified amongst the low achievers were associated
with a range of images from pictorial representations of a hand with fingers, through
iconic representations of fingers and tally lines. The oldest children indicated how
they labelled these tally lines and saw images of number tracks or number lines. The
evidence was that children who developed such images used discrete objects with a
double counting procedure. Two points emerge. First, the horrendous strain on work-
ing memory. Not only is the child maintaining sight of the analogical representation
but also focusing on discrete numbers in that representation. This is associated with
counting-up one set and counting back another. Indeed, one child described how
two 'calculators', by description circular number tracks, operated in different ways,
one keeping track of how many had been counted by decrementing in ones, the
other keeping track of the answer which was incremented in ones. Every calcula-
tion, with slight modification, was the sameit always involved double counting.
Indeed this was the case with all of the children who used such imagesall involved
double counting of linearly arranged objects, some labelled some not labelled. Such
children seldom gave evidence of the use of derived facts. Indeed it is hypothesised
that seeing images of discrete objects supports the counting process but does not
lead to the realisation of the power and or compression associated with mathemati-
cal symbols. Instead of deriving facts and using what they know about numbers, a
sort of vertical processing, the children display some element of creativity in chang-
ing their images of countable objects. They use different referents to carry out the
same procedure, a form of horizontal processing (Pitta & Gray, submitted).

Such an interrelationship was developed by the few children who used dynamic images
composed of marbles or dots. Images of pattern formation dominated their mental ma-
nipulation. Marbles can move position, fingers cannot. Fingers require sequential process-
ing, marbles do not.

"I wittil the dots...it's...it's easier because you don't have to keep on thinking, "No its that
one I need to move, no its that one or that one ", because it doesn't really matter which one
you move" (Emily, age 9)

But this was not the only advantage. because each item could move position independ-
ently of the others. A pattern of: O. may easily become ::* combining readily with to
make or "two fours". In such a way derived facts may be developed and indeed
this did lead to their use amongst two of the low achievers.

Amongst some of the younger low achievers the evidence of simultaneous engagement
of mental imagery and external representation caused confusion until one representation
dominated over the other. If we do two or more things mentally, for example, count-up,
count-back and maintain a mental picture we gain some insight into the strains being
placed on working memory.
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CONCLUSION

There are limits to the size of working memory. Whether or not these limits are different
for those children we identify as high achievers compared to those we see as low achiev-
ers is not resolved. Their implicit appreciation of the information compressed into nu-
merical symbolism enables them to focus on the detail appropriate at the moment. How-
ever, this feature is not unique to their approach in mathematics. In the broader context
symbols, and the ability to focus on the many relationships asssociated with them, pro-
vides them with an economical means of utilising the power and space they have avail-
able. We would not like to give the impression that high achievers did not use and
manipulate visual images. When dealing with more difficult two digit combinations all
high achievers considered visual symbolic images in vertical form, even though they
were given verbally, and made transformations which enabled them to process them
more easily. Low achievers, giving more attention to different elements, found it even
more difficult to mentally hold the initial inputs. They appear to place much greater
reliance on a visual stimulus and create and manipulate images associated with this.
They have a much greater tendency to talk about things that may be captured by the
senses and their imagery tends to be strongly associated with real concrete objects.

Notions of procedural encapsulation and the steady compression of lengthy counting
procedures into numerical concepts imply that children recognise links between inputs
and outputs. It would seem that far from encapsulating arithmetical processes some
children reconstruct these processes mentally. Attempting to match their thoughts to
given representations may only help them see things enactively, as with marbles, or
iconically, as with the number line. It is those who realise that representations may be
used to simplify ideas and are not intended to stand alone who will share in the construc-
tion of meaning.
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IDENTIFICATION OF VAN HIELE LEVELS OF REASONING IN
THREE-DIMENSIONAL GEOMETRY'.

Gregoria Gui Hen. Dpto. de Didactica de la Matematica. Universitat
de Valencia. Valencia (Spain)

ABSTRACT: An analytical study of the behaviour of third year Teacher
Training College students when carrying out tasks, designed on the basis of the Van
Hie le model, to solve problems on solids is the foundation of the characterization
we here propound for the levels 1, 2 and 3 in the field of the three-dimensional
geometry. On detailing our proposals we have also taken into account the
characteristics already established as a result of research in this field and those of
Van Hiele levels generally.

RESUMEN: Un anblisis del comportamiento de los estudiantes de 3e de
Magisterio cuando resuelven actividades sobre solidos, disetiadas en base al modelo
de Van Hiele, es la base para las aracterizaciones que proponemos para los niveles

2 y 3 de Van Hiele en el campo de la geometria tridimensional. Para la
elaboracion de esta propuesta tambien hems tenido en cuenta las caracteristicas ya
espeificadas en la investigacion realizada para esta area y las caracteristicas
generates de los niveles.

INTRODUCTION

The Van Hiele model of reasoning in plane geometry and other areas of
mathematics has been the subject of considerable and important research the world
over. It has been demonstrated that the characteristics of different areas (arithmetic,
algebra, geometry, etc.), reveal marked differences in the kind of reasoning
students employ.

As regards 3-dimensional Geometry there has been little research, but since
the Van Hiele model is based on the experience of its authors as geometry teachers,
it may well be especially suitable for this area of mathematics. There have been
several isolated approaches to 3-dimensional Geometry based on the Van Hide
model. Some attempt to fonnulate specific characteristics for Van Hiele levels as
applied to solid geometry have been made in Hoffer (1981), Lunkenbein (l983a),
(1983b), (1984), Gutierrez and others (1991), Pegg, Davey (1991), Davey,
Holliday (1992), Gutierrez (1992). But as Gutierrez (1992) indicates, the

The work reported in this paper has been supported by Ducyr of the Spanish Ministerio de

Educacion y Ciencia IPB93-070(0.
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characteristics prescribed for the different levels of reasoning are insufficient.
More research is needed. On the one hand, the levels of reasoning applied in
practice in the case of space geometry must be specified; on the other hand, the
practical exercises needed to enable students to move from one level to the next
must be designed, taking into account the phases propounded in the model.

In this paper we set out the characteristics we propose for Van Hie le levels I, 2
and 3 in tridimensional geometry' -. Our proposal is based on research in which we
have been involved, using third year Teacher Training College students, into the
design of practical tasks with solids, designed on the basis of the Van Hide model3.

THE VAN HIELE LEVELS FOR SOLID GEOMETRY

The aims of our research were to obtain operative and detailed
characterizations of each Van Hide level in terms of the students' behaviour in their
work with solid geometry, and to enhance their level of reasoning.

In order to define the characteristics of the different levels of reasoning we
used several sources. We considered descriptors specified in research relevant to
plane Geometry (for example, Burger and others (1986) or Fuys and others (1988)
provide accurare descriptors) and the characteristics of these levels formulated in
three-dimensional geometry research. We also analyzed the answers of students to
specific problem tasks given them to work on at home on the day before those tasks
were discussed in class. Their answers were collected before the discussion began.
We then noted the questions raised by the students in class, and their answers to
problem tasks they were subsequently given to solve.

We summarize below the characteristics we identified for level I and level 3.
and focus in detail on the descriptors found for level 2. Where the ability in task
may correspond either to level 2 or level 3 (depending on the kind of property,
relationship, or families of solids under consideration) we will indicate it.

Level I (Recognition)

At this level students deal only with visual information. They can perform
tasks dealing with recognizing, naming and building some three-dimensional
objects of different sizes which may be presented from different distances. In
addition, nets of some simple solids can he constructed, dismantling models of
solids. Students can change the form of some solids by making cuts in concrete
models, and identifying the solids obtained. They can also describe a solid by

2 Some authors number the Van Hide Levels from level 0; in this paper they are numbered as

follows: Level I (Recognition), level 2 (Analysis). level 3 (Informal deduction).

1 The results presented in this paper are pan of the Author's project of doctoral thesis.
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reference to its physical aspect or from prototype examples taken from their
physical environment. Moreover, they can compare or classify the solids on the
basis of global physical similarities or differences between them and establish
dichotomic classifications and classify only those figures with which are most
familiar. To describe a family of solids they merely choose a familiar example of
the family.

At this level, students may, in their answers, using terminology or refer to
geometric properties incorrectly, imprecisely or inadequately, and it is not on those
terms that the answers will be based. Answers of this sort given to questions on
solid geometry, may reflect the students' previous experience of, or contact with
the study of plane geometry.

Level 2 (Analysis)

At this level students begin to recognize that objects have mathematical
properties, even though their thinking is still based on physical perception. They
can by experiment establish relations between the components of a figure and
between several or different figures. Tasks dealing with different abilities can be
performed, such as the following:

I) To Identify a solid as an example or non-example of a family of solids.
Students may base the answers on their own definitions (being lists of properties)
and not taking into account definitions given by the text book (or the teacher). The
model, presented in different positions, can be identified adequately whether it is
presented as material model of the solid or its structure. Adequate identification is
also possible when the models are presented as physical objects, as pieces of a game,
inmersed in a structure, or in a puzzle.

Certain relations between given models can be understood: some can he
recognized as aggregates of others. Models can be separated and the elements of the
resulting models can be identified. Relations can be established between the
elements of one family and those of others from which it has been derived. For
example, it can be observed that if 4 space diagonals are made in a cube, it is

divided into 6 equal pyramids, whose bases are the faces of the cube, whose height
is half the edges of the cube, and whose lateral edges are half the space diagonal of
the cube.

2) A solid can be described on the basis of its geometric properties. These are
determined by observation, measurement, drawing and construction of models.
Students at this level can also enumerate properties for a family of solids or for a
general case (for example, a prism n-gonal), starting experimentally and
generalising the properties from sonic examples. They can already grasp that a
mere example does not replace a family, and that to describe families of solids one
must seek several different examples and draw general conclusions from them.
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However at level 2, students are not yet able to determine, as critical attributes
of a family, properties that contain terms such as "as much", "as a minimum", "at
least" "as many... as", "the same ... as", "two different types of faces". They cannot
use these terms to reformulate properties so that these become properties of a
family that includes an other. At this level the list of properties indicated for
families that contain other more specific families tend to leave out specific
examples. For example, if students are asked to state a property of right prisms
with a regular base in terms of different measurements for the edges, they leave out
examples which also belong to the family of prisms with regular faces. They will
say that "The right prisms with a regular base have edges of two different lengths".

3) Examples of a given family of solids can be constructed up with various
commercial materials. Different nets of a solid can also be built. Students can make
structured analysis of the models by levels, or separate a model in layers, or
observe the faces bordering a given face, or those which meet in a vertex. All these
observations can be applied to find nets of the solids.

4) Students can identify mathematical information provided by a solid model
or a drawing of it, explain their answer in terms of properties, or apply this
information to one of the nets.

5) Students can tackle problems on classification as the following: Establishing
classifications-partitions, based on geometric properties when the criteria have a
strongly visual component; naming the established families; identifying models of
solids as examples or non-examples of subfamilies; listing the properties of
established families; specifying all the types of example of a given family which
satisfies certain conditions. For example, given a set of solid models, students can
select examples of parallelepiped that they are non-examples of orthohedra.

Faced with the problem of classification at level 2, students can also choose
appropriate examples and non-examples to show whether that certain statements
interrelating families of solids are, or are not, correct. They can decide whether a
given relationship between families of solids is correct unless the relationship is
stated in terms of "There cannot be ... that are not... ". In this case, to understand
these terms and to determine what has to be proved requires a level 3 of reasoning.
Students can make statements using the expresions "always", "sometimes" or
"never" in order to show if between two given families of solids exists a relation of
inclusion, if they have common elements, or if they are exclusive. A tree or net
diagram can be constructed showing the relations between certain families.

For families with a marked visual component, or with which students are very
familiar, the relation of inclusion or exclusion can be established and substantiated
by proving that the properties which one family (or its definition) exhibits are also
exhibited by the other, or that no example of one family exhibits the properties of
the other. For example, it can be proved that cubes are always prisms by showing
that they satisfy the definition of a prism. It can also be proved that the oblique and
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right prisms are disjoint families by checking that any example of a right prism is
not an oblique prism. But in level 2 the students cannot reason in a mathematically
complete way, to prove, for example, that prisms with regular faces are convex or
that pyramids with regular faces never are archimedean polyhedra.

It may be observed that at this level, the Students do not admit the inclusion of
classes between given families of solids if it has not been previously considered as
inclusion in terms. of examples. Thus, even though it can be observed that
properties of parallelepipeds (for example that opposite faces are equal and
parallel) are also satisfied by orthohedra, it cannot be deduced from this that an
orthohedron is a parallelepiped. This relation could be verbalized if previously
examples of orthohedra have been included as examples of parallelepiped.

6) To associate properties to given families of polyhedra and to identify
families of solids from one o more given properties.

If the properties contain terms such as "as much", "as a minimum", "as
maximum" or "at least", students interpret them as "exactly". This interpretation is
not mathematically correct. The term "different" that appears in "as many different
measurements as...", "the same different measurements that..." is interpreted as
"which has to have different elements". "Faces of the same type" tends to be
identified with "That are equal"

Properties which present a further difficulty for students reasoning at level 2,
and also unable to give mathematically correct answers, are those which have not
been ascertained by experiment and whose correct mathematical verification
requires deductions, or taking into account several elements of different types. For
example, students cannot prove that the family of prisms with regular faces verifies
the following property: "The number of different measurements for the space
diagonals is equal to the number of face diagonals + l". We can also include in this
group, the properties that contain the term "exactly" and which oblige students to
select families or very specific elements which are possible solutions, taking as a
starting point numerical data (for the edges or the different measures of the face
angles). These properties lead to a problem of proof, because all the possible
solutions that satisfy the property must be listed and it must be proved that there
can be no other solutions.

7) To evaluate sufficiently and to explain the answers correctly. giving
examples or non-examples. that given two families, one of which is introduced by it
definition are not related by inclusion. For example, when the family of the
deltahedra is introduced with a definition, students can give an example and a non-
example showing that pyramids with regular faces are sometimes deltahedra.

8) When the inclusion between families has a marked visual component, or is
an inclusion relationship that is usually considered by students in terms of
examples, the relationship between two families can he used to establish properties
of a family, considered as properties of the other family. At the end of the teaching
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course unit, students who reasoned in level 2 can use the relations of inclusion that
exist between the cube, orthohedron, rhombohedron, parallelepiped and prism.
They can also apply the relations of inclusion between the family of prisms and the
various families, already identified in that family, whose names contain the word
"prism". For example, students can understand that the rhombohedra satisfy the
properties of parallelepipeds; or that prisms with regular faces satisfy the
properties of prisms.

However to determine adequately all the families under consideration (or all
the families comprised in such families) and to describe correctly the interrelation
of families in terms of properties, level 3 of reasoning is required. For example, at
level 2, students cannot demonstrate adequately that rhombohedra satisfy the
properties of quadrilateral prisms, of convex prisms, and of parallelepipeds. Nor
can they explain correctly that the properties of the first two families belong also to
the properties of the last family.

9) To produce formulae which give the number of faces. vertices, edges. or a
given sort of angles (face angles, dihedral angles and vertex angles), for a given
family of solids (prisms, antiprisms, pyramids and bipyramids), and to apply those
formulae for a particular value of n. Furthermore students can justify a formula
either by generalizing for n the results obtained from specific examples, or by
counting the elements in a structured way (for example, separating a polyhedron by
levels in order to count its vertices) and making a generalization for each level. For
example, the antiprism is seen as a closed band of 2n triangles plus two polygons, so
the number of faces is, F= I + 2n + 1= 2n + 2 and the number of edges is E= n (of
a base) + 2n (those in the band of triangles) + n (of the other base)= 4n.

However, to determine formula like that giving the number of face diagonals
or space diagonals for a given family, and to justify the results, requires level 3 of
reasoning.

10) For very specific families, students can check, by counting, measuring, or
applying already known results formulae that give the number of certain elements
or their measurement. For example, they can verify that, in a hexagonal right
prism with a regular base, the sum of the angles of the vertices is 12(180 + 12W.

However at this level students cannot prove in a mathematically correct way
that this result is valid for any hexagonal prism. In level 2 this result can be
justified only for right prisms with a regular bases.

Level 3 (Informal deduction)

At this level students begin to develop a capacity for rigorous reasoning and
are able to handle the simplest elements of the formal system (definitions and
implications in a single step). I.ogical classifications of the solids (inclusives-
exclusives) can he made, based on properties or relationships already known,
formulated with mathematical accuracy. Students can work through and solve
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adequately the problems of classification that arise, with the properties, definitions,
or relationships between families given at that moment. They can grasp the need
for definitions and why families of solids must he defined in a formal way.
Furthermore, they can understand the requirements of a correct definition and
succeed in formalizing it. Various propositions can be proved in a informal way.
Deductive methods are presented together with experiments, which will therefore
allow students to deduce properties taking, as a starting point, other properties
which had previously been obtained experimentally.

Let us now specify some of the abilities at this level of reasoning: Students can
conceive the examples as representative of classes, and are able to choose them in
such a way that the answer is mathematically correct. They can understand that the
properties or definitions given for a family, or the diagrams given to represent the
relationships between families, reflect the type of classification (inclusive-exclusive)
that is established. They can understand the logic quantifiers. They can list
properties in which one must take into account several families (because either
common properties or properties of a family that are not satisfied by others are
considered) and apply relationships of inclusion between families to simplify a
given task.

At this level, the meaning of deduction is not yet realized, nor is the structure
A a proof understood. Students can understand a proof explained by the teacher,
but they are not able to produce it by themselves. They cannot distinguish an
implication (pq) from its reciprocal (qp). They are unable as yet to understand
the function of axioms or the logical connection between statements, or the
axiomatic structure of mathematics.

DIRECTIONS FOR FUTURE RESEARCH

As regards the characterization of the levels for space geometry, once the
characteristics of Van Hiele levels I, 2 and 3 (which are the levels of reasoning
applicable to the students who have participated in our research) have been
specified, it is necessary to identify the descriptors for level 4. We shall be carrying
out research with students from the Faculty of Mathematics, where they are
expected to be able to achieve a mastery of level 4.

On the other hand, once the descriptors of Van Hide levels have been
identified in the field of the 3-dimensional Geometry, the research into the Van
Hiele model can be continued by working on the assessment of the development of
the level of reasoning of students in this field. We are investigating it with third
year teacher training school, but presenting the results obtained is beyond the scope
of this paper.
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WORKING WITH `THE DISCIPLINE OF NOTICING': AN
AUTHENTICATING EXPERIENCE

Tansy Hardy and Dave Wilson, Manchester Metropolitan
University, England

In .4ugust I994.at I'M XVII in lichen John Mason gave a plenary address in
which he presented his development of a research methodology appropriate
/or practitioner research. This methodology he has variously described as
'Noticin,g' and 'Researching from the Inside' /Mason /993, Mason I99la,

199,1h1.
This is a report of our use', as practitioners in mathematics education, of such
an enquiry research paradigm with our struggles ()f how and where to start,
with methodology, with discipline and with working ourselves and with
teachers on researching into our classrooms.

We have written this report in three major sections each of which reflects
concerns that we encountered during our research. In owl concluding remarks
we attempt to give a personal overview of the effects of is experience on us
as researchers and practitioners.

1

What is data for a practitioner researcher ?
This question emerged for us very early in our enquiry. A, too obvious,
answer might he. our experience. It seemed to us that there are problems with
this.

Much writing by our students and much talk by teachers is hard to enter. It is
characterised by highly generalised anecdotal narratives and sweeping value
judgements. We find it difficult to get students to reflect upon their
experience. We wish to make the assertion here that within their narratives
there was nothing to be examined, nothing to be read. They cannot re-read
their accounts; but then in order to re-read there needs to be something to
read. They have created no-thing.

An immediate issue for us then was the question "What is going to be our
datar
In other fields it is not such an important question because of their traditions.
In Cultural Studies, Media Studies and Literature the data which is examined is
clear. It is posters, films, adverts, poems. They are then read using the tools
developed by writers such as Rankles, Lttcan, Foucault 'see, for example
Lasthope 1988. 1

' This paper is based on our work together with colleague Una Hanley See Hardy, Hanley, Wilson
1994
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It seemed to us that Foucault and Barthes have changed our notion of what can
he read, what can be opened up to interpretation. Foucault's examinations, in
the Archaeology of Knowledge, have produced the data sets called 'discourses'
which are the ways in which the medical profession for example have by
talking, by theorising, produced 'the insane'. 'the sick' and so on. Within
education, writers, such as the psychologist Valerie Walkerdine, have used his
methods, amongst others. to examine critically the discourse of.developmental
psychology and its production of 'child' as a consequence. Posters. and films
are artefacts and, as such, are already out there, exterior to ourselves,
available for examination. Valerie Walkerdine examined the writings of, for
example, Hughes and 'lizard and re-read them, offering re-readings of their
data which consisted of transcripts of dialogues between children, parents and
teachers.

The notion with practitioner research, of teachers and student teachers
reflecting on their own practice. poses problems in this respect. Within this
framework what is it that can be held up, exteriorised, for examination, for
reading and re-reading by practitioners?

We decided to work with a methodology which has been described and
developed by John Mason of the OU, which he terms 'Noticing'. This involves
a disciplined way of working with other teachers in the telling of fragments
from their experience. Particular exercises are offered to enable teachers to
work with this. 'the intention is to be able to turn unexaminable
experience, in the sense we have described. into enterable moments,
recognisable by colleagues as resonating with their experiences. It is about
articulating and symbolising experience, and by working with that articulation.

(iattegno has written;

"The main difference between the existing, recognised sciences and all
the accumulated experience of millennia is that the first have been
codified socially and given a status by their journals. their academies,
their annual or regular congresses. while the other is hanging in an
untouched universe which the future may want to reach and explore."

There is a philosophical turn here, a certain distancing of ourselves from what
we habitually do as practitiones and say as we describe our practice; the
creation and insertion of a gap between our experience and our reflection
based on what we say.

A coach told a basketball player who was practising shooting to "jump up high,
hang there, make your shot and then come down". Hanging there can be seen
as analogous to inserting a gap, to the creation of distance. Caught up in the
momentum of our experience it is impossible to notice and to choose, in the
same way as the shooter. caught up in the momentum of jumping up and down,
does not have the space to aim and to shoot.
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Certainly it is possible. at this stage. to question the validity of the data we
generate and the 'truth of our readings and rereadings. We return to this
question later.

Exercises with anecdotes

We need to consider the issue of turning theory into practice: to find ways that
assist practitioners in the collection of anecdotes which capture moments from
within their experience and invite them to work further on these in such a way
as to create usable data..l'his identities two roles, a teller of an anecdote and a
listener to anecdotes.

he teller and the listener are both in the process of reading and validating the
story. They need to recognise that both are talking about the same thing. Hence
the need to work on the focussing of the anecdote in such a way that this
recognition can take place. Experience tells us that this recognition is not easily
achieved. as anecdotes tend to he emotionally charged. lengthy and difficult to
enter.

For an anecdote to he turned into data it needs. to he enterable by both the
teller and the listener. 'I'he teller needs to he able to review the anecdote, the
listener seeks resonance with her own experience. The account must he
focussed. concentrating on few points rather than many in the first instance.
One way of working on this is to limit the time available so that the teller
becomes involved in some form of personal editing process or, alternatively.
both can focus on an aspect of the story that has been identified as potentially
fruitful.

lising. the vocabulary of 'Noticing' these potentially fruitful moments might be
described as .Natient or a moment of energy. The teller needs to tell the
anecdote as briefly and as 000. as possible. Stripping away the impenetrable
overlays is a difficult process. 'lite listener needs to assist the teller in
identifying where the emotional energy lies. Tellers of anecdotes need to
recognise w hen they were offering an account fir a situation rather than
giving an account of it and resist the temptation to justify and explain away
responses to situations rather than focussing on the response itself.

'the following is an extract of an account by a primary school teacher. She has
produced a brief and % ivid account of a particular experience with children
and then gone on to offer a commentary on parts of the interaction. Finally she
points up the significance of the incident for her.

An extract from A's journal
The w orkshcet showed eleven -parcels" which had to fit a "tray".
One pair were working on this.
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Pupil I: I have only ten parcels, there should be eleven.
I must have missed one.

Teacher: Why don't you ... IA pause I was going to say
go through them and check each one" instead I ...
you need eleven to do the investigation.

'At this point I walked away but continued to observe.'

Pupil 2:

Pupil I:

Have you got the same as me?

No, we had better match them.

'They then started to place the "parcels" on the sheet of A4. How
I wanted to intervene!

I made the decision (almost too late!!) to leave them with the
problem. Even now when I re-read the extract I can recall the
feeling of being awake to the moment of decision and being able
to choose an alternative to what may have been an automatic
response.

Symbiosis

We have flagged up our concern with issues to do with the nature and role of
data. We want now to consider the relation of data and data collection to the
enquiry process as a whole. We want to show up threads inherent in our
discussion of data that identify two particular elements within the enquiry: the
element that is to do with the generating and identifying of a focus of enquiry,
of strands running through experience: and also the element to do with the
interpreting and validating of those strands.

For us there is a sense that these elements of the enquiry are caught up with
each other, that in the identification of relevant data we cannot help but reflect
simultaneously on that data and consider its relation to other data.This data is
compared to existing strands in our experience, and we notice jarring and
resonance with previous interpretations. New interpretations start to form.

In this section we want to explore this symbiotic relationship. The 3 elements;
Data, Identification of Focus and Validation form the nodal points of the
diagram we build up below.

We start to create an image of this symbiosis, not at any asserted beginning,
but by considering the exercise of capturing moments of energy from one's
experience, in the form of anecdotes. These may be identified by noticing
moments of tension, resonance. jarring; moments that present themselves as
salient in some way: these could be events in which one is aware of making a

3 -54 I



decision in that moment.
'Certain aspects of an event or situation stand out and are attended to
while other details are not even noticed. The aspects of an event or
situation which make it stand out are principally aspects resonant or
dissonant with past experience or present' (John Mason)

We assert that these critical incidents are the most important to consider.
although they may often be the moments that we habitually step round, avoid
or choose not to see.

In following this exercise through, such anecdotes can he worked on. by telling
and retelling, by reading and rereading. in order to make them enterable. This
involves recapturing the incident and reworking the anecdotes, in writing or
group telling, so that salient aspects of the incident are articulated and
described.The intention is that the incident becomes re-cognisable to others, so
that there is resonance for others with their own experiences. This requires
teasing out moments of emotion. stripping away accounts for the actions and
reactions described and working towards an enterable account of the incident.

One possible consequence of this exercise is the validation of the importance
and significance of that data for those working on the anecdote. If there is
resonance with and recognition of the incident in others' responses, this in
itself constitutes a form of validation. The resonance and recognition of the
incident with the teller's own previous experience serves as another act of
validation.

And importantly, this may form part of the constitution of another element
of the symbiosis. the identification of focus. The re-cognition of a salient
moment may mark a move towards the identification of a focus which
provides a useful entry into a view of practice. As importantly, the moment
needs to he reviewed in as much detail as possible by both speaker and listener
in order to identify patterns of preoccupation and interest.

Through the telling and reworking of these anecdotes it is possible to see
strands within one's own experience, routes through one's unexamined
practice, that had been previously unilluminated, silhouetted amongst
previously unrelated threads.

Working on anecdotes by group telling or reading, producing and sharing
enterable accounts of incidents. simultaneously constitutes another element of
the enquiry the awareness of a range of interpretations and views and
offers stronger validation of interpretations and further cohesion of a strand of
concern or awareness. In this process more data becomes available for
consideration. A form of co-generation.

'and the one doesn't stir without the other IIrigarayI
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So the three elements of data collection. identification of focus, and validation
coalesce further within this picture each taking a multipurpose role.

To return to the concern of this section, we have shown that the identification
of a focus is necessarily in a symbiotic relationship with the creation and role
played by the data, and its validation. This is not undisciplined.

Concluding Remarks

l.ast year we not only attempted to use 'The Discipline of Noticing as a
framework on a Masters Unit but to work with it ourselves. In particular we
worked upon the creation of brief -hut -vivid accounts.

This was, in part, an attempt to test out, by working on ourselves as well as
with others, the conjectures that their creation is both possible and worthwhile.
Certainly it required effort and practice and in that sense was not
unproblematic. What we observed was that early talk and writing by both
students and ourselves was characterised by containing highly generalised
anecdotal narratives, both about practice and about pupils. We have suggested
that within these narratives there was nothing to he examined, in the sense that
nothing salient. no moment of energy was identifiable. This energy. we have
found. signifies something worth examining further. The exercise seemed less
about giving "a proxy a matching experience- or communicating a "shared
meaning", but inure one of creating data, getting a sense of what there is to be
studied and reflected upon.
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The issue of validity was to do with the identification of phenomena which
were recognised as part of the participant's practice worth reflecting upon.
The telling. and re-telling up until recognition or resonance provided data for
reading and re-reading.

As we said earlier. in the cultural studies field there are artefacts exterior to .

ourselves available for reading. Valerie Walkerdine examined the writings of
Hughes and Lizard and offered re-readings of their transcripts. A practitioner
researcher needs to construct the data from their own experience which is
exteriorised and held up for examination. The validity of data we generated
about our teaching and the 'truth' of our readings may be questioned.

There has been a debate going on within psychoanalysis= at)out the validity of
the case studies produced by influential practitioners, including Freud. Freud
concealed the provenance of his story of an infant saying -fort da" (here -
there) while playing with a cotton reel. Stekel. when taken to task by Freud for
revealing the names of his clients at a conference is supposed to have replied
that he had not only made up the names, but also the stories. Kohut's case
studies are thought to have been based upon his own self-analysis.

How much does this matter? We want to suggest, that from the viewpoint of a
reflective practitioner, the issue of validity is much more one of whether the
retold anecdotes are recognisable by other practitioners and are so discussable
than of whether they are objectively true or not. The anecdotes come with
their own truth, in a way similar to that which Flaco Jimenez, as Ry C(x)der
said'. 'brings his own authenticity on stage with him'.

The awareness that we were not dealing with a cyclical procedure was
reinforced by our experience of working with teachers on this Masters Unit.
Within their enquiries the teachers were involved in creating data, generating
and identifying a focus of enquiry and interpreting and validating those
strands. However these elements were not engaged with in a linear order
cyclical or not. We have earlier indicated that in the identification of data we
are simultaneously reflecting upon this data and its relation to other data and in
that sense the elements of the enquiry process are inextricably caught up with
each other. .

In this paper we have attempted to create a structural form to represent the
simultaneity and symbiosis inherent in this process and capture this
diagrammatically. This image has no asserted beginning, no end. We are
'always in the middle. between things, interbeing. intermezzo' . This allows us
to suggest that the identification of focus is necessarily in a symbiotic

Recent discussion of this issue emerged on a psychoanalysis email discussion network
' From BBC 2 Arena transmission on Ry Cooder's music
'This is taken from a description of mizomic thinking a phrase used by Deleuze and Guattari to

refer to non-linear activity
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relationship with the creation and role played by data, and its validation. The
process of 'Noticing' is complex yet disciplined.

Of course, we come to the enquiry process with existing interests and
concerns, and there is always the question of whether we are merely
reinforcing current concerns (or even fetishes) the obsessive 'seeing 7s
everywhere' but we find that we can insert a gap and hold these at a distance
and conduct a valid enquiry.

In looking for ways to work with our Masters students and also to support our
own research we found that other available frameworks Isee dicussion in
Mason 1994 pages 52-41 seemed neither to give explicit recognition of our
personal experience as teachers, nor to offer us an authentic description of
how we had come to our professional knowledge. We chose to engage with the
Noticings Researching from the Inside framework as it supported this
experience, whilst making our reflections more systematic.

Here we have tried to speak validly with a voice from our own practice.

We have both recently been involved in practitioner research, including that
leading to post-graduate qualifications. We feel that 'Researching form the
Inside' has provided us with some conceptual tools and a framework that have
enabled us to also speak validly there with a voice from our own practice.
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CLASSIFYING PROCESSES OF PROVING

Guershon Harel Purdue University
Larry Sowder, San Diego State University

This paper outlines a preliminary classification of the kinds of justifications that
students offer in mathematical contexts, i.e., their "proof schemes." The
classification is based primarily on the work of students during teaching
experiments and individual interviews, with secondary and post-secondary
students. The dominant, natural proof schemes of most students- -even university
mathematics majors--are not ones accepted in the mathematical community as
giving mathematical proofs. Transformational proof schemes are viewed as
essential for advancing beyond these schemes: teaching experiments with
university students suggest that many students can make pleasing progress toward
expecting and giving acceptable mathematical proofs.

Many researchers have given attention to different aspects of the learning and
teaching of proof (e.g., Bell, 1976; Chazan, 1993; Fischbein and Kedem, 1982;
Hanna, 1990; Martin and Harel, 1989; Senk, 1985; Yerushalmy, 1993). These
indicate that the ideas of proof are difficult for students to learn, at least as they are
currently taught. A quote from Poincare summarizes our position toward the
teaching and learning of proof in mathematics:

It is difficult for a teacher to teach something which does not satisfy him
entirely, but the satisfaction of the teacher is not the unique goal of teaching;
one has at first to take care of what is the mind of the student and what one
wants it to become. [via Artigue, 1994; emphasis added]

Accordingly, we have been concerned with attempting to determine what is in the
minds of students, when proof comes up in mathematics. Others have had the same
concern. For example, Chazan (1993) noted that U.S. high school geometry
students were skeptical that a deductive proof assured that there were no
counterexamples to the assertion proved, and that a proof was only further evidence
that a conjecture is true. Fischbein and Kedem (1982) found that among students in
an Israeli program of studies involving the greatest concentration on mathematics
only about one-third of the students who had endorsed a statement and its proof
realized that further checks of specific instances would be superfluous.

Our approach has been to focus on justifications, and to view a mathematical
proof as the type of justification that is usually accepted by the mathematical
community. During interviews, mostly of university students in courses for
mathematics majors, we have attempted to determine what sorts of justifications
convince them, and what sorts of justifications they would offer in order to
convince others. During teaching experiments with university students, the thrust
has been to help students refine their own ideas about what constitutes justification
in mathematics.
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Categories of Proof Schemes

The notion of "proof scheme" has been useful to us. Proving (or justifying) a
statement includes two aspects: ascertaining (convincing oneself) and persuading
(convincing others). An individual's proof scheme consists of whatever constitutes
ascertaining and persuading for that person. Hence, a proof scheme is idiosyncratic
and naturally can vary from time to time and from context to context, even within
mathematics. It is important to note that "proof' as used in "proof scheme" need not
connote "mathematical proof." The teaching experiments have had the intent to
identify and alter students' proof schemes, and the interviews to test the sufficiency
of the classification. The categories as currently conceived fall into three major
classes. In a few cases the labels for the proof schemes are tentative, so the reader
should rely not so much on the labels as on the brief descriptions and illustrations.

The External Conviction Proof Schemes

The earmark of the external conviction proof schemes is that justifications
hinge on such external features as the endorsement of an authority (the authoritarian
proof scheme), the form of the argument (the ritual proof scheme), or meaningless
manipulations of symbols (the symbolic proof scheme).

The Authoritarian Proof Scheme. When students are not concerned with the
question of the burden of proof, and their main source of conviction is a statement
given in a textbook, uttered by a teacher, or offered by a knowledgeable classmate,
they are exhibiting the authoritarian proof scheme. When asked how they might
convince someone of a particular result, statements like "I would try to find it in a
book" or "I think my professor said it, so it should be in my notes" would be
offered under this proof scheme. The value of proofs may even be questioned,
perhaps because in so much of the mathematics that the student has experienced the
emphasis has been on the results, with little or passing attention to the reasoning
processes used to arrive at those results. In the teaching experiments, where "why"
is a routine expectation as well as "how," students have gradually become less
unquestioningly accepting of assertions deliberately made by the instructor to test
their willingness to accept the mere word of the "authority."

All this is not to say that accepting the word of an authority is all bad, of
course. Even noted mathematicians are no doubt on many occasions willing to
accept a result without examining the details of a proof. Rather, it is the attitude of
helplessness in the absence of an authority, or the view that justifications are
valueless, that handicap the students with an authoritarian proof scheme.

The Ritual Proof Scheme. Martin and Nardi (1989) examined whether
students' judgments of an argument are influenced by its appearance in the form of a
mathematical proof--the ritualistic aspects of proof--rather than the correctness of
the argument. They presented students with a false argument to a given
mathematical statement and then examined the students' evaluations of that
argument. They found that "many students who correctly accepted a general-proof
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verification did not reject a fake-proof verification; they were influenced by the
appearance of the argument- -the ritualistic aspects of the proofrather than the
correctness of the argument" (p. 49).

The "ritual proof" misconception, however, does not have to manifest itself in
such a severe behavior as the judging of mathematical arguments on the basis of
their appearance only. For example, on many occasions during the beginning
period of a teaching experiment, either in a class discussion or in a personal
exchange, students have asked whether a certain justification is considered a proof.
When asked to explain the motivation for their question, the students indicated that
although they are convinced by the justification, they have doubts whether it counts
as a mathematical proof. for "it does not look like a proof." Typically such doubts
are raised when the justification is not communicated via mathematical notations and
does not include symbolic expressions or computations, even though the argument
itself is quite sound by the usual mathematical standards; it is just that the argument
does not "look" like a proof.

The Symbolic Proof Scheme. Justifications which use symbols as if they
possess a life of their own without reference to their possible junctional or
quantitative relations to the situation characterize the symbolic proof scheme. The
power of symbols is well known, but when symbols are empty of meaning, or hear
no relationship to the situation for which the symbols were introduced, their use can
he counterproductive. For example, it is not uncommon for linear algebra students
to interpret the inverse of matrix A as the fraction I/A, and attempt to reason about
the inverse matrix as though it were a fraction.

Perhaps the most devastating consequence of the symbolic scheme is the
common behavior of approaching problems without first comprehending the
problem situation and its task. It is not unusual to find that immediately after
reading the problem, many students begin their solution with some sorts of symbol
manipulation of any expressions involved, with little or no time spent on
comprehending the problem statement. Students' actions take place quite
haphazardly without a clear purpose and without the formation of a coherent image
of the problem situation. So, for example, many attempt a solution without
knowing the meaning of some of the terms used in the problem statement. and many
others are unable to articulate the exact task they were to accomplish. For these
university students, the symbol manipulation rules they acquired in their earlier
school years define the essence of their mathematical world: quantitative
comprehension and sense making, wherein lie the value in representations by
symbols, were absent from this world.

The Empirical Proof Schemes

These proof schemes are based solely on examples. As with the authoritarian
proof scheme. reasoning based on examples is not entirely had. Mathematicians
value examples highly (see, e.g., Halmos, 1985). Psychologists nowadays note that
natural concept formation is based on examples, and sometimes on rather special
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examples (Medin, 1989). But as Sfard points out, mathematics students must
become "sufficiently mature in the mathematicahculture" to appreciate the role of
definitions in mathematics (1992, p. 47). A similar maturity in the mathematical
culture should lead to an awareness of the tentative nature of results suggested by
examples.

Inductive Proof Scheme. When students ascertain themselves and persuade
others about the truth of a conjecture by evaluating their conjecture in one or more
specific cases, they are said to possess an inductive proof scheme. Every teacher has
likely observed the dominance of this proof scheme among students, and research
corroborates this observation. For example, Chazan (1993) has observed the
existence of the inductive proof scheme among U.S. high school students. Martin
and Harel (1989) found that more than 80% of their preservice elementary teachers
considered inductive arguments to be mathematical proofs. Even with mathematics
majors, who presumably are more sophisticated than the high school students or the
preservice elementary teachers, the inductive proof scheme is common.

The Perceptual Proof Scheme. This proof scheme fits, for example, many
geometric justifications that might be given by younger students. The perceptual
proof scheme is based solely on visual or tactile perceptions. For example, a
student may examine an isosceles triangle and decide that the base angles are
congruent just by visual examination. Older students might be convinced that the
medians of a triangle are concurrent by looking at several computer-generated
examples, and they might attempt to convince others by showing them similar
examples.

The Theoretical Proof Schemes

The Transformational Proof Schemes. The general characterization of these
schemes is that students' justifications attend to the generality aspects of a conjecture
and involve mental operations that are goal oriented and intended-anticipatory.
They are the foundation for all theoretical proof schemes. Here is an example of
transformational reasoning from a case study of a fourth-grader (by GH):

I asked Ed to think of a triangle with two equal angles and describe what he
thought the relationship between the sides opposite them. Ed responded
almost instantly that the two sides must be equal. I asked Ed to explain to me
how he had arrived at this conclusion. Using his hands to describe the
triangle, Ed said something to the effect that if one angle (he puts one
forearm horizontally and moves the second forearm diagonally to it) is equal
to the other angle (switches between the forearms' positions), then the two
sides (he puts the two forearms diagonally to form a triangle) are equal.
When I continued to press Ed for more explanation, he went on to say: If
you launch a rocket from this side (pointing to his right elbow and moving
his right forearm diagonally to indicate the direction of the rocket) and at the
same time you launch another rocket from this side (pointing to his left elbow
and moving his left forearm diagonally to indicate the direction of the other
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rocket), the two rockets will collide and explode at the vertex of the triangle.
Their parts will go down exactly in the middle of the triangle and make two
little triangles. When you put these triangles together, one on top of the other
(he lines up his two hands along the two little fingers and then opened and
closed them several times), these two sides would be equal.

Notice the generality of the thinking and its basis in mental operations. Note also
that the thinking could easily be turned into the common mathematical proof (since
Ed was a fourth-grader, he was not asked to do this).

The transformational proof schemes classification includes three types of
transformational proof schemes. Ed's justification illustrates a spatial-images proof
scheme, which in general is characterized as a transformational proof scheme in
which the context of the justification is of images from spatial intuition.

"symbolic- transformational proof scheme" is our current label for an
encapsulated transformational proof scheme that has become aheuristic in devising
mathematical justifications. Repeated applications of transformational proof
schemes, if reflected upon, can potentially result in the formation of proof
heuristics. Hence, a symbolic-transformational proof scheme is a proof heuristic
abstracted from the experience of applying transformational proof schemes. Here is
an example, in which an older student transforms the given algebraic expressions
into mental images related to graphs:

Prove that for x 0, logx + I) x. He first converted this inequality into its
equivalent x+ e', then he said: "Both functions I x +1 and e' I are increasing
but e' goes faster. At zero they are equal, so e' must be greater."

This student then translated this thinking into a more standard mathematical proof
form.

One particularly important example of the symbolic-transformational proof
scheme is this: To prove or refute a certain conjecture, the conjecture is
represented algebraically and symbol manipulations on the resulting expressions are
performed, with the intent to derive relevant information that deepens one's
understanding of the conjecture and potentially leads to its proof or refutation. In
this activity, the individual does no necessarily form conceptual images for some or
all of the algebraic expressions and relations that result in the process. It is only at
critical stages in this process--viewed as such by the individual--that the person
intends to form such images.

The third transformational scheme is the constructional proof scheme. In the
constructional proof scheme a students' doubts are removed by actual construction
of objects, as opposed to mere justifications of the existence of the objects. For
example, in justifying that the inverse of a square matrix is unique (when it exists),
some linear algebra students have preferred a justification in which the inverse of a
matrix is constructed, step-by-step, to the usual assume-there-are-two-and-show-

3 63



they're-equal proof, even though the proof by construction was based on a 2x2 case
with numerical entries. The students, most of whom realized the drawbacks of
arguments based on specific numerical cases, regarded the argument with the
specific case as a generic argument and preferred it because "you can see how it
works."

The Structural Proof Schemes. The general characterization of these schemes
is that they are special transformational proof schemes in which conjectures and
facts are representations of situations from different realities that share a common
structure. The structure is characterized by a collection of accepted facts. There
are three subcategories, which will be described only briefly here. It is important
to keep in mind that these must be transformational in nature; otherwise there is the
danger of resorting to rote memory in settings where they could be used. The
postulational proof scheme is a structural proof scheme in which the structure is
characterized by a collection of permanently accepted facts. This scheme is essential
in studying the theory of vector spaces, for example. The spatial-postulational
proof scheme is a postulational proof scheme whose realities are based in intuitions
of space. The postulates in Hilbert's Grundlagen der Geomarie, for example, could
provide the characterization with which to justify statements in geometry. Finally,
the axiomatization proof scheme is a structural proof scheme in which the structure
is characterized by a collection of tentatively accepted facts. This scheme is
essential in studying questions of consistency, independence, completeness, etc.

Implications

The symbolic and ritual proof schemes, grounded as they are in meaningless
symbol manipulation or surface features, have nothing to recommend them; perhaps
with a greater emphasis on the giving of justifications instruction can help students
to avoid them. Students must be educated to value and to want to know
justifications; the source of the results, not just the results, must be emphasized.
The authoritarian proof scheme, on the other, hand is a two-edged sword. In the
culture of schools or of knowledge acquisition, it can be valuable. The concern is to
move away from a complete reliance on it and its suffocating effect on the giving of
justifications. For example, in the teaching experiments, a conjecture was no longer
labelled "theorem," simply because the label "theorem" seemed to reduce the
students' effort, willingness, and even the ability for some students to justify the
conjecture. The label "theorem" apparently rendered the relationship into something
to obey rather than to reason about. The use of small groups, in which there is no
obvious authority figure, seems to foster more openness to evaluating justifications;
there the student is a more genuine partner in justifying statements than in a
teacher-led justification. The empirical proof schemes, with their roots in everyday
thinking, are important and valuable. The inductive proof scheme is so strong,
however, that instruction must deliberately combat it to show its defects.

To become "sufficiently mature in the mathematical culture" or to progress
toward Poincare's what-one-wants-the student's-mind-to-become, it is clear that a
student must move beyond the external and empirical proof schemes. Of greatest
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importance is instruction that promotes transformational proof schemes, since these
are the foundations for the theoretical proof schemes. The teaching experiments
suggest that much progress can he made by designing instruction on carefully
chosen problems and making justifications an accepted part of the class routine.
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Seeing, Doing and Expressing: An Evaluation of Task
Sequences for Supporting Algebraic Thinking

Lulu Healy and Celia Hoy les

Mathematical Sciences

Institute of Education, University of London

Abstract
In this paper we describe a research study in which we set out to explore students' use of visual
strategies, the circumstances under which links are made between symbolisation and visualisation and
the influence of computer use on these strategies and linkages. In this study we have been
investigating student approaches to a sequence of algebraic problems presented with visual
information. Our comparative analysis of students' responses to three different task sequences
involved documenting the trajectory of visual and symbolic approaches, attempting to identify the form
in which they occurred,why they occurred and if they were inter-connected. The sequence of activities
included work on the computer and we explored if and how interactions with the software connected
with other approaches. To illustrate our methodology and findings, we present data from three
students who worked through the problems in different mathematical settings.

Background
It is generally reported that students of mathematics, unlike mathematicians,

rarely exploit the considerable potential of visual approaches to support meaningful
learning (see, for example, Bishop 1989; Dreyfus 1991). Where the mathematical
agenda is identified with symbolic representation, students are reluctant to engage
with visual modes of reasoning. Conversely, when powerful visual images are
present, students tend to exhibit a preference for solving problems simply by
perception without mobilising any mathematical knowledge (Hillel, Kieran and
Gunner, 1989). Students' reasoning tends to be compartmentalised: they operate in
one or other mode without making links between the two (Presmeg, 1986; Hoyles
and Noss 1989).

In many ways, these findings are unsurprising. Mathematicians know what to
look for in a diagram, know what can be generalised from a particular figure and so
are able to employ a particular case or geometrical image to stand for a more
general observation. Our question is, how can students best be encouraged to share
in these ways of thinking what systems of support can we offer which will
encourage them to make connections between visual and symbolic representations of
the same mathematical notions. Underlying this question is a fundamental assumption
that permeates our research, that mathematics learning involves students in
constructing connections, in linking new mathematical knowledge with what they
already know both about the system of mathematics itself and with knowledge
derived from other domains. We have particularly focused on mathematics learning
in computational settings, settings which open up new possibilities for incorporating
visualisation into the practice of mathematics: Computers offer the potential to
operate on images with the kind of rigour which has hitherto been reserved for the
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symbolic; visual images can he externalised' and rendered manipulable. Previous
experience tells us that we cannot assume that this potential will necessarily
transform students' mathematical thinking at any rate, it is unlikely such a change
will be realised spontaneously. We therefore set out to search for circumstances
under which students conic to move more freely between visual and symbolic
representations and to investigate the role the computer might play in this process.

The study
Our investigations, carried out during the project Visualisation, Computers

and Learnin4,2 focused on students working through carefully-sequenced activities
designed to exploit the visual alongside the symbolic in pursuit of a range of
previously specified mathematical goals. Specifically our aims were:

to map students' visualisation strategies in two mathematical domains: geometry
and algebra;

to identify if and how links are made between symbolisation and visualisation;

to identify if and how strategies and links between them are influenced by
computer use.

In this paper we describe the algebra strand of the project in which the
mathematical focus was the study of Number Patterns, a topic commonly used within
the UK as a vehicle for introducing students to algebraic notation and functional
invariance. An example is presented in Figure I.

/\/.
1_1 When there are 2 houses. there are 9 matches

/N/1.111111 When there ore 6 houses. there are 25 matches

How many matches are needed for 9 houses?

Write a rule to work out the number of matches for n houses.

Figure I: 'Houses' sequence

The idea behind these activities is that students will identify relationships
within numerical patterns derived from spatial situations, perhaps express these in
natural language but ultimately formulate a symbolic generalisation. Through such
a process of doing, seeing and expressing, it is argued that they will build algebraic
meanings for the symbolic notation. The UK National Curriculum suggests a
sequence of progression whereby students work from simple one-operation linear
functions to quadratic functions. Within the curriculum guidelines, as students

I We accept that in this process the images will change but nevertheless suggest that these
externalised images are worthy of investigation.

2 This project was funded by the Economic and Social Research Council IGrant Number
R000234 I 681.
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become more proficient they are expected to move from paper and pencil on to
spreadsheet explorations of number patterns. We wanted to compare this computer-
added approach with one in which computer use was integrated throughout a task
sequence. Additionally, since spreadsheets offer the possibility for symbolic
interaction but little chance for manipulation of visual objects, we wrote a Logo
microworld, Mathsticks, in which students would have the opportunity to generate
computer-mediated visual and symbolic representations3. Thus, three task sequences
with the same mathematical content were designed.

Task sequences: The first task sequence was based on existing materials found
in the school in which we conducted the research. This computer-added task
sequence (the CAT) involved paper and pencil work followed by activities using a
spreadsheet. In two computer-integrated task sequences, the spreadsheet CIT and the
Mathsticks CIT, computer use was incorporated at all levels. All the sequences
followed a common pattern individual semi-structured interview, pair work,
group work, pair work, individual semi-structured interview. Both the individual
and pair work were based around a common set of tasks where the students worked
on identifying and expressing general patterns underlying different number
sequences presented through both visual and numeric data4 as illustrated in Figure I.
Thus the aim for each task was that students constructed and justified a general
method to calculate values for the nth term. In the group work, two pairs came
together to discuss their previous activities and to justify any relationships they had
identified.

Data collection: Three groups of four students, aged 12-13 years, were
selected for case study. The groups, chosen in conjunction with the mathematics
teacher, were organised so that each group comprised a similar spread of ability.
Each task sequence spread over about six weeks and took up about 10 hours of
student time. The data comprised student responses (paper and pencil or computer
work together with video and/or audio-recorded discussion) in each of the five
settings of the task sequence. The individual interviews were task-based where
students' written responses were followed up and probed by the researcher. During
pair and group work a researcher was present as a participant observer with the role
of teasing out students' intentions, strategies and explanations. At no time did she
give direct assistance in relation to the mathematics although she did provide syntax
advice when this was specifically requested. The data were synthesised into detailed
case histories describing the trajectory of each student working through a task
sequence. These case histories were then interrogated to find out if students' goals,

3 Mathsticks was designed in conjunction with Richard Noss. We do not have space to descibe in

detail here but intend to demonstrate its main features during the presentation (see also Noss,

Healy and Hoy les in press).

4 Pilot interviews suggested that presenting terms not in sequence resulted in greater attention to the

visual data.
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strategies and outcomes shifted and, if so how and when.

Analysis of the case studies
Our case study students were relative novices in this area: Our aim was to

examine how all the factors in the learning setting interacted to facilitate (or to
inhibit) students in evolving a coherent knowledge system from an initial set of
disconnected fragments of mathematical ideas. We began by classifying the.
conceptions and strategies that students applied to these kinds of problems from a
review of the relevant research literature (e.g. Stacey, 1989; MacGregor and Stacey,
1992; Orton and Orton, 1994) and from extensive pilot interviews we conducted
before undertaking the case studies. The research studies we surveyed tended to
report students' difficulties and errors as evidenced in "one -off' situations. Two
particular strategies were extensively documented: First, a tendency to make false
assumptions of direct proportionality between terms when working on linear
sequences of the form f(n) = an + b (b#0), and second an overemphasis on
recurrence relationships in one variable. The problem with focusing on student
errors in this way is that the emphasis inevitably is on what students cannot do rather
than where these strategies would have worked (e.g. when b=0 in above example)
and how students could move on to more generally applicable methods.

Our agenda was to go beyond analysis of student behaviour and investigate
their mathematical thinking-in-change. The framework we eventually devised
incorporated the strategies previously documented but recast as a set of what we
termed construction approaches, each of which was deemed to represent the
evocation of a set of cognitive resources through which a student had tried to make
sense of the activity. We distinguished iconic and symbolic approaches and within
each category identified four different ways in which students organised and
manipulated the data as they attempted to construct a generalisation. The approaches
are presented in Table 1 as a two by four matrix in order to point up the
mathematical equivalencies between the horizontal cells. However, it was clear from
our observations that these equivalencies were not necessarily apparent to the
students and our aim in the next phase of analysis was to trace the evolution in a
student's thinking and to search for the conditions where connections were made
between approaches.

Maps of student approaches: To represent how student approaches evolved
over the course of a task sequence, a series of maps was constructed from the basis
of the analysis framework. One map for each of the five research settings was
produced for all the three case-study groups. It showed pictorially all the approaches
used rectangular shapes indicating symbolic approaches, oval iconic ones, and their
frequency shown by the thickness of a shape's boundary. Approaches associated
with the final generalisation made were shaded. A map also showed the connections
made between approaches. Connections took the form of exchanges where students
explained the responses associated with one approach by an explicit reference to the
resources underpinning another. Thus a connection was a mathematical justification
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(or a refutation if an incorrect approach was rejected or debugged) students
verified that one construction was consistent with an alternative way of viewing the
problem. A connection was represented on a map by a line linking the relevant
approaches.

Symbolic Iconic

Counting Eidetic
Counting the matches in an unstructured way Focusing on perceptual rather than mathematical

properties of the data:
"The star is like a cross from noughts and

crosses and a religious cross."

Operating on terms Combining diagrams
Calculations using a known term or terms to
obtain a target term:
1) "there are 16 matches in 5 so there will be 48

in 15, you times by 3"
2) "to work out 7, 1 did 10 add 13 because 3

had 10 matches and 4 had 13"

'Chunking' of known terms to obtain another:

1_1_1_1_1_1 1

=1 I I I I I I I I I

Operatirgi on differences between terms Inter-term
Calculations based on the numerical difference
between consecutive terms:
I) "4 is 13 because you add 3 each time"
2) "1 added 30 because the difference between 5

and 15 is 10 so you add 10 3's"

'Chunking' based on a relationship between

terms:I1n Add each= ------
II I I I 4 First has 4 the rest have 3

=. = =--
II 1 1

1 4 Chunk first one as well

Operating on variables Intra-term
Calculations based on a relationship between
dependent and independent variables:
"You times the number of boxes by 3 and add 1

'Chunking' based on a relationship within a

term: 4 Line
11111 ° Line of one more

-4 Line

Table I: Claisification of Student Approaches

A Snapshot of our results
To illustrate our methodology further and to give an indication of the

differential influences on student approaches of the different task sequences, we
present the data of the approaches of three students, one from each of the case study
groups: Jodie, who worked on the CAT task sequence: Lesley, a member of the
spreadsheets CIT; and Tombana, one of the Mathsticks CIT students. First we
present the maps derived from the first and last interviews with each of these three
students (Figures 2 4) to illustrate any changes made in each individual's
configuration of approaches.

Both sets of interviews were concerned with two-operation linear sequences.
In the first interview, one task was given, while two tasks were presented in the final
interview. The maps show that, in their first interviews, all three students used a

number of different approaches and made no connections between them. Jodie and
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Tombana both failed at any point to exploit the iconic data. They also constructed a
final generalisation that did not lend itself naturally to algebraic expression in
fact, the approaches they chose were those mentioned in the literature as being
frequently associated with errors5. Lesley, on the other hand, showed an initial
preference for iconic approaches, and her final generalisation involved an intra-term
relationship.
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Figure 2: First and last interview maps for three case-study students

The maps of the student approaches in the final interview suggest that the
students responded rather differently to the same type of task at the end of the
sequence. In contrast to her first interview, Jodie adopted both iconic and symbolic
approaches, but only occasionally constructed connections between them. Her final
generalisations were associated with two different approaches, suggesting she had
not yet developed a consistent pattern of working. The two CITs students, on the
other hand did develop consistent sets of approaches and their final generalisations
both involved operating on variables. However, while Lesley actually made more
use of iconic data at the beginning of the task sequence than at the end, Tombana's

5 Note that, at this level of analysis. it is nut possible to ascertain whether a student's
generalisation was actually correct. The inure complete versions of the maps (which we do nut
have space to reproduce here) contain this information. although this was not our main concern.
All approaches, potentially at least, can lead lo both right or wrung answers. Our focus was how
the students were thinking about the tasks in hand.
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final, more connected map represents how she used the iconic data as a means both
to construct and to justify the mathematical relationships conveyed by her algebraic
symbolism. For all three students, there is some indication of a move away from
approaches associated with arithmetic methods and a reliance on specific cases
towards the production of general functional relationships, although only Tombana's
final map shows the set of approaches that the activities were intended to engender.
However, it is clear that consistency amongst the final approaches, the use of visual
or symbolic reasoning and the construction of justifications by connecting
approaches all differed substantially across the three task sequence.

Of course, the first and last maps show only snapshots of the entire story.
Making sense of the differences between the two involves tracing a student's path
through the other settings and considering her interaction with other students (who
mobilise different resources) and with the media of the setting. We do not have
space here to present the maps for all the intervening sessions, instead we consider
briefly these three students' interactions during the pair settings and the different
influences of tools available within each task sequence. During the pair setting in
which Jodie had access to paper and pencil only, her manner of working was eclectic

she simply chose whatever approach most quickly seemed to lead to some (any)
generalisation. For Jodie, the spreadsheet task in the CAT sequence added little, in
fact she felt this activity was about learning to use the computer and not connected to
the previous work at all. In contrast, the spreadsheet CIT sequence seemed to have
encouraged Lesley to focus on symbolic aspects. In her pair work a consistent style
quickly emerged characterised by "pattern-spotting" where relationships in tables of
numeric data were identified without apparent appreciation of the need to connect
these to the structures underpinning them. It was not that Lesley was unable to use
the iconic data, but that the goal of the task became transformed to become the
construction of spreadsheet rules with the result that the iconic information had little
relevance. What is significant is that this pattern of working persisted into the final
paper and pencil based interview where Lesley's original use of approaches was no
longer apparent.

We conjecture that the problem in both these task sequences(the CAT and the
spreadsheet CIT) is that there is a gap between seeing a pattern and the means of
expressing the pattern which students frequently chose not to cross, with the result
that their thinking remained compartmentalised. The Logo tools opened up a new
set of possibilities. In Mathsticks the means of expressing actions is firmly soldered
to the activity: students can interact with virtual matches and, as they do so, a
symbolic trace is produced, or if, they communicate in symbolic terms, a
corresponding visual trace is generated. In Tombana's interactions with Mathsticks
those tools were bought to life as she, along with her partner, constructed
relationships by first systematising her actions to produce a visual display of the
pattern, identifying REPEAT structures in the symbolic representation automatically
produced by her actions and finally using these as a basis for building general Logo

3 -73 so.



procedures. She was also able to work from her symbolic representation back to the
visual recognising, for example, that the addition of an extra match within 11
REPEAT loop could change a sequence of boxes to a sequence of houses. Thus in
Mathsticks, seeing, doing and expressing become inextricably linked: since a
student's visualisations are coupled with the symbolic; mathematically speaking they
are one and the same. The resulting cognitive residue for Tombana (along, in fact,
with all the other members of the Mathsticks case-study group) was a robust stance
to number pattern problems which spread beyond the boundaries of the computer
setting.

Final remarks
Our results suggest that students bring numerous resources to mathematical

situations and that the approaches they choose to apply to any given problem vary
according to setting. It seems foolhardy therefore to deduce that a student is
incapable of using a particular approach on the basis of observations from just one
setting. On the contrary, we have found that the adoption of a particular set of
approaches depends, among other things, on the tools available. The Mathsticks
microworld seemed most likely help students appropriate our intended learning
aims, to provoke them to shift from a pragmatic to a theoretical stance to the
number patterns (Balacheff 1986). Our contention is that the route towards
construction of mathematical meanings in this case algebraic meaning is best
supported by tools designed to help bridge the gap between action and expression; to
scaffold movement to and fro between the visual and symbolic in much the same
way as spontaneously achieved by the mathematical cognoscenti.

References
Balacheff, N. (1986). Cognitive versus situational analysis of problem-solving behaviours. For the

Learning of Mathematics 6 (3, November), pp. 10-12.
Bishop A (1989) Review of research on visualisation in mathematics education. Focus on Learning

Problems in Mathematics. 11 (1), 7-16.
Dreyfus T (1991) On the status of visual reasoning in mathematics and mathematics education.

Proceedings of the Fifteenth PME Conference, Assisi, 33-47.
Hillel J & Kieran C (1987) Schemas used by 12-year-olds in solving selected turtle geometry tasks.

Recherches en Didactique des Mathematiques, 8, 61-102.
Hillel J, Kieran C & Gurtner J.L (1989) Solving structured geometric tasks on the computer: the role

of feedback in generating strategies. Educational Studies in A'ahematics, 20, 1-39.
Hoyles C & Noss R (1989) The computer as a catalyst in children's proportion strategies. Journal of

Mathematical Behaviour, 8, 53-75.
Orton, A., & Orton, J. (1994). Students' Perception and Use of Pattern and Generalization. In J. P.

da Ponte, & J. F. Matos (Eds.), Proceedings of the Eighteenth International Conference for the
Psychology of Mathematics Education (pp. 407-414). University of Lisbon, Portugal:
Program Committee of the 18th PME Conference.

MacGregor, M., & Stacey, K. (1992). Seeing a Pattern and Writing a Rule. Proceedings of the
Sixteenth International Conference for the Psychology of Mathematics Education (pp. 181-
188). New Hampshire.

Noss, R, Healy L & Hoyles, C (in press) The Construction of Mathematical Meanings- Connecting
the Visual with the Symbolic. Submitted to the Educational Studies in Mathematics

Presmeg N (1986) Visualisation in high-school mathematics. For the Learning of Mathematics, 6,
42-46.

Stacey, K. (1989). Finding and Using Patterns in Linear Generalising Problems. Educational Studies
in Mathematics 2f) 147-164.

Li
3 -74



THE ROLE OF PRIOR CONCEPTIONS IN TEACHERS' RESPONSES TO
STAFF DEVELOPMENT: A SYNOPSIS OF CASE STUDIES OF THREE

MIDDLE SCHOOL MATHEMATICS TEACHERS

Terese A. Herrera, The Ohio State University

The purpose of the study was to document the process of teacher change within the
context of an inservice. My focus was the individual teacher's perspective of change,
including beliefs and conceptions of what it means to teach and learn mathematics.
Therefore, I accompanied three teacher-participants through a six-week summer
institute and several seminars during the following academic year, collecting data
prior to, during, and after the inservice experience. Through preparation of case
studies I identified themes that emerged across cases and concluded that prior
conceptions held by staff developers as well as by the teacher-participants played a
definitive role in the teachers' adoption of the innovative instructional method
modeled in the inservice.

In response to the call for reform in mathematics instruction in the United
States, standards for revising curriculum and evaluation (National Council of
Teachers of Mathematics [NOM, 1989) and for teaching mathematics (NCTM,
1991) have been promulgated among the nation's teachers from elementary through
secondary levels [grades 1 through 121. Unlike the mathematics reform movement of
the 1960s, this one does not rely on "teacher-proof" curriculum materials; instead, the
teacher is seen as key to reform. As Fullan and Steigelbauer (1991) commented
succinctly, "Educational change depends on what teachers do and think--it's as simple
and as complex as that" (p. 117). In the effort to change teachers' thinking about
mathematics instruction, the primary outreach to practicing teachers is the inservice,
to which they bring their prior conceptions of effective mathematics instruction. A
question that arises, then, is: How do teachers' prior conceptions interface with
inservice education?

Method
The research reported here examined this question through case studies of

middle school mathematics teachers [teachers of grades 6 - 81 who were participants
in Project Discovery, a statewide initiative sponsored by the National Science
Foundation and by the State of Ohio. An intensive, long-term mathematics inservice,
it included a six-week summer institute on the inquiry method of instruction, and
several follow-up seminars. Since the purpose of the study was to document the
process of teacher change within the context of inservice education, I conducted
extensive interviews with and classroom observations of three participants prior to
and during the summer institute, actually attended the institute myself as a full-time
participant, and then made several two-day visits to their schools during the following
academic year. From this methodological stance of participant observer,
documented through case studies the interaction of the individual teacher with the
staff development experience, in order to give voice to the teacher-participants and to
better understand the complexities of teacher change.
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The subjects. termed "teacher-participants," were:
Beverly. . a Caucasian female, secondary-certified, with 17 years of teaching

experience in a small rural town;
Imani, an African-American female, elementary-certified, with 4 years of

teaching experience in urban city schools;
Scott, a Caucasian male, elementary-certified, with 15 years of teaching

experience in a small town that serves as a residential adjunct to a large city.
As can be noted, subject selection was purposeful and heterogeneous, covering a
range of teacher variables.

In the research setting, an inservice offered for teachers of middle school
mathematics, participants were immersed in collaborative problem solving: inquiry
problems that modeled open-ended, hands-on problems with multiple solutions and
extensions. The university instructors expected the teachers to construct their owii
sense of inquiry teaching through their experiences with the problem solving, through
class consensus, and through creating lesson plans that incorporated an inquiry
approach.

Theoretical Framework
Constructivism, a "theory of active knowing," holds that knowledge is

constructed as the engaged thinker attempts to organize his/her individual experiential
world (von Glaserfeld, 1988, p. 33). What is particularly relevant in this theory to the
role of prior conceptions in teacher change is its claim that new information is not
passively received but, rather, reviewed in relation to an already organized operating
system. If the new information is not seen to fit into an already accepted category and
thus cannot be assimilated into the system-as-is, a disequilibrium or perturbation
occurs. Within the context of this study, the inservice experience was considered a
potential cause of disequilibrium, one that could stimulate change in the form of either
assimilation or accommodation.

Moreover, the Project Discovery Mathematics Summer Institute placed the
participants in a learning environment shaped by constructivist theory. Instead of
offering a set of lectures on the inquiry method of instruction or even problem solving
strategies, the instructors immersed the teachers in problem situations which required
them to directly encounter and explore the mathematcs embedded in the situation.
This was their introduction to inquiry teaching. The participants were expected,
within a small group setting, to collaboratively make sense of the given problem
situation, test solutions given by the class, and construct new mathematical
understandings. This view of teaching and learning differs markedly from that held
by most mathematics teachers (Romberg, 1986), which proved unsettling as the
participants considered how, or even whether, to implement the instructional
philosophy being modeled.

Finally, constuctivism framed the data collection as well as the method of
analysis. The data collection acknowledged the teacher-participants' prior knowledge,
included information on how they engaged in making sense of innovative
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instructional methods, and allowed for the expression of personally-construction
meanings. The use of the case study as a method of analysis honors the view that
response to a learning environment is necessarily individual and unique.

The Role of Prior Conceptions

Inconguent Mathematical Philosophies
Staff developers as well as participants bring to the inservice setting

philosophies of mathematics that drive their theories of instruction and learning. In
Project Discovery the instructors operated from a holistic view of mathematics--a
terrain without fixed borderlines between topics, terrain to be explored rather than
curriculum to be covered--with "doing mathematics" defined as delving into a rich
mathematical situation and drawing from several areas of mathematics to resolve it.
For the teacher-participants "doing mathematics" generally referred to applying fixed
procedures, sequentially and linearly, within well-recognized borders. What was
experienced by the teacher-participants was a lack of connection between
instructional philosophies, between what was modeled in the inservice and what was
expected of them in "real world" classrooms. Imani commented:

1 teach my kids math is like a chain. You just keep linking the chain up.
Everything you get, you just link to the chain. But if I'm not telling where, or
giving them good examples so they can discover where they can link it to ...

The teacher-participants expressed a dissonance between their conceptions of
teaching/learning mathematics and those of the instructors, a mismatch of purposes
and objectives. The teachers looked for objectives that were compatible with the
tradition of school mathematics (Cobb, Wood, Yaekel, and McNeal, 1992), with its
officially-mandated curriculum, its assessment of discrete items, and its clearly
defined borders. Significantly, their view of school mathematics holds for the general
population of teachers (Brown, Cooney, & Jones, 1990; Romberg, 1986). It is likely,
therefore, that the incongruity that emerged between the staff developers'
mathematical conceptions and those of the participants is a fundamental feature of
inservice education.

Predisposition Toward Inservice Education
The dissonance was exacerbated by their prior conceptions of inservice

education. Within a staff development setting, they expected to "pick up things": to
select from the array of new techniques those that suited their classrooms and to
"insert" them into their existing practices. Beverly commented, "I'll pick up things
and I'll try, and I'll throw away and I'll keep." As a consequence, the common
mindset of the teacher-participants was to. analyze the innovative instructional
method, to see it not as a whole philosophy but as a sum of distinct parts to be
considered separately and adopted separately. What they expected to acquire was not
a different approach to teaching but rather discrete lesson techniques that could
enhance and expand their existing practices.
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Personal Definitions of Teaching Mathematics
A teacher's established core of practices, and the conceptions that meld it,

represent years of work, of learning and adjustment, for "practitioners' own sense of
self is deeply embedded in their teaching" (Rudduck, 1988, p. 208). As seen in this
study, teachers' prior conceptions mediated the inservice material, determining its "fit"
and its function in relation to exisitng practice. In the process of determining whether
or not to implement the inquiry method, they actively looked for alignment with their
personal conceptions of good teaching and, if not found, they either modified the
innovation or rejected it. Observations and interviews showed that any change in
classroom instruction corresponded to the individual's definition of teaching and what
it means to teach mathematics in the school setting.

An example was Scott's conviction, expressed before attending Project
Discovery, that only mathematics that could be applied to real problems was worth
teaching: "If I tell them about the Pythagorean Theorem without telling them where
they'll use it, why learn it? It's just mental gymnastics at that point." Later, when he
was, indeed, engaging his class in problems that related to number patterns, for
example, problems that had no direct relevance to applications, he explained that such
problems taught his students "to think," which had the most direct application he
knew to "real life" problems. He had achieved alignment with his personal
philosophy by seeing his earlier goal subsumed into the larger goal of "teaching them
to think."

Primacy of Officially-Mandated Curriculum
For all practical purposes, the official curriculum as expressed through school

guidelines defined school mathematics, and the primary responsibility of teaching. as
perceived by each teacher-participant, was to cover that curriculum. Inevitably linked
to curriculum was preparing students for official district and state assessment. Such
assessment constituted accountability for the teachers as well as for their students.

How to address the very real issues of curriculum and assessment proved to be
concerns, if not outright frustrations, for the teacher-participants. Imani wanted to
know "how to relate this [inquiry approach] with the book that I have, because in the
real world we have a timeline and things that have to be done " and "here Eat the
Summer Institute] they're not on a timeline, but when I jump back into reality at my
school I'm on a timeline, and it's not that I'm pushing toward the test, but I have to
give kids those tests." The common perception was that the staff developers failed to
take into account the working situation of the participants.

With regard to the long-range effect of the inservice, it is notable that the
official curriculum, both content and instruction, remained unaffected by whether or
not the teacher-participant implemented the inquiry approach. That portion of
mathematics which corresponded to official guidelines and which was to be assessed
eventually by official examination, the "real" mathematics, maintained the format and
style adopted by the teacher before the staff development intervention. In the case of
Scott, who came to consider himself a wholehearted proponent of the inquiry
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philosophy, after the inservice experience two ongoing but separate curriculums were
seen to be operating in his classroom. He allotted the majority of his lesson time to
inquiry problem solving and those strategies advocated during the inservice:
cooperative groups, teacher as facilitator, encouraging multiple answers and having
students present their solutions to the class. But he maintained as well a textbook-
driven portion of his lesson time, with problems and pace dictated by the textbook,
teacher-centered explanations, with topics treated discretely and fragmented into
individual skills. Leaving this textbook portion intact assured him that the official
curriculum was covered, which remained his primary responsibility in his definition
of mathematics teacher.

The Classroom as Validator
When I asked Beverly at the end of the Summer Institute what changes, if any,

had occurred in her thinking as a result of the inservice experience, she responded
emphatically:

That question won't be answered until I actually get back into teaching again. I

just feel like I want to try some things and see if they work for me, see if they
work for my kids. ... So I don't see myself answering this a lot, not until I've
started school. That will tell me.

This view of classroom reality as the crucible where new ideas would be tested and
validated or rejected was shared by the other teacher-participants. To determine if
and how inquiry would fit into established practice, they felt they had to experience it
first in their classrooms and see if it "works for my kids." Riseborough speaks of the
"often underestimated symbiotic relationship between teacher and pupil" and points
out that teachers "learn from pupils, they learn what is possible and what is not"
(quoted in Ball & Goodson, 1985, p. 17). Certainly, the feasibility of inquiry teaching
was affected by such structural constraints as the school schedule, availability of
materials, and preparation time. But the teacher-participants saw student response as
a more significant factor--both in shaping the implementation process and, ultimately,
in determining the viability of the innovative instructional method.

Implications
It is a defining characteristic of inservice teachers that they bring to the staff

development setting an established practice, including the conceptions that underlie
that practice. From their vantage point of direct contact with classroom reality, the
efficient operational mode is practical and classroom-oriented: select those discrete
units that are congruent with prior conceptions and insert into existing practice.
Furthermore, conceptions mediate new material as teachers strive to maintain intact
their personal interpretations of mathematics teaching and to fulfill their perceived
primary responsibility of covering offical curriculum. The teachers in this study felt
professionally responsible for "reaching" as many students as possible, engaging them
during the class period, and preparing them for external testing--hence, the teachers'
vulnerability to student response and their adherence to official curriculum. How an
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innovative method maps onto district guidelines, therefore, and how it corresponds to
student expectations relate directly to implementation of educational reforms.

Given the power and persistence of prior conceptions (Duffy & Roehler, 1986;
Wallace & Louden, 1992), those involved in mathematics reform need to address the
various sources of dissonance between established teacher practices and innovative
methods, especially those created by incongruent mathematics philosophies.
Otherwise, those conceptions that underlie existing practice can lead to a re-shaping
of an innovative program into a form that aligns more comfortably with the status quo
and can inadvertently sabotage teacher change.
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The use of levels of subordination to help students gain fluency in mathematics

Dave Hewitt

University of Birmingham, UK

Abstract: There is a current debate concerning the desire for children to have
regular practice in mathematics lessons and to gain fluency over areas of
mathematics such as numerically and algebraic manipulation. In this paper, 1
develop a theoretical model of how fluency can he achieved through the notion
of 'subordination' and the role this plays in successful learning outside the
classroom. I discuss ways in which this notion can he brought into the
classroom. and how successive levels of subordination can help a learner
become so fluent in u skill that they require little or no conscious attention
when employing it a process I name fitnctionalisation'.

The issue of gaining fluency in areas of mathematics has been a subject of debate

recently in the UK' (Barnard and Saunders, 1994; Ernest, 1995; LMS et al, 1995).

This has often become a debate between 'progressive' and 'traditional' teaching

methods, as if traditional methods are the only way of achieving fluency in

mathematics. Although there are exceptions, 'traditional' methods can lead to

mechanistic repetition with little understanding, and alienate many people from

mathematics. 'Progressive' methods, such as the use of investigations can involve

children in doing mathematics but sometimes only involves them in practising low-

level mathematics. Again, although I am aware of notable exceptions, many

investigations, as part of examination coursework, appear to have an expectation of a

certain procedure being followed - collect numerical data from particular cases, put

them in a table, find patterns in the numbers and express these in algebraic notation.

Since an algebraic rule is seen as an endpoint, there is little practice of manipulating

and working with algebraic expressions. Also, the potential breadth of mathematical

properties which might be noticed and skills practised are sometimes lost because of

an almost mechanistic procedure ordoing investigations'. As a consequence, kw

skills are practised except for those relating to spotting number patterns (Hewitt,

1992).
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Outside the classroom

The driving of a car involves skills which are practised on a regular basis. The nature

of that practice involves far more than mere repetition. For example, the movements

involved in changing gear those of hand and feet are rarely practised by a learner

driver when the car is stationary. The aim is not to be able to change gear, but to be

able to drive a car in traffic. Changing gear is a necessary in order to achieve this

aim. Even when changing gear, a driver has their attention mainly on the road rather

than their feet. In fact, attention will drift from one to the other at times, but what is

significant is that attention does need to be on the consequences of the foot

movements, and is not solely on those movements themselves. Thus, this type of

practice involves a skill to be learned (feet and hand movements to change gear)

being subordinated to a different task (the car's movement in traffic). I have

developed elsewhere (Hewitt, in press) this notion of practice through progress

where a skill to be learned is practised whilst being subordinated to progress within

some other task. I say that a skill, A, is subordinate to a task, B, if the situation has

the following features: (a) I require A in order to do B. (This may be an existing

necessity or can be created through the 'rules' of a task); (b) I can see the

consequences of my actions of A on B, at the same time as making those actions; (c)

I do not need to be knowledgeable about, or be able to do, A in order to understand

the task, B.

There are many examples of skills being learned through their subordination to other

tasks. Janet Ainley (1995) said I am reminded.. of discussions with teachers who

feel that children would need to learn keyboard skills before they could use Logo or

a word processor, so that they don't become frustrated by their slow typing. I point

out that I developed my (quite considerable) typing ability mainly through

programming and writing at the keyboard (p16). Dewey (1933) talked of the

practice involved in developing the human senses: Sense perception does not occur

for its own sake or for purposes of training, but because it is an indispensable factor
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of success in doing what one is trying to do (p249). He goes on to say that Training

by isolated exercises leaves no deposit, leads nowhere; (p250).

Mathematics classrooms

Laurinda Brown (1991) talks about a series of lessons concerning matrices, where

children are learning and practising skills whilst working on other tasks: if an

individual had a problem with plotting coordinates in the early stages of the

investigation, it was soon sorted out because of the frequency of use of the data

(p13). I have developed approaches to the learning of formal algebraic notation (OU,

1991; Hewitt, 1994; Hewitt, in press), where the notation is introduced and

immediately subordinated to the task of finding my number after I said, purely

verbally, various operations which had been carried out. For example, "I'm thinking

of a number, I add seven, multiply by five, take three and I get fifty-two". The

children have already worked out how to reverse the order and use inverse operations

and so can find my number. However, I deliberately give such a long list of

operations that they cannot remember them without having a visual reminder. It is at

this stage that I write something down for the first time, and write out my series of

operations within formal notation, such as the one below. The children have no

choice but to go through the notation in order to know what operations were done,

and so find my number.

6
2

(5(x +7) 3
+8)- 4 = 200

Emma Brown used this approach with a mixed ability class of 13-14 year olds, and

found that all of her students became confident in using and interpreting algebraic

notation very quickly. One student who had difficulty with the work, Donna, made

several 'errors' (see below). However, what had been subordinated to this task of

doing things to an unknown - the use of standard formal notation - was correct. This

is not an isolated example. I have found with this activity that what is subordinated

in the activity - formal notation - is retained by children over a long period of time.
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In contrast to this, after a similar period of time, children become a little uncertain

about solving equations, which had been a major focus of attention during the

activity.
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This is quite a different model of learning compared to traditional repetitive

exercises because attention is deliberately taken away from what is being practised

and placed on a task in which it is subordinated. Thom (1973), in his discussion of

the modern mathematics movement, discussed the possibility that it is not always

desirable to make everything explicit by making it the focus of attention. He was

critical of the assumption that By making the implicit mechanisms, or techniques, Of

thought conscious and explicit, one makes these techniques easier. [his italics)

(p197). Practice through progress has purpose because there is a need to carry out the

practice in order to gain progress in a task. The model is also different to 'discovery'

methods which are based on the notion that because someone has found something

out for themselves, they are more likely to remember it. The subordination model

acknowledges the need for practice and recognises that meeting something once,

albeit by discovery, is not likely to be sufficient for something to be retained over a

long period of time. Furthermore, there is a significant difference between

consciously discovering a particular skill or property, and using that skill or property

fluently in novel situations. Practice by progress is always concerned with

subordinating and so applying that skill or property to other situations where it is
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needed. Thus, subordination not only offers practice but also situates a skill within

relevant and changing contexts.

Levels of subordination

I invite you to do this exercise before continuing to read: The word suboardinasion

is misspelt. Write down (don't just think!) how it should be spelt.

When I have asked people to carry out such an exercise, no-one has commented to

me that their attention was placed in the required movements of their lingers in order

to write the letter d. There are complex manoeuvrings of the lingers required in order

to carry out the challenge of drawing a LI. I can no longer recall my own personal

experience of learning to draw this letter. However, I can observe young children

engaged in the challenge and notice that it is far from a simple task. I can observe

that there is great concentration and effort on behalf of a child when learning to write

this letter. 1 can deduce that the same must have been true for me, and for you. Yet

here you are, successfully writing this letter with little or no conscious attention

being placed in the physical activation of muscles required to write it. This exercise

provides the opportunity to become aware that there are skills you subordinate at an

unconscious level. Your attention is placed in a challenge at a higher subordinate

level (in fact many levels higher) of writing the correct spelling of a word. In fact, we

have become so good at writing a single letter, that we are able to do so at any time it

is required and need give no conscious attention to doing it (or such a small amount

as to be negligible compared to the conscious energy given to the main task).

Gattegno (1971) described such things asitinctionings. 1 have called the process of

something becoming a functioning as functionalisation. This process is a result of

successive levels of subordination. This hierarchy of levels is only a hierarchy of

subordination within particular situations. There is no absolute hierarchy. For

example, a computer graph drawing package might be used with a task of trying

different values for a and h in the equation y=ax -fb in order to get a straight line
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which goes through two points on the screen. With the constraint that it is only

through typing in an equation that a line is drawn, choosing the values of the

coefficients in the equation y=ax +b is subordinate to the drawing of a particular line.

Alternatively, a different computer program could be used, such as Cabri II, where a

line within a co-ordinate system can be 'picked up' and dragged. As this happens, the

equation of the line, which is also on the screen, changes accordingly. Thus, a task

could be given to students where they have to move a line on the screen so that the

equation reads y=3x - 5. With the constraint that the equation cannot be changed

directly, the position and orientation of the line is now subordinate to the changing of

the coefficients a and b in the equation y=ax +b.

One example of a chain of subordination is expressed by the following questions a

young child may engage in whilst learning their first language. Each new task

subordinates the skills developed in the previous task:

What noises can I make with my lungs, mouth, throat, tongue, lips,...?
Can I make a combination of noises (a word)?
Can I repeat particular words on command?
Can I say words which sound similar to the words I hear adults say?
What words are associated with particular objects or actions?
Flow are words joined together (a sentence)?
How are words and sentences transformed according to time and context?
Can I express my thoughts and feelings in accepted sentences?

A possible chain of questions within algebra is:
Can I find the unknown number, when the list of operations is too long to recall
without the help of notation?
Can I rearrange one equation so that a particular letter/number can end up in a
different position relative to the equals sign? How many different positions can it
take?

Can I use my manipulation skills to tackle simultaneous equations?

9 3 3 86



Successive levels of subordination can help a learner gain fluency with a skill. Once

a skill is known, it can also be examined. Vygotsky (1992), in talking about the

development of a mental function says that In order to subject a function to

intellectual and volitional control, we must first possess it (p168). The desire for

something to be used and practised before being'subjected to conscious attention and

examination does not imply that the only method to achieve this is through rote

learning without understanding. Sfard and Linchevski (1994) offer a warning about

this by discussing a difference between a practising mathematician and a learner of

mathematics: The problem is that unlike the mathematician, the student may easily

become addicted to the automatic symbolic manipulations. If not challenged, the

pupil may soon reach the point of no return, beyond which what is acceptable only

as a temporary way of looking at things will freeze into permanent perspective...It

seems very important that we try to motivate our students to active struggle for

meaning at every stage of the learning (p225). Functionalisation offers a way to

achieve the practising and using of a new skill through its subordination to a clearly

understood task. In this way, a student can work at the task with clear awareness and

understanding of what they are doing, it is just that the task involves the frequent use

of a new skill in order to achieve that task. This is quite different to the student being

told to follow a procedure and repeat it with no clear understanding.

Functionalisation is a powerful notion because it describes so much of the successful

learning we have all done. Functionalisation describes the process by which you

have been able to develop the skills required to read this paper. Had these skills not

been so well subordinated then you would not have had the energy available to

engage with the ideas I have attempted to describe within these sentences.

II am also aware of a similar issues within the USA. For example, there is a Web site in the San Diego region
(http://ourworld.compuserve.com:80/homepages/mathmant) where a group are campaigning for traditional teaching
methods such as memorisation and drill.
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ABSTRACT

This paper offers an analysis of the development of pupil understanding in a group work situation

involving classroom activities ionising multimedia. Use was made of the National Curriculum

Council sponsored multimedia package "World of Number" (Shell Centre et al, 1993). The study

was carried out with a Year 9 (14115 years) mathematics class working on graphs of relationships

benveen distance, speed and time. The paper is an extension to that presented at PME 19 (Hudson,

1995) in a number of ways. Firstly a fuller analysis of the social interaction within the group is

offered. Secondly the interpretation of the development of pupil understanding is informed by

insights gained from literature which emphasises the need to move away from a focus on

discontinuity, and the notion of "misconception" in particular, towards one which emphasises the

importance of continuity in the development from novice to expert knowledge.

INTRODUCTION

The paper begins with an outline of the background to the study and there then follows a full

description of the classroom activities and associated resources. My theoretical perspective is

outlined in the following section, followed by a description of the methods of data collection and

analysis. A framework for the analysis of the resulting social interaction is then considered. There

then follow a number of examples of classroom interaction, in the form of video tape transcripts

which are analysed in some detail. The development of pupil understanding is considered, with

particular regard to one pupil especially. Finally the results of this study are discussed in the

concluding section.

BACKGROUND

The classroom research was conducted as part of a wider project involving the investigation of the

potential of group work using multimedia. It was designed to fit in with the planned scheme of

work when the group was due to do a two week unit of work on graphical interpretation involving

graphs of motion. The topic was introduced as a whole class activity by means of a dice game

played in pairs which involved plotting the change of position dependent upon each throw of the

dice. The aim of the game was to get to the finish first. Following this activity one of the units

from the World of Number package was introduced to the whole class with the aim of setting the

context and giving the pupils a sense of what to expect in terms of the future activities on the

system. The chosen element was the video clip of the women's 100m race in the Seoul Olympics

from the unit Running, Jumping and Flying. Following the whole class discussion of what the

graphs of speed and distance against time.might look like some groups began working on the

activities at the system
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A group size of three had been agreed with the class teacher, with the aim of creating the

conditions for effective interaction. Each group was allocated an initial period of thirty minutes for

intensive work at the system. The practical limitations were eased considerably by the use of two

systems. In addition to the original laser disc package the school also had the use of the CD ROM

version. This provision enabled four groups to carry out the multimedia-based activities in a one

hour lesson and for each group to have a turn over the period of a single week. The class was

timetabled for two lessons of approximately one hour and one of half an hour per week.

MULTIMEDIA-BASED ACTIVITIES
The unit is made up of video clips of various examples of motion, several of which are sporting

events from the Seoul Olympics as detailed in Figure 1. Each sequence has two or three graph

options associated with it. For example, in the sequence shown in Figure 2, the chosen axes in the

bottom left hand window are height and time. Other choices might be distance against time and

speed against time. This would give three graphs to choose from in the bottom right hand window.

The combined choice is illustrated in the top right hand window.
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The main aims of the multimedia-based activi y were to promote discussion and provide time for

reflection. The activity was structured in such a way as to encourage the following process: select

and view a video sequence, think about the distance-time graph, sketch the graph, compare graphs,

choose a graph which fits your ideas, explain to each other why a particular graph does or does not
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fit, test out choice on the system and finally repeat the process with a different choice of axes. This

can be summarised as a cycle of observation. reflection, recording, discussion and feedback (test).

as summarised in Figure 3.

Figure 3

THEORETICAL PERSPECTIVE
The theoretical perspective underpinning this study is based on the work of Vygotsky (19621 and

in particular the Vygotskian idea of co-construction as a mechanism for cognitive change. Also of

significant influence has been the work of Forman and Cazden (1985) who note that when we try to

explore Vygotskian perspectives for education, we immediately confront questions about the role

of the student peer group. Forman and Cazden point towards Vygotsky's notion of internalisation,

by which the means of social interaction, especially speech, are taken over by the child and

internalised and how development proceeds when interpsychological regulation is transformed into

intrapsychological regulation. They further highlight the importance of Vygotsky's notion of the

zone of proximal development and his hypothesis that children would be able to solve problems .

with assistance from an adult or more capable peer before they could solve them alone.

In Hudson (1995), Vygotsky's notion of the function of egocentric speech is discussed in relation

to the development of one pupil's understanding in particular. This analysis is developed further in

this paper by drawing upon Confrey's (1995) discussion of the socio-cultural perspective and in

particular the dialectic between thought and language, to which she pays particular attention. She

outlines Vygotsky's argument that thought and language have different roots. Speech which is the

basis for language evolves out of gestures and affective responses whilst thought, and particularly

logical thought, evolves from the child's activity and the use of tools.

Vygotsky's notions of spontaneous and scientific concepts are also utilised in this paper.

Scientific, or systematic, concepts are seen to originate in schooling whilst spontaneous concepts

emerge from the child's own reflections on everyday experience. Spontaneous concepts are seen to

work their way upwards towards greater abstractness thus clearing a path for the downward

development of scientific concepts towards greater concreteness.

The analysis of the development of pupil understanding is also informed by the work of Smith,

DiSessa and Roschelle (1993/94) who suggest that "the fact that students have mathematical and

scientific conceptions that are faulty in a variety of contexts can be refrained to highlight their

useful and productive nature as well as their limitations". They argue that misconceptions research

has focussed on discontinuity although "there is substantial evidence that the form and content of

novice and expert knowledge share many features". In support they argue further that expert



reasoning involves prior, intuitive knowledge that has been reused or refined and suggest that a

fundamental shift is needed in terms of conceptualising knowledge "as a complex system". They

agree that the origins of misconceptions lie in prior experience and learning but that conceptions

which lead to erroneous conclusions in one context can be quite useful in others. They also note

that learning difficult mathematical concepts will never be effortless but also that the support, reuse

and refinement of prior knowledge will be an essential prerequisite. They also draw attention to the

fact that the notion of replacement of new expert knowledge together with the deletion of faulty

misconceptions "oversimplifies the changes involved in learning complex subject matter". Further

they draw attention to the fact that misconceptions considered to be extinguished often reappear.

They recommend that the goal of teaching should not be to replace misconceptions with expert

concepts but rather to "provide the experiential basis for complex and gradual processes of

conceptual change".

DATA COLLECTION AND ANALYSIS

The overall approach to the collection and analysis of data was consistent with that outlined by

Hamilton and Delamont (1974) who offer an analysis of what they broadly term "anthropological"

classroom research. They describe the anthropologist as one who uses an holistic framework,

accepts as given the complex scene which is encountered and takes this totality as the data base.

There is no attempt to manipulate, control or eliminate variables. At the same time there is no

attempt to claim to account for every aspect of this totality in the analysis. A characteristic of the

process is that the breadth of the enquiry is gradually reduced to give more attention to the

emerging issues. From starting with a wide angle of vision enquiry zooms in and progressively

focuses on those classroom features that are considered to be most salient. Thus they argue such an

approach clearly dissociates itself from a priori reductionism which is characteristic of the more

traditional scientific approaches. This approach is also consistent with that of Eisenhart (1988)

who considers the relevance of the ethnographic research tradition specifically in relation to

mathematics education, and who observes that, central to such an interpretivist approach, is the

assumption that all human activity is fundamentally a social and meaning-making activity.

The data was collected by video recording the work of groups working on the multimedia-based

activities. The approach to the analysis of the resulting classroom discourse was particularly

influenced by the work of Mercer (1991). The focus of the study reported on by Mercer is the

content and context of educational discourse in a computer environment from a Vygotskian

perspective. The analytic methods adopted are similar to those of ethnography and involved the

complete transcription of all the discourse recorded on videotape.

INTERPRETIVE FRAMEWORK

In approaching the analysis of the data arising from the peer interaction, the need for an

interpretive framework soon became evident. The approach adopted by Teasley and Roschelle

(1993) was found to be particularly resonant and was consequently adapted to form the chosen

framework. A framework for the analysis of collaboration is outlined, which the authors argue

involves not only a micro-analysis of the content of students' talk, but also how the pragmatic
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structure of the conversations can result in the construction of shared knowledge. In order to

understand how social interaction affects the course of learning, Teasley and Roschelle argue that it

requires an understanding of how students use coordinated language and action to establish shared

knowledge, to recognise any divergences from shared knowledge as they arise, and to rectify any

misunderstandings that impede joint work. 'The notion of "a shared conception of a problem" is a

central one and this is used as the basis of what is described as a Joint Problem Space. It is

proposed that social interactions in the context of problem solving activity occur in relation to a

Joint Problem Space (JPS). This is defined as a shared knowledge structure that supports problem

solving activity by integrating goals, descriptions of the current problem state, awareness of

available problem solving actions and associations that relate goals, features of the current problem

state and available actions.

ANALYSIS OF CLASSROOM ACTIVITY

In this episode of classroom interaction Philip, Neil and Jonathan are watching the video sequence

of a jumbo jet landing. The axes are initially set on height against time.

I p, It doesn't start off ...
Watch this. Height against time.

2 N: Speed against time that.

3 p: Yes but no. We've got to choose which height
against time is the right one.

4 Let's have a look.

5 N: Yah! Oh! How come it does all the wavy lines?
It goes straight down.
It doesn't go up and down does if?

6 11: Well change it! Have a look ...
7 I P: No but the nose goes up, doesn't it?

8 I N: No! That's not it!
9 11: That's not it!

10 It's taking off that, isn't it'!

Philip runs the video.

The axes are set on height against time.

Trying to clarify the task.

Referring to graph
option 1.

Making a diagonal downward wavy motion.

Making a diagonal
downward smooth motion.

Referring to graph
option 2.

Philip gives a lead at the start of this episode. At line I, he identifies the problem as being about

height against time. However Neil takes his turn by responding to the video with the observation at

line 2 that it is "Speed against time that". Philip's response at line 3 appears to be contradictory

when he replies "Yes but no". By this he may have been indicating that, "yes", the graph showing

is the correct choice to fit the speed against time axes but that, "no", it is not addressing the current

problem which is "to choose which height against time is the right one." In doing so, Philip seems

to be attempting to clarify the task, i.e. to establish the Joint Problem Spate (JPS). Jonathan takes

his turn to try to move progress with the task itself, when he suggests at line 4 "Let's have a look".

Neil's response to the video sequence at line 5 would seem to be based upon an expectation of a

smooth line. However Philip is able to offer an interpretation of the graph, when he observes at
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line 7 that the nose of the aeroplane "goes up" on landing. The final comment in this section from
Neil, at line 10, displays evident confusion between what he interprets from the graph and what he

observes by watching the video sequence, which is clearly of the plane landing. The fact that the

graph is rising from left to right suggests to Neil that this is the flight path of the aeroplane. taking

off. This confusion in his thinking was apparent in an earlier episode, when in response to a

question about what was happening to the distance covered, Neil's reply was: "it's going up.
Higher" which was in contrast to Philip who answered: "It's getting greater".

It would seem that Neil's difficulty is related to the fact that he is describing the picture that he

sees on the page i.e. "It (the line) is going up (the page). Higher (up the page)". The inability, at

this time, to distinguish between the representation of the motion pictorially and the motion itself

would explain why Neil interpreted graph 2 as showing the aeroplane taking off.

The next section is later in the same episode when the group is considering distance against time.
II 3: Do you want to change that one? Referring to the choice of axes.

12 P: Yeh, I've done that. It's distance against time
now.

13 N: Distance is going down?
No! How could it be going down distance?
Oh, it's just landed.
But its times going up!

14 I P: What?
15 I is The distance? It can't ... can't ...
16 I ... go down. It just goes up.
17 N: I know it can't.
18 I P: So, why does it look like that then?

Referring to graph option I.

Looking at graph option 2.

Jonathan's question at line 11 is an attempt to clarify the nature of the task. Philip responds

directly by indicating that he has chosen the axes to be considered and elaborates further that "It's

distance against time now". Neil's stream of utterances at line 13 seem to form a narration of his

current thinking, which once again appears to be very confused. He seeks to interpret, the graph in

tenns of the possible motion of the aeroplane. His first utterance relates to a perception of the

distance going down rather than decreasing. He seems to dismiss this as a possibility but then

refers to the fact that "it" (the plane) has "just landed". He concludes with the utterance "But its

time's going up!" without being clear about what "it" refers to.

In response, Philip simply asks "What?", at line 14, and Jonathan attempts to repair the

understanding, at line 15, by beginning to suggest that the distance can't decrease. However Neil

does not allow him to finish and completes his sentence for him with "... go down. It just goes up."

Although this completion is distributed over a single sentence, there is evident conflict within the

group in terms of their shared understanding. Philip intervenes at line 17 and asserts that "[ know it

can't (go down)" which elicits the question from Neil "So, why does it look like that then?".

DISCUSSION

In this episode Philip gives a lead on a number of occasions which take the form of clarifying the
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problem or establishing the JPS. He does this at the start of the episode (lines I and 3) and also

later at line 12 when the axes had been changed to distance against time. In doing so, he is assisted

by Jonathan who, for example, at line 11 asks "Do you want to change that one?". Jonathan is also

influential in moving the group forward when he suggests "Let's have a look" and also "Well

change it! Have a look ..." at lines 4 and 6. By contrast, Neil's utterances are based on his

reactions towards what he sees on the screen. He is also much less clear about what it is that he is

describing. For example at line 5, he seems to use "it" to refer to two things without being clear

about the distinction between them i.e. the aeroplane and the representation of its path in the form

of the graph. He is again unclear at line 13 in terms of what "it" refers to. In fact Philip responds

directly to Neil's question at line 18 by staling that "it starts from the bottom and goes up". In

doing so, Philip is clearly referring to the graph although this is not explicitly stated. He

subsequently asserts that "It's got to be that" and appears to be quite certain. This graph option is

the only one which "starts" at the origin or in Philip's words "starts from the bottom and goes up".

Neil is also convinced by the time the group comes to test out their choice on the system and

exclaims that "It is right. Because the distance goes up and so does the time, ut the same time!".

In Hudson (1995) Neil's confusion was described in terms of a misconception. However as Smith.

DiSessa and Roschelle (1993/94) observe. in emphasising the discontinuity between novice and

expert knowledge the potentially "useful and productive nature" of such can be lost sight of.

Initially Neil does not display confusion of a significant nature but merely asks why "it does all

those wavy lines". On first seeing graph option 2, he is quite sure that it is not the correct graph and

asserts at line 8 "No! That's not it!". Subsequently he reacts to the graph by seeking io interpret it in

terms of the potential motion of the plane and it is at this stage that the idea of the plane taking off

is introduced. He again responds to the graph showing on screen at line 13, with a stream of

utterances which display considerable confusion on his part.

As discussed in Hudson (1995), Neil's use of language is resonant with Vygotsky's notion of

egocentric speech. In highlighting the dialectic between thought and language Confrey (1995)

draws particular attention to Vygotsky's argument that these have different roots and hence that

there are two distinct lines of development which eventually lead to a synthesis. Vygotsky

proposed that speech can be considered to have two particular forms which he describes as

egocentric and communicative respectively. The function of communicative speech is for the

purpose of communication with others whilst the function of egocentric speech is as an instrument

of thought itself. Vygotsky develops this view of the function of egocentric speech, by arguing that

all silent thinking is "nothing but egocentric speech". Vygotsky also notes that children resort to

egocentric speech when faced with difficult situations. He argues further that egocentric speech is

the genetic link in the transition between vocal and inner speech.

Many of Neil's utterances are consistent with egocentric speech, in contrast to both Philip and

Jonathan whose utterances seem to follow from their own reflections on the situation. Neil's level

of achievement was in fact one of the lowest in the class and his performance on the delayed post-

test was slightly worse than on his pre-test. These results suggest that Neil's confusion deepened
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over the course of time and this is illustrated by his response to

being asked to describe a story to fit the graph in Figure 4 (the

axes are distance from home against time). Neil's response was:

"An aeroplane coming out of a hangar and getting on to the

runway it pauses for a little while and hovers forward into

the air but stops for a while then it comes back down again."

This interpretation completely ignores the fact that the graph is

of distance against time and not of height against time. However

for a graph of height against time it would be one possible interpretation.

Further it suggests that Neil's spontaneous conception is of a graph of height against time. This is a

situation with which he is comfortable in which he is utilising prior, intuitive knowledge- although

not necessarily answering the question put. The real difficulty for Neil seems to arise when the

transfer from the motion to its graphical representation is not in the corresponding plane, which
appears to be the case with height but not with speed and distance. This example is an illustration

of how misconceptions which are considered to have been extinguished often reappear and it also

highlights the need to provide pupils such as Neil with further experiences as the basis for

"complex and gradual processes of conceptual change" (Smith, DiSessa and Roschelle, 1993/94).
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This paper reports on one strand of ongoing research on 13-15 year old
students' understanding of algebraic expressions, that of students'
proceptual understanding. ln preparation for a larger study tools for
assessing students' proceptual understanding of algebraic expressions
through test items were developed. Students who had shown evidence of
proceptual understanding were subsequently interviewed to evaluate these
written tools. A number of issues surrounding the assessment of proceptual
understanding are discussed including the method of assessment, the
context of the question and students' technical skills. The extent to which
conceptions can be ascertained from test items alone is discussed.

Introduction

Research is currently being conducted to determine the effects of a cognitive conflict,
intensive discussion approach to teaching and learning algebra (see Bell, 1986). This
research requires an understanding and categorisation of students' concepts
surrounding the use of letters and expressions (see Perso, 1991). There are two main
areas of investigation, the concept the student has of letters within expressions and the
strategies and errors involved when working with expressions. However, there is a
third, subsidiary, but interesting area of understanding that of the expression as a
whole. This brings in the ideas of understanding the expression as representing a
procedure to be carried out, or as a structural object (concept) that can be
manipulated. PME has been an important forum for developing these ideas which
Sfard (1989) calls 'structural and operational' and Gray & Tall (1991) call
'proceptual'. We use Gray & Tall's terminology here.

We shall refer to the combination of process and concept represented by the
same symbol by the portmanteau name 'procept'. (ibid, p.73)

Why have we chosen to focus this research on students' understanding of letters in
expressions rather than equations? The issues surrounding students' understanding of
letters are, on the whole, similar in both equations and expressions. However, the
study of equations tends to bring in several features that add to students' difficulties
without necessarily shedding much light on their understanding of letters. For example,
when students have to solve equations, there are a number of procedural as well as



conceptual difficulties that need to be overcome. With a study focusing on expressions
we hope it will be easier to isolate the conceptual difficulties from the procedural
ones.

As part of the research methodology, groups of students were given a diagnostic test.
Test items were designed to elicit students' conceptual understanding of letters within
expressions and their strategies for working with letters in expressions. Other test
items were designed to provide information on students' proceptual understanding

This paper discusses some of the issues surrounding the notion of procepts and the
categorisation of students as having a proceptual perspective. The research reported
here is in its pilot phase and is working towards a classification scheme that allows
students' responses to be categorised as procedural, conceptual or proceptual. Various
`working criteria' couched in terms such as 'two or more different but correct
answers', 'reasonable justification other than the same but written differently' and
`ignore purely spatial rearrangements of terms' were considered.

Methodological issues

There are a variety of methods that can be used in order to glean some evidence about
the way in which students think. However, as Sfard and Linchevski (1994) point out,

"a painstakingly detailed scrutiny of student's behaviours and utterances ...

is necessary to have some insight into his or her thinking". (pp.192-193)

Our research involved giving 80 students a diagnostic test aimed at obtaining
information on their understanding of letters and the strategies and errors observed.
Within the context of the wider research a detailed scrutiny of proceptual
understanding was impractical. So what value can we place on responses to test items
designed to elicit students' proceptual understanding?

A test will only give the conclusions of students' thought process and does not give
much, if any, evidence about the way they arrived at their written response. To
provide further evidence to support the written outcome, a small sample of the
students that took the test were interviewed about responses that appeared to show a
proceptual understanding. Students were asked to justify their previous answers and
answer some related questions during the interview. One of the issues that was
explored in the interviews was the part placed by the context of the question. Some
questions used diagrams to act as a visual representation of the algebraic expression
did students reach their answer through the medium of the diagram rather than from
consideration of the algebraic expression alone?

Test items

Only those items relating to proceptual issues are presented here. These items were
used as a basis for the subsequent interviews.

1 98



Question 1

You can write down the area of this rectangle as 3a + 6h.
Write down as many other expressions as you can for the
area of this rectangle.

Question 2

You can write down the area of this rectangle as 4(a + h).
Write down as many other expressions as you can for the
area of this rectangle.

3

4

2b

a b

Question 3

a) What does x + 2 + x + 2 give when x = 6? b) What does 2x + 4 give when x = 6?
c) What does 4 + 2x give when x = 6? d) What does 2(x + 2) give when x=6

Explain how the answers are linked. Explain how the expressions are linked.

Question 4

You can write down the area of this rectangle as n + 5
multiplied by 4. Write down as many other
expressions as you can for the area of this rectangle.

4

n 5

Students' responses to the test items

The responses given below are from eight 14-15 year old students who were
interviewed after having their test responses were analysed. These students were
selected as a sample from those students who showed some evidence of a proceptual
perspective on one or more of the four questions above. The test and protocol data
described below is representative of the different types of responses that the students
gave during the test and the interview.

The difficulty of defining what a 'concept' is leads to difficulties in defining a
procept. This, however, is compounded when assessing proceptual understanding
through test items. As students with proceptual understanding will not only be flexible
about which perspective they are using, but also ambiguous. The key aspect of
students' work that needs to be seen is that they can use an expression conceptually.

Question I asked students to give expressions that are equivalent to 3a + 6h. Student
S gave four expressions on the test:

3(a + 2h ) a -f a 4- a +6h

3a + )1) r )1) )1) a + + a + 11) + )1) r2h.



This set of responses shows that student S can represent the same expression in a
number of different forms. Student S was then interviewed and explained her
responses using the rectangle, but perhaps only as a 'prop', as above. S was then
presented with a further rectangle and gave the answers 6xa + 2b, 6(a + 2h), 8(b + a).
The last answer here was derived from adding all the numbers round the rectangle
(3, 3, and 2). This latter response shows the difficulty of any form of assessment, that
a student might respond correctly on one occasion and incorrectly on another.

Question 2 requires the students to give as many algebraically equivalent answers as
possible to 4(a + h). Student S gave the following answers on the test:

a + h4 a +b +a +h +a +b +a +h a+a+a+a+b+b+h+b.
The first answer shows a misunderstanding of the use of brackets, but do the next two
answers show a proceptual understanding? When interviewed about the question, S
explained that a + h4 meant 4 times a and h. This seems to show a flexibility of
understanding, but not one that is generally accepted! The issue here is whether
technical errors alter students' proceptual perspective.

Student J seems to show a clear conceptual understanding of 4(a + h) on the test, as
the following answers were given as equivalent

4a + 4b a+a+a+a+b+b+b+b
4a +b +h +h +h 4h +a +a +a +a.

However, when interviewed, J said "they all equal the square", indicating that the
understanding was perhaps more due to the diagram used to give the question greater
meaning. J also went on to say that the expressions were "the same answer but
different ways of writing it". Is this simply the use of 'answer' to mean 'expression' or
has the question been understood as implying a numerical result? During the interview,
a follow-up question was asked that did not use the rectangle as a context or
representation for the algebraic expression. In this case, J wrote

3x + 6v x+x + x4-y+y+y+y+y-Fy
X + x + x + 6y 3x +y+y+y+y+y+y

as equivalent to 3(x + 2.v). This shows that, although the explanation during the
interview implied that the diagram had been used, it seems that this may have been
more an aid to explanation rather than an aid to understanding.

This use of the diagram was even clearer with student M, who explained in the
interview that "I multiplied the first box, well 1 found the area of the first box by
timesing that length by 4 and I did the second one and I added them together...".
However, when asked a similar question without the diagram, the student could still
explain that 3(x + y) was equivalent to 3x + 3y and x + .r + x +y + y + y.

Question 3 was a different style of question and first asked for an explanation of why
the answers to each pail of the question were (or should have been!) the same. The
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second part asked why the expressions were the same, with the first part of the question

being used to try to avoid students simply saying that the answers were the same.

Student T gave the answers to the first part of the test item as a) 16, b) 30, c) 30, d) 16

(the answers of 30 were arrived at by considering 2x to be 26 when x = 6, a 'category
one' type error according to Perso (1991, p.11)). The student then wrote down that

'The expressions for the answer 30 are the same but in a different way and the same
for the answer 16'. Whilst 2x + 4 and 4 + 2x can be seen to be the same but in a
different way', was this how the expressions x + 2 + x + 2 and 2(x + 2) were seen, or
is the last part of the students explanation merely an afterthought following from the

fact that the answers were equal?

This was followed up in the interview (1' being the interviewer).

T: For the 16 that just says .v add 2 add x add 2 it is just saying that 2 times x
add 2 is the same answer.

So the answers are the same, what about this algebra... Can you tell me
they were the same from there?

T: . Yes, if you add brackets in, that will be ... 2 times x plus 2.

From a not very promising start, which seemed to show that the student had only
compared the answers, T then gave a reasonable algebraic justification why the two
expressions were equivalent.

After' correctly evaluating each of the expressions on the test as being 16, student L
explained that the answers are linked "because it's the same question only put out
different", and explained that the expressions are linked "because it means the same
thing". When interviewed, the student gave the following responses.

L: They all add up to the same thing.

Can you look at the letters and numbers and tell me, can you see a
connection between the letters and numbers as well?

L: No reply.

This student seems to have viewed the expressions in a purely procedural way.

Question 4 again asked students to give alternative expressions for n + 5 multiplied by
4 with a split rectangle displayed. Student M gave the following answers

(5 + n)4 5 + 5 + 5.+ 5 + + + n + n.

These were then discussed during the interview.

M: Well I added those two lengths together first so it is 5 plus n then I timesed
them by 4 and then I wrote down 5 plus 5 four times and 1 added n and I
wrote that down 4 times.

Can you write an expression that Means the same as x plus 4 multiplied by 3?

M: 3(x + 4) 3x4 3.v
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From the interview, the student seems to be making use of the diagram, although the
second expression is nut related to the diagram at all and the student is capable of
working without the diagram at all.

Discussion

One problem we anticipated was the difficulty of assigning meaning to an expression
such as 3(u +2h) when no numeric substitution was required. The expression may
appear as an abstraction with no immediate reference (no 'sense' and no 'reference' in
Fregian terms). This is why we initially inserted the split rectangle in questions 1, 2
and 4 intuitively, at the time, to make it accessible to the students. In retrospect we
believe our motive was to give the expression 'meaning' by providing a reference. But
in doing this we,htde our piticeptual analysis of students' responses more
difficult because the figure may convey both process and product the figure may
present both one rectangle and rwiirectangles forming a sum rectangle. For many
learners it will, su nsciously, do both things at once, i.e. it will present a flexible
and ambiguous procept iereas a similar question without a figure appears less likely
to prompt both process and product. Both forms present representations of an
algebraic procept. But

"A representation does not represent by itself it needs interpreting and, to
be interpreted, it needs an interpreter." (von Glaserfeld, 1987).

But how do we interpret the interpretation of the interpreter? Further there are many
forms of representation (ibld). The figure appears as an (indirect) iconic representation.
Piaget's distinction between figurative (relating to the observable) and operative
(relating to inference) knowledge has relevance here (see Furth, 1977). But, as Furth
makes clear, the distinction is problematic for what is observed is a function of what
the learner already knows. This problem is evident when we attempt to analyse the
protocols. Student S in question I explained her responses in terms of the rectangle
but perhaps only as a 'prop'. Student J, we felt, may have been using the rectangle as
a vehicle to assist the explanation to us. Student M focused on the rectangle initially
but later 'appeared' to function without reference to it.

A problem that we have with procepts is with concepts. Skemp (1971, p.27) states
that "concept itself cannot be defined" but notes that we may "describe some of the
characteristics of concepts". This is not an argument in itself against the term procept
but should cause us to take care with the term. It may also partially explain why some
people find they 'cannot get a handle' on procepts. Dubinsky (1991) and Sfard (1991)
by-pass some of these problems by speaking of process-object rather than process-
concept. Reflecting again on our intuitive intentions in the wider research related to
categories and hierarchies of students' conceptions of expressions, we happily speak
to each other of students' concepts and their conceptual understanding but experience
difficulty when called upon to explain this. Further, as the two interview extracts from
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student T suggest, some students appear to have a conceptual understanding that is

grounded in handling expressions in a procedural manner.

Let us take this theme a little further for it relates to difficulties in developing criteria

for categorising students' responses as showing proceptual understanding or not.

Following Fischbein et al. (1979) we note the labile nature of some students'
conceptions. An example of this is the response of student S to question 1. Here the

student seems quite capable of a conceptual response on the test. However, when
interviewed and given a very similar question, also with a diagram, the student

responded in a way that was not obviously proceptual. In this example, the student's
understanding seems to have changed between the test and the interview. The reasons
for this may be manifold, but it seems that some important variables include the

method used to assess the student's understanding, the context of the question and the

student's grasp of the concept itself. The student may have been more able to reflect

on the question in a test, but felt under pressure to put down a rapid answer in an
interview. The diagram was slightly more complex in the interview and this may have

meant that, whilst the student had the understanding necessary to cope in a certain set
of situations, this understanding was no longer sufficient for the new situation. It is
also important to consider that when a student has partially attained an understanding

of a concept this may be exhibited by a conceptually correct response on one occasion

and an incorrect response on another, even on identical questions.

A related difficulty in assessing students' understanding from a test is the part played
by the student's technical ability. This is shown by student S on question 2 where the

first answer is given as a + h4. This is algebraically incorrect, although the student

explained during the interview that this expression meant 4 times a and b. The

student's meaning on the test item is hidden by a technical error, but from the
interview is seems that the student does have the conceptual understanding. In a
similar way, student T's response to question 3 contains a place value error when
substituting x = 6 into two of the expressions. This student then went on to give an
almost 'textbook' explanation of why two expressions are equivalent, but a similar

technical error could have resulted in the equivalence of the expressions being
overlooked by the student.

Conclusion

As in many situations, a single administration of an assessment item reveals very little
of a student's underlying understanding. The responses are affected by many external
(to the student) factors such as the context of the question and the method used to

assess their understanding. There are also barriers between what the student
understands and what the student writes down or says. In the case of a test, technical
errors in what is written down may mask a conceptual understanding either to the
student or to the assessor or both. Students who are just developing a concept that is
being assessed may sometimes exhibit the concept and sometimes not.
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The issue of technical errors masking the assessment of conceptual understanding is
an important one. Students may still understand the concept even if there are errors in
their technique, for example with the consistent use of brackets. However, students'
ability to express their thoughts to others are impaired, and our ability to interpret
them is much impeded, without extensive follow up work.

Procepts are a very important construct for work in mathematics education but little in
the existing literature prepared us for the problems we experienced classifying
students' understanding in terms of procedural, conceptual and proceptual
understanding. Perhaps too much emphasis by writers is put on theoretical issues and
not enough on analysing real students responses? The importance of the notion may
also lead us to ascribe too much to proceptual analysis. Our discussion of forms of
representation lead us to believe that procepts are only part of the picture.
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THE DEVELOPMENT OF LANGUAGE ABOUT FUNCTION:
AN APPLICATION OF VAN HIELE'S LEVELS
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ABSTRACT
This paper proposes a model of the development of language about function. This model was
developed by comparing Japanese teaching practices and national curriculum with generalized
forms of van Hiele's Levels. This paper points out features of van Hide's Levels and shows
that they are also characteristics of the proposed levels of language about functions. These
features include: language hierarchy, the existence of un-translatable concepts, a duality of
object and method, and mathematical language and student thinking in context. The levels
indicate that students' development resembles an expanding equilibration, rather than a
monotonous increase of knowledge.

Introduction
In the past ten years, multi-representational tools for exploring functions have

been changing the contexts and learning sequence of arithmetic, pre-algebra,
algebra, pre-calculus and calculus. In discussing these reforms, it is important to
consider students' development not only in terms of conceptual functional thinking
but also considering students' language concerning functions. Several models of the
development of functional thinking have been proposed (E. Dubinsky, 1992; A.
Sfard, 1991; A. Sierpinska, 1992; S. Vinner, 1991). These models' views imply that
the development of students' knowledge and thinking about function is like an
expanding equilibration rather than a monotonous increase (cf. J. Confrey 1994;
E.V. Glasersfeld 1995). This paper will show another model of development which
provides the same view but focuses on the students' development concerning the
representations of function as mathematical language. One characteristic of this
model is its background. This model was set by comparing the Japanese national
curriculum and teaching practices with the generalized forms of van Hiele's Levels
(A. Hoffer 1983; M. Isoda 1984). The Japanese curriculum may be the only
national curriculum which has specified areas of function/functional thinking from
elementary school.' This paper discusses the features of this model from the view
point of expanding equilibration and the features of van Hide's Levels.

The Features of van Hiele Levels
A. Language Hierarchy. Each level has its own language and the levels are hierarchical (van

Hide, 1959).

11n the national curriculum, the 4 areas of elementary school and 5 areas of junior high school mathematics have been
formally in place since 1958. These areas include functional thinking, figures /geometry, and arithmetic/algebra. Each
area is connected and integrated with each other. This tradition has its roots in the movement of Perry, Kline & Moore.
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B. Existence of Un-translatable Concepts. The corresponding contents of different levels

sometimes conflict (van Hide, 1986).

C. Duality of Object and Method. The thinking of each level has its own inquiring object
(subject matter) and inquiring method (the way of learning). The method of each level is verbalized

and becomes the object, subject matter, of the next level's inquiring. This is the duality between

object and method (van Hiele 1958; H. Freudenthal 1973; I. Hirabayashi 1978).

D. Mathematical Language and Student Thinking in Context. While the levels are
distinguished as sets of mathematical language, the actual thinking of each student varies depending

on the teaching and learning context (van Hiele, 1958; M. (soda, 1988; D.Clements, 1992; cf. M.

Battista, 1994).

The last feature claims that we should make a distinction between the levels of
mathematical language and the levels of students thinking itself. Although several
research studies have attempted to evaluate individual student's levels of geometric
thinking, they point out the difficulty in doing so (cf. J. Mayberry, 1983; A.
Gutierrez, 1991; D.Clements, 1992). If these four features can be pointed out in
another area of mathematics, for example the area termed 'functional relation' in
Japan, we could conclude that it is an application of van Hide's Levels. This paper
first discusses the levels of function from the viewpoint of language and then
discusses the development of students' skills.

The Levels of Language about Functions
Through investigations2 of the development of students' language for

describing functions and the history of the description of motion, the following
levels of function have been discussed3.4 (M. Isoda, 1987, 1988, 1990). Historical
examples are written in footnote five through eleven.
Level I. Level of Everyday Language.

Students describe relations in phenomena using everyday language obscurely. They can

discuss changes in numbers using calculations, but usually their descriptions are done with or focused

on one physically evident variable, the dependent varialde.5 Even if they are aware of covariation, it

is difficult for them to explain it appropriately using two variables because their descriptions of

relations are done obscurely6 using everyday language . So it is difficult for them to compare different

phenomena at once, appropriately.

Level 2, Level of Arithmetic

2Investigations included tests, interviews and teaching practice/classroom observations.
3111 van Hide theory, levels are described with like these generalized students activities. But these generalized description
are already mentioned the level of language rather than each student's thinking itself. Because depending on the
context/educational situation, students could do more higher level activity and students' activity usually included lower
level activity and change depending on context.
4Because curriculum and students' development arc mutually related, students' development reflects the curriculum and
investigations of development cannot prove its hierarchy. Phylogenetic examples are a good ground for onlogenesis.
SZeno, Eleatic school, argued that Achilles could not catch a tortoise.
l'Aristotle wrote that something falls faster if it is beau ier.
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Students describe the rules of relations using tables. They make and explore tables with

Arithmetic. Their descriptions of relations in phenomena are more precise with tables than with the

only everyday language of Level 1.7 Students have general concepts about some rules of relations8 ,

for instance, proportion. Students can compare different phenomena using such rules. They describe

rules of relations as covariation and when reading tables, their interpretation of the covariation of

variables is at least as strong as their interpretation of correspondence. Students can use formulas and

graphs to represent rules and relations, too, but it is not easy for them to translate between notations.

Level 3. Level of Algebra and Geometry
Students describe functions using equations and graphs. To explore function, they translate

among the notations of tables, equations and graphs and use algebra and geometry.9 At this level,

their notion of function, which they already understand well, involves the representation of different

notations already integrated as the mental image. For example, they can easily find the equation

emerging from the graph, and the graph from the equation.

Level 4. Level of Calculus
Students describe function using calculus. In calculus, functions are described in terms of

derived or primitive Jitnctions.") For example, to describe the features of a function we use its derived

function which is already learned. The theory of calculus is a generalized theory of this type of
description.

Level 5. Level of Analysis
An example of language for description is functional analysis which is a metatheory of

calculus. This level's justification is based on historical developmentli and not yet investigated.

Table 1 shows the duality between object and method in van Hiele's Levels
(the Levels of Geometry) and in the Levels of Function. Examples of un-
translatable concepts are offered between each level. Furthermore, the existence of
duality and untranslatable concepts suggests a hierarchical relationship between the
levels.12 Thus, these constitute three of the four features of van Hiele's Levels listed
earlier in the paper. These, as well as the fourth feature, will be further discussed
later from the viewpoint of the development of student thinking.

2Ptolemy made the chord (trigonometry) table to describe the motion of planets.
8Galilco found the ratio of differences in the distance fallen of falling bodies to be thesequence of odd numbers.
9GaltIeo found the parabola, which Apollonius had described as being cut front a conic, from the odd number ratio of a
falling body.
11Newton descried motion using fluxion.
11.I. Bernoulli posed the problems of branchistochrone and geodesic line. These variational problems were origin of
functional analysis and differential geometry.
t2ln the case of quadratic function, we can make the following distinctions.

Level I. Students do not easily compare the situations. They can not appropriately distinguish quadratic from other
situations if we use only daily languaie. See footnote No. 6. .

Level 2. Quadratic functions and contextual situations can be described using a table where second differencesare
constant.

Level 3; Quadratic functions arc described algebraically by y= ax2 +hx +c, and geometrically by parabolas. Tangent
lines arc discussed using h2 -4sc.

Level 4; Quadratic function is described with the derived I unction of cubic function and piiiiiitive function of linear
function. Tangent lines are discussed using (Jeri vatie.
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Table I. Duality and Un-translatable Concepts

The Levels of Geometry The Levels of Function

Level I Students explore matter (obiect) using Students explore phenomena (object) using
obscure relations or variation (method).figures (method).

Example
of
conflicts
between
levels

Because it has rounded
corners, the road sign
'YIELD' is not a triangle
according to the
meanings of Level 2, but
we call it a triangle in
daily language.

In Japanese, we
three times" on level
we can use "BAI"
on level I says "BAI,BAI"
the original amount.
usually means four
BAI" to explain
times as "3 BAI"

using the
2 was the

use "2 BA!, 3 BAI" to mean "two times,
2. But in everyday Japanese (Level 1),

to mean either "double" or "plus". A child
("plus plus") to mean three times

But "BAI,BAI" ("double double")
times. On level 2, students use "2 BAI, 3

proponion as a covariance and they say three
and do not salt "BAI,BAI".
Students explore the relations using rules;

._

The object on level 2 was the method on
Level 2 Students explore the figures

property; The object on level
method on level I. level I.

Example
of
conflicts

A square is rectangular on Level 3, but not
on Level 2.

The constant function is a function on Level
3 but 'constant' is not the relation which
was discussed as covariation on level 2.

Level 3 Students explore the properties of figures
using implication.

Students explore the rules using notations
of functions.
On Level 3, a tangent line of quadrilateral
function deduced using the property of only
one common point / a multiple root. On the
Level 4, the tangent line does not always
have this propeny.
Students explore functions using derived or
primitive function.

Example
of
conflicts

'The isosceles triangle has congruent
angles. On Level 3, it is induced already
and we do not have to explain more. On
Level 4, we prove it.

Level 4 Students explore the proposition, which is
formed by implication, using proof.

The Development of Students' Thinking
Students' development from a lower level to a higher level resembles an

expanding equilibration rather than a monotonous increase. Below, two examples
are offered which were selected from investigations of the development of
functional language from level 2 to level 3. The features of van Hiele's Levels help
explain the students' growth of knowledge. First, I describe the Japanese
curriculum for moving from level 2 to level 3.

In the national curriculum in Japan, an informal notion of proportion is
taught in grade 4 and more formal concepts of whole number proportion including
y=ax are taught via real situations in grade 6. The curriculums of grades 4 through
6 are regarded as level 2 or as a transition to level 2. In grade 7 (junior high school
grade 1 in Japan), students learn how to solve equations with one variable, the
definition of function using the idea of correspondence, and the function y=ax. In
grade 8, the linear function y=ax+b is taught. In grade 9, the quadratic function
y=ax2 is taught and function is redefined using the idea of set and correspondence13.
The curriculums of grades 7 through 9 are regarded as level 3 or as a transition to

the current curriculum, this redefinition of function is taught in Grade 10. Examples were collected in the former
curriculum.
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level 3. The investigation found that many students in grade 6 thought on level 2,
and many in grade 10 thought on level 3.
Example 1. Students lose their connection to lower levels of thinking in the process
of moving to a higher level. The results14 of problem 115, below, show that
students' proportional reasoning looks the same16 after they learned the formal
concept of proportion via situations in grade 6 and after they re-learned the concept
as the function y=ax in grade 7. But the results of problem 2 show the change in
their reasoning from grade 6 to grade 7. Q3 in problem 2, (see Graph 4) shows that
grade 6 students' proportion of correct answers was highern than in grade 7, but is
the same as grade 9. Graph 5 indicates that, to get a correct answer, grade 6
students' solving methods of problem I and of Q3 were more different than grade 7
students'. Q2 in problem 2, (see Graph 3) shows that many grade 7 students still
recognized this situation as dealing with proportions. Graph 6 show that half of
them could not write a correct answer to Q3. The difference between problem 1
and problem 2 is that problem 2 was posed via a real situation. This result suggests
that many grade 7 students, in the process of reconstructing the concept of
proportion as a function, become lost when applying the concept of proportion to
the real world. Indeed, Graphs I and 2 for QI show that after learning proportion,
grade 6 students could describe and analyze the situation itself exactly, while grade 7
students, having re-learned proportion as a function, could not.
Problem 1 In the right table. if y is in proportion to x. then select the pair which is appropriate

for P and Q in the table

Graph of Answer Distributann

4o

20

aw

14r
No Answer

--P-15, 14.14; Correct

P-14, Q-1S

/1zP-10, Q-31
- P-10. Q-24

P-14, Q-31
4 5 6 7 8 9

Grade

X 3 6 P

y 7 Q 35

Problem 2. Let's make stairs using squares with sides I cm as follows

III I

Step 2 Steps 3 Steps 4 Steps

"This data was collected in a down town area id big cities and each grade's tiopulation was larger than 150 people.
They had already learned each grade content of function or functional thinking area in the national curriculum.
15This problem is the same as a problem in the Second International Mathematics Study.
16 The probability of 110 difference is 0.6. There is no significant difference.
17Thc probability of no difference is 0.0(1015. There is a significant dillerCeCC.



Qt. flow does the perimeter change as the number of steps increases? Why do you think so?

Graph 1 How? Graph 2 Why?
No Answer

Incorrect Answers

Increasing" only

wrote the caret
expression

100.!

80.1

60.

40

pst
4 5 6 7 8 9

Grade

Doubles. Triples. QuadneAes yo

Increases 4 ern 'nth ascii ON 1
new step

se we increase the stel

Wrote a Formula

Drew a table

Explanatron using
the ocurnscribed square

4 5 6 7 8 9 pets larger
Grade

Q2. How can we relate the number of steps and the perimeter?
Q3. What is the perimeter if there are ten steps?

100

80

Graph 3. (02) Relation

Graph 5

Incorrect Answer

Fore-iota and [A) or [1:11 or [CJ

The idea of Proportion
and [Al or [B] or IC)

.[C] 11 one step increases. then

- [B) II steps increase then ...

(Al One example
II 4 steps. then12 cm'

Cross-Analysis of Problem 1 and 03

100*
90%
8011
70X
60X
50%
40X
30X
2OR
10/1
OX

6 7 8 9

0.1043Correct

...!Problem 1

Correct

Graph 4. (03) Arolication of Relation
l00 B...NO Answer
80,

60''

40

20

OM

4 5 6 7
Grade

8 9

Incorrect
Answer

Correct
Answer

Graph 6. Cross-Analysis of 02 and 03

80
70

20
10 III

ill
nd Q3 Correct
2 Proportion

50
Q2 Proportion60

,s/and Q3 Incorrect
40
30

0
6 7 8 9

One interpretation of these results is that many students who already know the
concepts of proportion and have experience dealing with y=ax in the context of real
situations, can not assimilate the function y=ax in the context of algebraic
discussions. But Q3 of problem 2 shows that, in grade 9, many students are again
able to find the answer. Thus, it can be interpreted that students in grade 9 had
accommodated their knowledge.
Example 2. Students' thinking is still viable until they meet a non-viable situation;
We read tables as representing covariation and correspondence. In the Japanese
curriculum, functions are taught using correspondence in grade 7 to assist students
to level 3. Teachers begin to call a table of function a 'Correspondence Table' when
teaching correspondence. But the results of problem 3 show that students do not
change their thinking until grade 9 during which they learn the function y=ax2,
which is not easy to read covariationally. Indeed, in spite of students having been



taught the y=ax table as correspondence from grade 7, many students continued to
read the table covariationally until they were taught y=ax2.

Problem 3. Write what you can find from the following tables.

(1) x 2 3 4

4 8 12 16

Grade 6 7 8 9

Covariation 42% 48% 49% 35%

Cormsvondtmec 24% 14% 16% 35%

Both 8% 10% 11% 11%

(2) x I 2 3 4

y 2 8 18 32

tt of t2
Grade 6 7 8 9

Covariation 27% 15% 11% 10%

Corre.spondence 37% 21% 20% 50%

Both 0 0 2% 3%

Discussion
Examples 1 and 2 show that teaching supports students' transitions to level 3.

It would be better to interpret the development of students' thinking from a lower
level to a higher level as resembling an expanding equilibration rather than a
monotonous increase. Furthermore, the above examples reflect the featurei of van
1-leile's Levels. Indeed, based on these features, we can more critically interpret
these examples.

Critical Explanation of Example I. In order to explain example I, hierarchy and
duality of the levels of function in the context of Japanese curriculum must be
discussed. To move students to level 2, teachers teach rules, for example
proportion, using arithmetic on tables via real situations which were represented on

level I using everyday language. To move students to level 3, teachers teach
functions using algebra and geometry via rules which were represented on level 2
using arithmetic language with tables. Arithmetic language claims to move students
to level 3, but in the case of everyday language, although students use it, they do not
need to use everyday language in order to learn about functions algebraically and
geometrically.

The notions of hierarchy and duality support a clearer explanation of example
1. Indeed, in grade 6, to move to level 2, teachers teach the concept of proportion
using, tables via real situations on level I. And in grade 7, to move to level 3,
teachers teach functions of the form y=ax using equations and graphs via the concept
of proportion which was represented in arithmetic tables. Therefore, in problem 1,
which was only represented with a table, there is no difference between the results
in grade 6, 7, 8 and 9. But problem 2 was represented with a situation. Because
grade 7 students had not learned the function y=ax with situations using everyday
language, they overlooked /lost proportional reasoning in the situation.
Critical Explanation of Example 2. If we suppose that student thinking can be
changed depending on the context of the teaching situation, example 2 can be more



fully explained. Despite the fact that teachers explain correspondence using tables of
y=ax, the students did not change their reasoning. But when teachers explained
correspondence on tables of y=ax2, the students did change their reasoning. Indeed,
in the case of the table for y=ax, students learned covariance in grade 6 (level 2),
and as we already saw in example I, it was not changed in grade 7. If they know
covariance, e.g. the that first difference of y=ax and y=ax+b is constant, then they
can make a table. So, this knowledge is still viable in grades 7 and 8, during which
they move to level 3. But in the case of y=ax2 taught in grade 9, the first difference
is not constant. In order to make a table, since students could not use the first
difference they had to use correspondence. Thus, the quadratic function y=ax2
provided a context that helped students understand the notion of correspondence.

Table 1, Examples I and 2 indicate that the levels of function include all four
features of van Heile's Levels. Furthermore, it has been implyed that students'
thinking is better characterized as an expanding equilibration
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IIITOMI'S MEANING CONSTRUCTION OF TABLE AND ALGEBRAIC
EXPRESSION OF PROPORTION DURING INSTRUCTION: A CASE STUDY

Keiko Ito (lino, University of Tsukuba, Japan

this article documented one sixth-grade student's interactions with notations of tables and
--,tar during the class work in proportion, which was deeply interwoven with her proportional

reasoning. Naturalistic method was used in order to get a thick description. The student was
observed to have developed different interpretations and uses toward even the same notation
(table or y=mx). as she became more comfortable with it. The quality of interpretation she de-
veloped was rather idiosyturatic. it reflected subtly the nature of her proportional reasoning.
Nevertheless, it was the interpretation that served her making sense of novel problems during
class as well as y=tur as equation and that underlay her extended use of unit factor approach.

Theoretical Background
Proportional reasoning is a form of mathematical reasoning that involves a sense of covaria-

lion and of multiple comparison, and the ability tomentally store and process several pieces of

information (Lash, Post, & Bchr, 1988). It is a shared understanding that proportional reason-

ing does not emerge as a full-blown ability, but that it develops gradually by increasing local

competence. However, we do not know much about how children's proportional reasoning de-

velops through their learning experiences under instruction in school. Research on proportional

reasoning have identified developmental stages; but they were mainly from a larger sample in

the laboratory setting. Recently, children's intuitive, context-bound, and often presymbolic so-

lution strategies even before instruction have been documented (e.g., Hart, 1984; Lamon,

1993). Yet it.has not been studied substantially about the consequence of these strategies during

instruction, beyond a warning that children tend to memorize formal procedures such as cross -

products mechanically.

The purpose of this study is to get information about such developmental process of propor-

tional reasoning by examining in depth the learning processes that students go through while

getting explanation and practice concerning proportion in the classroom. I used naturalistic

method of inquiry with a small number of students at various levels of proportional reasoning

ability. In this article, I concentrate on one of these students, i.e., a Japanese sixth-grade girl

named Hitomi whose achievement was about average.

A characteristic of this study is to try to understand children's development of proportional

reasoning through their real-time experience under instruction in ratio and proportion in the

classroom. The reason for it comes from an evolving understanding that a person's learning is

tied specifically to context in which it occurs, especially his/her interpretation of and interaction

with the context (Rogoff & Lave, 1984). Indeed, there is ample evidence that contextual pecu-

liarity of mathematics classroom influences children's learning of mathematical concepts (e.g.,

Saljo & Wyndhamn, 1990). When most studies on proportional reasoning used interviews or

written tests in the laboratory setting, this study intends to offer an information of children's
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learning actually occurring in the classroom. Another characteristic is that it sheds light on chil-

dren's interactions with notations and representations. There are both theoretical and empirical

reasons for this. Theoretically, the key role that notations play in mathematical constructive pro-

cesses is pointed out (e.g., Kaput, 1991). In ratio and proportion, specifically, different repre-

sentations including table and algebraic expression refer to different experiences. It suggests

that coming to know these representations promote children's reflections and connections.

Empirically, while observing and analyzing students' learning processes in this study, I began

to recognize that their reactions to newly introduced notations are rather visible and mirror im-

portant gains or losses in their proportional reasoning (Ito-Hint), 1995).

Teaching Proportion with Different Representations
In Japan, the idea of proportion is taught from earlier grades in elementary schools. For ex-

ample, when teaching multiplication table in grade 2, teachers emphasize the relationship be-

tween multipliers and products as a rule of multiplication. In grade 5, "quantity per unit" (e.g.,

60 kilos per hour) is introduced in order to compare two quantities: here, proportional relation-

ship is also assumed to underlie the two quantities. In grade 6, these earlier experiences are re-

flected on and for the first time, proportion is defined and its mathematical characteristics are

clarified along with different representations, i.e., table, graph, and algebraic expression y =

(fixed number) x x (in this article, an abbreviation y=mx is used).

Table below is a brief summary of content in each of the total 12 lessons in proportion that

the teacher in this study organized.

Day(s) Summary of Content
Finding examples of two variables changing dependently

2-3 Different relationships are expressed by usingtables. Proportion is defined with the table (Day 32
4 Exercises on choosing examples of proportional relationship. Making sure of existence of "fixed

number" (y/x) in the proportion table.
5 Summary of three ways of finding the "fixed number" from the table. Introduction of algebraic

expression of proportion y=mx.
6-8 Exercises such as identifying proportional situations, filling in proportion tables, expressing the

relationship in the form of y=mx, identifying the meaning of "m", or finding missing-values in
proportion problems. Introduction of graphic representation (Day 8)

9 Strong points for each of the three representations of proportion
10 Solving problems by using different representations
11-12 Group exercises

Two observations of the teacher in treating the proportion table and y=mx are noted. First,

the teacher intended students to recognize connections between the table and y=mx, especially,

the connection between the regularity in the table, i.e., uniquely determined quotient y/x for any

corresponding values in x'and y changing proportionally, and "m" in y=mx. In doing that, he

initially made a distinction with respect to relationships between values in proportion table:

"horizontal" and "vertical." The "horizontal" relationship concerned the multiplicative relation-

ship among values within a row, while the "vertical" relationship is about the values between

rows (see figure I). By making such distinction, he led the students' attention to the
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latter. Once they recognized that there is a unique

"vertical" relationship, he introduced the term

"fixed number" (meaning y/x) that determines the

H. on/A:Thal, V: Vertical relationship. The expression y=mx was intro-
Figure I "I lorizontal " and "Vertical" relationships

duced based on this understanding. Second,

soon after the introduction of y=mx, the teacher came to emphasize its use as an equation. In

alniust every lessons, he explained the way of substituting a value for x (or y) in y=mx in order

to get the corresponding value of y (or x). He tried to have students understand an efficiency of

the algebraic expression in finding missing-values.

Method

My everyday visit to the classroom started in April 1993. In May and June, a pre-assess-

ment of the students' proportional reasoning was conducted. Based on the results as well as

their behaviors in class and the teacher's comments on them, 1 chose four target students. I be-

gan observing them in late June; it continued until the end of October. During the time, the

teacher covered several textbook chapters; the chapter on proportion was dealt with in October.

Hitomi was I I years and 7 months old when the teacher went into the chapter on propor-

tion. She was chosen as one target student based on the pre-assessment as representing an av-

erage student in the range of achievement. Hitomi was also considered to be conscientious who

worked hard in her class. She was cheerful and open to communicate with me, which was an-

other reason for choosing her in order to get a thick description of her learning processes.

In the observation of Hitomi, I tried to identify the benefits she acquired from her work in

the class and the learning processes she went through in acquiring that knowledge. In each

session, I either videotaped or wrote down on paper her behavior throughout the session. I also

audiotaped her voice by a small tape recorder that was regularly put on her desk and further,

collected her notebooks and worksheets. After each session, I collated these data and developed

a description of her behaviors. On a regular basis, I also interviewed her and asked to solve

missing-value proportion problems as well as about the work done in class.

From the results on the pre-assessment and interviews regularly held, prior to instruction in

proportion, Hitomi had been relying on the abbreviated build-up processes') when the problem

involved easy ratio complexity, which places a relatively low demand on a rate conception

(Kaput & West, 1994). Although she sometimes used the unit factor approach2t that needs the

rate conception, her use was strictly restricted to the shopping context in which thinking about

unit price is rather natural. Overall, her use of strategy was context-bound: she did not have any

general method that works for a large range of proportion problems.

Construction of Meaning of Table and y=nix During Instruction in Proportion
In this section, I illustrate the learning processes Hitomi went through during the class in

proportion, especially, her view and use of notations introduced by the teacher and dealt with

through various activities.
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Two Ways of Reading Proportion 'Tables

During the first five lessons the students were engaged in activities with tables. As described

earlier, the teacher distinguished two relationships between values in the proportion table.

Hitomi naturally incorporated the "horizontal" relationship. For example, she developed a table

(Figure 2) by saying "This is 10 minutes and 10 + 5, it's doubled, so this is also doubled and

its 50 cm. If I make this 100 cm. and 100 + 25 is 4?... it's 4, this is 4 times as much, so this is

also 4 times as much... it would be 20 minutes..." She even showed this horizontally-oriented

view in Day 1, when making examples of two quantities changing dependently.

In contrast, she did not easily recognize the "vertical" relationship. It was a boy who first re-

ferred to the relationship in response to the teacher's question about a table in Figure 3 (Day 3).

Time (min.) a 30
Depth (cm.) y 125 150 1 100 1 150

Figure 2 A table that expresses a proportional
relationship between a and y

'rime (how) I

Distance (Iasi.) 4
2

8

3 I4

12 16

Figure 3 A proportion table dealt with in class
on Day 3

T: We are looking at the table horizontally like this (pointing to the arrows)... Suppose there is a missing
part, and we want to fill in that part, what other ways there would be, do you think?

S: Vertically?... I divided the numbers in the lower row by the corresponding numbers in the upper row, and
then 1 got all 4s. I've been wondering what that would he...
Oh... Do you understand what he said?... tie read the table vertically...

At this moment, Hitomi stared at the board. She appeared to check whether what the boy said

was correct by dividing each number by its corresponding number. As far as my observation

can tell, this was the first time that she made explicit the multiplicative relationship between x

and y in the proportion table.

Derived Interpretations to the ProportionThble

I identified at least two ways of using the proportion table that Hitomi developed through her

class work. They were either different from the method taught by the teacher, or not given ex-

plicit attention in the class. Due to the space limitation, 1 describe one of them which was fun-

damental in her process of learning.

A use of proportion table that Hitomi developed was to fill in the missing-value y in the

table by using the value of yi. Here, she paid special attention to yi and found the missing-

value yn via multiplication of yi and xn (as for the names yt, yn, or x see Figure I). This in-

terpretation of the table was first observed in Day 5 when different ways of finding the "fixed

number" was summarized. After the lesson, I

interviewed her about a "fixed number" in a table

(Figure 4).

Time x (hour) I 1 2 3
Distance y (kni.II 3 6 9 12

Figure 4 Part of a proportion table dealt with in
data on Day 5

I: You worked with Mil table today. What is the fixed number in this?
S Its three)
I: Why?
S: Well.. if you do 3 I. 6 2. and so on. you can get 3 every time you do division.
I Were there any other reasons in class? 01 do you think there are any...
S (giggled) I wonder if I remember.. What 1 remember is... well... since y is 3.. since y is 3... if you double this

(pointing at 2) you can get 6. and if you multiple like this way (pointing at 3 in y and at 3 in x) you can get 9.
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However, what she remembered was slightly different from what the teacher explained in the

class. He treated the "fixed number" more as a generalized relationship that satisfies all (x, y).

This derived interpretation by Hitomi seemed to last for some time (until Day 10).

Initial View of Algebraic Erpression of Proportion

Day 5 was also the day when the algebraic expression of proportion was introduced to the

students. As described, the teacher introduced y=mx as a generalized relationship between x

and y and emphasized its use as an equation to find missing-values. On the other hand, Hitomi

was developing her own view toward that new expression.

In Day 5, she was observed not to put a "fixed number," which she found from a table, in

the blank in y = (blank) x x until the teacher instructed the students to do so. After the class, I

interviewed her about the same table in Figure 4 which was also dealt with in the class. Hitomi,

after identifying several relationships in terms of "fixed number 3" in the table, was asked about

the algebraic expression of that table.

I: Would you write an expression using x and y about this table?
S: X and y... multiplication? Oh. I see, we did that today... I think we wrote something like this (writing 'y = fixed

number x x I think this is somewhere at the bottom of the textbook..
I I would like you to think about this table... What would thit be in this case?
S (Writing '3 x I = 3. 3 x 2 =6, 3 x 3 = 9, 3 x 4 = 12' vertically)

How about using letters a and y?
S- (looking at the algebraic expression she just wrote) y equals fixed number multiplied by x.
I Let's see... how will that be in this table?
S' (Pointing at the four numerical expressions she wrote) That will be like this!

The protocol indicates that she, in spite of her recognition of several relationships between

values in the table, did not see connection between them and the algebraic expression. Once she

was asked to write an algebraic expression, she forgot all about those relationships and tried to

recall a specific symbolic notation that was written on her textbook. The protocol and other ob-

servations of her writing of algebraic expression also show that she used "y =mx" as a seal of

proportional relationship. Indeed, when asked to translate the table in terms of x and y, she

wrote "y=mx" literally, instead of writing "y=3x." Initially she wrote "y=mx" and "y x" (or
"x x y") interchangeably, or added odd symbols as shown in the protocol above. Hitomi soon

came to add "(5)," for example, beneath "m" in "y=mx," instead of writing "y=5x." (Day 6):

still, the standard writing of algebraic expression had not observed until later around Day 10.

Emergent Use of .y=mx as an Equation

In spite of her teacher's repeated explanations of y=mx as an equation to find missing-val-

ues, Hitomi had not been using y=mx for that purpose. When she needed to find missing-val-

ues, she searched them directly from problems without formulating the algebraic expression, or

made use of tables or graphs when they were available. It was around Day 10 when she began

to use y=mx in order to find the missing value.

In Day It) exercises, the students were finding the distance that a car at a constant speed of

40 km/h would take to drive in 7.5 hours. Hitomi first answered the question by computing

7.5x40. Here, she did not intend to formulate y=40x and substitute 7.5 for x. Indeed, when the
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teacher explained the use as equation, she whispered "oh... yeah it works." In retrospect, this

was her turning point. After this, she solved another problem by first formulating y=3x and

then substituting 10 for x. In the interview session conducted after the class, I gave her another

missing-value speed problem. Here again, she used y=30x developed in a previous question to

substitute 7 for x in order to find the distance that the car goes in 7 hours.

It is not clear why her use of y=mx as an equation to find missing-values emerged. Probably

one of the reasons would be that she had listened to the teacher's explanation repeatedly.

However, Hitomi did not just memorize the repeated explanation of the use of y=mx as equa-

tion. In an interview, when asked to write an algebraic expression from a table she developed

for a proportion problem, she added two values I and 35 outside (Figure 5) and then wrote an

35
Figure 5 A table and Ititomi's addition to it

Time (hour) 13

16Distance (km.) 105 210

expression "y=35x." Being asked the reason for

35, she pointed at 3 in the table and said, "Since

this is 3, I made it I... so it's 35." This observa

tion implies that she made a correspondence between "m" in y=mx and "yi" in the table. In

other words, she acquired the new use of y=mx by making connections with her own interpre-

tation of proportion tables that she had developed earlier. Since then, she came to use y=mx not

just as a seal of proportional relationships but also as a tool for finding missing-values. She

also came to call y=mx as "formula"

Discussion
Hitomi, like other students, brought her conception of proportion into instruction under

which she encountered notations of the proportion table and y=mx. Her learning process doc-

umented above shows that she had been developing her own interpretations and uses of these

notations from the very beginning of her interactions with them. They were also changing as

she became more familiar and comfortable with them.

The quality of interpretation that she developed was not identical to what the teacher in-

tended. It was affected subtly by Hitomi's view of proportional situations that was predomi-

nantly build-up-based. In the ease of proportion table, she began to incorporate her build-up-

based view into the "horizontal" relationships between values in the table. She then derived the

special attention to yi and the way to find missing-value yn via multiplication of yi and

whereas the teacher treated the fixed number more as a generalized relationship that satisfies all

(x, y). Here, she seems to have avoided (perhaps unintentionally) to directly grasp y/x as the

general multiplicative relationship, which will require her weak rate conception. Interestingly,

the attention to yi seemed prevalent among the students. Three of the four target students

showed their focus on yi in the table. In class, different wordings of yi such as "base num-

ber," or "the first fixed number" were also heard from other students.

Although they were more subjective, these interpretations came to play a crucial role in or-

ganizing her thinking processes as "generative mental operations" (Kaput, 1991, p.55). Indeed,

I litomi came to be able to identify proportional situations in terms of "fixed number," fill in
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proportion tables, and solve missing-value problems by using tables. The derived interpretation

with the emphasis on yi also served her in treating y=mx as equation. It further enabled her dif-

ferent ways of solving the missing -value problems, as described in the last paragraph.

Concerning y=mx, for a long time she viewed it as an authorized seal of proportional rela-

tionship rather than a thinking tool (Ito-Hino, 1995). It was near the end of lessons that she be-

gan to use it as an equation to find missing-values. This rather monotonous interaction, com-

pared to that with tables, would reflect the extent to which a notation is prestructured. The ex-

pression y=mx was highly prestructured that demanded her use of rate conception, whereas the

table was more open in which her build-up-based view was supported. For her y=mx would

have been difficult and foreign in comparison with the table. Under such circumstances, the

emergent use of y=mx as equation is to be considered as a sound progress to her. Note'that it

became possible by her derived interpretation of table. Here again, she incorporated her build-

up-based view into the new use of y=mx. She interpreted "m" as the specific value yi to enable

a multiplication of the number of known-quantity, which is I in this case, increments (x) by the

size of the unknown-quantity increment (y1)1).

The observations of Hitomi's proportional reasoning strategies suggest that her derived in-

terpretation of proportion table further made a contribution to her repertoire of strategies. Before

instruction, she had not used unit factor approach except for shopping problem context.

Instead, she had been relying on abbreviated build-up processes. For example, she solved a

rectangle problem below by using the processes, i.e., 564 ÷ 3 = 188, so 188 x 9 = 1692. After

instruction, she solved the same problem quite differently:

Problem. (With an original 3.by.9 rectangle written on grid paper,) suppose you want to draw a very big rectangle.
If you mate the length of the vertical side 5 meters 64 centimeters, how long should the other side be?

S. 564 v 3 = 1692? centimeters... I think this would he okay...
I: What do you mean by 3 here?
5: Well, this rectangle .. I changed it like this... (drawing a 1-by-3 rectangle on the sheet). I'm not sure about this,

but this is the first size, and then I would multiply by 3 here (pointing at the width 3 of the 1-by.3 rectangle)...
this width.. well... this is the base one... base.. number?... well it would probably be the rued number. 18 «
6 (meaning the ( -4-18 rectangle that she drew before this question) is also the same number... I mean multiply
the fixed number by this 564, it would be 1692 centimeters.

The protocol shows that Hitomi created.a unit factor (3cm per lcm) and multiplied it and the

given total quantity 564cm to determine the total amount of the unknown quantity. Actually,

this was her first use of unit factor approach in problem contexts other than shopping. It further

shows clearly that her derived interpretation of proportion table underlay her unit factor ap-

proach. She found the missing-value x in 564-by-x rectangle by identifying the fixed number

yi (3) in an imagined proportion table and multiplied the yi by the 564. The importance of unit

factor approach in bridging between children's intuitive strategies and formal method that fully

uses the rate conception has been pointed out (e.g., Herron & Wheatley, 1978). The result of

this study suggests an unexplored complexity of the bridging role of unit factor approach.

Further investigation is needed how children acquire extended use of unit factor approach from

essentially intuitive one and in what way learning of notations contributes to the process.
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Concluding Remarks

In this article, it was illustrated that a student's learning of different notations of tables and

y=mx during the class work was deeply interwoven with her proportional reasoning. Her inter-

pretations and uses of even the same notation were changing with her increasing familiarity

with it. The interpretations being developed were rather idiosyncratic, subtly reflecting the na-

ture of her proportional reasoning. Nevertheless, it was these interpretations that she based in

making sense of novel problems during the class and y=mx as equation; and it was those that

underlay her extensive use of unit factor approach.

Further analysis needs to be made concerning both the nature of derived interpretations of

notation and its relationship to proportional reasoning. In doing that, consideration should be

given to not only purely cognitive aspect but also other aspects. In the case of Hitomi, she was

more salient in her disposition toward following what the teacher told and shown, compared

with the other target students (I to-Hino, 1994). For example, she was the only student among

the four who spontaneously used the tabular notations being dealt with in class in solving pro-

portion problems in interview sessions. Such interests in the teacher-taught methods and nota-

tions and their dispositions toward learning mathematics in class should also affect the learning

processes under instruction.

Note I) The abbreviated build -up process consists of "a quotitive division that determines the number of known
quantity increments, followed by a multiplication of that number of increments by the SIM. of the un-
known-quantity increment" (Kaput & West, 1994, p.249).

Note 2) The unit factor approach consists of first obtaining the unit factor by dividing a quantity by the other in
the problem and then multiplying the factor by the given total quantity.
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COMMUNICATING TEACHER'S METAKNOWLEDGE
THROUGH LESSONS

Hiroshi Iwasaki
Joetsu University of Education, Japan

How can we help teachers to communicate their metaknowledge, especially, the nature or
characters of mathematical knowledge or activity to the students? We regard this as the
central research question of our study. The present paper can be understood as an attempt
to try to ask the question through consideration of practices_ in the classroom. To do so, a
cooperative teaching experiment was conducted over a four-week period including 4 lessons
with 8th grader's class on June 9, 12, 13, 16, 1995. The analysis of interaction between
the teacher and students in the lessons revealed that when (1) the teacher helps students to
develop their thinking tools which they already have used to approach the task concerned,
and further (2) the developing their thinking tools enable students to aware or discover what
they have never known, the teacher's metaknowledge can be communicated to students.

BACKGROUND

According to Schubring(1991) the concept of metaknowledge is derived from american
discussion related to curriculum reform in the 1960s. The discussion revealed the signifi-
cance of teacher's view of knowledge as well as his/her knowledge. Smith(1969) has diffused
this idea with a distinctive term 'knowledge about knowledge'. Further, the idea of "knowl-
edge about knowledge" have been elaborated theoretically from an logical-epistemological
point of view by the researchers of IDM in Germany. They have introduced the termpoint

in mathematics education and have indicated its significance in rela-
tion to teacher education(IDM, 1981; Keitel & Otte, 1979; Seeger & Steinbring, 1986).
Schubring(1978) has pointed out the new significance of history of mathematics as meta-
knowledge. He seems to suggest history of mathematics is one of the view points which
helps teachers to develop their metaknowledge. lwasaki(1992; 1995) have developed some
examples which help teachers to be aware of the significance of metaknowledge.

Recent studies have investigated relationships between teacher's conceptions or view
of mathematics and his/her teaching practices by the case study(e.g., Thompson, 1984).
Further, Lerman(1983) has proposed problem-solving teaching perspective can initiate sub-
stantial changes and advances for school mathematics programmes. These studies seem to
suggest that It is important for teachers to develop their metaknowledge more and more.
However, if teachers develop their metaknowledge, their students can develop their meta-
knowledge which compatible with teachers one? Cooney(1985) have revealed the conflicts
between a beginning teacher's idealism and the reality of classroom practice.

How can we help teachers to communicate their metaknowledge, especially, the nature
or characters of mathematical knowledge or activity to the students? It seems this problem
still remains to be solved. Thompson(1992) points out,

"we know little about how instructional practices, in turn, communicate
those conceptions or others to students, if they do so at all. Insofar as one
observes congruence between the mathematical beliefs of students (Schoenfeld,
1983) and those of teachers (Thompson, 1988), it is natural to infer that some
communication is effected. Furthermore, since teachers are the primary medi-
ators between the subject matter of mathematics and the students, it is also
natural to infer that the teachers' conceptions are indeed communicated to stu-
dents through practices in the classroom. This chain of inferences, however,
remains to be empirically validated."(Thompson, p.141)
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How can we help teachers to communicate their metaknowledgel, especially, the nature
of mathematical knowledge or activity? We regard this as the central research question
of our study. Some researches seem to suggest that it is significant for this problem to
develop social norms or morals in the classroom. (Cobb & Yackel & Wood, 1990, 1992;
Lampert, 1990; Kumagai, 1995) The weeent paper can be understood as an attempt to try
to ask the question through an 'from an epistemological point of view rather than
a social point of view, of interaction 'between a teacher and students in the classroom.

METHODOLOGY

Cooperative Teaching Experiment
The author conducted cooperative teaching experiment with the teacher over a four-

week period. The teacher teaches and studies in a junior high school attached to Joetsu
University of Education with a subject of study: ' Developing teaching materials to foster
a creative view of mathematics'. This is the reason why he has been selected in this study.
He is an experienced teacher who has a master's degree.

The procedure of lessons plan was as follows: The author and the teacher met several
times. The author 'made and explained his concrete teaching plan of the lessons. The
teacher mainly criticized and modified it from a practical point of view. In this way, we
elaborated the teaching plan of lessons cooperatively. But the plan was not fixed, rather,
in order to achieve our common aim it have always been able to stand further improvement
in the process of teaching experiment.

The method here is compatible with the idea of `kritisch-konstruktiver Erziehungswis-
senschaft' in Germany(Kla&i, 1976). Conducted cooperative teaching experiment, meta-
knowledge which is hardly explained would have to be explicit.(see the section 'Knowledge
and Metaknowledge')

Data
The data were collected in the course of the cooperative teaching experiment. Four

lessons were conducted with 8th grader's class on June 9, 12, 13, 16, 1995. The subject
matter of the lessons were the introduction of triangle congruence theorems. All of lessons
were recorded with two video cameras in front and behind the classroom. The front camera
was used to record the whole-class discussion and student's behavior and the behind camera
was used to record teacher's behavior respectively. Transcripts of the lessons were made
on the bases of these data. Further, some retranscriptions were made from the following
point of view:

When making the actual analysis one cannot simply use such a step-by-
step inocedure, -one has to analyze carefully the epistemological status of the
mathematical knowledge froin phase to phase -to explore the development
and shifts of knowledge interpretation and understanding in the classroom in-
teraction: The method of analysis is a dialectical one reflecting global and local
40* simultaneously.(Steinbring, 1993, p.38)

Knowledge and Metaknowledge
We assume that there is no knowledge without metaknowledge(Bateson, 1973; Otte &

Bromme, 1978; Mellin-Olsen, 1987). We distinguish between knowledge and .metaknowl-
edg,e in this paper as follows: Knowledge is related to the relation between things, on the
other hand, metaknowledge is related to the relation between thatrelation and the subject
(Otte & Seeger, 1994). That is, the former is related to triangle congruence theorem as
a relation, and the latter is related to what the triangle congruence theorem is all about

1We, as IDM researchers, prefer to use the term 'metaknowledge' rather than 'conception' because
the term metaknowledge seem to express important cognitive functions of hierarchal relationships with
knowledge better. ,
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for us. We shall make our metaknowledge clear here. Following view of triangle congru-
ence theorem is based on some historical and epistemological studies of geometry texts
(e.g., Nakamura, 1981; Hirabayashi,1991; Reed,1995). 'What is the triangle congruence
theorem' should include (1)an activity trying to grasp the 'putting two triangles on top of
each other perfectly' by elements of triangle, sides and angles more clearly, that is, "logis-
che Analyse unserer riumlichen Anschauung"(Mlbert,1930) (2)thinking tools to recognize
geometric relations, and (3)Greek ways of thinking trying to grasp the whole with some
minimal elements, that is grounds for geometric system. In short, our metaknowledge here
can be characterized by 'Hilbert's view of geometry' and 'pragmatism'.

To Evaluate Student's Metaknowledge
Metaknowledge as mentioned above is related to how to define the triangle congruence

theorem. Accordingly, to evaluate student's metaknowledge we have to ask to students
what the triangle congruence theorem is or what it should come into being. It is difficult
for them to ask these questions directly.

In teaching experiment we provided the situation in which some students are asked
whether they accept the SsA (On the notation, see Hirschhorn, 1990) theorem or' not. If
students can accept or reject new theorem for them without dependence on teacher, we can
infer that students, to a certain extent, understand what the triangle congruence theorem
is or what it should come into being. In Japan, there are not SsA theorem in the textbooks
now in use. The theorem is new for students. Further, asking students their criterions, we
can understand their metaknowledge.

ANALYSIS AND DISCUSSION

The Lessons
The lessons consisted of two main phases, Phase I and Phase II. In Phase students were

able to use their intuitive ideas of triangle congruence theorems in order to justify some
geometrical relationships but they were not able to say why the two triangles congruent
to each other. So the teacher tried to, make students notice that they intuitively used the
idea of congruence and had to use it more logically. In Phase II to concrete shape this
problem the teacher formulated it as the present task:" There are two triangles ABC and
A'B'C'where AB = 5.6cm, BC = 5cm, CA = 4.1cm, LA = 60°, LB =.A5°, LC = 75°and
A'B'C'are unknown. What conditions must be satisfied when they are congruent to each
other?"

First of all, the teacher asked "In the case of one condition, for example, AB = A'B' =
5.6cm, these triangles are congruent to each other?" All of students said "No!" He asked
"Why?". One of the students explained "There are many A'B'C's satisfy it. The point
A'can move anywhere!". Then he asked "In the case of two conditions, for example, AB =
A'B' = 5.6cm, BC = B'C' = 5cm, these triangles are congruent to each other?" All of
students said "Of course, No!" He asked again "Why?". One of the students explained
"There are many A'B'C's satisfy them. The point A'can move on the circle with the
radius 5.6cm centered at B'." In this way the teacher initiated students into construction
as thinking tools to confirm whether the set of conditions which they found is congenente'
theorem or not. Furthermore, he asked "What do you want for A'B'C'or a point A'?"
Some of the students explained "We must have only one A'B'C'or point A'." In this way
it was shared in the classrooms that "if you can construct the only one triangle when you
constructed under a certain condition then the condition have to be congruence theorem".

The teacher suggested to students that they should enumerate conditions one by one on
the number of conditions. In the case of one condition, then, there are 6 sets of conditions.
It was trivial for students that all of these can not be congruence theorem. In the case of
two conditions, there are 15 sets of conditions. It was also trivial for students.

Emerging the Contradiction
Students was beginning to infer what the teacher's intention is. If he had been taught as

usual, their inferred-intention would be appropriate. But it was inappropriate. Because the
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teacher have changed his teaching style in the process of planning sessions of the lessons for
the teaching experiment. His original intention of the lessons was to present the triangle
congruence theorems in the textbook now in use and to ascertain the adequacy of them
by construction. In fact he said in a planning session of the lessons "I often finish the
lessons concerned in five minutes." or "How can we help students to discover what they
have already known." It means, for students, saying what they have already known about
congruence theorems could be a solution of the present task.

Consequently, the teacher's change of his teaching style have required students to under-
stand that what they regard as a solution is not the solution in the lessons. The following
interaction makes this contradiction clear.
Situation 1 (I,p156-164)

156 T: OK? for example, well then, if you have to make sure that these two triangles are
perfectly congruent to each other, what conditions must be satisfied? Kubo please.

157 kubo: Well, all sides (of the triangle ABC) are equivalent to (side of the triangle
A'B'C')respectively.

158 T: Equivalent? OK, All sides (of the triangle ABC)are equivalent to. And? Kusa.
what? All sides and?

159 Kusa: well, the length of one of sides somewhere
160 T: Stop, stop! Wait for a moment. In order to make sure, all sides and?
161 Kusa: (He is looking at his friend behind him putting his head a little to his

side.)A' B' B'C' All sides.
162 Kusa: eh!
163 T: Now, all sides, when this(triangle ABC) and this(triangle A'B'C') are exactly

equivalent, all sides and? you have to know what?
164 Kusa: That's all.

Obviously, the teacher expected students to state the definition of triangle congruence,
however, students tried to state determinating conditions that they have learned at primary
school or triangle congruence theorem they have learned at a private school. They seemed
to perceive that the task was aimed at confirming what they have already known: determi-
nating conditions. So, for students, saying them was solutions of the task. If the teacher had
been taught as usual, it would be appropriate. But it was inappropriate. Protocol 161-164
shows this contradiction clearly. This implies implicitly student's metaknowledge which
they would have developed through his teaching so far. That is, mathematics (triangle
congruence theorems) consists of a set of well-known facts (SSS, SAS, ASA), consequently
mathematical activity (inquiring triangle congruence) is to confirm these facts.

Surprising Fact for students
In the case of three conditions, there are four cases: three sides (SSS), three angles

(AAA), two sides and one angle (SSA), one side and two angles (SAA). First of all, the set of
conditions "three sides (SSS)" was investigated. From the look of their expressions, we may
safely conjecture that students didn't need to investigate the case, but the teacher offered to
investigate the case. Students accepted it somewhat unwillingly. The teacher constructed
the figure which satisfies the conditions(A'B' = 5.6cm, B'C = 5cm, A'C' = 4.1cm) on
a blackboard. Then students help his construction with their voices. Note that there are
teacher's positive intervention here.

Students naturally accepted the figure which had two intersection points of the two
circles(see, Fig.1). However, It was surprising fact for students there were, as the very
natural result of the construction, two A'above and below the side B'C'respectively. That
is, They have seen only one A'above the side B'C'.
Situation 2 (11,p249-262)
249 T: How many points do you have?
250 S: One! One!
251 T: eh?
252 S: (in haste)Oh! Two!
253 T: One?
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254 S: Oh! Two! Two!
255 T: What's this?(pointing at a point above)
256 S: A'.
257 T: A'. What's this?(pointing at a point below)
258 S: A'.
259 T: We have constructed it based on the conditions.

(encircling the condition written on the blackboard
with his yellow chalk)

260 S: Yes.
261 S: Oh! I see!
262 T: Including the point(below), we have two points!

Situation 3 (II, p263-270)
263 T: Oh?!, in that case, Is this OK?

(drawing the side A'B'and A'C'above)
264 S: A'haven't been fixed!
265 S: Irseems to be right!
266 T: So, here, we may include

(drawing the side .4'frand A'C'below), Is this OK?
:267 Yama: Oh! I see what you mean!
268 Kusa: What a wonder!
269 T: eh! What a wonder? Do you have

only one (triangle)? Only one?
270 S: Don't!

Fig.1

Situation 3 shows that students have not seen the other possible triangle A'B'C'below the
side B'C'although they have recognized two points which satisfy the conditions. Namely,
they have tried to construct the same triangle as the triangle ABC. With this as a turning
point, students negotiated how to confirm whether the given conditions are congruence
theorem or not. As a result of this, they changed their way of confirming from "if you can
construct the only one triangle when you construct under a given set of conditions, the set
of conditions have to be triangle congruence theorem" to "if you can have only one sort of
triangles when you construct all triangles which satisfy a given set of conditions, the set of
conditions have to be congruence theorem".

This suggests that their awareness of "constructing all triangles which satisfies a given
set of conditions" rather than "constructing the same triangle as the triangle ABC,which
satisfies a given set of conditions" is gradually growing. Thus their way of inquiring with
construction which have been initiated by the teacher have become their thinking tools in
order to investigate congruence theorems. Finally, developing their thinking tools enable
them to discover a new relation described next section.

A Student's Discovery
There was a student's discovery when in the case: two sides and one angle (There are 9

sets of conditions, see Fig.2) students investigated the possibility of conditions individually.
Situation 4 (II,p440-463)
440 T: Prolong your investigation!
441 Yama: Look!
442 Yama: I say, try the next of the center.
443 Yama: Something wrong! Oh no!
444 Yama: Look! g./i.\ X. t160 T: I'm going to explain how to construct

If it is difficult for you to construct the figure
which satisfies the conditions, you had better draw
the side which have the angle first. If you do so

-t- -
461 Yama: There is no difficulty to do so, teacher!
462 S: There are two solutions.

132
3 - 125



463 Yama: It goes beyond the level whether it is difficult or not!

As the student Yama said in the class a few days later " I have happened to draw a little
large circle at that time." (IV, p22), the discovery is derived from experiential facts. In
other words, if he had not drawn the figure where the circle met the side at two points, he
could not discover it. On the other hand, It is hardly considered that the discovery is only
derived from the experiential fact. He would have to be able to see each of the two points
equally as the point which satisfies the conditions. Because , at that time, if he had been
conscious of constructing the same triangle as the triangle ABCstorongly, he could have
ignored an intersection point below which satisfies the conditions.

In short, It is necessary for his discovery that there is experiential fact and moreover he
can recognize intersection points, as a result of the fact, which satisfies the conditions. It
is notable that developing his thinking tool initiated by the teacher enable him to discover.

We want to stress that, with this discovery as a turning point, there have been a change
in the classroom atmospherethat is, we haven't seen the interaction as situation I ever
after. Such interaction occurs when a student says his/her congruence theorem which is
not appropriate from the context. Following interaction shows this change.
SititticAk (IV,p142-147)

: After that, we had such conditions(SSA) left over. In such conditions, which sets
of conditions have established only one sort of triangles? What? You want to say
something? Ok, please.

143 Naka: Yes. let me see, two sides and the angle between them, one side and
let me see, two angles which put it between them. These are conditions of

144 T: eh? OK. Wait for a moment! It is the next, isn't it? Now, we try to do the case
two sides and one angle. OK. OK. Thank you. We will have to investigate what
Naka said. What? Yama please.

145 Yama: Yes, first of all, 2 sets of conditions below and a set of conditions right-above
are established.

146 T: Yes.
147 Yama: And, what I ought to do is to tell why (they have been established), isn't it?

In this situation, Naka said congruence theorem ASA which she have already known.
However, there was no statements with the conflict of students such as "That's too bad."(I,
p355) or "You should not say such a thing!"(I, p363). That is, There are no interaction
described above. This shows that students have begun to understand their solutions or
answers is not the solutions or answers here.

Grounds of Students
Yama explained why six SSA conditions were applicable in some cases and were not in

the other cases. Advices of some students sometimes helped him. Students referred to that
the applicability depended on sizes of two sides is set of conditions. Then the teacher
encouraged students to formulate the set of conditions. They formulated it as follows: S-
S-A and "the side with an angle g the side with a side ". After the teacher sorted out the
triangle congruence theorems that had been shared in the classroom, he asked whether the
set of conditions above could be a triangle congruence theorem or not. Students answered
they could not be. Their grounds were as follows:

Yoshi: Because if we could established it on most few conditions, this would
be the best. Three sets of conditions above have only three conditions, so these
are OK. But this set of conditions is not the minimum, for it has S-S-A and
further one condition. (IV, p347-355)

Yama: This set of conditions fussy about given triangles. The triangles must
be satisfied it. But if we applied the set of conditions S-S-A two given triangles
then the additional condition would be not necessarily satisfied. You will want
to state we could use it every triangles. But it seems to me that it fussy about
given triangles. It is cheeky. So I don't want to state we could use It every
triangles. (IV, p374-375)
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In their grounds, they have strong criterions. Yoshi's criterion seems to be the simplicity.
In the other hand, Yama's criterion seems to be the applicability. Yama would not be able
to express his thought appropriately, but he would want to state the additional condition
could limit its applications. Their decisions, whether a set of congruence is a triangle
congruence theorem or not, don't depend on the teacher yet. It means that the triangle
congruence theorem is what they should create; enOecially on the bases of pragmatical
criterions here, rather than what should be in the textbooks previously. It suggests they
certainly begin to understand partly what the triangle congruence theorems is or what the
activity inquiring the triangle congruence theorem means.

Then criterions seems to derive from the context of activities of the lessons. We ex-
plained somewhere they accepted SsA conditions, but their negative decision here seems
to be consistent in the context here. If we will give students a situation where SsA condi-
tions are very useful and ask the same question described above, they will be able to think
about what the triangle congruence theorem is or what the activity inquiring the triangle
congruence theorem means further and result of this they will understand it better.

CONCLUSION

The teacher have changed his teaching style in the process of planning sessions of the
lessons for the teaching experiment. This change requires students to understand what they
regard as a solution is not the solution in the lessons. The teacher helps students to develop
their thinking tools which they already have used approaching the task concerned rather
than present the triangle congruence theorems in the textbook now in use ascertaining
the adequacy of them by construction. The teacher was trying to communicate what they
regard as a solution is not the solution in the lessons, but in vain. As a result of this, It have
caused the same pattern of interaction descrived above. But, a surprising fact for students
and further a student's discovery as a turning point, there have been no this pattern of
interaction. It suggests that students have become aware of the significance of inquiring
the task with their tools and to understand what they should do at the same time. That
is, students have begun to understand teacher's metaknowledge. Now, their solutions of
the task is not to say what they already known but to inquire the task with their tools or
their ways of thinking. Situation 5 and student's grounds described above show this.

The analysis revealed that when (1) the teacher helps students to develop their thinking
tools which they already have used to approach the task concerned, and further (2) the
developing their thinking tools enable students to be aware of or discover what they have
never known and never would have known without it, the teacher's metaknowledge can be
communicated to students better.

This conclusion illustrates the significance of the individudl's discovery of a thinking-tool
(Mellin-Olsen, 1987) in the classroom situation. Further, It suggests the importance of the
teacher's positive intervention to the subject matter, since the discover is derived from his
positive intervention descrived in the above section.
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A STUDY OF TEACHER ENQUIRY INTO THE PROCESSES OF
MATHEMATICS TEACHING

Barbara Jaworski University of Oxford

This paper describes a study which explores mathematics teacher research
and its effects on the development of mathematics teaching. Issues emerging
include the development of the research process by the teachers, the
importance of collaborative structures and the centrality of mathematic to
the study of teaching and its development.

Evidence has shown that when researchers explore the work of teachers through
classroom observation and interviewing, the teachers' thinking and practice develop
(Elbaz (1987), Jaworski (1994)). The questions asked by researchers distance
teachers from their immediate concerns embedded in practice, cause reflection on
events which have occurred and lead to a deep questioning of the teachers'
underlying beliefs and theories. Such questioning results in a problematising of the
teaching practice as teachers consider alternative approaches or seek to fulfil new
objectives. The question this raises for research is: what force, other than an external
researcher, might promote such deep reflection, problematisation and ultimate
development of teaching practice in mathematics teaching?

One approach that is becoming familiar in mathematics education is that of teachers
researching their own practice. This itself seems to beg many questions. How do
teachers engage in such research? What is the nature of the research'? What are its
outcomes? What issues does it raise for the teachers who engage in it?

Background

Developing from the work of Stenhouse in the nineteen seventies, and from thinking
of Lewin much earlier, the teacher-research movement has gained considerable
momentum in recent years. Research into teaching and learning has come to mean
research in classrooms, and teachers are central to classrooms. From research which
has looked into the roles and acts of teachers from the outside, perhaps through
valuing the contributions the teachers have made to the research the movement has
developed a legitimacy for research conducted by the teachers themselves. There are
many examples of research projects small and large where the chief researchers are
teachers.

Such projects fall largely into two camps: larger scale projects in which a number of
researchers work towards common goals, such as the Ford Research project in the
UK (Elliott, 1991); and smaller projects conducted by individual teachers as part of
some higher degree programme in which the research is a required part of the
programme's assessment. An example of the latter, taking place at the University of
York, was monitored for its effects on the practice of its participants (Vulliamy &
Webb, 1992). Evaluators rated the success of the programme in terms of its
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contribution to the professional development of its participants more highly than its
findings in terms of research results, although these were not insignificant. In many
such examples, university researchers engage with the teachers in some form of
tuition/ course leadership/ evaluation in which the outcomes of the research and its
effects on the teacher-researchers are a source of study (e.g. Irwin, 1993).
Collaborative practices are fostered in which university teachers and researchers and
classroom teacher-researchers build mutually supportive relationships to further
teaching development (e.g. Krainer, 1993).

As a result of such programmes it is evident that the practice of teaching benefits
from the research undertaken by the teachers. The act of enquiring into aspects of
ones own teaching might be seen to lead to a development of awareness which results
in a greater sensitivity towards learning processes and the development of learners'
knowledge and understanding. However, teachers themselves are often unfamiliar
with research practice and traditional methodologies. They have little time to gain
specialised knowledge about research methods, or to read widely in the literature
relating to their area of study. Their questioning and enquiry might fail to draw on
other relevant work and their approaches may lack the rigour of more formal
research. If the research outcomes are not of importance, research rigour perhaps
needs not to be a main focus of the research, which begs many questions about what
aspects of the process might be considered to be research.

A collaborative project to explore mathematics teaching development

The Mathematics Teacher Enquiry (MTE) project, at the University of Oxford, was
designed to explore the potential for the development of teaching of teachers
undertaking research or enquiry into aspects of their own practice. It has no
particular focus in determining knowledge into aspects of teaching or learning, and it
leads to no form of certification. Its purpose is to explore the processes, outcomes
and issues arising from teachers undertaking research or enquiry into aspects of their
own practice and/or their students' learning of mathematics. A pilot study has been
undertaken and a further study, drawing on its results, is currently being
conceptualised.

A number of teachers volunteered to participate in the project, agreeing to undertake
some form of research or enquiry. It was made clear in soliciting participation that
the substance of their enquiry should be of direct concern to themselves, as would be
their approaches to it. However, the university researchers (there were two)
undertook to provide assistance with research methods or supportive literature as and
when this became necessary. Collaboration between teacher researchers and
university researchers in a reflexive relationship was seen to be a major objective of
the research. Project meetings (two per teaching term) were an important feature of
the research design, encouraging collaboration between all participants in the sharing
of ideas and concerns, the identification of common issues and understandings, and a
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mutually supportive environment to sustain research. They provided highly
significant data.

Major issues arising from this study include:

The tentativity with which teachers first approached classroom research and its
effect on the processes and practices which emerged.

The development, for the teachers, of a meta-language in which to talk about
theory and practice in the processes of mathematics teaching and learning.

The role of mathematics in the study: is this a study of teaching where
mathematics is 'merely' the focus of the teaching, or is mathematics itself a
central feature of the learning, development and issues arising from the
research?

What is the nature of the teachers' research? In what ways does it fit
established paradigms of research practice? Do we need to redefine research
in these contexts? How does such research differ from good reflective
practice?

This paper will focus on the last of these issues, while touching briefly on the others.
These are discussed in Jaworski & Lee, 1994 and Jaworski, 1995. A report of the
project is in preparation.

What is research?

Stenhouse defined research briefly and succinctly as "systematic enquiry made
public" (Stenhouse, 1984). At first glance, the research undertaken by the teachers
might be seen as being very unsystematic. However, terms like 'systematic' derive
their meaning from culturally and contextually related events. In its most positivistic
sense, systematic can mean logically structured and predetermined. None of the
research could be described in this fashion. However, in retrospect, each research
had its own system, related to the thinking of the teacher(s), the research questions,
however tentative, and its particular school environment.

In much (action) research undertaken by teachers, teachers are encouraged or
required to keep journals in which they document their thoughts feeling and issues
arising from their research. No such imposition was made in this project. The issue
of writing, and its advantages was aired by the university researcher in discussion
with a teacher and at project meetings, but no requirement to write was imposed.
The majority of the teachers were reluctant to write, partly because of other pressures
and lack of time, but importantly for the project, because, during the early stages at
least, they saw no need to write, no purpose in writing, and basically they did not
know what to write. Thus the making public the research was not a part of their
thinking. Indeed, it was the case that they did not value their thinking or have
confidence in their research, so that thoughts of making it public were almost
laughable in the early days.
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John Elliott (1991) defines action research as, "the study of a social situation with a
view to improving the action within it". This seems much closer to the practice and
processes in which the teachers engaged. Each one of them identified an area of
interest or concern: there was something they wanted to find out, to know more
about or to improve; often all three. Their enquiry was motivated by a desire to
effect change in their classroom practice, or in their own knowledge and thinking
related to that practice. The desired outcomes of their enquiry were not always clear
at the start of the enquiry, nor were the methods which would need to be employed.
The process of enquiry included clarification in both of these areas.

The nature of the teachers' research

During the project we used the word 'enquiry' largely instead of 'research'. It
seemed more friendly, less forbidding word. Research has too many academic
connotations, and some of he teachers were clearly inhibited by it. Enquiry captures
well, not only what the teachers did, but also their developing thinking in doing it.
This will be illustrated through glimpses of one teacher's exploration.

Sam had his own very clear objectives for the ways in which he wanted his students
to work in mathematics lessons. When they worked in these ways he referred to their
work as 'productive'; in other cases he talked of the students 'resisting' his preferred
approaches to their learning. He wanted to know what happened in groups in his
classroom when he was not present with them himself. How did studeniswork
together? What quality of thinking, discussion and negotiation of ideas was evident?
However, he was not able to monitor the talk and interaction when he was not with a
group; he could not be with all groups all of the time. Moreover, it was an important
feature of his approach that they should develop independence and responsibility for
their learning. His continued presence and direction would have countered these
objectives.

In the beginning, after articulating the basis of his research, he sought help from
colleagues who were willing to observe groups in his class. Whenever I visited him
he used me for this purpose too. After a lesson, we would discuss the lessons and
what I had observed, and Sam would relate this to his objectives for the lesson.
Some of my observations proved salutary to him, when actions or thinking of the
students were unexpected or ran contrary to his expectations. As a result of a number
of such experiences he decided to develop his research in two ways: firstly to place a
tape recorder with certain groups to record their conversation during a lesson, and
secondly to interview some of his students to find out more about their views on their
mathematics lessons and on his teaching. I did some of the interviews and he did
others himself. He indicated that it had taken some courage to enquire into students'
views of his teaching, but that the results had proved valuable for his learning. In
particular, listening to the tapes, he discovered that he talked too much, and resolved
to give more attention to listening to the students.
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On one occasion, in his class, he asked students to draw a number line and place

certain numbers on it. One group of girls objected to his sketch on the blackboard,

saying that they would not draw the number line in the way he had drawn it. By this

time he was alert to questioning their perceptions, and wanted to ask them to explain.

However, he did not have a tape recorder available. So he diverted the focus of the

lesson elsewhere to preserve the possibility of asking them to talk about their images

at a later date. He transcribed the subsequent interview and presented his findings

and perceptions at a seminar at the university to gain feedback on his analysis of the

event.

This example illustrates that, at one level, Sam's enquiry could be seen as rather

unsystematic. He did not have a well defined research question with a clear
methodological approach to answering it. However, he was aware of an aspect of his

practice which he wanted to explore, namely the relationship between his
expectations of students and their response to the tasks he set them. Initially, the
only way he could think of to explore this was to have someone observe for him.
However, these observations threw up further questions. It then seemed appropriate
to interview students to try to find out more about their perceptions of his teaching
and their feeling about the mathematical tasks in which they engaged. This deeper
enquiry led to the exposure of students' mathematical insights about which he might
otherwise not have become aware.

The process which I have described might be seen as one of evolving methodology as
Sam explored, reviewed, discussed and explored further. Each stage of the
exploration took him deeper into the perceptions and understandings of the students,
providing insights for him of their views of and reactions to his teaching. As a result
he began to see necessity for changing his teaching. This evolution of the research
process was a dynamic which sustained motivation for further research. The research

almost gained a momentum of its own.

At project meetings Sam described his process of enquiry: what he had done, the
thoughts and questions which had arisen from doing it, and issues related both to the
substance of the research and his methodology. From responses and questions of
other teachers, and accounts of their research, he was able to gain a wider perspective
of the issues involved and refine his own thinking. During the first year of the
project, most teachers were happy to talk about their process of enquiry and what
they learned from it. However, it was at the end of the year, when the pilot study was
coming to an end and we were discussing the future of the project, that teachers
admitted explicitly to feeling of insecurity with the research process. They said, "We
cannot stop now, our research is only really just beginning". Implied was that they
had been struggling with what research might actually mean for them, and had now
developed an awareness that it was something within their control with which they
were able to engage overtly and confidently. They might now go on with it more
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knowledgeable and less intuitively than in the past. Interestingly, several teachers are
now beginning to write about their research with journal articles in mind.

The substance of a teachertresearch

For Sam, the substance of his enquiry seemed fundamentally to be how he would
achieve in practice his theoretical aims for the way he wanted his students to work.
An example from his classroom and subsequent discussion with the University
researcher illustrates the quality of thinking, the questions with which he was
struggling, and some insights into the nature of his process of enquiry.

He had set his class a task involving the numbers 6, 3, 2, in that order and the
operations + x +. Students had to write down all the possible ways of placing two
operations between the three numbers, and bracketing either the first pair or the
second pair of numbers. He gave three examples to illustrate what he meant by this:
i.e. (6+3)+2; (6+3)+2; and 6+(3+2). He felt that these gave an indication of the
different types of combinations they might develop: they could have two operations
the same, or different. They could bracket the first pair of numbers or the second
pair. He recognised that students would be successful at the task if they were
systematic about it, but wanted them to realise this for themselves. When students
asked how many cases there would be, he reflected the questions back to them: how
many did they expect? It emerged that there were 32 possible ways. He then asked
two further questions: Can you justify why there are only 32 combinations? and
When are brackets unnecessary?

It appeared that the final question was "the point of the lesson" what he hoped
would be achieved through the students' activity. He wanted students to go on to
recognise the forms of algebraic expression which could be written without brackets,
and where brackets were essential. He could of course have explained this to the
class in far less time than it took for them to tackle the task and subsequent questions.
So, why did he want them to go through this process?

He said, "I want them to do something and then reflect on what they've done", and "I
want activities that will challenge them to think". Although recognising that they
needed to be systematic to be successful, he did not want to tell them to be
systematic. It was something they needed to become aware of themselves. He did
not write up the final pair of questions on the board until some of the class had got to
a point in their exploration, that they needed the questions in order to go further.
Some could possibly have achieved the aim of the activity without being given these
questions. The questions could have arisen from their exploration and thinking.
Thus making explicit the questions, reduced their opportunity to come to the
questions themselves. However, other students did need to be given the questions,
and might not have come to the questions otherwise. Some students complained that
the teacher had set a second task in the questions on the board, and that only the
better students in the class would be able to tackle this new task.
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Sam grappled with what teaching actions suited both (a) his aims and expectations
for his students' thinking and achievement, and (b) his students' perceptions of their
needs in working on the tasks. His reflections on (b) caused him to rethink the
implementation of his aims. Earlier the same morning, I had, at his request,
interviewed a number of his students about their perceptions of mathematics lessons
and Sam's expectations of them. One girl maintained that Sam gave most of his
attention to the better students in the class, mainly boys; that activities were designed
for the achievement of these students. Sam recognised that the boys mentioned could
probably have achieved the aims of the lessons without being offered the final
questions. It was for students such as this girl that the questions were made explicit.
However, she saw the questions being an extra task designed by the teacher for the
better students in the group, and as making her own achievement less secure.

The student interviews allowed Sam to gain insight into his students perceptions and
to set these against his own aims and decisions in designing the tasks and asking the
questions. There was evidence of considerable tension for him as his actions seemed
to be misinterpreted. Despite seemingly sound classroom decision-making, the
results ran counter to his best intentions. He recognised the personally threatening
nature of these findings, and the need to know more about students perceptions in
order to reconcile outcomes and aims.

Thus the cycle of his research involved reflection on his design of tasks and
classroom outcomes, alongside gaining knowledge of students' perceptions and
responses to the tasks set. This enquiry had a self consistency, not always evident in
the somewhat haphazard way in which information was sought.

Mathematics was central to Sam's research. His own view of mathematics,
encompassing processes and ways of thinking inseparable from whatever
mathematical content was the focus of study, guided his design of teaching.
Students' perceptions of mathematics, as well as Sam's approaches to teaching,
influenced strongly the resulting mathematical achievement. The length of this paper
restricts presentation of further evidence of these claims, although much such
evidence exists from interviews and recording of student talk during lessons.

The pilot study indicated a rich potential of this kind of enquiry for the development
of teaching by the teachers concerned. However, many counter-indications were also
recorded. For example, teachers showed considerable dependence on the university
researchers to sustain their research. There were many external pressures which
militated against steady and continuous enquiry. Nevertheless, other support
mechanisms started to emerge, for example in teacher collaboration within and
between schools. Project meetings were a source of renewal and motivation. The
next phase of the project will look more closely at such support mechanisms.

The involvement of the university researchers was itself also a source of enquiry
relative to the findings of the project. Acting variously as researchers and as advisors
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to the teachers it was not always possible to separate these roles. While trying not to
influence overtly the substantive research of the teachers, it was inevitable that
influences arose from the researchers' presence, from the questions they asked, and
from their known opinions and views. They were not strangers to the teachers. The
project report will include an analysis of their roles.

All members of the project were strongly aware of the imporance of mathematics to
the enquiry, and also that this was not always obvious in the discussions and analyses
taking place. Further analysis will be focused explicitly on linking the findings of the
'research to the fact that it is mathematics teaching and learning which is under
scrutiny.
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USING CHILDREN'S PROBABILISTIC THINKING

TO INFORM INSTRUCHON

Graham A. Jones, Carol A. Thornton,
Cynthia W. Langrall, Timothy A. Mogill

Illinois State University

This study developed and evaluated an instructional program in probability
for grade children. The insmctional program MIS inlOrmed hr a cognitive
framework that described children's probabilistic thinking. Two classes
participated in Ow instructional program, one in the fall and the other in the
spring semester. Following instruction, both groups displayed significant growth
in prohabilistii thinking that was not .siply due to maturation. There was
evidence from 'Our case studies that students' readiness. to focus on the set of
possible outcomes in a probability situation, their ability to connect sample space
and probability, and their predisposition to use number in describing probabilities
were key factors in facilitating learning.

Recent recommendations recognize the importance of having all children
develop a greater awareness of probability (e.g., Australian Education
Curriculum Corporation, 1991; Department of Education and Science and the
Welsh Office. 1991; National Council of Teachers of Mathematics. 1989). This
emphasis on probability in the school curriculum has established the need for
further. on-going research into the teaching and learning of probability
(Shaughnessy, 1992). In relation to teaching and learning, Fennema, Franke.
Carpenter. and Carey (1993) call for instruction that is informed by research-
based knowledge of children's mathematical thinking. Although there has been
considerable research into children's thinking in probability (see Shaughnessy,
1992), none of the research has generated or evaluated instructional programs
that are guided by research-based knowledge of children's probabilistic thinking.

This study addresses the development and evaluation of such an instructional
program. In particular. it seeks to: (a) use a framework that describes and
predicts children's thinking in probability to construct a third-grade instructional
program: and h) evaluate the effect of two different sequences of the instructional
program on children's thinking in probability.

Theoretical Considerations

The instructional program developed in this study is based on a cognitive
framework that describes children's probabilistic thinking (Jones. Langrall,
Thornton, & Mogill, in press). 'I'his framework provided the research base for
informing the instructional program and constructing assessment protocols.
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Framework for Children's Probabilistic Thinking

In order to capture the manifold nature of probabilistic thinking, our
framework (Figure I) incorporates four key constructs: sample space. probability
of an event, probability comparisons and conditional probability. The framework
builds on previous research in sample space (e.g., Borovcnik & Bentz, 1991:
English, 1993), in probability of an event (e.g., Acredelo. O'Connor, Banks, &
Horobin, 1989: Fischbein, Ncllo. & Marino. 1991)..in probability comparisons
(e.g.. Falk. 1983), and in conditional probability (e.g., 13orovcnik & Bentz,
1991). However. our framework is distinctive in that it provides a coherent and
comprehensive picture of children's probabilistic thinking that enables
benchmarks for instruction and assessment to be established.

For each of the key constructs (Figure I ). four levels of thinking were
established and validated. Level I is associated with subjective thinking, Level 2 is
transitional between subjective and naive quantitative thinking, Level 3 involves
the use of informal quantitative thinking, and Level 4 incorporates numerical
reasoning. These levels of thinking evolved from observations of children's
probabilistic thinking over a two-year period and appear to he consistent with neo-
Piagetian theories that postulate the existence of levels of thinking that recycle
during developmental stages (Biggs & Collis, 1991: Case, 1985).

Methodology

Suhiects

Students from two intact Grade 3 classes participated in an instructional
program in probabilityone class in the fall semester (Early Instruction Group,
n = 18). the other class during the spring semester (Delayed Instruction Group,
n= 19). In addition to the analysis involving all students, two children from each
classroom were randomly selected as case studies for more detailed analysis.

Procedure

Each semester's instructional program consisted of sixteen. 40-minute
sessions--two per week over eight weeks. Sessions opened with a whole-class
exploration posed by one of the researchers. Twelve teacher education student
mentors then worked with pairs of children to solve probability problems.

Instructional Program

The instructional intervention, developed by the researchers (Jones &
Thornton. 1992), consisted of problem driven tasks generated from the four key
constructs of the Probabilistic Thinking Framework. The pedagogical orientation
of the intervention was grounded in research-based knowledge of children's
probabilistic thinking, and was based on learning within a socio- constructivist
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environment (e.g., Wood, Cobb, Yackel & Dillon, 1993). Mentors participated in
weekly seminars to explore ways to 1) use the framework to assess and build on
children's understanding; 2) pose problems rather than model solutions; 3) guide
students to construct their own solutions; 4) maximize opportunities for students
to collaborate; and 5) challenge students to negotiate problem solutions.

Data Collection, Instrumentation and Analysis

Interview and observational data were gathered from three sources: 1)

researcher-designed assessments conducted at the beginning, middle, and end of
the school year; 2) mentor evaluations from each instructional session; and 3)
researcher field notes on the case study students. The assessment protocol based
on the Probabilistic Thinking Framework comprised 20 tasks: five on sample
space, four on probability of an event, seven on probability comparisons, and
four on conditional probability (see Figure 2).

Sample Space Probability of an
Event

Probability
Comparisons

Conditional
Probability

SS I
I will shake this box Allow
the student us observe thai
dm boi contains 4 green. 3
red. 2 yellow hears. If you
close your eyes and draw a
bear from the box, what
colors could your hear be?
Why?

Pit I
.... to
r. 1m
i..... t=1

This spinner is used to play
the penny game. You and a
friend pick a color and then
take turns spinning If the
pointer lands on the color
you picked, you get a penny.
If not, you lose a penny.
Which color would you
choose? Why?

PC I

A B
We will play the penny
game again (See PE I)
Which spinner would be the
best for you? Why? If child
prefers one spinner over the
other, ask, Does it matter
which spinner you use? Use
numbers to tell me about the
chances of getting a red.

CP I (continuing from PE 2)
Two red bears are drawn and
not replaced I will shake
the box again. If you draw
another bear without
looking, what color would
you have the LEAST chance
of getting? Why?

SS 2

410 411)
II

spin tooth spinners. Wili,,

numbers did you get? %Vila!
numbers could you get if you

h 0 it tooth spinners again
and gain? Is that all? !low
do you know?

PE 2
I will shake ttus box
the student us observe that
the bus COMJI11.1 4 green. 3
red. 2 yellow hears If you
draw a hear without looking,
which color do you have the
LEAST chance of getting?

PC 2.00
Imo_
vtrits,

oat
........ .A B

Place the liKalmc dame
mat before the student
Show the spanners. Vont
color is red. Which spinner
would be best for you if you
wanted to win? Why? Can
you use numbers to explain
your choice or compare the
chances on the 2 spinners?

CP 2 (continuing from CP II
.1-1.7athethcehacle.ofcgrliging

changed

bears? which colors? Why?
since we began drawing

Can you use numbers to
explain?

Figure 2: Interview assessment: Selected items

Two different procedures were utilized to code the interview assessments. The
first _procedure, used with the four case study students, involved double coding
(Miles & Huherman, 1984) to establish probabilistic thinking levels on each of the
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four constructs over the three assessment points. For details of this procedure see
Jones. et al. (in press). The second procedure. which also involved double coding,
was used to generate performance scores (maximum = 20) for all students in the
Early and Delayed Instruction groups over the three assessment points. Working
independently. two of the authors scored children's responses with 92%
agreement. Variations were clarified until consensus was reached. Qualitative
data on children's probabilistic thinking was collected by the mentors and the
research team. Each week mentors recorded insightful. interesting, or unusual
responses--to develop a profile of each child's probabilistic thinking.

An analytic inductive theory approach (Erickson. I986) guided the analysis of
qualitative data on the four case study students. Transcripts of the mentor
evaluations and researcher field notes were coded and synthesized to discern
learning patterns exhibited by these students during the intervention. A repeated
measures analysis of variance was also performed on the data collected at three
assessment points for both the Early Instruction and Delayed Instruction groups.

Results

The Effect of the Intervention Program: Analysis of Case Studies

Two of the case studies. Jana and Kerry. were typical of students whose
thinking in sample space developed very slowly and substantially restricted their
overall growth in probabilistic thinking. In spite of the intervention, both students
seemed unwilling to recognize or identify all possible outcomes in a one-stage
experiment and were unable to build a systematic strategy for listing two stage
outcomes. Even when Kerry's sample space thinking matured toward the end of
the intervention she was not inclined or not able to make connections between the
composition of the sample space and the probability or conditional probability of
events in that sample space.

By wa) of contrast, Corey and Deidra whose thinking profiles were similar to
that of Jana and Kerry prior to the intervention, showed strong and consistent
growth across almost all constructs. While Corey and Deidra's rapid growth in
sample space thinking was an important factor, a more crucial factor was their
predisposition to describe and justify probabilities using quantitative and or
numerical reasoning. Deidra, in particular, was able to use fractions in a
meaningful way to explicate her thinking and as a result was exhibiting thinking
beyond level 3 on three of the four constructs by the end of the intervention.

The Effect of the Intervention Program: Analysis of the Instructional Groups

The children's probability performance on the interview assessment items was
analyzed for each of the three assessment points. The relevant means and standard
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deviations for both the Early Instruction Group and the Delayed Instruction
Group are presented below.

Table 1
Means and (Standard Deviations) for Pre, Middle, and End Assessments

Group Beginning Middle End

Early Instruction (n=18) 12.44 (2.56) 15.39 (2.70) 15.00 (2.47)
Delayed Instruction (n=19) 13.11 (2.77) 13.95 (2.32) 16.63 (1.54)

A repeated measures analysis of variance performed on the data for the three
assessment points indicated significant differences for the assessment points
(F=12.88, p < .001) and a groups by assessment points interaction (F =6.38.
p<.01). Further analysis using the Tukey-HSD test (Kirk, 1982), showed that the
interaction was produced by non parallel differences at assessment points within
each group and by non parallel differences between groups (see Table I).

In the case of non parallel differences 'within each group, the Early Instruction
Group showed significant differences between beginning and mid assessments
(p < .01) and between beginning and end assessments (2 < .0I)but not between
mid and end assessments (see Table I). On the other hand, the Delayed
Instruction Group showed significant differences between the end assessment and
each of the earlier assessments (in each case, 2 < .01). Non parallel differences
between the Early Instruction Group and the Delayed Instruction Group were
evident in significant effects at both the mid and end assessments (in each case,
p < .05). Moreover, at both the mid and end assessment points, the differences
between the groups were reversed from the previous assessment (see Table 1).

Discussion

This study addressed a need for the development and evaluation of
instructional programs in probability that are informed by research-based
knowledge of children's thinking. In particular, the instructional program utilized
in this study was based on a cognitive framework that described and predicted
children's probabilistic thinking (Jones, et al., in press).

With respect to the effectiveness of the instructional program, a repeated
measures analysis of variance demonstrated that both the Early and Delayed
Instruction groups showed significant growth in performance following
instruction. Moreover, because the Delayed Instruction group essentially acted as
a control group between the first and middle assessment points, the significant
difference in favor of the Early Instruction group at the middle assessment point
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provides further evidence that the instructional intervention generated learning
that was not simply due to maturation. Notwithstanding the overall effectiveness
of the instructional intervention, the size and consistency of the standard
deviations for both groups at almost all stages of the study (See Table I) predicate
substantial variation in the probabilistic thinking of children involved in this
study. Some insights into these variations were revealed from the case study
analyses involving Jana. Kerry, Corey and Deidra. The differential effect of the
instructional program appeared to be linked to three discernible learning
patterns: children's initial level of thinking in sample space; their willingness to
connect sample space and probability; and their predisposition and ability to use
number and fractions in describing probabilities and conditional probabilities.

Interestingly-, in the four-month period following the intervention, Jana
showed substantial growth in probabilistic thinking. It is not clear whether her
growth in probabilistic thinking was a delayed effect of the instructional
program, or whether it was indicative of more general developmental growth.
We believe that Jana's sudden spurt and the Delayed Instruction group's superior
performance at the end of the study provide evidence of the importance of
maturational development in the timing of probability instruction. At any rate,
both the quantitative and qualitative analyses associated with this study suggest the
need for further research to investigate the long-term effects of delaying
instruction in probability. Given the impressive growth in probabilistic thinking
exhibited by students who'had a predisposition to use numbers, especially
fractions, there may well be considerable merit in delaying the introduction of
probability until students have greater "number power."
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COMING TO KNOW ABOUT 'DEPENDENCY' WITHIN A DYNAMIC
GEOMETRY ENVIRONMENT

Keith Jones
University of Southampton, UK

The ability to define relationships between objects is one of the most powerful
features (da dynamic geometry package such as Cabri-Geometre. In this paper /
document how one pair of 12 year old students begin to come to know about this
form of Iiinctional dependency within this particular computer environment. 1
suggest that this process olcoming to know about dependency may he understood
as an interweaving between the 'voices' of the students and the teacher within the
socially organised activity taking place in the classroom.

La capacidad Para dejinir relaciones entre objetos es una de las caracteristicas
mas mimes de un paquete integrado de geometria dincimica coma es el Cabri
Geometria. En este articulo, presento coma un par de alumnos de 12 alias
empiezan a comprender el concepto de dependenciu jUncional denim de este
contexto informatico particular. Sugiero que este proceso de iniciacuin a la
comprension de la dependencia puede iruerpretarse como un entretejerse las
'voces' de los alumnos y el projesor dentro de una actividad socialmente
organizada que tiene lugar en el aula.

Introduction
One of the most powerful features of a dynamic geometry package such as Cabri-
Geometre is the ability to define relationships between objects and to explore
graphically the implications (Laborde 1993 p 53). The drag facility allows a figure
to be continuously transformed while the relationships between the objects remain
invariant. The idea of dependency (and independency) can be explored by, for
instance, observing the nature of the relationships between the objects used to
construct the figure in question when a chosen object such as a point is dragged.
Another way of observing dependency is when an object is deleted. Then all
dependent objects are also deleted.

As Holzl et al (1994) discovered when they observed pupils attempting to construct
a rectangle, the students had to come to terms with "the very essence of Cabri; that
a figure consists of relationships and that there is a hierarchy of dependencies"
(emphasis in original). An example of this hierarchy of dependencies is the
difference (in Cabri I for the PC) between basic point, point on object and point
of intersection. While all three types of point look identical on the screen, basic
points and points on objects are moveable (with obvious restrictions on the latter).
Yet a point of intersection cannot be dragged. This is because a point of
intersection depends on the position of the basic objects which intersect. In their
study, Holz! et al found that students need to develop an awareness of such
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functional dependency if they are to be successful with non-trivial geometrical
construction tasks using Cabri. The experience of HoIzI et al is that "Not
surprisingly, the idea of functional dependency has proved difficult [for students] to

grasp ".

In this paper I describe how one pair of 12 year old students begin to come to know
about dependency within the dynamic geometry environment Cabri. The data
comes from a project designed to trace the transition of student conceptions of
some chosen geometrical objects from informal notions towards formal
mathematical definitions. 1 begin with an outline of the theoretical framework with
which I will interpret the data.

Theoretical framework
It is evident that "coming to know" is a complex process and that an understanding
of such a process cannot be explored in a framework that detaches that learning
from its sociocultural setting. Mercer (1995 and with Edwards 1987), for instance,
has expounded on the guided construction of knowledge within the classroom by
stressing the importance of talk between teachers and learners. Wertsch (1991),
too, has built on the work of Vygotsky and others with the claim that "human action
typically employs `mediated means' such as tools and language, and that these
mediated means shape the action in essential ways" (p 12). Yet as Confrey (1995a)
points out, there are a number of limitations to employing an overly narrow
Vygotskian perspective (or its interpretation) in mathematics education. These
include:
1. Vygotskian theory (or its interpretation) may encourage the neglect or

devaluation of concrete activity
2. Advocates (or interpreters) of Vygotskian theory may focus on, and privilege,

language to the detriment of other forms of intellectual interaction and inquiry.

Indeed as Cobb (1993 and 1995) has shown, classroom learning of mathematics is
not always consistent with the sociocultural view that social and cultural processes
drive individual thought. Nevertheless, both Confrey and Cobb point to ways of
moving beyond the tensions that are apparent between a Piagetian (individualistic)
and a Vygotskian (sociocultural) viewpoint. They point to an interweaving of a
student's own cognising activity within the socially organised activity in which the
student is a participant. As Cobly(1995) says "it is impossible to understand how
students could construct an intellectual inheritance that took millennia to create
unless we understand how their negotiation and use of symbolic means supports
their mathematical development".

Confrey (1995b) employs a distinction between 'voice' and `perspective' to signal
the two kinds of learning that result from a reciprocal interaction between a student
and a teacher (reciprocal in that both parties learn). 'Voice' refers to the student's
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conceptions while 'perspective' can be used to describes the teacher's viewpoint.
This has echoes with Wertsch's (1991) concept of the 'voice' of the mind and how
learning through talking and thinking involves 'ventriloquating' through the voices
of others . These ideas are based on the work of Bakhtin who stressed that voices
always exist in a social milieu so that there is no such thing as a voice that exists in
total isolation from other voices. 'Ventriloquating' is the process whereby one
voice speaks through another voice. As a student begins employing a term such as
'dependency' it is initially only half theirs. "It becomes one's own only when the
speaker populates it with his own intention, his own accent, when he appropriates
the word, adapting it for his own semantic and expressive intention" (Bakhtin 1981
pp 293-294).

Confrey (1995b) proposes that "classrooms can be described as places in which
children engage in gounded activities and systematiC enquiry". Grounded activities
are, according to Confrey, "actions involving practical activity which are mediated
by one's interactions with others". In contrast, systematic enquiry involves
"communication through the use of signs" which "can be viewed as social activity
mediated by one's experience in grounded activity". Confrey suggests that
"looking at the interactions between these two forms of mediated activity may yield
some useful insights into how we might successfully educate people in
mathematics".

In the case study that follows, I document how one pair of 12 year old pupils
interact with the teacher/researcher regarding the notion of dependency during four
50-minute mathematics lessons that took place at intervals over a period of six
months. I suggest an interpretation of the data from this case study making use of
the notions of the interweaving between voice and perspective and of the process of
'ventriloquating'.

The Case Study
The pair of students reported on here are 12 year olds with no previous experience
of using a dynamic geometry package although they have used various drawing
packages and other IT resources. The class is an above-average mathematics class
in a city comprehensive school whose results in mathematics at age 16 are at the
national average. The mathematics teachers use a resource-based approach to
teaching mathematics and the students usually work in pairs or small groups. The
class has three 50-minute mathematics lessons per week. For this part of the study,
computer use for Cahri was restricted to one computer in the classroom (the
students have access to computer laboratories for other computer applications).
This meant that, as student pairs took it in turn to use the computer, it was often
several weeks between sessions for particular pairs. The version of ( "ahri used was
Cobra I for the PC.
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In an introductory session the pair of students were introduced to some of the menu
items in Cahri and then allowed to choose their own goal. The notion of "messing
up" (a term suggested by Healy et al 1994 to refer to whether a figure could be
dragged to see if it became unrecognisable) was introduced, with the students being
encouraged to formulate mathematically challenging goals. Following this
introductory session, the students worked through a series of tasks on quadrilaterals
(Jones 1995). Each of the classroom tasks required the students to analyse a figure
presented on paper and to construct the figure using Cahri such that the figure is
invariant when any basic point used in the construction is dragged. This means that
the students have to focus on the relationship between the basic objects. (points,
lines and circles) necessary to construct the figure.

The Exploratory Session
There are three explicit references to the notion of dependency during the initial
exploratory session. The first comes from the students when they have created a
circle by centre and radius point. They find that dragging the centre point changes
the size of the circle. I ask them what will happen if they drag the radius point.

C: It [the circle]will get smaller or bigger depending which way you moved it
[the radius point].

This indicates the students have some idea of functional dependency. Later in the
session, during the drawing of a 2D representation of a cube (which they refer to as
a box), the students want to delete a point. When attempting to do so they get the
following message from ('ahri: "Delete this object and its dependents?"

C: Dependents? Is that the whole box lie cube'?
Me: Why don't you see, because you can undo it.

They delete the point and two line segments are also deleted. This gives me the
opportunity to explicitly refer to dependency.

Me: So that bit of line depended on that point, and that bit of line did, so they
both went.

Near the end of the lesson, the students construct a triangle and its three angle
bisectors. They construct points of intersection but find that these points cannot be
dragged.

Me: These points [pointing at the points of intersection] depend on these points
'the points used to create the triangle].

Atter a little thought and dragging, one of the students says:

'-ik5-5 3 - 148



C: You can't drag that point [a point of intersection' because it is dependent on
them [indicating the points used to create the triangle].

Session 2
In session 2 the students complete two tasks involving lines and circles. At one
point, one of the students asks:

C: What's the intersection doing? Does it keep the dot [the point] there?
Me: What you are finding is the point here, where the circle crosses the line.
C: Right, so if it was like that [indicating a different arrangement of lines', then

it 'the point of intersection" would be there.
Me: It is always where the lines cross.

(note that, in this exchange, I did not mention dependency. I will comment on this
later in the paper). The students complete the task and I ask them why the figure
cannot be "messed up". One of the students replies:

H: They stay together because of the intersections.

Session 3

During this session the students are asked first to construct another pattern of
circles and then to construct the figure given below.

Referring to points of intersection, one of the students comments:

H: A bit like glue really. It's just glued them together.

A little later, the other student asks why you can't drag points of intersection.

Me: Because the intersection points just show you where two things cross.
C: So how come it keeps it together if it's just a dot to show you where they

cross?
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Me: You can move that point because it's the centre of the first circle that you
drew.
So if you move that, then because you are changing the size of the first circle,
the point where it crosses the other circle changes so that changes the other
circle.

H: So that changes everything.
Me: Because the other circle depends on that.
C: So because it depends on it, it moves.

Session 4
The students successfully construct the required figure during this session and
explore, with me, which objects can be dragged and what is the effect of dragging
them.

C: So it's all about depending on stuff, isn't it?
Me: It's like a function. When one thing is a function of another it depends on the

other.
C: So there's a rule in Cabri

... if things don't depend on each other you have to make them depend on
each other to know what moves, because ..

to make...
C: so everything ...
H: to make the pattern
C: depends on one thing
H: to make the pattern and then it's non- messupable.
C: and then it can move. But because everything is dependent on one thing then

it will always be the same, related to each other.

Discussion
The above extracts of student/teacher dialogue illustrate how one pair of students
began to come to understand the notion of dependency within the context of the
dynamic geometry package Cahn. They begin with an existing notion of
dependency, knowing, for instance that the size of a circle depends on its radius.
They also readily understand that when an object is deleted its immediate
dependents are also deleted. As the students encounter points of intersection and
need to construct objects dependent on these points, hence creating chains (or
hierarchies) of dependency, then a way of explaining what is going on can be based
on the theoretical framework introduced earlier.

This explanation involves viewing the interaction as an interweaving between
individual sense-making and the social situation of a pair of students jointly
working on a task and being able to refer to me whenever they thought it necessary.
This interweaving ig so strong that it is probably unwise to attempt to separate out,
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to too great an extent, any of the individual constituents (Wertsch refers to this as
speaking of "individual(s)-acting-with mediated means" 1991 p 12). In this way,
the case study can be viewed as an example of the interaction between the two
forms of mediated activity (grounded activity and systematic inquiry) proposed by
Confrey ( I995b). There is a sense in which the students are both borrowing terms
from Cabri (for example, dependents) and modes of expression from me and
speaking, at least in the early stages, as if they were me. For example, the statement
by one of the students towards the end of the initial exploratory session can be
interpreted as an instance of `ventriloquating'.

C: You can't drag that point (a point of intersection] because it is dependent on
them (indicating the points used to create the triangle'.

In the second session, when the students ask for clarification of the nature of a point
of intersection, I do not refer to notions of dependency. I merely state that a point of
intersection "is where the lines cross". As it transpires, the students have developed
their own interpretation of the nature of points of intersection.

I-1: A bit like glue really. It's just glued them together.

Ainley and Pratt (1995) have noted the same sort of interpretation of points of
intersection. During session 3, I become aware of the students' interpretation and
this time I do refer explicitly to dependency. During session 4, it is the students
who raise the issue of dependency. By this session they seem to be recognising its
central importance and are beginning to offer their own explanation of dependency.
In Bakhtian terms, it could be said that the students are beginning to populate the
notion with their own intentions. In terms of Confrey's (1995b) notions, the
students' solving of some geometrical problems can be viewed as "grounded
activity" while their coming to know about dependency is "systematic inquiry".

In this paper I only document the explicit, and necessarily mostly verbal, uses of the
notion of 'dependency'. Nevertheless, these explicit references combine verbal
statements with practical activity in a way that cannot be separated. The verbal
statements all refer to action. Wertsch (1995 p 71) maintains that "some notion of
action holds the key to avoiding potential dead ends in sociocultural research",
although he admits "I am less certain that the notion of mediated action I have
outlined here [and in Wertsch 19911 will ultimately fill the bill".

There is, in addition, within the sessions briefly described in this paper, a
continuous movement between teacher/researcher goals and student-orientated
goals. For example, in the initial session the students are able to choose their own
goals but for me these had to be mathematically challenging goals. In later
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sessions, although tasks were set, sub-goals were student-chosen and interventions
were kept to a minimum.

Finally, throughout the sessions with this case study pair, there are also numerous
examples of the implicit use of the idea of dependency. These are, for the most part,
captured on videotape. It may be that when an analysis of these is added to the
account, a fuller picture of the interweaving between the 'voices' of the students
and the teacher within the socially organised activity taking place in the classroom
will result.
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SOMALI CHILDREN LEARNING MATHEMATICS IN BRITAIN: A
CONFLICT OF CULTURES.

LESLEY JONES

Goldsmiths llniversity of London

Summary

Five children in the reception (lass of a London school Were observed at Winn)l and
at home. interviews were carried out with their teachers in school and their parents
at home. Data was collected on the assumptions made by parents and teachers about
the children's learning in the different domains. the materials used in the
acquisition of numeracy and the methods employed in the teaching and learning
processes. The study suggests that the approaches taken by parents and teachers are
very different, with the most litms! learning situations taking place in the home.
The recognised difficulty of effecting learning transfer suggests that teachers may
need to take more account of the children's home learning experience.

Chico nifios en NU primer ano de estudias en un colegio de bmdres .fueron
observados en el colegio v en casa. Se llemron a cabo entrevishis con SUN
proksores v padres. Se recabO inliamacain basada en las detalles aportadas por los
padres y prtJesores de los nios. 'ramble,' se coasideraron los materiales v mehtdas
tailizadas en el proses. De aprendizaje mientras las alumos adtfirian las dikrentes
habilidades necesarias Para trahajar (-on 'Milieu's. El est:idle sugiere que los mottos
en que padres v profesores acomenten lu !area de easefiar a las Milos son uy
dyer-ewes V que lu easefiaza was prima Ilene lugar en rasa. l et dificullad
reconocida de conseguir una 'iransferencia de aprentlizajes' .sugiere que quizas se
((Me considera min mas guts hp° de ensenanza eslan los nnos recibiendo en easa.

Introduction
Learning transfer

The theoretical framework for the research arises from the view that children

learn mathematics through constructing their own knowledge in a process of

interaction with their environment. Ernest clarifies different views of social

constructivism (Ernest, 1994) and the research described here fits into the

Vygotskian framework which he identifies. There is some evidence that knowledge

is not only socially constructed. but is also 'situated' (Brown. Collins & Duguid,

1989). The notion of situated cognition suggests that the actual cognitive processes

which bring about learning occur within a specific context. There is a gathering

body of evidence that there is little transfer of learning which takes place. Lave

(1988) for instance, describes in her Adult Maths Project occasions when.the adults
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use calculation methods which are entirely contextualised. The procedure and the

cognitive process arises strictly in relation to the context in which the learner finds

himself or herself. Nunes, Schliemann & ('arraher (1993) provide examples of

children working in street markets in Brazil. These children were found to be

considerably more successful at mental calculations carried out in the market

context than when they attempted to perform the same calculations by means of a

standard algorithm. The methods used by the children out of school are not just

reliant on memorised facts or number bonds. They were asked to charge for

purchases which required them to perform mental calculations and their

commentary makes it clear that calculations were indeed necessary. One of the

most worrying aspects of this research is that when children are placed in a school

context they abandon successful strategies learnt and used in the 'real world' and

(presumably) feel obliged to use school methods, regardless of the fact that these

are frequently unsuccessful for them.

The involvement of parents in children's learning

In Britain there has been a tradition of parents' involvement in children learning to

read. Schools frequently have a system by which children take reading books home

and parents with young children at school are expected and encouraged to hear

their children read. The practice became more widespread and more formalised

following the publication of a number of research studies indicating its

effectiveness. (e.g. Tizard, Schofield and Hewison, 1982, Hannon and Jackson,

1987, Griffiths and Hamilton, 1984)

In mathematics teaching there was no equivalent tradition of involvement of

parents, particularly with the learning of young children starting school. There is,

however, one curriculum project in Britain which has set out to encourage parental

involvement in children's mathematical learning (Merttens & Vass, 1990). Morgan

and Merttens (1994) claim that this scheme is. "Not socially divisive in the fashion

of traditional homework." and that. "all they (parents) are required to do is to

support their child's learning to talk through a task or to act as a resource."

However, what this project seems to offer is the chance for parents to share the

school culture and the school view of what maths learning involves, but very little
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chance for the home culture or understanding to make an impact on school

practices.

Hughes et al. (1994) set out to find out what parents actually want from their

children's education. One of the main findings was that parents knew little about

what their children were learning in school. They wanted to know more but despite

the fact that they had plenty of contact with the school, this contact did not provide

them with the information they needed and they relied on their children as the main

source of information. This result was mirrored in the present study with the

Somali families. The parents who worked at home with their children questioned

them about the mathematics they did at school and tried to keep one step ahead of

the number work covered in school. They did not feel that they were kept well

informed by the school.

Aims of the study
The study aimed to identify numeracy practices taking place in the home and school

environment for this group of children and to promote partnership between parents

and teachers in which different approaches to numeracy are recognised. Many

parents have ways of working with their children and supporting their learning

which are not recognised or valued by teachers. Rogoff and Lave (1984) found that

knowledge gained from the home is often discounted in school.

Methodology
Although there has been a considerable influx of Somali refugees to London over

the last few years, it proved surprisingly difficult to locate a school with more than

one or two children in the reception or Year I classes. 'I'he school chosen for the

project was the only one in which it was possible to locate a large enough cohort of

Somali children in the target age range.

Ethnographic methodology was used in the study. One of the researchers is of

Somali origins and was able to undertake the home visits through the medium of

the Somali language. Participant observations were made in school and in the

children's homes. Unstructured interviews were conducted with parents and
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siblings. Teachers and other professional adults were interviewed in school.

Interviews were not recorded. A written record was produced soon after the

interview had taken place. A total of 12 school visits and 13 home visits took place.

Findings
The teachers assumed from their own observations of the children that the parents

helped their children at home by giving them lists of words to learn and helping

them to learn their numbers. They thought that home teaching took place as formal

lessons. They were also under the impression that a number of families lived

together in one house or flat. In fact each family is housed separately, in low rise

council flats all in the same locality. There is a strong informal community

network, so that parents or older siblings collect a number of children to take them

home. Some, but not all of the parents teach their children at home. The work they

described placed a great emphasis on memorising.

The role of older siblings appeared to be very significant in the young children's

learning experience. It was common for the older children to set tasks for their

younger siblings, asking them to recite their tables, and keeping a check on what

they had previously learnt. Although the mathematical content is traditional, the

atmosphere is of informal play and the method is very similar to that used when the

children learn the Qur'an. At the-age of four. or five all children start to learn the

Qur'an by heart. They learn this section by section, without sight of the text. Once

they have memorised a section, they will recite it to the other children at home or

to the teacher. This forms a two-way learning process; listening to other children

reciting will, no doubt, reinforce their own learning.

The children's learning experience at school stood in some contrast to their

experience at home. At home the researchers expected to find examples of

children's games which encompassed some aspects of spatial activity or numeracy,

e.g. games such as hopscotch or their equivalent. Zaslaysky (1973) describes the

extensive involvement of different cultural groups in games with mathematical

significance. In the event, there was no evidence of such games being part of the

repertoire of this group of children. At school the atmosphere, as in most reception
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classes in Britain, was fairly informal. The day usually started with children

gathered together in a carpeted area exchanging news via the teacher and being

guided to their tasks for the morning. For much of the day they would then work

in small groups or as individuals on a variety of tasks. Amongst the mathematics

activities we observed were games such as 'snakes and ladders', construction

activities with logo or 'octons'. measuring, using cubes as non standard units and

written calculations. It is perhaps only the last of these activities that would be

recognised by the parents as mathematical. The classroom atmosphere during

lesson time is so relaxed and informal that it is perhaps not surprising that some

children consider that the purpose of school is "to play- (Gregory et al, 1993)

Discussion
Aubrey (1994) details the mathematical knowledge which children bring to school,

showing that they are not only able to draw on specific number knowledge. but to,

"switch from earlier and less formal strategies to formal procedures

when prompted to do so."

Interestingly the young children in her sample showed a flexible combination of

formal knowledge with invented strategies. They were introduced to activities in

the form of story problems with make believe situations involving puppets, teddies,

sweets, small-scale toys and pictures of everyday familiar objects. It is possible that

the effect of this approach was to bridge the gap between the home and school

experience.

There is a strong oral tradition in the Somali culture and much of the work at

home with children reflected this. With the young children in the present study the

emphasis was on memorisation. Where parents were working with children at

home they expressed a wish to see examples of their written work in mathematics

in order to support their work at home. In a British reception class it would he

unusual for teachers to send home examples of children's written work. Children

are sometimes encouraged to take art and craft items home, but it is much less

likely that they would be encouraged to.take home a written record of mathematics.
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Teachers would normally expect such work to he available for parents to see on the

occasion of parents evenings. but these evenings were difficult for the parents in

our study as they were not confident in their spoken English and, at the time, no

translation facilities were available for Somali for this school. Parents had

considerable respect for teachers and did not perceive a need to visit the school and

question the teachers about their children's education.

The children in this study had to make more than usually large adjustments on

entering school. The home language was different. (Parents were keen to maintain

the use of Somali as the home language. ) They were accustomed to life in an

extended family and we were given a graphic example of this by one child who

when asked in class "How many people in your family?" replied, "Hooyaday (my

mum) aabbe (dad) walaalkay (my brother) Ayeeyadey Xamar joogta (my

grandmother in Mogadishu)..." In their homes there were none of the toys and

games which would commonly be found in British homes. The opportunity to play

with these items in school, did not provide for them, as it would for many children,

a linking experience between home and school, but a new and different experience.

The expectations of their behaviour at home and at school were very different,

with an increase in autonomy in the classroom. This contrasts sharply with Tizard

and Hughes' description of the children in their study who found that on entering

school many of the decisions which children had previously taken themselves were

now dictated by the school routine.

Bishop (1994) in an analysis of the research and development needed to resolve

cultural conflicts, suggests that one way forward is to "culturise the formal

mathematics curriculum, i.e. restructuring the curriculum in relation to the local

culture. In multicultural schools in the U.K. it would be unrealistic to attempt to

design a curriculum which took account of all home numeracy practices, though

the curriculum can be planned to include a. range of materials from a variety of

cultures. However, if children are gaining cognitive experiences which are very

different from those experienced in school we need to find ways to build bridges

between the two and gain "mileage" from the understanding which children bring

to school.
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Abstract
When middle school students solve proof problems in the geometric computer environ-

ment, the use of measurements helps them to confirm the geometric properties they
discover, and measurements provide strong evidence to convince them of these prop-

erties. At that time, students are involved in the problems very actively (Kakihuna
Shimizu. 1993). The purpose of this research is to investigate how students' strategies

shift front conjecture to proof when they utilize measurements in the geometric com-
puter environment. Junior high school level geometry problems were given to five
pairs of women's junior college students and their activities were videotaped and ana-
lyzed. Students' worksheets were also collected and analyzed. From the results, it was

identified that ( the use of measurements for conjecturing in pair conversations
helped to explain logically the reasoning or to construct statements for formal proof
and (2) the use of measurement helps to convince student.). of the logical reasoning in

a statement of proof.

I Introduction
New environments where students can explore the properties of geometric figures and

theories of geometry by using software such as Cabri-Geometry and Geometer's

Scketchpad are emerging very rapidly in the field of mathematics education. The use of

software helps students to conjecture the properties of geometric figures and theorems

(Kakihana,1991, Chazan, 992,- Schumann,1993). In the Japanese lower secondary

mathematics curriculum, "proof" is regarded as very important, but many surveys on

achievements have revealed students do not like mathematics because of "proof '.

"prool"("Syomei" in Japanese) means to write down a deductive reasoning pro-

cess with mathematical symbols in a precise and standard manner. Sometimes students
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say Now I can prove this problem because I remember how to write it". This tendency

shows how students recognize "proor("Syomei"). To overcome these problems, a new

type of proof activity in the lower secondary geometry curriculum has been explored(

Chazan,1991,De V illiers,1990,1991,Shimizu,S,1994 ). Contrary to the argument in

The Death of Proof (Hogan,J.,1993), Hitotsumatsu(1994) commented that "the proof

which is the emphasis of the formalism has died. However, the new period has come to

think about the new type of proof that can be done by using computers". John

Costello(1994) maintains that the construction of proof is for convincing themselves

and other people and the construction of mathematical knowledge is made by thought

experiment."

In the computer environment "continuous variation of geometric figures" (Schumann,

ibid.) and "measurements by using computers"(Kakihana & Shimizu,1994) had a sig-

nificant effect on students' geometrical performance. The plausible new method of

teaching and learning "proof' in geometry is to be developed. When students solve a

proof problem, students rely on the result of measurements to convince themselves of

the generality/validity of properties they discovered. On the other hand, many students

also recognize that the result of measurements is not sufficient to show the generality/

validity of a statement(Kakihana & Shimizu, ibid.). It is important to investigate how

students recognize and are convinced of the generality/validity from measurements,

and how students shift measurements to conjecture and then to proof. The purpose of

this research is to investigate the students' strategies when they solve proof problems,

focusing on the use of measurement and on the shift to "proof'. The implications for the

development of a new method of teaching "proof' in the computer environment is also

considered.

II Method
The activities of five pairs of either first or second grade women's junior college stu-

dents are reported in this paper. Students had not studied geometry since junior high

school and reported that they did not do well in geometry classes. They solved each

proof problem for 20-30 minutes after learning to how to use "Vabri-Geometry for one

hour. One computer was used by each pair. Students were given a problem on a

worksheet and constructed figures by themselves on a screen. Videotapes, observation

'''Caliri( ',conk:try v.as developed by Yves Raulac, Franck Relleinain and Jean M. Laborde at the L..SD(IMAG). Univer-
sity Joseph Fourier. Grenoble. 1988. A Japanese version is available tor NEC machines.
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reports and written worksheets were analyzed.

The following problem which is a basic problem in junior high schools was given to the

subjects.

Problem
Construct .L.ABC and make midpoints M and N on each side AB
and AC. What kind of geometrical properties can you find when you
connect M and N? Then explain the reason why you can say this and

write a proof for it.

III Results and Discussion
During their conversation, students moved points and observed the invariance of mea-

surements on the figure. Fig. I is the result of analysis of their conversations and

worksheets.

Fig. I The results of each group's activity

DY:When they moved the figures helbre measuring, each group noticed each item.

ME: When they measured the sides or angles,

each group noticed or were convinced of each item

RE: They started to make reasoning during conversations.

l'R: They constructed formal proof I in writing).

group I

Viimi&Chiharti ElY NW RI) PR

triangles are similar

Parallel (

bases :ire 2:1

areas ill triangles are 4:1

group

Erni 6: Sayuri DY MP. RE PH

triangles are similar

Parallel ri :n.

bases are 2:1

areas of triangles are 4: 1

groin

Same S: Af.ilso DV ME RI: ER

triangles are similar

Parallel

bases are 2: I

areas Ill triangles are 4:1

groui 2

RyokoI & Kyiiko2 1)Y ME RE Pi<

Mangles are similar I 0 Cr i: ;

Parallel i ) 0 iN

bases are 2:1 ( )

areas ,,l triangles are 4:1

group 4

Erni & Sa)tiri DY SIP RE PR

mangles are similar r ) 1..1

Parallel
,-. L

bases are 2:1 l)
areas of triangles are 4.1
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( I ) Similarity of triangles

All pairs demonstrated that DAMN and AABC were similar. In their conversation,

they remembered the conditions of similarity of triangles as they moved and measured

the figures. They also observed the properties, pointing out DAMN and ABC and
saying .

This and this are similar, aren't they?

Then they talked about their reasoning during their conversa-

tion.

Yumi "This lerigth and this length are the same."

Chiharu "Because these points are midpoint."

Ryokol "Point M and N are midpoints, therefore 2:1"

Miyuki "It is half.",

Satoko "As a matter of fact, they are midpoints."

Miyuki "How can we prove it'?" ,

Satoko " Because, C is the same and the ratio of the sides is 2:1."

Miyuki "It is not sufficient to show it by measurement, is it'?"

In their writings of proof, four pairs wrote a more formal proof.

Miyuki and Satoko (Fig.2) wrote an example with measurements on their worksheet
and wrote an insufficient proof.

Fig.? Miyuki & Saiuk,ia explanation and proof

LOA

AAVri.t NrIN ( r. br7
r r-1,

if N C I

A r. rt 2 i

f.'t Ii F1C 1)14 ***1 411 rr-Ds.c

/.'1It.91 :.A9C t ri wc of.,

(2) Bases BC and MN are parallel.

In the protocols of four of the pairs' conversation, the following sentence is commonly
found.

"These are parallel, because these angles are the same."

However, they did not write down the statement except for one pair (Yumi and
Chiharu,

7
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z AB. AM- AC A.N
cEs:AC:AM.AN

21,3g-lzzr1, to
LAMN C!)-

46, I M4 4.
SC fi MN

1.1g .114401 1 HyokoTs root

Yumi "When angles are measured, we do not need to prove, do we?"

Yumi "Measurements are not always the same. What should we do?"

Chiharu "We have to prove the similarity of these triangles.

One pair (Ryokol and Ryoko2) were convinced by measurements that the sides are

parallel when corresponding angles are the same. However, they didn't describe it in

their proof (Fig.4). Emi & Sayuri were also convinced by measurements that they did

not feel the necessity to write a proof formally (Fig.5) .

Sayuri "Because the measurements show it.

Emi Explanation? Proof?"

Enii In explanation, the triangles are similar therefore MN is parallel to BC"

Sayuri In the proof, I should write the conditions of similarity, shouldn't I?"

Emi "It is better to check the equality of angles by measurement.

Ile.5 Eno & SdyuriN explananon and pct.!

A 04( ? A amA It -OW t y0).

LE Ara' i.10P I7 f 44 i./A .12 M, 014

:SOY c /.0enn 2 I.

L ar = L 0)4E.;
err. // be

Ot Poi 't A ()kb( v, 1.1'01

CCie 11 .112 1) 4) 1;

3,/), On 14 LI Or ji"

Students know the statement that corresponding angles are the same when sides are

parallel. Now, students understood its real meaning by measurement.

Ryokol "It is true that these angles arc the same when sides are parallel. I've never

checked it by myself.
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(3) The ratio of base BC and MN are 2: I.

Ryoko I This is a half of this", pointing to the side MN and BC.

Ryoko2 "How can we find this is a half without measurement?"

They could not connect this statement to the conditions of similarity.
Sayuri "It's half' pointing to the side MN and BC. And move the point A.

"No, sometimes it's not half'

"How do I explain it?"

Emi "Because the triangles are similar."

"We have to write the conditions of similarity."

None of the pairs wrote a proof for this statement.

(4) The area of AAMN is one fourth of AABC.

One pair (Sanae and Akiko) pointed out this fact. At the beginning of their activity,
they thought the area of DAMN was a half of L.ABC and then they moved the points
and said "Is it one third?", "No, the same triangle is this part and this part. So it's one
fourth!" At last, they concluded that the area of AAMN is one fourth of AABC.

From these results, it was identified that the use of "continuous variation of geometric
figureS" and "measurements" in pair conversations helped to convince students of the
characteristics of figures and theorems or axioms and then to help them to connect the
inductive approach to the deductive proof. As typically seen in group 2, the use of
measurements and dynamic transformation in computer environment provide an op-
portunity for students to reason why the conjecture is valid and general. All cases in
which pairs were able to move and measure were successful to find a logical path of
reasoning. Students do not understand that deductive proofs hold for all cases which
satisfy the initial condition (Chazan,D.,I988). Even if students know that measure-
ment is not sufficient to prove and that they have to write a deductive proof when they

solve a geometrical proof problem, they were not convinced by these statements which
they wrote in a proof by themselves. For students, proof means to write down a deduc-
tive reasoning process with mathematical symbols in a precise and standard manner.
The use of "continuous variation of geometric figures" and "measurements" in pair
conversations helped students to understand the necessity and the role of deductive
proof. However, when using software, students usually do not write down on a
worksheet any information which they found during conversations . Teachers need to
instruct students to write down the things which they think and talk about when using
software.
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IV Conclusion
From measurement to conjecture observed in this case study, key factors were the use

of measurement and dynamic transformation in computer environment. From conjec-

ture to explanation or to proof, at the pair situation, the use of information previously

obtained and the confirmation by measurement and movement of figures in computer

environment seemed to help students provide a logical explanation and sometimes a

logical proof. It was also found that students in this study did not distinguish the differ-

ence between explanation and mathematical proof. For an explanation in general sense,

measurements will be enough base to show validity. But, for proof in mathematical

sense, measurements is not enough to show validity. It is required to be shown by logi-

cal path. The view of explanation in general sense and that of mathematical proof that

students have will play crucial role in computer environment.
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MATHEMATICS TEACHERS' TRAINING :
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Abstract
this paper presents the data of a research referring to the teachers of Mathematics after the

end of their pre-service training. The research data show a clear difference between the change that

the teachers have undergone during the training process and the way they themselves conceptualize

this change. The paper attempts to interpret this phenomenon in the framework of the concept of

self-itkntification, that plays an important role both in the way the trainees evaluate their training

course and in the Way they evaluate its influence upon them.

1. Theoretical Framework
Over the last years, research in the field of teacher education has become

increasingly important to Mathematics Education. A large amount of articles about

this subject indicates the diversity of the involved particular issues 11CME 7,
Handbook, Houston, 19901.

One of the most important issues in the literature of teacher education is

relevant to the conceptions and beliefs that mathematics teacher have about
Mathematics and Educational Process ITompson, 1986, 1992, Steinhring, 1988,
1991, Brousseau, Centeno, 1991, Koehler, Grouws, 1992, Arsac, Halacheff &
Manic, 1992, Cooney, 1994, etc). These conceptions influence their attitude
towards both the training and the educational process. Relevant studies have shown

that the teachers' conceptions and beliefs are deeply rooted in themselves, they arc

constant and can hardly change 1Tomson, ibid., Steinhring, ibid., Arsac, lack* &
Mante, ibid., Stigler, Perry, 1988, Lappan, 1992, Tzekaki, 1992, Kaldrimidou,
lkonomou, in press'. The findings make many researches attempt to find
alternative ways for teacher education, focused on changing their conceptions and

beliefs Meredith, 1995, Bouffi, 1994, Boffin°, Furinghetti 1994, Ferrandes 1994,
Pehkonen, 1995 etc.'.

All these approaches are realized within different theoretical frameworks
such as social constructivism, problem-solving processes, group procedures,
introspection, meta-cognitive discussion, etc., according to the researchers'
preferences and values", as it is indicated by Vinner 1Vinner,19951. llowever, these

differences principally attest the absence of a theoretical framework appropriate to
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define the process of the development and changing in attitudes of the mathematics

teachers, as far as their education is concerned. Many researchers share the same

view and refer to the absence of an appropriate theory in their articles [see
Meredith, ibid., Coney, ibid., Vinner, ibid.].

The research of a suitable framework for the concepts and tools that will

contribute to the analysis and interpretation of such a complex phenomenon as

teacher education and changing of their attitudes towards the education process, is

not an easy work. Nevertheless, a close examination of the attitudes and the
opinions of mathematics teachers orientates researches to the idea of "self-

reference" and "self-identification" such as self-learning [Meredith, ibid.],
frustration, awareness, credo [Vinner, ibid.', change of roles [Pehkonen, 1995) etc.

Thus, we believe that the idea of self-identification could play a very
important role to the conceptualization, the treatment and the interpretation of

phenomena relevant to the constancy of teachers' conceptions about educational

practices.

It is commonly accepted that the interaction between teachers and their

training environment results in a process of conceptualizing the issues presented

during the training process, according to their cognitive system, past experiences,

self-conception and self-identifying attitude toward training [Arsac etc, ibid,
Brouseau, Centano, ibid, Fort, 1994). Even if the trainees admit neither being eager

to change their conceptions about teaching, nor being influenced by their training,

they are eventually guided as to pinpoint and apprehend differently the phenomena

taking place in their mathematics class and, thus, to change gradually their point of

view and attitude [Douady, 1991). Therefore, the teachers adopt new teaching

methods even if they do not seem to clearly identify this modification.

The above mentioned consideration is further reinforced by the data analysis

of a research on the conceptions of mathematics teachers about their training
process in relation with their conceptions about the teaching of mathematics'. The

first impression we get after evaluating the influence of the training operation

confirms the constancy of the students conceptions, their difficulty in the changes

and the assimilation of new theories, as well as their solid reaction against

adopting them. But a closer examination of the influence of the training course

alters our first impression. In other words, although the teachers themselves claim

that they did not change their views on teaching or their way of considering some

phenomena, in fact, they show a significant modification as far as choices of their

teaching methods are concerned.

This research is conducted by M.Kaldrimidou, A. tconomou, P. Iconomou , M. Tzekaki.
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2. Research Outline
The findings that follow result from a wider research', as it has already been

mentioned, that was investigating the conceptions of mathematics teachers
relevant to the necessity, the contents and evaluation of the training in relation with

the conceptions about teaching. The research is carried out in two phases : one

before and one after the completion of the training, aiming to detect possible

changes in the conceptions under the influence of the training process.

From the data of this research, we analyze in this paper, only a few questions,

those that specially concern the effect of the training in relation with the trainees'

beliefs about this effect.

The above mentioned research was carried out in four Peripheral Training

Centers (P.T.C.) from different Greek regions with questionnaires, answered by 66

mathematics teachers before and after the completion of their pre-service training.

It has to he pointed out that the teachers' age ranges from 34 to 38 years old and

they all have graduated from various Mathematics Departments 12 years ago.

These teachers have spent the biggest part of these 12 years working outside

institutional educational schemes (schools), in private organizations or delivering

private lessons.

3. Main findings
We focus our attention on the questions giving, on the one hand, data

concerning evaluating characteristics of the training and, on the other, data
concerning the attitude of the trainees toward teaching.

a. Findings concerning evaluating characteristics of the training
The usefulness of the training : The attendance at the training does not alter

significantly the trainees' opinions about the usefulness of the training (see tah.l).

Neither can we observe a significant change of the percentages, nor can we observe

remarkable differentiation in the attitudes of each individual (before and after the

course), as it is shown from the statistically significant correlation of the variables.

before
the course

after
the course

1. It is essential 22 (33.3%) 21 (31.8%)
2. It is interesting 35 (53.0%) 35 (53.0%)
3. It is a waste of time 09 (13.6%) 10 (15.2%)

table 1. 'Training usefulness

The expected training model. The suggestions of the trainees relevant to the

expected training model remains correspondingly unchanged belOre and after the
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course. The search for the "correct way" of teaching, either theoretically or with

exemplary teaching, is obvious in the trainees' answers and expected by a large

amount of them. This conception does not change at all, as it is shown from the

correlation of variables. This finding is indicative of the teachers' conceptions,

because the training did not intend to provide them with the so called "correct way"

of teaching. On the contrary, their training was focused on Mathematics Education,

that is on the theoretical and practical interpretation of the phenomena appearing

in mathematics classrooms and the development of concepts and tools suitable to

help teachers encounter these phenomena .

before
the course

after
the course

1. Presentation of particular
teaching methods by the
trainers

20 (32.3%) 19 (32.3%)

2. Attendance and analysis of
teaching realized by the
trainers

34 (54.8%) 31 (52.5%)

3. Persecution of theoretical
concepts and design of
teaching approaches by the
trainees.

08 (12.9%) 09 (15.3%)

table 2. Training model

Jivaluation of the trainju. After evaluating their training, 55.4% of the

trainees claim that their attendance at the training Center resulted in improving

their teaching efficiency, while the remainder 44.6% cannot think of a positive

contribution of their training, as far as their teaching ability is concerned.

c. Findings concerning attitude characteristics of the trainees
toward teaching

Teachinz efficiency. The teachers, before the course, characterize
themselves, to a significant percentage (37,9%), as "efficient", as far as teaching is

concerned, while the biggest amount (48.5%) claim that they have "some
deficiencies". The percentage that claims "serious deficiencies" is very limited. In

other words, the teachers up to 86.4% consider themselves as "efficient". The

attendance in the training Centers results in reducing the percentage of the teachers

who considered themselves to be "efficient" (31.8%), but it also results in reducing

the percentage of those who regarded themselves having "serious deficiencies"

(9.1%) with a corresponding increase of those who regarded themselves having

"some deficiencies" (59.1%.). The main tendency of these conceptions, before and
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after the course, is statistically very significant. Therefore, even if we can detect a

minor change in this issue, the trainees do not seem to consider, in general, that the

training course helped them considerably to improve themselves.

Teachine methods. The examination 'of the trainees' choices in issues

relevant to teaching methods and students' errors allow us to pinpoint
modifications, due to the training course. These modifications show that there is a

differentiation between the effect of the training process and what they themselves

conceptualize as effect.

As far as the teaching methods are concerned, before the course, many

trainees (32,3%) focus on solving exercises supported by mathematical theory,

while most of them (38.7%) adopt the so called "traditional" model where the
theory is presented first and then exercises are solved so that the theory is
consolidated. Several teachers (29%) adopt the model of "solving problems" which

are solved by the teacher himself. Finally, no teacher (0%) adopt a constructivism

direction.

After the training course, there are several considerable changes in this issue.

The "solving exercises" model diminishes to 13.1% and the "traditional" model to

29.5%. There is an important increase of those who adopt the model of "solving
problems by the teacher" (49.2%), while a percentage of 8.2% already adopts a

constructivism direction. In this phase, the trainees are asked to choose the
teaching method they would adopt "under better conditions", that is better working

circumstances and better educational system. Thus, "under better conditions" no

teacher (0%) chooses the "solving exercises" model while the constructivism
direction is adopted by almost half of them (50.8 %).

Attitudes towards students' errors The majority of teachers (60%), after

the completion of the training course, continues to attribute the cause of the
students' errors to their lack of knowledge, although, one third of them attributes

the responsibility for these errors to the educational system and the insufficiency

of teaching. The correlation of variables indicates that the 64.3% of the trainees

answer the question keeping a traditional attitude towards errors (the students do

not know), while 35.7% of them adopt a more improved attitude about errors.
Finally, 23.9% of the trainees attempt to follow a more modern theoretical
framework (see tab.3).

I. I repeat, remind 18 (39.1%)
2. I explain, use examples 17 (37.0%)
3. 1 give specific problems 11 (23.9%)

table 3. Encountering students' errors
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On the whole, the study of the factors of the above mentioned data, indicates

the formation of two main tendencies, relevant to the existing professional
experience of the teachers: one implies a modem teaching model followed by a

similar attitude towards students' errors, while the other one remains traditional
with the same attitude towards error encountering.

4. Discussion
Summarizing the following points could be presented:

The trainees had initially a neutral attitude toward the training course which,

to some extent, they maintained up to the completion of the course, doubting the

benefits they gained. They also maintained the same conception about the expected

training model and its necessity.

This attitude is relevant to self-identifying characteristics (self-evaluation of

teaching efficiency, improvement) and not objective ones (contents of training
course, methods etc.). As far as these characteristics are concerned they admit
only minor improvements.

The teachers' conception, however, about the best teaching method that

focuses on the two basic models, is significantly differentiated: only one in three

trainees maintains his initial conception while the great majority of them change

this conception towards a positive direction. This change is even more obvious

when the question is set in the framework of "better conditions", where 85.7%

adopt the theoretical issues and methods they were taught during the training
course. This assumption is partly confirmed by their views on responsibility and the

ways they face errors.

The above mentioned data indicate a significant discrepancy between the

teachers' evaluation on the outcome of the training course and the influence that

they appear to have undergone [Fort, Tzekaki, 1994]. This remarkable discrepancy

can also be related with characteristics of self-identification such as self-esteem,

self-evaluation, self-conception about their role in the framework of the
educational system [Maturana, Varela, 19881; fact that is clearly implied, not only

in the answers of the questionnaire but also in several conversations we had with

the trainees and in certain observations of their teaching after the completion of
the course.

Are the above mentioned results phenomenological and predictable? It is

apparent that the trainees will initially change some components of their attitudes

and later their beliefs and conceptions, that is their self-identifying attitude. In this

sense, the idea of self-identification could he a basic key-concept for the
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interpretation of the complexity of the issues involved in training, contributing this

way to the formation of a framework, appropriate for the study and the
apprehension of the teachers' education phenomena. The concept of self-
identification seems to he able to interpret bOth the trainees' reactions and their
unwillingness to change their conceptions as well as the discrepancies between the
influence they have undergone and the influence they acknowledge.

5. Epilogue
It has to be stressed that if we are to evaluate the way a training course

influences the trainees we need to plan a long term research. There has to be some

interval between the actual training and its evaluation, so that the extent to which

the trainees were influenced can also be evaluated. Time is also needed so as to
examine to what extent the difficulty of putting theory into practice, daily class
routines, is true and not simply a result of the trainees' self-conception.

We would also, at this point, like to mention past experiences with training
courses that have issued findings, not closely examined yet. These findings are
indicative of the way mathematics teachers are influenced ITzekaki, ibidj:

Initially the trainees react in a negative way or at least in a neutral way
towards training, having reservations about the theoretical concepts and tools
presented during the courses. Nevertheless, they have been exposed to ideas that
change their way of viewing teaching phenomena and eventually their own attitude

toward teaching. These new practices share the same characteristics with those
presented during the training process.

The significant influences the teachers gained during the training might
gradually fade away unless the teachers receive some kind of feed back; because as
times goes by, the factors that have initiated their old teaching practices (teaching

conceptions, particularities of mathematics, timing etc.) could re-appear.

The above mentioned phenomenon, relevant to the idea.of self-identification,
might contribute to formatting procedures for mathematics teachers' education.

References
Arsac G.,13alacheff N., Manic M. (1992) Teacher's Role and Reproducatbility od Didactical

Situations, Educational Studies of Mathematic& Vol.23, not, pp.5-30
Bottino R. (1994) Teaching mathematics and using computers: links between teachers beliefs in

two diferent domains, and
Boufi A. (1994) A casestudy of a teacher's change in teaching mathematics in the proceedings of

the 18th International Conference for the PME Vol.11, (Eds.) J.P.da I'onte, J.F.Matos, University
of Lisbon. pp. pp. I 12 -127

Brousseau G., Centeno J. (1991) ROle de la memuire didactique de l'enseignant fiediusleLen
Didactioue des Mathernatique& Vo111/2, pp. 167-21(1

Brown S.1., C(x)ney T.J., Jones D. (1990), Mathematics Teacher Education in Houston W.R. (Ed)
(1990), Handbook of reasearch on teacher education, N.Y., MacMillan

3 175



Cooney T.(1994) Conceptualizing Teacher Education as filed Inquiry : Theoretical and Pactical
Imlications, in the proceedings of the 18th International Conference for the PME Vo1.11, (lids.)
1.P.da Ponte, J.F.Matos, University of Lisbon, pp.225-232

Dossey 1. (1994) Preservice and Inservice teacher Education,
1 1 1 11 1 I 1 11

in C.Gaulin et al. (Eds),
I.es Presses de

l'Universitt Laval: Quebec. pp. 134-138
Douady R. (1991) Tool, Object, Setting, Window: Elements for Analysing and Constructing

Didactical Situations in Mathematics in Bishop A., Mel lin-Olsen S.. &van Dormo len 1.

Mathematical Knowledge: Its Growth through teaching, Kluwer Academic Publishers,London
Fernandes D. (1995) Analysing Four Presevice Teachers' Knowledge and Though through their

Biographical Histories in the Proceedings of the 19th International Conference for the PME, Vol.2
(Eds.) L. Meira, D. Carraber, Universidade federal de Pernambuco, pp. 2-162-169

Furinghetti F. (1994) Parametres, unknowns and variables : a little difference? in the Proceedings
Vo1.11, (Eds.) 1.P.da Ponte, 1.F.Matos,1 1. II:

University of Lisbon, pp. 368- 375
Fort M. (1994) Institutional and non Institutional Mathematics Education: the Role of Training in

Educational Issues IL 3d International Scientific Two Days Meeting for Mathematics Education,
(Eds) Kalavasis F., Meimaris M., University of Aigee. pp. 55-66

Houston W.R. (Ed) (1990), Jlandbook of reasearch on leather education, N.Y., MacMillan
Kaldrimodou M., lkonomou A. in press) Epistemological and metacognitive conceptions as

factors involved in the learning of mathematics: a study focused on graphic represebtat ions of
functions in Bartolini-Bussi.. Sierpinska A.& Steinbring II (Eds) Language and communication in
the mathematics classroom

Koehler M., Grouws D.A. (1992) Mathematics teaching Practices and their effects in Grouws D.
(Ed), linajpook of reasearch on mathematics teaching and learnt/1g, N.Y., MacMillan, pp. 115-126

Lappan G.,Thenle-Lubienski S. (1994). Training teachiers or Educating professionals ? What arc
the issues and how are they being resolved ? in Rabitaill D. et als (Eds) Selected I ectures from
)he 7th International Congress on Mathematics Educating, Les Presses de l'Universite Laval:
Quebec, pp. 249-261

Maturana H.R., Varela F.G. (1988) The tree of knowledge. the biological roots of human
understanding_ New Science Library, Shambala: Boston (english trans]. R. Paolucci. 1st ed. 1987)

Meredith (1995), Learning to Teach: four Salient Constructs for Trainee Mathematics Teachers in
the ' ti s .1 1 41: 1 : Vol.2 (Eds.) L. Meira, I).
Carraber, Universidade federal de Pernambuco, pp. 3-304-311

Nickson M. (1992) The Culture of the Mathematics Classroom, in Grouws D. (Ed), Jlandbook of
MOMIL1112111111111011111alelMilifIralliknallng N.Y.. MacMillan, pp. 101-114

Pehkonen E. (1995) What are key Factors for Mathematics Teachers to Change? in the
Proceedines of the 19th International Conference for the PME, Vol.2 (Eds.) L. Meira, D.
Carraber, Universidade federal de Pemambuat, pp.2-178-185

Steinbring H (1988) Nature du savoir dans la pratique se l'enseignant. dans Acres du premier
colloque Franco-Allemand de DIdactique des Mathematics et de I' Informatique, Ed La Pens&
Sauvage, pp. 307-316

Steinbring 11.(1991) Matematics in teacting processes: the disparity between teacher and student
knowledge, R.D.M. Vol11/1,pp.65-108

Sneed, Perry M. (1988), Cross-cultural studies of mathematics teaching and learning: Recent
findings and new directions in P. Crows, T. Cooney (Eds) Perspectives on research on effectivtz
magmmallgueacning, Hillsdal NJ.: Lawrence Erlbraum, (Vol 1), pp. 194-223)

Tzekakl M.(1994) Mathematics Teaching: the name of rose, in Educational Issues II 3d
International Scientific Two Days Meeting for Mathematics Education, (Eds) Kalavasis
Meimaris M., University of Aigee, pp. 41-54
Tompson A. G. (1992) Teachers beleifs and conceptions: A synthesis of research in Grouws D.
(Ed), handbook of reasearch on mathematics teachine and learning , N.Y., MacMillan, pp. 127-146

Tompson A.G. (1986) The relationdtip of teadters' conceptions of mathematics and mathematics
teaching to intrudional practice. Uukagagswaraalkihrmigisa, 15 no 2. pp. 105-127
Vinner S. (1995) Teaching Mathematics as an Educational Task: Teachers' Views About Some
Aspects of their Profesional Lives in the proceedings of the 19th International Conference for die
EME, Vol.2 (Eds.) L. Metre, D. Carraber, Universidade federal de Pernambuco, pp.3-323-335

3 3 176



TO HAVE OR NOT TO HAVE MATHEMATICAL ABILITY,

AND WHAT IS THE QUESTION

Ronnie Karsenty, Sh !onto Vinner
Hebrew University of Jerusalem

This paper tillers an example of evaluating mathematical talent, using a unique
question as a source. 268 answers to such a question, given by students in grades 9
and 10 during a mathematics selection test, were cognitively analyzed. Classification
was made based on the quality of thinking revealed in the answers, and a qualitative
scale was constructed. The scale was statistically compared with the psychometric
scale by which the test was initially evaluated and with other data. High correlation
was found between the qualitative scale and the psychometric scale in questions
associated with mathematical thinking. Low correlation or none at all was found in
questions associated with learnt mathematical knowledge. It is therefore suggested
that evaluation by means of cognitive analysis could he helpful in locating people
whose mathematical talent does not always follow the conventions of the mainstream.

Mathematical ability means not only mastering acquired mathematical skills, but also
expressing qualities such as originality, creativity, clarity and elegance, while solving
mathematical problems. Obviously, exposing such qualities is possible only if the
problem presented is not one familiar to the subject. If a person has solved a few
problems of the same type in the past, he most likely develops a schema for solving
this type of problems (Mayer, 1982). Schoenfeld (1982) claims, that operating a well-
established schema in a successful manner is still no evidence that real mathematical
thinking took place. It follows that conventional tests, including similar questionS to
those that have been previously exercised, are inadequate for evaluating mathematical
ability in the wider sence. Such tests can be used to check the effectiveness of learning
on the one hand, and as a predictor of future success in the educational system on the
other hand. However, in order to evaluate mathematical talent, it is advantageous to
use unusual questions.

Schoenfeld (1985) and Krutetskii (1976) formulated many such questions for their
research. These works illuminated an important point: The level of mathematical
ability is determined not only by the correctness of the answer, but to a large degree by
the quality of thinking revealed while the subject is solving the problem. An example
from Krutetskii (1976) illustrates this well. Consider the following question:

Three pupils visit a library on different days. One comes every third day, another
every fourth and the third every fifth day. The last time they met in the library was
this Tuesday. flow long will it take until they meet there again, and on what day will
that he?

A seventh grade student solved this problem by writing down consecutive numbers
starting at 1 and marking every third, forth, and fifth number with different marks. The
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marks coincided on the 60th day. He counted the days and discovered that the pupils
would meet on Saturday, after 60 days. A second student said: "It's the least common
multiple!". She calculated 3.4.5 =60, divided 60 by 7, obtaining 8 and a remainder of
4, and declared: "Wednesday, Thursday, Friday, Saturday - 8 weeks from Saturday".
Evaluation of these two solutions by a psychometric criterion, i.e., correct/incorrect, is
liable to present these two students as equally able. Yet, the processes used by the
students are on completely different levels and reveal disparate qualities of
mathematical thinking. This example strongly emphasizes the importance of cognitive
analysis. The purpose of our study was therefore to examine what can be achieved by
using unconventional questions and evaluating the solutions by cognitive analysis.

METHOD
Subjects and Procedure

The test used in this study was initially designed as part of a selection process for a
unique school in Israel. It was intended to evaluate the mathematical abilities of the
applicants, 268 students in grades 9 and 10 from all over the country I.

After a task-analysis was carried out for each of the 18 questions, we selected 3
questions as being unconventional and therefore appropriate for our purpose.
Cognitive and statistical analysis were performed for each of these questions. Due to
space limitations, we shall here review the cognitive analysis (and later the statistical
one) for one question only. We termed it "the estimation problem":

Rachel estimated the length of line a and Sarah estimated the length of line b.

a

b

After measuring the lengths of these two lines, it turned out that the difference
between Rachel's estimation and the exact length was 2 cm, and the difference in
Sarah's case was I cm.

Choose the correct statement and explain:

(I) Rachel's estimation is better because

(2) Sarah's estimation is better because

(3) Roth estimations are equally good because

(4) The merit of the estimations cannot he compared because

The test Has composed and administered by the Szold Institiute in collaboration with an expert
committee led by Dr. Nurit Zehavi of the Weizmann Institute.
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Task-Analysis of the Estimation Problem

In this problem, the student has to deal with the notion of estimation's merit. Merit
of estimation might appear in everyday discourse. As such it does not have a well
defined meaning. However, the notion does involve an accurate technical meaning.
Namely, in a better estimation the ratio betWeen the error and the real magnitude is
smaller. When asking the student to choose among the different statements, we want
to know this: Is the student aware of this technical meaning? If not previously known,
can he or she construct this meaning?.. If we assume that this type of question is
unfamiliar to the student, then actually he or she is required to accurately elucidate a
term of general or even obscure meaning in everyday language. The student must
perform a conceptual analysis that is beyond the immediate given data. To
successfully deal with the task, the student must perform the following steps: Examine
the two lines and notice that the length of a is more than twice the length of b;
Compare the errors in the estimations of Rachel and Sarah, relative to the length of the
line estimated (e.g., compare the error of 2 cm in line a to the error of I cm in line b).
Considering the ratio between the lengths of the two lines, he should then conclude
that Rachel's error is smaller and therefore her estimation is better.

Categories for the Estimation Problem

Answers were classified within the following nine categories (N =268). Each
category is illustrated by one or two typical explanations.

(A) Rachel's estimation was chosen as best, because the ratio of the error to the length
of the line was smaller in her case (37 students; 13.8%).

"Line b is smaller than half of line a and therefore Sarah's error would have been
greater than 2 cm relative to line a".

(B) The statement that the estimations are equally good was chosen because the
student thought that line a was twice the length of line b and therefore the ratio of the
error to the length of the line was the same (19 students; 7.1%).

"Line a is twice the length of line b (as I see it) and that's why they share the
same error because I cm (of Sarah) A' 2 (to get to a) will he equal to 2 cm, like
Rachel's estimation."

(C) The statement that the merit of the estimations cannot be compared was chosen
because the ratio between the lines was unknown (17 students; 6.3%).

"It's not possible to know the ratio between the two lengths and therefore we
don't know the percentage of Rachel's mistake and the percentage of Sarah's."

(I)) The statement that the merit of the estimations cannot be compared was chosen
because the lengths of the lines were unknown (34 students; 12.7 %).

"The lengths of the lines are unknown to us and it's not possible to
calculate how much the estimation deviates relative to the length of the line."
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(E) The statement that the merit of the estimations cannot be compared was chosen
because estimations can be compared only when the same line, or equal lines, are
estimated (44 students; 16.5%).

"Each one estimated a line of different length so you can't compare between them!"

(F) In the student's answer, regardless of the statement chosen, the idea of the ratio
between the estimation and the true length was mentioned, but only vaguely and
unclearly (17 students; 6.3%).

"The merit of the estimations cannot he compared because the lengths themselves
are not equal and we cannot know what is the percentage of each distance in each
one's estimation."

(G) In the students answer, there is no attempt to accurately define the concept of
"estimation's merit". The meaning attributed to the concept is as pedestrian as the
common everyday meaning of the term "estimation" (14 students; 5.2%).

"Estimation is an inaccurate thing and so there is no such thing as a
better or worse estimation - most are inaccurate."

The merit of the estimations can not be compared because every person knight
estimate the same length differently"

(H) Sarahs' estimation was chosen as best because the difference between her
estimation and the true length is smaller. In this case, there is an attempt to technically
define the concept of "merit of estimation" (the difference between the estimation and
the true length), but the logic of this definition is erroneous (54 students; 20.2%).

"The difference between her estimation and the true length was smaller, so she was
more accurate than Rachel was."

(I) No answer or non-classifiable answer (32 students; 11.9%).

The Categories and Levels of Thinking

The intent to preserve a wide variety of answers, of different quality and nuances,
led to the nine categories described above. This classification, however, is insufficient
for ranking the students by the quality of their mathematical thinking, since it proposes
no hierarchical order. The next step was therefore to determine the level of thinking
characteristic of each category, unite categories of a similar level and create a graded
scale. This process will now be described.

Dealing with the task, as we suggested, forces the student to offer a meaning to the
concept of estimation's merit. We claim that a student reveals a higher quality of
thinking, when the meaning he offers is closer to the technical definition previously
cited. According to this, category (A) represents the highest quality. Here, Rachel's
estimation was chosen as best because the ratio between the error and the length of the
line was smaller in her case. Nevertheless, category (B) can be regarded as having the
same quality: The student thinks that line a is twice the length of line b, and since this
is also the ratio between the errors, the estimations are equally good. This student,
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although making an optic error, applied the same principle as a student choosing the
first ,statement, and thus cognitively their answers are of equal value. These two
categories were therefore ranked together as the highest level of thinking. The next
category in terms of quality of thinking is category (C'). Here the chosen statement is
that the merit of the estimations cannot be compared, because the ratio between the
lines is unknown. Hence, the student is aware of the dependence between estimation
and ratio, and probably would have evaluated Rachel's estimation as better, had the
ratio between the lines been given. Yet, this information is unnecessary; It is sufficient
to observe that line a is more than twice longer than line b. This observation was not
made by the student, who could not find ways to cope with the apparent lack of
information. Category (D) is quite similar, except that "missing data" is the length of
the lines. Actually, regarding the lengths as necessary information can be perceived as
reflecting less quality of thinking than seeing the ratio as essential. However, since
knowing the length of the lines could lead to applying the ratio principle (see example
in (D)), we ranked these two categories together as the second level of thinking.

Let us now examine category (E) (Estimations can be compared only when equal
lines are estimated) and category (F) (Vague concepts). Although different from one
another, both categories convey a feeling that the situation described in the question
"annoys" the student. He does not feel confident. Had the same line been estimated, he
would have had no problem - the closest estimate would have been chosen as best.
The fact that two different lines were given confuses him. Students assigned to (E)
settled this confusion by simply not dealing with it; They claimed that the comparison
just can not be made. For students assigned to (F) the confusion was also expressed by
indiscriminate use of terms, such as "percent", "accuracy", "difference", etc. In all
these students the concept of estimation's merit is not sufficiently developed. This also
applies to category (G). Here too, the concept of estimation's merit of is not developed
and is given an everyday meaning, while the technical meaning is completely absent.

Finally, category (H) is left.. In this category, the student evaluates the estimation by
the absolute error, that is, by the difference between the estimation and the correct
value instead of by the ratio between them. This reflects a famous misconception
known as "the additive approach" (Karplus and Peterson, 1970). Karplus and his
associates recognized this misconception in their work on proportional reasoning
(Karplus et al., 1983). They found that a certain percentage of the population
examined used additive approach when solving problems requiring the use of ratio. It
is interesting to note that this percentage is reported to be decreasing when the
problem involves numbers from different dimensions - for example number of candies
and cents - as compared to problems involving only one dimension, such as length. In
the estimation problem discussed here, there is only one dimension - length - and our
statistical results will be shown to be in agreement with the findings of Karplus and
associates. It is difficult to rank this category in comparison to the previous three that
were defined as undeveloped conceptions of estimation's merit. This is a mis-
conception, not an undeveloped conception, but it can also be associated with
temporal cognitive underdevelopment, since it is typical of younger children: Infielder
and Piaget (1958) regarded the ability to use ratio as an essential component of formal
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reasoning, developing with age. Thus it is difficult to determine which conception is of
lower quality, and so we decided to rank them together at the last level of thinking.
(However, the additive misconception was separated in the answers distribution so
that the percentage of the students holding it could be compared to Karplus' findings).

RESULTS

As described above, a qualitative scale was constructed, consisting of three main
categories and an additional category of students who did not answer the question or
gave non-classifiable answers (Some of these answers will be discussed at the end of
the paper). Table I presents the distribution of the students according these categories.

Category Short description of the
category

Number of
students

Percentage
out of total
students

Percentage out
of classified
answers only

I Correct perception of the
notion of estimation

56 20.9% 24%

2 Connecting estimation to
ratio or length but avoiding
from application

5I 19% 21%

3 (a) Undeveloped perceptions of
the notion of estimation

75 28% 32%

3 (b) Additive thinking 54 20.2% 23%
Total classified answers 236 88% 100%

4 Non-classifiable answers 32 12% -

Table I. Distribution of the answers to the estimation problem. (N=268)

It is noteworthy that the additive thinking category contains 23% of the classifiable
answers. This finding is very similar to that of Karplus and Peterson (1970) who found
that out of 75 students of grades eight to ten, 25% belonged to this category.

Comparison of Evaluating Students by the Qualitative Scale and by a Psychometric
Scale - Some Statistical Analysis

The psychometric scale we refer to is the one used by the institute in which the test
was originally designed and checked. It does not relate to qualitative thinking, but
rather to the existence of certain features in the answer to which a numerical value was
assessed according to a well-defined key. In the estimation problem as evaluated by
the institute, a maximum score of 2 points was possible: one point for selecting the
right statement (the first one) and one point for an explanation which included one of
the terms "ratio", "error percentage", "relative error" or a similar term.

When we compared the distributions of the answers in the estimation problem
according to both scales - the qualitative one and the psychometric one - we found that
there was a fairly good correspondence between them (the detailed analysis will be
given elsewhere). This is a very reasonable outcome; It is well known, for instance,
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that the intelligence tests constructed by Billet and Simon are highly correlated with
Piaget's tasks (see Tennan & Merril, 1960). The assumption that a psychometric
measurement could correspond with a cognitive measurement has therefore evidence
to support it. Yet it is interesting to confront this finding with the following findings,
concerning the psychometric score in the rest of the test, and school achievements.

The mathematics test consisted of two parts, designed to examine the mathematical
knowledge and the mathematical thinking of the student, respectively. We used the
psychometric scores of the subjects in the test for further statistical analysis. The
findings were as follows. The correlation between the qualitative scale constructed in
the estimation problem and the score in part I of the test was low and not significant
for all students. However, the correlation between the qualitative scale and the score in
part II was fairly high and significant (r = 0.37, p < 0.01 for ninth graders, r = 0.53,
p 0.01 for tenth graders). The correlation between the qualitative scale and the total
score of the test (parts 1 +11) was 0.19 (p = 0.017) for ninth graders and 0.43 (p < 0.01)
for tenth grade students.

Another correlation that was calculated referred to the mathematics school mark of
those students who were accepted to the school, at the end of their first year of study.
The correlation between this mark and the qualitative scale in the estimation problem
was low and not significant for both age groups.

DISCUSSION

The estimation problem was chosen for the research because it is unusual, and thus
can serve as a potential source for revealing mathematical talent, as we claimed above.
The low correlation between the qualitative scale based on this question and the score
in the first part of the mathematics test is therefore not surprising, since this section of
the test was meant to check acquired mathematical knowledge in a rather standard
manner. On the other hand, the correlation with the second part of the test is relatively
high, as can be expected. Indeed the test constructors viewed this section as a mean of
evaluating mathematical thinking which is beyond learnt algorithms. The lower
correlation with the total score of the test can be explained by the fact that knowledge
questions had considerable weight, but there is another interpretation that is

noteworthy. The selection test was designed to predict future success in the school
system, and as such it is closely related to the main stream in mathematical education.
Performance of high quality of mathematical thinking in a unique question does not
necessarily foretell high achievement within the current framework of mathematics
education. The fact that our qualitative scale did not correlate with mathematical
achievements in school supports this interpretation. The common school system lacks
appropriate tools to appreciate unconventional thinking. We realize that apparently not
many students fall into this category. Nevertheless, it is an issue worth thinking about.
For instance, consider the following phenomenon. A few students (less than 2%, and
therefore omitted from classification) marked more than one statement in their answer
(generally the whole four of them) giving each statement an explanation, although the
statements clearly contradict each other! One of these answers, for example, was:
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Rachel's estimation is better, because looking at the percentage and relative to the length
of the line her estimation is more accurate. The ratio benveen the difference and the length
is better.

Sarah's estimation is better, because considering numbers she only missed by I cm, and
that is closer to reality than Rachel.

Both estimations are equally good because in both cases the difference wasn't too large.

The merit of the estimations cannot he compared because we don't knots, the lengths of the
lines, and so we can't calculate the ratio between their answers and the true length"

Why did the student write such an answer? He does not appear to be hesitating, on
the contrary; he confidently supplies a rather convincing explanation to each of the
statements. Perhaps he just hoped to gain more points. Yet, it seems like the student
had challenged himself to succeed in finding reason in each of the statements. We
believe that this student is not inferior to his peers who chose the right statement. He
just has a more unique, even creative perception. The psychometricmeasure, however,
rejected all these answers. We see this as an example of how a psychometric scale can
fail to discover mathematical talent, whose original and creative side is, in our opinion,
very important in order to confirm our impression about these students, we examined
their answers to other questions in the test. Indeed we found some beautiful answers.

In an educational system that uses only psychometric instruments and standard
tests, the focus seem to shift from the issue of having or not having mathematical
ability to the issue of having or not having memorizing ability. It is not surprising that
some competent, non-conforming students who think differently are somewhat lost.
The system might discover these students if from time to time evaluations would be
based on cognitive analysis such as the one discussed in this paper. If the questions
given are unique enough, such analysis could be surprisingly beneficial.
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INVISIBLE ANGLES AND VISIBLE PARALLELS WHICH
BRING DECONSTRUCTION TO GEOMETRY

Evgeny Kopelman

Hebrew University of Jerusalem

Geometrical thinking of important subjects of mathematics education,
including: top-ability high school students, experienced mathematics
teachers and professional mathematicians was investigated. The study
revealed their common difficulties sin applying the notions of angle and
parallelism in space. Search through historical sources, textbooks and
didactic literature had displayed, how meanings of these notions are
blended with variable positions, taken for their teaching. the result of the
study is a critical reanalysis of current approaches to school geometry.

1. INTRODUCTION

This study continues the work on geometrical thinking (Kopelman & Vinner,
1994) of rather underresearched populations: top-ability high school students,

experienced mathematics teachers and professional mathematicians. What is common
to this populations is their certain success with learning mathematics. It is reasonable
to ask: why to research them at all? The answer is, that, first of all, they are important
participants in mathematics education, influencing it no less, or even more, than others.
Second, since memory, motivation, knowledge, ability to deal with symbols, abstract
reasoning, visualization and intuition are not lacking in that case, predispositions in
their mathematical knowledge and sudden failures (not lacking either) speak of issue:,
which testing of usually sampled populations doesn't reach. To meet the challenge,
research methodology should also be ready for change: if in a usual cognitive study
meaning of tested notion is taken as pregiven, here it opens to criticism together with
teaching of that notion - both viewed in historico-epistemological perspective. In other
words, what gets into focus is not cognition grappling with ready-made mathematical
notion, but variable context of the notion itself.

The viewpoint adopted by this, basically empirical, study has been influenced by
the following issues raised in previous theoretical and historical works: of multiple
subjectivities in mathematics (Rotman, 1994), orality/writing opposition in

mathematical discourses (Otte & Seeger, 1994), role of teaching in reshaping pure
mathematics (Grabiner, 1974) and historical dimension of mathematical knowledge,
unveiled by Lakatos (Lakatos, 1976).
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The study began from evaluation of ability to apply vectors by senior high
school students at the end of their advanced course in three-dimensional geometry.
Those of the asked questions to which students had given wrong answers, had been
suggested to experienced mathematics teachers and mathematicians - most of whom,
gave just the same answers as the students. A search for original meaning of
problematic notions was undertaken. Reading of historical sources didn't reveal any
instances when these notions could be isolated as carriers of some autonomous sense,
but rather always blended with positions taken for their teaching. Brining this positions
to light, resulted in the following critical reanalysis of current practices and didactics of
teaching spatial geometry.

2. THE CASE OF ANGLE

The following question was suggested in a written test to 167 successful 12th
graders chosen from four different schools in Jerusalem who studied advanced course
in spatial geometry in classes led by highly professional and devoted teachers:
Question I. Given a line in space and a point outside the line, how many planes in
space may be drawn through this point which make an angle of thirty degrees with the
given line?

The same question was suggested in different groups of 37 senior high school
mathematics teachers at the end of their in-service training course in three-dimensional
geometry. Observation of those who worked on the question had shown, that nobody
felt need in calculations, relying upon imagination, or sometimes, helping themselves
by drawing, or hands and sheets of paper. Answering this question, almost all of the
respondents, students and teachers alike, were wrong about only two possible planes.
Though according to the written test they were about 70 percent of the sample, oral
interviews proved that most of those who answered differently used erroneous
argument. Many assumed, for instance, that if to turn one plane which satisfied the
condition around an axis, containing the given point and a point where the plane meets
the line, this would preserve the angle. Those single ones who succeeded explained
that first they had imagined the described turn of the plane, but then, in order to
compensate decrease of the angle, directed the plane closer to projection of the given
point upon the line. The question turned out to be difficult also to professors of
mathematics. Among 12 professors who volunteered to be interviewed, 4 answered
wrongly (among them two who had done it as a home task). Some might think of the
question as a pitfall that only looks simple but in fact require or quite a formal
calculation, or the shown ingenious kinaesthetic solution. But it's not: enough to
imagine direction vectors of the line and possible planes as, in fact, was intended by
the test.

But there is another quite striking aspect in this story: nobody - the narrator
including - had started from relational nature of angle in that case. To explain what is
meant by this, let us think about the following question: given a point in space, how
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many planes may be drawn through this point which make an angle of thirty degrees

with a vertical? The answer is obvious: infinitely many. And it is really not important
whether a vertical goes through the given point or not. A certain plane makes the same
angle with each of verticals. Or, in other words an angle between a plane and a line
does not change with parallel displacement of each of them, since it does not change
their directions in relation to each other. All this is true for the initial question as well.
If the relational nature of angle may be so important, what treatment does it get in
geometry instruction? With introduction of angles in plane geometry students
sometimes are warned that magnitude of angle does not depend on length of its sides.
But do we ever suggest to students to find an angle between two drawn line segments
which unfortunately intersect outside the drawing to show them that it does not matter
for an angle, where both his sides meet, but only their directions? In solid geometry
we, following the same tradition, define an angle between a line and a plane as the
plane angle between that line and its projection on the plane -.even we know well that
for the angle between the line and the plane it does not matter, whether the mentioned
plane angle will be formed at all: in perpendicular and parallel cases. Nevertheless,
there is a moment in the course of teaching solid geometry, when the relational nature
of angle between lines necessarily steps in, because the lines in this case do not
intersect: in the notion of angle between skew lines. The definition of the notion should
lead students, so it seems, to the relational character of angle and this was intended to
test in the next the question:

Question 2. Given a line in space and a point outside the line, how many lines
in space may be drawn through this point which make an angle of thirty degrees with
the given line?

Only 18 of 134 students from the abovementioned sample and similar
proportion of the interviewed teachers, while answering, had considered angles
between skew lines and came to an infinite number of the possibilities. Since the
question was really 'around' the proper definition, and the students were the best, one
may only wish to have, it prompted to turn to circumstances in the history of geometry,
which led to this, poorly picked up, definition.

The notion of angle between skew lines is relatively new in geometry.
In 1748 Euler in his Introductio had demonstrated calculation of certain cross-sections,
where he introduced as a parameter an angle between certain line set rent in space
and a line which he had drawn from an end of the segment parallel to one of
coordinate axes. In 1773 another of the founders of analytic geometry, Lagrange,
provides us with another evidence (Boyer, 1956):

...together with two angles p and q which determine the position of this radii, at
which p is that angle which the. radius makes with one qf the axes, such as that with
the z-axis, or rather with an axis parallel to this, but passing through the center if the
radii: and 4W/itch the other q is the pnyection of the radius r on the plane of the x,y
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coordinates makes with the x-axle, or, which is the same thing, with an axis parallel
to the latter and passing through the center oldie radii...

In this extract, devoted to really new, for that moment, thing - polar coordinates in
space - Lagrange explains the meaning of the two angles p and q, which, in fact, are
angles between skew lines, in such a way, that enables the reader or to follow it
literally, as exact details of his construction, or to see there deliberate stress on
important general feature: angle as an immanent relation between two lines in space
independent of their possible intersection. Fifteen years later, Lagrange, when it comes
to formulae for projections of force on axes in his Analytic Mechanics, is still faithful
to his description of this kind of angles. At the end of the 18th century rapid
development of higher education and science in France had required to communicate
the results of Euler, Lagrange and Monge in college courses. This caused substantial
fonnative efforts from the authors of such courses, applied to form and content of the
material, in order to deliver their course as effectively as possible. Thus, the core
theorem of the course about projection of a line segment on an axis had accepted
appealing formulaic form, but had to be preceded by a new definition of angle as
extension of the older one, in order to include the case of a segment, which is skew to
a line. Copied in the host of textbooks on analytic geometry, which appeared at that
time the definition looked very different the exposition of the same thing by Lagrange:
`in case of nonintersecting lines, an angle between them will he adopted as the angle
between two lines which are drawn from one point and which are parallel to the
original lines'. This definition, intended to secure the following it formulae, sounded
more like a decree of a new angle, rather than revelation about its relational character;
the latter evidently remained unknown at that time - otherwise the inclusion of this
definition wouldn't be necessary. Finally, since the middle of the last century this
definition began to appear in school textbooks (The Elements of Euclid ed. by 1.
Todhunter 1862/1933, p.290), but apart from analytic geometry in space. Judging from
our times, we may claim that this didactical displacement of the definition had taken
the corresponding notion away from its original context and thus has blocked for
students any way meaningfully to apply it. The school didactics, satisfied with mere
presence of the definition inherited from respectable source, has never started to
"naturalize" it, in the sense of making relational nature of angle usual and obvious -
like naturalizing negative numbers, for example.

3. THE CASE OF PARALLELS

Next notion, which turned out to be problematic, was the notion of parallel lines
in space. This notion is taught in school geometry in two versions: in the traditional,
following the pattern of Euclid's Elements, and in a more recent one, which has been
initiated in school since the middle of our century and uses vector approach. The
teaching of the latter one, which is the object of our study, heavily draws on students'
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intuitions about directions and parallelism in space. Contrary to the previously
discussed angles in space, in this case there were discernible efforts to naturalize the

notion of parallelism even on the level of didactical literature for mathematics
educators themselves. Thus Hans Freudenthal suggested (Freudenthal, 1983), that

parallelism - as equality of directions - is a mental object, which is imposed on us from

early childhood by natural environment and products: roads, gates, rows of houses,

edges of a ruler, of a sheet, of a box, etc. So, for students the vector approach to

geonietry should be even more direct than the classical one:

...Equality of direction of directed straight lines is an intuitively primary
phenomenon. The discrepancy of direction of intersecting as well as skew line pairs is

a striking phenomenon. The fact that there is a plane through parallel, though not
through skew. lines is comparatively secondary and not immediately obvious. --

There may he reasons to choose this property to define parallelism of lines in a
logical system of geometry, but they are not at all compelling. One can equally well
imagine a system in which direction or equality of direction is one of the fundamental

concepts. (Freudenthal, 1983, p.305)

While there is no argument about the second part of the passage, the first one is still
short of evidence. The point here is not that real things will never reach mathematical

ideal. But what exactly is referred in them as example of parallelism is intention in

their production towards that ideal, which answers the things' functional use. If to look

again at the list of things, which as Freudenthal suggests, form imposed on us the

mental object of parallelism, we may note that sides of a road should not necessarily

be parallel: a road may curve, but its constant width is a dominant feature. Again,

edges of a ruler should better be in one plane, but we really care only about

straightness of one of them. So, the features, intended towards parallelism in the listed
things, are hardly identical. At the same time, the impression of parallelism is absent if

there is no build-in intention towards it.

Look at the following picture and imagine that these
are two rays of searchlights in the sky. Nobody, who
knows, what a searchlight means, will consider these
rays as parallels, even if they are in a fixed position.
Since it is very probable, that one of them is directed
towards the viewer and the second - just the opposite
way.

If we turn now to textbooks, we shall see that the notion of parallelism is linked
here to notion of vector in way, which may be perceived differently, depending on a
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time and goal of instruction, as well as on a reader's viewpoint.
According to well established textbook tradition (Wilson, 1901/1943), vectors are
introduced as quantities, characterized by direction and magnitude, implying that equal
directions in space are related to parallel lines. When this introduction was coined by
mathematical physicist J. Willard Gibbs in his Yale lectures in 1881, he named it a
definition, meaning it as a such for his students. From to-day mathematician's view it
is not, because still leaves vector as undefined object until operations with vectors are
specified. Or, according to accepted now in Mathematics style, it must be
supplemented by the promise, that "later the terms 'direction' and 'parallel' will
accept exact meaning". This looping', or completeness, which requires later definition
of initially intuitive terms, is important feature of modern mathematical rhetoric and is
present even in school textbooks but hardly may be appreciated by noninitiated
learners. From quite a different point of view of a didactician, the introduction of a

new notion of vector alluded to the special, two-dimensional case, drawing on the
knowledge of previously studied plane geometry. Having this example, it is easier for
a learner to make the main, most difficult step: to generalize it to the three-dimensional
space. Since both the didactician's and the mathematician's intentions are far from
being on the surface, a learner may still understand literally the above-mentioned
introduction, which presents vector as it is, in all its totality, like most of the things,
which are presented to him or her in, essentially oral, classroom. The soundness of the
new notion stems from other notions, like the notion of direction, whose soundness, in
turn, rests on common usage of the word and agreement about our ability to discern
arbitrary directions in space. At the later stage of the course, after main operations
with vectors are introduced, the notion of parallel line is defined: 'if one vector is a
non-zero scalar multiple of another vector, then two vectors define directions of two
parallel lines in space or relate to the same line'. Usually, teachers illustrate this
abstract definition with a simple drawing of parallel lines, marking their direction
vectors. Again, within the pure mathematical perspective students got a definition of a
new relation, thus completing the formal 'master plan'. Didactically, the defined
relation was illustrated by the familiar, two-dimensional case. Within the third, literal'
perspective, the complex of definition and illustration had described in vector
language the known spatial feature and the illustration again referred to ability at a
glance to recognize equality of direction in space. The latter notion is so common that
may be found far outside one discipline. For example, in strong consonance with the
quoted opinion of Hans Freudenthal, two well known psychologists write in their book
"Language and Perception":

...Although the notion that laces or edges are parallel is not easily defined
without more geometrical terminoloy than we wish to introduce, the perceptual
impression is sufficiently direct and immediate...

(G.A. Miller & P.N. Johnson-Laird, 1976, p.53)
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Still it is possible to ask: is it?
The following question was suggested to 113 of 12th graders and 12 teachers

from the above-mentioned sample

Question 3: There are two drawings of solids (polyhedra) before you. Find out

and mark on each drawing all the edges which may be parallel to each other in space.

(Note: an edge is a border between two adjacent faces which are not in one plane).

A

The results indicated that

perception of parallel and skew lines may not be immediate. 88% of the students and

all the teachers marked pairs AB and CD on the left figure as probably parallel (the

wrong answer, according to either Euclid's or vector approaches). The students'

method was to imagine the directions of the edges or to try to direct certain edges to be

parallel. There is no doubt that the mistaken students didn't perceive the pictures two-

dimensionally, since 94% of them didn't mark edges KL and PM as parallel. It also

means that perception of parallel and skew lines is not a primary phenomenon, since
both pairs of edges look graphically as the same "Z pattern; they were approached

differently, only because the right picture was associated with a pyramid. At the same

time this association precluded 93% of the sample to consider the edges KP and MN

as probably parallel.
The claims, that perception of equality of directions in space is immediate and the

notion of parallelism is natural, can not make it more natural , than it is, and substitute

educational efforts to naturalize it. All this doesn't say that the students do not know

what parallel lines are. Being asked about that in the same test, they answered
unanimously: parallel lines in space are the lines which have equal directions or, whose

vectors of direction are proportional. In applications they easily deal with the
parallelism, using intuition. But the looping, designed in their textbooks and intended

to supply learners also with a formal outlook on that notion, has remained a literary

move unrecognised by a mass reader.
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4. CONCLUSION

The hard evidence, presented by the study, is the failure to solve correctly some
qualitive problems in elementary geometry by advanced 12th graders, experienced
mathematics teachers and professional mathematicians. It is not an educational
disaster, neither a pure accident. It is not the diaster, since all the subjects in the study
are very successful in their mathematics studies and some even belong to mathematics
profession. It is not an accident either, since advanced students were chosen from
different schools, the teachers were suggested these problems at the end of the relevant
in-service course and the mathematicians are active professionals, coming even from
different countries. The findings address the issues, which careful reading of teaching
and didactical texts may reveal: meanings of the taught and then, tested - notions are
blended with variable didactical positions, which are taken to teach them. These
positions stem from the long-standing tendencies, discernible within mathematics
education, like: innovation and relying on certain tradition and authorities, concern
with precision of expression and nurture of intuition, and, finally, aspiration for
effective teaching - but which, without critical eye, may easily turn again themselves.
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Abstract: the purpose of this research is to demonstrate the complementarity of intuition and
logical thinking in a process of understanding mathematics basing on two basic notions of mental

model and reflective thinking. In this paper, we examine the validity of the so-called "two-axes

process model': especially the horizontal axis consists of three learning stages by analyzing an

elementary school mathematics class. Firstly, we identify seine mental models of length which

students have initially at the class and lead to a misjudgement or a mathematically incorrect

anticipatory intuition. Secondarily, we observe how such intuition has been changed under the

control of students' reflective thinking in a whole-class discussion. As a result of the protocol

analysis of a class, the validity of the horizontal axis of the model is documented.

INTRODUCTION

In Japan it is one of main objectives of school mathematics education to develop student's intuition

and logical thinking. To realize this objective, many mathematics educators and researchers have

made extensive efforts in various ways. However, we can not say that we have satisfactorily realized

the expected result. In consideration of the existing state of things, we should capture the nature of

students' thinking in the teaching and learning of mathematics.
Koyama (1988) made a theoretical study on the relationship between intuition and logical thinking

from view points of both the history of mathematics development and the developmental mode of

human thinking. He states, as a result of the study, that intuition and logical thinking are
complementary and closely interrelated in human mathematical thinking. In other words, human

thinking could developed productively and soundly only when intuition and logical thinking are in a

harmonious and cooperative relation. Recognizing the such coniplementarity and the idea of

objectification or explicitation in the van Hiele theory (van /bele, 1958), Koyama (1992a) made clear

what characteristics a model of students' understanding mathematics should have so as to be an
useful and effective model in the teaching and learning of mathematics. The models of
understanding mathematics presented in preceding papers are classified into two large categories, i.e.

"aspect model" (cf. Skemp, 1982) and "process iiiodel" (cf. Pirie & Kieren, 1989). Focusing on the

process model of understanding mathematics, we recognize that reflective thinking plays an
important role to develop students' understanding, or to make their thinking progress from a certain

level to a higher level of understanding. Koyama (1992b, 1993) has explored basic components of

students' understanding mathematics and presented the so-called "two-axes process model" of
understanding as a theoretical framework for the teaching and learning of mathematics. The model

consists of two axes in which the vertical axis implies some levels of understanding and the horizontal
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axis implies three learning stages at each level, i.e. intuitive, reflective, and analytic stage.

PURPOSES

The purpose of this research is to demonstrate the complementarity of intuition and logical thinking

in a process of understanding mathematics basing on two basic notions of mental model and reflective

thinking. In more concrete terms, we try to examine and identify students' mental models of a

abstract and mathematical concept in regard to intuition, and observe how students think reflectively

on their mental models in a whole-class discussion in regard to logical thinking. To attain the
purpose, in this paper, we try to examine the validity of the two-axes process model, especially the

horizontal axis of the model by analyzing an elementary school mathematics class in Japan.

THEORETICAL FRAMEWORK: THE TWO-AXES PROCESS MODEL

First of all, we must see the essence and characteristics of the two-axes process model of
understanding mathematics. This model has been built as a result of the theoretical exploration in

order to make the followings clear; Through what levels should students' understanding progress?

How do students develop their thinking at each level of understanding? Naturally, the model
consists of two axes, i.e. the vertical axis implying levels of understanding and the horizontal axis

implying stages at each level.

In this model, on the horizontal axis, there is three learning stages, i.e. intuitive, reflective, and

analytic stage. Those stages are originated in the work of Wittmann (1981) which emphasizes that

three types of activity are necessary to develop a balance of intuitive, reflective, and formal thinking

and that mathematics teaching should be modeled according to the processes of doing mathematics (p.

395). Koyama (1993) have modified Wittniann's definition of three activities in order to form a
horizontal axis of the two-axes process model. Those three stages are described as follows (Koyama,

1993, pp. 70-71).

Intuitive Stage; Students are provided opportunities for manipulating concrete objects, or
operating on mathematical concepts and relations acquired in a previous level. At this stage, they do
intuitive thinking.

Reflective Stage; Students are stimulated and encouraged to pay attention to their own
manipulating or operating activities, to be aware of them and their consequences, and to represent

them in terms of diagrams, figures or language. At this stage, they do reflective thinking.

Analytic Stage; Students elaborate their representations to be mathematical ones using

mathematical terms, verify the consequences by means of other examples or cases, or analyze the

relations among consequences in order to integrate them as a whole. At this stage, they do analytical
thinking.

Through those three stages, not necessarily linear, students understanding could progress from a

certain level to a next higher level in the teaching and learning of mathematics. As prominent

characteristics of the two-axes process model, firstly, it might be noted that the model reflects upon

the complementarily of intuition and logical thinking, and that the role of reflective thinking in
understanding mathematics is explicitly set in the model. Secondarily, the model could be an useful

and effective one which has both descriptive and prescriptive function in the teaching and learning of

mathematics. The descriptive function means that a model can describe the real aspects or processes

of the growth of students' understanding mathematics. The other is the prescriptive function of a
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model which can suggest us, researchers or teachers of mathematics, didactical principles regarding to

the followings; what kinds of didactical situation are necessary, how we should set them up, and to

which direction we should guide students in order to help them develop their understanding of
mathematics (Koyama, 1992a, p. 181).

Those prominent characteristics of the model are, however, still expected theoretically.
Therefore, we must examine both validity and effectiveness of the model in light of practices of the

teaching and learning of mathematics. As a first attempt of such examination, in this paper, we will

try to examine the validity of the model, especially the horizontal axis consists of three learning stages

by analyzing an elementary school mathematics class.

A SKETCH OF ELEMENTARY SCHOOL MATHEMATICS CLASSES

The class to be analyzed in this paper is a part of four successive mathematics classes in a fifth grade

(11 years old) classroom at the national elementary school attached to Hiroshima University in Japan.

In February 1993, an elementary mathematics teacher of the classroom, Mr. Mori, planned and
taught 36 students (18 boys and 18 girls) a topic named "Let's think with mathematical expressions".

The students involved in those four classes are heterogeneous in the same way as a typical classroom

organization in Japanese elementary schools, but their average mathematical ability is higher than

that of other students in the local and public elementary schools.

In this section, firstly we see the intention of the topic held by the classroom teacher when he had

planned it. Then a rough sketch is shown for an outline of four successive classes which actually

developed in the classroom.
The classroom teacher, Mr. Mori, has a vision of elementary school mathematics education.

Mori (1994) states it as follows: "Students' learning by solving mathematical problems is a continuous

process of solving their own problems. I believe such process is an ideal form of learning elementary

school mathematics that the once solution of a problem produces a more expansive problem (p. 91)".

He planned the topic named "Let's think with mathematical expressions" with this vision of
mathematics education. The main objective of the topic is to help students appreciate thinking with

mathematical expressions such as interpreting a mathematical expression expansively and
insightfully.

To realize this teaching objective, he planned three sessions and four unit-hour (46 minutes)

classes for the topic as follows.

First session; comparing lengths of two different semicircular roads (2 unit-hour classes)

Second session; comparing lengths of other geometrical figured roads (1 unit-hour class)

Third session; comparing areas of two different semicircular regions

and summarizing the topic (1 unit-hour class)

The followings is a rough sketch of an outline of four successive classes which actually developed

in his classroom. In this sketch, students' activities are focused and picked up mainly.

First Class
1) Teacher set up the situation: "There are two places A and B. Let's make various roads

between them". Students imagined and proposed their roads. Among them, semicircular

roads were adopted and two different semicircular roads were drawn on a blackboard (Figure 1).

One road L was a semicircular road with the diameter AB. Another road M was a one made by
two connected semicircular roads with the diameter AC and BC, where place C was located at a
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certain point on the segment AB.

2) Students predicted which road is shorter when comparing lengths of two roads L and M. At
this point students had their own problem to be solved.
3) Students individually worked out the problem in their own ways. It must be noted that they

had learned mathematical formulae for the length and area of a circle, and they know that
circle ratio is about 3.14.

4) Students knew that two lengths of roads L and M are equal. Some students explained their
own reasons of why two lengths are equal in the whole-class discussion. Students compared
and interpreted those mathematical expressions written on a blackboard for the explanations.
5) Students compared lengths of two roads when place C had changed to be another point C'on
the segment AB (Figure 2).

6) Students said their findings which they had been aware of in this class and proposed their
own problems to be worked on in the next class.

Figure 1.

Rand AIAMr MP
Road M

Figure 2.
Second Class

1) Students remembered what they had done in the first class.
2) Among the problems proposed at the end of the first class, students decided to work out the

problem: "Compare lengths of two roads L and M when road M is changed to the one made by
more than two small semicircular made.

3) Students individually worked out the problem of comparing lengths when road M was made
by three small semicircular roads (Figure 3).

4) Students presented their own solutions and compared mathematical expressions written on

a blackboard in the whole-class discussion.

5) Students worked out the more general problem of comparing lengths when the number of
semicircular roads of M increased (Figure 4).

6) Students said their findings which they had been aware of in this class and proposed their
own problems to be worked on in the next class.

Figure 3. Figure 4.
Third Class

I) Students remembered what they had done in the second class.

2) Among the problems proposed at the end of the second' class, students decided to work out the

problem: "Seek for other geometrical figured roads which have a same rule as two semicircular
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roads".

3) Students individually investigated two quarter-circular roads (Figure 5).

4) Students sought for other geometrical figured roads which have the same rule by means of

mathematical expressions. Students checked, for example, two equilateral triangle roads

(Figure 6) and two square roads (Figure 7).

5) Students said their findings which they had been aware of in this class and proposed their

own problems to be worked on in the next class.

Figure 5.

Fourth Class

1) Among the problems proposed at the end of the third class, students decided to work out the

problem: "Compare areas of regions encircled by two semicircular roads (Figure 8)".

2) Students individually worked out the problem with their own predictions.

3) Some students explained their solutions of the problem.

4) Students thought about how the area of region encircled by the road M changes when a point

C moves from A to B on the segment AB.

5) Students represented the change of area in a graph.

6) Students read and interpreted the graph and explained their own findings about the change

of area in the whole-class discussion.

7) Students looked back what they had done in all four classes and summarized the content of

the topic named "Let's think with mathematical expressions".

Figure 6.

A

Figure 7.

Rand

A

Road M

Figure 8.

DISCUSSION BY THE PROTOCOL ANALYSIS OF A CLASS

Four successive classes of the topic actually developed as shown in the above sketch. In this section,

by analyzing the protocol of a class mainly in the first session, firstly we try to examine and identify

students' mental models of length which lead to a misjudgement or a mathematically incorrect

anticipatory intuition. Then we observe how their initial intuition has been changed under the

control of students' reflective thinking in the whole-class discussion. Being Based on this analysis

of a class, we examine the validity of the horizontal axis, i.e. three learning stages of the two-axes

process model of understanding mathematics.
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Identification of Students' Mental Models of Length

In the first class, after teacher's setting up a learning situation and students' discussion about
mathematical problems to be solved, the process of teaching and learning actually developed as
follows. In the following protocol of a class, sign Tand sign Sn mean a teacher's utterance and a nth
student's utterance respectively.

r Today, we will try to work out the problem of comparing lengths oftwo semicircular roads L
and M (Figure 1). How do you predict which is shorter, road L or road M?

511: The length of road Mis longer than that of road L, because the road Mis bent at a point C.
S12: The road M encircles a smaller area than the road L does, so the length of road Mis shorter

than that of road L
S13: The length of road M is shorter than that of road L, because the road M is closer to the

straight line AB.

.Those three students' utterances of their prediction allow us to identify their mental models of
length which they have initially at the class as products of their previous experiences,of learning
length. S11 has a mental model like that when the both ends of two lines are trued up, a curved line
is longer than a straight line as shown in Figure 9. S13 has a similar mental model to that of S11
like that because the shortest line between two points isa straight line, a line closer to the straight
line is shorter as shown in Figure 10. On the other hand, noticing area, S12 has a different kind of
mental model like that the length of a closed geometrical figure is proportional to the area of it as
shown in Figure 11.

Figure 9. Figure 10. Figure 11.
All those mental models can lead to a mathematically correct judgement or prediction in some

cases represented in figures 9, 10, and 11. However, in case of comparing lengths of two semicircular
roads worked on in their class, their mental models produced a mathematically incorrect prediction.
It might be said that they can not explicitly analyze the curvature (S11), closeness (S13), and
similarity (S12). In any case, we could conclude that their mental models of length which they
constructed previously and had initially at the class have a negative effect on their anticipatory
intuition (Koyama, 1991) without any explicit analysis of their mental models.

Examination of the Validity of Three Learning Stages

Next, we will observe how their initial intuition has been changed under the control of their reflective
thinking in the whole-class discussion. After students' predicting lengths, the process of teaching
and learning actually developed as follows.

7" You have different predictions and your own reasons. Which is longer, road L or road M?
Let's make it clear. Work out the problem in your own way and write it down on
notebooks.

S19: I can not do, because we have no information about the length of AB.
T. Do you need to know the actual length?

SS: (Many students say "Yes': but some students say "No':)
T. Ifyou need to know it, use that AB is 10cm and AC is 6cm.

SS: (Students individually work out the problem by using the mathematical formula fora
length of circle which they know.)
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7' OK! Present your own work to your classmates. Anyone?

SI5: I calculated the lengths as follows. Two answers are equal.
Road L; 10x3.14 =2 =15.7 Road M; 6X3.14 =2 =9.92

4)(3.14+2=6.28
9.92+6.28=15.7

S16: I can calculate the length of road M with one niathematical expression like this.
Road M; 6x 3.14+2+ 4)0.14+2=157

Si 7: I can do it more easily by using parentheses like this. Two answers are equal.
Road M; (6 +4)X 3.19 =2 =15.7

S20: We do not need to calculate the lengths. The sum of AC and CB is equal to AB (looking at
Figure 1), and we can see it apparently that both mathematical expressions for road L and
road M is 10X3.14 =2. So we can say that the lengths of two roads are equal.

T: You have explained your works with your own reasons well. All of you seem to understand
your classmates' explanations and be convinced them.

S21: Wait, Mr.! I have another idea. I used alphabetic letters. I thought about the problem
when let the length of AB, AC, and BC be a, c, and b respectively. Then we can easily see
that lengths of two roads are equal because two mathematical expressions are same like
this.

Road L; a x 3.19+2 Road M; bx3.14+2+cX3.14+2
(b+c)x 3.14+2

=a X3.14+2

In this whole-class discussion, with the explanation of S15 as a turning-point, students in this

classroom reflect on their own calculating and thinking process and represent it in their own terms

using mathematical expressions. This examination of the protocol allows us to conjecture that
students do reflective thinking in their own ways. At this point, we should pay attention to the fact:

S20 and S21 are explicitly aware that the mathematical expressions for lengths of two roads are same,

while S15, S16, and S17 put their eyes on only that two answers are equal. In other words, for S15,

S16, and S17 a mathematical expression is mere a thinking method to calculate an answer for

comparing lengths, but for S20 and S21 the mathematical expression itself is a thinking object. This

difference must be significant from a view point of the level of understanding mathematics, because,

as van Hide (1958) suggests us, the objectification could push students' understanding of

mathematics up to a mathematically higher level.
In fact, the explanation of S21 stimulates other students and directs their understanding of this

problem to a higher level, i.e. an understanding of the essential and mathematical structure of this

problem.
T: it is a great idea. S2I used alphabetic letters. What can you see about the mathematical

expressions explained by S21? Anyone?
S22: It does not depend on the actual lengths of AC and BC.
S23: They are expressed using alphabetic letters, so the lengths of two roads are equal even

when a point C moves on the segment AB.
T: Is it true when a point C is close to the point A?

S29: Yes! As far as a point C is on the segment AB, two lengths are always equal.
T: is it true? Please explain your reason in more detail.

(The following discussions are omitted.)
We can see in the above protocol that students do think about both the meaning of alphabetic

letters and the structure of mathematical expressions. In other words, students in the classroom try

to represent consequences of their reflective thinking more mathematically, analyze explicitly the

structure of the problem, and integrate their findings as a whole. Therefore we might say that at this

point of the class students do their analytic thinking.
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CONCLUSIONS AND FINAL REMARKS
As a result of this observation and protocol analysis of the class, we see that the process of teaching
and learning mathematics in this classroom actually developed in the line with the horizontal axis, i.e.
three learning stages of the intuitive, reflective, and analytic which are set up in the two-axes process
model of understanding mathematics. Therefore, we could conclude that the validity of three stages
at a certain level of understanding mathematics has been demonstrated by the analysis of an
elementary school mathematics class.

By the end of the first class, students in this classroom have become to be able to control their
mathematically incorrect anticipatory intuition which they had initially at the first class by the logical
thinking with mathematical expressions. It is saliently demonstrated by the fact that at the
beginning of the second class 3.1 out of 36 students could predict correctly even when the road M is
changed to be made by more than two small semicircular roads. This fact allows us to insist that as a
result of their learning experiences students have a fairly determined intuition supported by the
logical thinking with mathematical expressions including alphabetic letters.

. In this paper, we have examined the validity of the horizontal axis consisted of three learning
stages by analyzing an elementary school mathematics class. In doing it, we regarded students in a
classroom as a whole and observed their process of understanding mathematics. It is, however,
needless to say that we must also pay attention to an individual student and his/her process of
understanding mathematics. Moreover, we have to examine the effectiveness of the two-axes process
model of understanding mathematics in a sense that we can really make a teaching plan with this
model and help students develop their understanding of mathematics to be an expected and higher
level. Those are difficult but important tasks to be faced and addressed in our future research.
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Application of Reification Theory in Translating Verbal Expressions and Statements into
Algebraic Expressions.

Balla Kutschcr
The David Yellin Teacher's College

This study presents a teaching model, grounded in Syard's (1987) reification theory', for
translating verbal expressions to algebraic expressions for students at seventh grade level
and compares results truth translation done in the more traditional, structural fashion. Six
seventh graders participated in this study. lhe data collected suggested that the students
initially perceived many concepts operationally. The table filling method, building on their
operational understanding of algebraic expressions, proved advantageous when translating
verbal problems, especially for the average students.

Literature shows that historically algebra developed slowly over a period of 4000 years,
from a time when all solution processes were done verbally and were mostly calculation
processes until the sixteenth century when letters were employed as parameters allowing for
a structural perception of algebraic expressions.

Reification Theory (Sfard, 1991) sees many similarities between the development of the
perception of mathematical concepts and the historical development of algebra. This theory
suggests that generally, a new mathematical concept is first grasped operationally (as a
computational process only) and that the transition to a structural conception is a process
that requires time and a cognitive effort. At an operational level "2X + 4 + 3X" might be
perceived as an instruction to multiply a given number by 2, to add to it 4 and then to add to
this sum three times the given number. A possible structural perception of this expression
might interpret it as a mathematical "object", such as an unknown number or linear function.
Many studies (e.g.Crowley, Thomas & Tall, 1994) have attested to the difficulty of
structural perception of mathematical concepts. Eventually, the student should acquire the
ability to perceive mathematical concepts on two levels - operational or structural,
depending on the context.The structural conception is the more advanced, and thus is more
difficult to construct.

The Israeli student is first introduced to algebra usually in the second semester of seventh
grade. The algebraic expressions are usually interpreted as generalized numerical
computations which "illustrate a procedural [operational] perspective in algebra" (Kieran,
1992, p.392). Within a relatively short time the student is expected to think structurally in
several areas of algebra. One such area is in translation of verbal statements. Many
researchers (Chaiklin 1989; Clement, Lochhead & Monk, 1981; Lochhead & Mestre, 1988;
Mestre & Gerace, 1986; Reed, Dempster & Ettinger, 1985) have studied the difficulties
encountered when translating from the written language to the language of mathematics.
Chaiklin (1989) sums up that most of the cognitive studies of algebraic problem solving
testify to the great difficulty encountered by the student when encoding the relationships
between the different magnitudes. Heretofore the student solved word problems by
calculation processes, operationally, with no knowledge of algebra. Now he was expected to
think structurally, to translate verbal expressions directly into verbal ones, to translate the
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think structurally, to translate verbal expressions directly into verbal ones, to translate the
relationships between the different magnitudes which appeared in the word problem into
equations or inequalities.

The Study
The purpose of this study was to examine a certain "operational" way of learning to

translate verbal expressions and word problems and to compare results of translation done
this way with results of translations as it is usually done, in a more traditional structural
fashion. The assumption, grounded in Sfard & Linchevski (1994), was that the children start
with operational conceptions, and the aim was to teach them translation, building
extensively on their operational abilities, circumventing the need for well-developed
structural-thinking abilities.

Six seventh grade students, boys and girls who learned in two similar, public middle
schools, participated in this study. There were two average, two good and two very good
mathematics students, evaluated as such by their mathematics teachers according to class
and test performance. All of the students had just been introduced to algebra. They had been
taught the concepts variable. number coefficient and substitution of numbers in simple
algebraic expressions, as well as intuitive solving of equations. They had not learned any
manipulation of equations, nor had they seen equations with unknowns on both sides.

Data collection

Each student initially answered a questionnaire in a combined oral-written interview in
order to assess whether he perceived algebraic expressions structurally or procedurally.
Examples of such questions are given in Table I.

Table I

1.) You have to tell someone what is meant by
5+n. What would you tell him?
2.) Before you is y-508 = 817. What does this
tell you? What can you do with it? Why?
3.) What does 4m+2m mean to you? What
can you do with it?

These interviews allowed a closer inspection of the student's thinking. Thereafter each
student was tutored individually in translating verbal expressions and statements using
procedural methods. The number of sessions ranged between five and ten depending on the
speed with which the student was capable of learning. All lessons were semi-structured,
were conducted by the same teacher, and the topics and test questions were uniform across
all students. The collected data are related to all interviews and lessons which were audio-
and video-taped and transcribed.

Results of the questionnaire

The data collected suggested that many algebraic concepts were seen operationally. For
instance, when Rikki Y., an average student, was shown the expression y-x= and asked what

it tells her:
Rikki Y.: I have j. which is any number and I take away from it another number to the power
of two.

Teacher: And what is this ( )?
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Rikki Y.: It is an exercise with two unknowns, and they told us that y is any number less x to

the power of two. And this x is equal to something and this gives us results.

Similarly, when a good student, Rikki S. was presented with the equation 12x-t-5-13x-F4:

Teacher: Have you seen an equation like this already in class?

Rikki S.: No
Teacher: What is the difference between this equation and the other equations that you have

seen?

Rikki S.: That in the other equations which I saw she (the teacher) gave me examples like
you gave me in the previous example (28 =5 +x), 28 is equal to some exercise. Here you gave

me two exercises.

Teacher: All right. Can you do anything with it?

Rikki S.: I can try to find if there is, what x is equal to.

Rikki S. proceeded to successfully solve for x through trial and error by substituting the
same number for x on both sides of the equations and calculating the numerical value of
each side. Even a very good student, Maytal, displayed evidence of operational thinking.

Teacher: Does 8-t.4 mean a number to you?

Maytal: Twelve.
Teacher: Yes. It means 12 to you. all right. What about h +3?

Maytal: It cannot mean a number because I don't know what b is. It is an unknown.

These exchanges are representative of the students' mode of thought at the time.
Algebraic expressions, were seen as "exercises" namely as prescriptions for computational
procedures. These procedures could be executed arithmetically, with appropriate numerical
instantations. The one exception was Rotem, a very good student, whose language through
all the interviews consistently suggested that his structural development was well on the
way. He perceived m 3 as representing a number, spontaneously collected like terms, and
was later able to translate relationships between magnitudes into algebraic expressions and
equations with apparent ease using the traditional structural way.

Traditional methods of translating verbal relationships of quantities into the relevant

algebraic expressions require a structural mode of thinking when translating into static
descriptions. A simple example "One number is greater than another by 56. Their sum is
20I. Find the numbers" requires the student to write:

First number: x Second number: x+56

In the above symbolization, the student is expected to perceive x+56 as a number, when he
cannot yet see 3+5 as a number! (Compare episode related in Staid & Linchevski, 1994,
p. 103). As has been illustrated above, there was little evidence for structural conception,
whereas evidence for the operational approach abounded. Most of the seventh graders are
still in the procedural stage of thinking. With this in mind, a teaching model was designed.

The Teaching Model
The method of translating word problems to algebraic expressions and equations

proposed in this study is operational in nature and makes use of numerical instantations to
clarify the written relationships. A typical early example in the tutoring might be "Find a
number that is greater by seven than a given number". The student is instructed to clarify for
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himself or herself the meaning of the text using a numerical substitution process, to coin the
given number, say w, and then write the required expression. Theoretically the table might
look like that presented in Table 2.

Table 2 Table 3
Given Number Re lured Given Number Requirede

n I...Haul number
-2 -2+7 -2 -2+7=5
0 0+7 0 0+7=7

-4.5 -4.5+7 -4.5 -4.5+7=2.5

w w+7 w w+7=

It is interesting to note that, in practice, when substituting numbers, the students were never
satisfied with writing the required number as a sum, say 2+7, but invariably calculated the
result e.g. 2+7=9. They continued doing it even after experience showed them that the
substitution process was but a tool for finding the relevant general algebraic expression,
which itself could not be calculated further. Moreover, both average students not only
calculated the numerical sums but also insisted on attaching an "=" sign to the derived
algebraic expressions. Their table might look like the one presented above in Table 3. This
illustrates the feeling of suspension that these students feel, that the expression w+7 is

incomplete, the phenomenon already noted by many researchers (e.g. Robinson et al, 1994).
Clearly the students feel that the expression w+7 is but a prescription for a procedure and if
one wants to speak about the result one has to perform these calculations. In other words,
the students have not acquired yet the sense of duality of algebraic expression, of its
representing a process and a result of this process at the same time. While filling the table
the students were building on their operational understanding of an algebraic expression;
they learned that wgeneralizing correctly requires finding the process not the outcome.

The prevalent errors in translating are performing a left-to-right word-order match and
labeling, well known thanks to the famous "students and professors" problem (Lochhead &
Mestre, 1988). The students learned that verbal expressions might mislead them into writing
incorrect relationships and were taught how to check their translations. The students were
encouraged to examine whether the 'required number' instantations that they had calculated
indeed fulfilled the constraints directed in the translation problem; if the numerical outcome
fit the bill, there was a very good probability that the algebraic expression would too.
Obviously, if a student was still having problems translating number-wise, translating to
algebraic expressions would prove difficult too. Initially, Tomer - an average student - fell
into this category. The following is a typical exchange at this stage:

Teacher: What is a nwnber greater by four than twelve?

Tomer: Eight. (He subtracted 4 from 12)

Teacher: And a number that is five less than minus two?

Tomer:Three. (He subtracted two from five)
Many times when faced with a familiar problem the students were tempted to translate

directly, relinquishing the table-filling method. However, when faced with a problem that
they were unsure of, they reverted to using number instantations. A case in point is in the
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translation of the "Student - Professor" problem. Five out of the six students answered this
problem correctly, with no apparent difficulty. The two very good students translated
directly, one good student and one average student used the table-filling method and
translated correctly. Tomer, the other average student, at this stage was not able to find
neither correct number instantations. nor the correct algebraic expression for this problem.
The other good student showed a second's hesitation before producing his answer. The
number of teachers is M, the number of students, S. This was the following exchange:

Amir: So in a school there are six times as many students. First of all it is multiplication and
the number of teachers, so it is S times, no, M times six is equal to... (and he writes M 6=

S).

Teacher: Explain why you hesitated and how did you -
Amir: M are the teachers, this will be times six, so it is the teachers times six. Let's say you
have five teachers, so five times six is equal to thirty. So this S expresses the students and

there are thirty students.
Clearly Amir is convinced of the accuracy of his equation; the numerical instantations

give him this confidence. The strength of this method may be clearly seen when we
compare Amir's present confident performance with his lack of success in answering
another test. This test adapted from Sfard (1987), was comprised of four translation tasks -
two with structural answers and two with operational ones. Sfard (1987) reports that the
success rate of the procedural questions was significantly higher than the structural ones.
The following is the questionnaire presented to the students, as presented in Table 4.

Table 4
For every one of the following problems circle the correct answer

The Problem Answers
1)In a certain class the
number of girls is greater
by 3 than the number of
boys

2)The number y is 5 less
than the number x.

3 fin a certain class the
number of boys is greater 4
times than the number of
girls.

4 )The number g is smaller,
times 4.5, than f

a = the number of girls
b = the number of boys
(I )a+3 = b
(2)a = 13+3
(3 )a->b-i-3
( 1)5+y = x
(2)y = x i 5
(3)y < x+5
To find the number of girls,
one must
(I )multiply the number of boys
by 4

( )divide the number of boys
by 4
(3 )it cannot be worked out
To find g, one must
( I )divide f by 4.5
(2)multiply f by 4.5
(3)it cannot be worked out

1 he English translations of the questions are somewhat stilted, due to our wish to preserve
the right-to-left (liebrew reading) word-order. The answers to 1 and 2 are structural in form;

3 and 4 are operational.
The students were informed that one of the three possibilities was correct, and they had to

decide which answer suited the problem best. Since the questionnaire was multiple-choice,
initially none of the students used the table-tilling method, but rather chose the answers that
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seemed correct to them. The two very good, and one good student made all correct choices.
After Amir, the other good student, had made his choices, most of them erroneous, the
teacher asked him to do it again with numbers to be convinced which answers were correct.
Below are excerpts of the conversations that accompanied the first and second attempts at
answering the questionnaire.The first attempt is coined Trial I, the second - Trial II.

Trial I - Question I:
Amir: (After reading the question) Because there are two (possibilities). b+3 is also equal to
the number of girls. No, it has to be ( I) (and encircles (I)). So here (pointing to (3)) it
should be equal (not <). If it is equal is it right?

Teacher: Don't know, you decide.

Amir stays with his choice- ( I ) - and proceeds to the next question

Trial II (after the teacher suggested that he may use the table-filling method) - Question I:

Amir: Yes, so there are ten girls and the boys are thirteen, aah, the other way around,
thirteen and ten. (Reads his answer of Trial I): a plus 3 is equal to h. (Reads choice (2): h
plus 3 is equal to a. What did I do?? I mixed the two up.

And he encircled (2) - the correct answer. Amir answered question 2 correctly in Trial I and
confirmed it number-wise in Trial II.
Trial I - Question 3

Amir: (After having read to himself the question and all possible answers) One can work it
out but not according to this. Is there something else (another answer)?

Teacher: What's given are these three (possibilities) and it seems that one of these is
correct. If not, you can write "none of the above".

Amir: (after reading the question once more out aloud)... But the number of boys is not
written and the number of girls is not written, (decisively) it can't be worked out.

And he encircles (3).

Trial II - Question 3
Amir: The boys are ten and the girls they don't tell me.

Teacher: (Reads the question) The number of boys is four times the number of girls.

Amir: So if let's say the boys are forty then the number of girls is ten, so divide the number
of boys by four. Number (2).

And he encircled the correct answer

Similarly Amir was not able to arrive at the correct answer for question 4, and after
deliberating with himself whether it could be (2) or (3), both incorrect, he chose (2).

In Trial II, question 4, even though he had worked operationally in questions (I), (2) and
(3), he began to reason structurally:

Amir: Yes, I'll check it, g is four and a half times smaller... (Reading his answer to question
4) All right, it is all right.
Teacher: How did you check it?

Amir: Because times smaller is division, so it is the inverse operation, then multiplication.
And here (he points to question 2) we do the inverse operation, then this is subtraction, this
is plus (referring to his choice of answer), and here we did division, this (multiplying) is the
inverse operation.
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Teacher: All right.

Amir: Is it good?
Teacher: You checked it? How? With inverse operations, right?

Amir: Yes.
Teacher: All right. You know what, I'll ask you to check.

Amir: This number, let's say, g is smaller times four (reads to himself), how much is it?

May I use it (the calculator)?

Teacher: Of course.
Amir: Four and a half times four is eighteen. This is four (writes "4" above g) and this is

eighteen (writes '18" above f; reads his original answer) multiply f (pause). This (pointing

to 1) has to be greater that this (points to g) it is clear, this is eighteen and this is four. (Reads

his answer again) multiply f by four and a half, wrong!

Teacher: So which is right?
Amir: Divide f by four and a half.
Teacher: Are you sure? You keep on asking me, now I'm asking you. Are you sure?

Amir: Divide f, it's eighteen, by four and a half, eighteen divided by four and a half is four,

okay, yes

Teacher: Okay?

Amir: This time, sure.
As for the two average students, their first attempt gave only erroneous choices. Their

second attempt, via table-filling, resulted in the three correct answers; both students found

correct number instantations for Question 4, but chose an incorrect choice for this question

on the questionnaire.
Discussion

This last episode illustrates again the strength of number instantations in translating,

where abstract structural ways of reasoning may still cause the novice translator to stumble.

An attempt to arrive at a general formula directly might result in inaccurate translation,

whereas the systematic use of the procedural method could ensure correct translation. Trial

I, question I, illustrates the well-reported error due to (in Hebrew) right-to-left word-order

matching performed during translating, an error which is immediately corrected when the

student uses the table-filling method. The number of instantations which each student

needed was individual, depending on the complexity of the problem and his mathematical

competence. A short while after being introduced to the table-filling method the better

students relinquished it, automatically adopting the more traditional structural translating

method, even though at no time was any suggestion made in this direction. However, when a

difficult problem was presented, or if they erred, they reverted to number instantations and

corrected themselves
This study presents an alternative method of teaching cognitively immature novices to

translate and provides the novices with tools for checking their results. The study

demonstrated that using our operational method, greatly improved translational abilities

when compared with the traditional translating methods, especially for the average students.
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Further research and study is required to examine to what extent this method is applicable
in more complex translation problems.

Bibliozranhv
Chaiklin, S. (1989). Cognitive studies of algebra solving and Learning. In S Wagner & C. Kieran
(Eds.), Research issues in the learning and teaching of algebra (pp. 93-114). Reston, VA: National
Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Clement, J., Lochhead, J., & Monk, G. (1981). Translation difficulties in learning mathematics,
American Mathematical Monthly, 88, 286-290.
Crowley, L., Thomas, M. & Tall, D. (1994). Algebra, Symbols and Translation of Meaning. In J.P.
da Ponte and .I.F. Matosh (Eds.) Proceedings of the Eighteenth International Conference of
Psychology of Mathematics Education, Vol. 2, pp. 240-247, Lisbon, Portugal.

Kieran, C. (1992). The learning and teaching of school algebra. In D.A. Grouws (ed.), The handbook
of research on mathematics teaching and learning, pp.390- 419. New York: Macmillan.
Lochhead J. & Mestre J.P. (1988). From Words to Algebra: Mending Misconceptions. In A E.
Coxford & A.P. Shulte (eds.) The Ideas of Algebra, K-12. (pp. 127-135). Reston VA: National
Council of Teachers of Mathematics.
Mestre, J.P. & Gerace, W.J. (1986). The Interpaly of Linguistic Factors in Mathematical Translation
Tasks. Focus on Learning Problems in Mathematics, 8, 59-72.

Reed, S.K., Dempster, A., & Ettinger, M. (1985). Usefulness of analogous solutions for solving
algebra word problems. Journal of Experimental Psychology: Learning, Memory and Cognition,
II, 106-125.
Robinson, N., Even, R, & Tirosh, D., (1994). How teachers deal with their students' conception of
algebraic expressions as incomplete. In J.P. da Ponte and J.F. Matosh (Eds.) Proceedings of the
Eighteenth International Conference of Psycholok. of Mathematics Education, Vol. 4 pp. 129 -
136.

Sfard, A.(1991).0n the dual nature of mathematical conceptions: Reflections on processes and
objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

Sfard, A. (1987) Two conceptions of mathematical notions: operational and structural. In 1 C.
Bergeron, N. Hershcovics, and C. Kieran (Eds.), Proceedings of Eleventh Internationl CooPrence
of PME, (Vol. III, 162-9), Montreal, Canada: Universite de Montreal.
Sfard, A. & Linchevski, L. (1994). The gains and pitfalls of reification - the case of algebra.
Educational Studies in Mathematics, 26, 191-228.

Acknowledgement: Thanks go to Anna Sfard for her enlightening remarks.

4 . 3 208



MEASURES OF TEACHERS' ATTITUDES TOWARDS
MATHEMATICAL MODELLING
John 1. Kyeleve and Julian S. Williams

Faculty of Education, University of Manchester, Manchester. UK

Abstract.
Mathematical modelling has recently become a compulsory element of the pre-
university mathematics curriculum for approximately 70,000 16-19 year olds in the
UK. Its implementation is highly uneven, and there is a need to measure its
effectiveness in various ways, especially in the promotion of teachers' and students'
attitudes. This paper reports on the development and validation of a scale: the
mathematical modelling questionnaire (MMQ), to measure teachers' beliefs about
the importance of modelling in the mathematics curriculum. Five factors were
identified on the MMQ. Three of these reflect the teachers' definitions of the
concept of modelling, relating to the reality of applications, the processes of
modelling and communication. The other two factors relate to the importance,of
assessment and of technology.

Background
Mathematical modelling, here conceived of as the process of application of
mathematics to 'real' problems outside mathematics, (see Niss, 1989) is now a
growing part of the school mathematics curriculum in many courses all over the
world (Watson, 1989; Burkhardt, et al 1990; Blum and Niss, 1991). But the depth of
penetration and the method of introducing modelling courses into curricula vary.
The UK, with a long tradition of incorporating real life problem solving activities
and projects in school mathematics, adopted modelling projects piecemeal into some
16-19 courses over the period 1988-93. Two mathematics courses, the School
Mathematics Project (SMP) and Mathematics in Education and Industry (MEI) which
are at the forefront of this development with a student share of about 30% of 16-19
year olds, have shown how modelling can be integrated into such courses and
assessed. Claims are being made that this has improved the motivation of teachers
and students and hence the latter's take-up of mathematics as an option. A critical
feature of the mass implementation of the new methods has been the development of
assessment criteria and teacher training to support it (See Kitchen, 1993a; Kitchen
and Williams, 1993).

Partly as a result, the UK has now adopted mathematical modelling in the
compulsory core for all pre university mathematics programmes (SCAA, 1993).
This now obliges all courses to adopt modelling, and to introduce it into their
assessment schemes in some form. The approach to dissemination of modelling in
UK mathematics programmes has thus now become a topdown one (Watson, 1989)
and many questions remain unanswered. How will teachers respond to the new
initiative? Do teachers believe mathematical modelling is important? Do they
understand the concept and will they possess the necessary knowledge for its effective
implementation? Will the greater use of modelling tasks emphasising group work,
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discussion, project work and investigation, termed the modelling approach,(see
Kyeleve and Williams 1995) help to improve learners' attitudes ?

In light of these concerns, Blum (1991, p. 27) warned that:
All conceptions and proposals for mathematics teaching stand or fall with the
teachers, with their professional abilities, didactical and pedagogical .

qualifications.

Teachers' beliefs are known to influence their practices (Pajares, 1992; Ernest, 1989)
especially in the implementation of new programmes such as mathematical modelling
(Knapp and Peterson, 1995) which in turn influences their students (Peterson, et al
1989). Much has been said about modelling but little or no evidence exists
concerning teachers' belief about the importance they attach to this component and
how these are reflected in their classroom practices. Most studies of attitudes to
maths problem solving have focused on standard problems, word problems or
puzzles (Askew and Wiliam, 1995). Mathematical modelling is not about routine
types of problem solving exercises, rather it is about real life problems in which
mathematical knowledge and skills could be applied through modelling processes
(Swetz, 1989; 1991).

As part of our effort to study the changing attitudes of teachers towards modelling in
the curriculum, how they are influenced by the course they teach, their training and
their context, it became necessary to develop scales to measure the strength of their
beliefs about the importance of modelling. We expect that this instrument, and the
methodology used to validate it, will be of interest to researchers and curriculum
developers all over the world who want to evaluate system-wide change in this aspect
of the curriculum, in which teachers beliefs will play a vital role.

Research design
A theoretical review identified a) the aims and pedagogy of teaching and learning the
concept, skills and processes of mathematical modelling, b) summative evaluation
criteria in modelling, and c) the inappropriateness of existing attitudes' scales for
assessing teachers' attitudes to mathematical modelling. This led to the writing of the
37 items which were face validated by the authors and colleagues, after 9 were
dropped this left the 28 items in the instrument (see appendix).

The key questions formulated were: 1). What are the major factors defining the
teachers' perception of the importance of mathematical modelling and applications in
the pre university mathematics curriculum? 2). To what extent will the teachers'
understanding of the concept of modelling explain the factors identified ?

Subsequent steps adopted in the statistical validation of the instrument follow the
methods of Rummel (1970) and Davison (1983). 1. The MMQ was developed, face
validated and administered to a pilot set of 96 teachers using 6 pre University
mathematics programmes in schools and colleges within Greater Manchester. 2.
Interviews with 8 teachers who responded to the MMQ and observation of classroom
teaching sessions were carried out to seek clarification on their understanding of the
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emerging factor structure. 3. The factors were interpreted by a group of
mathematical modelling 'experts'. 4. The teachers' definitions of the concept of
mathematical modelling were analysed using the emergent factors by one of the
authors and by an educational linguist. 5. A second data set of 37 teachers from three
contrasting pre university mathematics programmes drawn from a purposeful sample
of 15 schools validate the pilot results. (The sampled schools were selected to
minimise school effect in our further analysis of the influence of programmes, in-
service courses and other variables on teachers' beliefs and practices as well as on the
students' attitudes. The results of this study are in preparation.)

The MMQ is a five point Guttman type scale with 28 stems each with two items, (one
asking for 'importance of' and the other asking for 'strength of classroom practice
of') giving 56 items. All items of the questionnaires, identified from literature
sources, were defined and framed to reflect the major characteristics of the
modelling approach (Niss, 1989; Burkhardt, 1989; Blum and Niss, 1991; Savage and
Williams, 1990; Haines and Izard, 1993; Kitchen, 1993b; etc). In section A of the
MMQ with 28 items, teachers were asked to indicate their responses by ticking one
of the five point options (unimportant to very important) coded 1 to 5 which
represented how important they thought the item to be. In section B with a parallel
set of items, the teachers reported how often they thought they practised the items on
a 4 point option (never to often) coded 1 to 4.

Results.
The teachers'(N=96) responses to the items of section A of the MMQ which measures
their beliefs were factor analysed using the techniques of principal component
followed by orthogonal rotation. The analysis yielded 5 interpretable factor
groupings, with 9 items dropped due to low loadings, experts' suggestions and
reliability analysis (see table 1). Confirmatory factor techniques were employed with
the second data set (N=37) based on the 28 items of the 5 factor groupings. The
loadings of the items on the factors vary from 0.46 to 0.85 and these were consistent
with the confirmatory analysis. The proportion of variance explained by each factor
is given in percentages with factor 1 accounting for largest , i.e. 31% (see table I).

The measure of the level of contribution of each item to the factor it belongs to
(item-factor correlation) ranges from .48 to .89. The internal consistency reliability
coefficients (Cronbach alpha) for all the factors are sound (.77 to .84) with that for
the MMQ overall being 0.91. The reliability analysis based on the second data set is
consistent with the earlier results for all the factors except for factor 2 which is
lower. We further tested the 5 factor structure using the chi-square goodnessoffit
test which was found to be reasonable (chi-square = 340, df = 248, P< .000). Though
small, the second data set also supported this 5 factor structure (chi-square = 290.3,
df = 248, P< .033). In contrast to the approach of interviewing a sample of subjects
first and using the findings to build these scales, we adopted the opposite approach
since most teachers may not have developed adequate knowledge and appropriate
attitudes about mathematical modelling (Blum, 1993). Nevertheless, we asked
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teachers to describe what they thought modelling is or ought to be (section C of the
MMQ) and the results are also presented later.

Table 1 The MMQ Factor definitions, Standard deviations and Cronbach (alpha)
reliability coefficients (pilot: n=96; main: N=37).

Factor (% of variance explained) No. of
The Importance of: items.

S. D
pilot. main.

Cronbach (a)
pilot. main

F1: Assessing understanding & skills of
mathematical modelling (31%). 8 3.84 3.92 .84 .85

F2: Real life Applications of Mathematics (9%). 6 3.75 3.00 .82 .65
F3: Communication skills in Mathematics(8%). 5 3.16 3.26 .77 .79
F4: Teaching and Learning Mathematical

Modelling processes (6%) 5 3.23 3.03 .78 .79
F5: The use of Technology (6%) 4 3.24 3.00 .84 .87

Although the stems of factors 1 and 4 are essentially the same, the factors are
different due to the presentation of the items. For all the items of factor 1 except
one, teachers were specifically asked to: 'indicate how important it is to assess
students on being able to'---, whereas for all the other items, teachers were asked to
indicate: 'how important they feel about each statement' (see appendix).
Consequently, factor 1 represents "the importance of assessment of understanding
and skills of mathematical modelling in the curriculum" and factor 4 represents "the
importance of mathematical modelling processes in the curriculum". Lester (1989)
highlighted this problem of differentiating the teaching and learning of problem
solving from its assessment: in our study this is measurable through the differences
in the two factors.

Experts' opinion and definitions, and interviews with teachers
Of the 13 'experts' consulted, 8 produced titles for each group of items. In factor
one, the terms 'modelling skills' or 'processes' appeared in five experts' definitions
and three others defined it as 'problem solving skills'. The words 'real' or 'real
world' appeared together with the word 'apply' or 'applications' in six of the experts'

.definitions for factor two. In factor three definitions, the key words 'communication
skills' occurred in seven out of eight definitions. In factor four, the terms
'development, learning or teaching of appeared with 'modelling processes or skills'
in seven definitions given by experts, and factor five was unanimously termed 'the
use of technology'. Therefore, the teachers' perceived importance of mathematical
modelling in the curriculum, as measured on the MMQ, is defined by 5 factors which
are called "Assessing understanding and skills of mathematical modelling", etc. as in
table 1 above. The items belonging to each factor group are as identified in the
appendix

Interviews with 8 teachers from the pilot sample indicated 'communications skills' as
the major outcome of 'group work and practical activities' which they saw as part of
the modelling curricular. Seven of the eight teachers interviewed felt that it is
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important to use group work and practical activities in the teaching of mathematical
modelling which they perceived as being about encouraging 'oral and written
communication skills in mathematics'. While teachers using courses (e.g. SMP 16-19)
assessing skills of modelling processes expressed satisfaction with such courses, those
using the more traditional maths courses were sceptical of the new initiatives,
especially the assessment aspect. All the teachers expressed the need for training in
the use of technology in modelling activities.

Fifty teachers gave interpretable written responses to what they thought modelling is
or ought to be, such as:

TI. Modelling is /should be the process where students (1) set up a model of a
situation and consider the variablesIlimitations involved; (2) test a given law
and gain evidence to support it rather than just accept it. (reflect F2 and F4)

T2 Modelling is translating a real life situation into mathematical concepts and
quantities with the aid of various assumptions in order to predict or explain
the outcome. (reflecting F2, F3 and F4)

T3 A mathematical model is a system in mathematics (perhaps expressed as a
computer program) which mirrors a practical situation. An experimental model
is a simplified version of the real life problem. (reflecting F2, F3, F4 and F5).

The teachers' descriptions were categorised as either reflecting each of the
descriptors for the five factors or not. For example, F2 was inferred from the use of
words such as: 'real problem' or 'situation' ( see eg T2), 'real life problems or
situation', 'everyday problem' or 'physical problem'. The agreement between one of
the authors and a non-mathematician educational linguist as to the assignment of
definition statements to factors varied between 82% and 90%.

Assessment and use of technology were each reflected by 3 definitions. 11 definitions
reflected communication skills. 36 and 38 definitions reflected real life applications
and modelling processes respectively. Obviously, the 'assessment of understanding
and skills of modelling' and 'use of technology' are not conceptual elements of
modelling per se but important curricular factors to which teachers may attach
importance.

Discussion.
Several approaches were used in identifying the factors of the teachers' attitudes to
mathematical modelling as measured on the MMQ. These were based on (a) a priori
estimate and fit; (b) interpretation from experts, interviews with teachers and
analysis of their definitions; and (c) reproducibility of the factor structure based on
the 'pilot' and 'main' data .

The factors of teachers' perception of the importance of mathematical modelling, as
measured on the MMQ, do reveal a degree of common understanding about the
importance of mathematical modelling with the community of 'expert', curriculum
developers and trainers who have influenced the new curricula and encouraged the
new core statement from SCAA in the UK. The reflection of the three elements in
the teachers definitive statements (real application, processes of modelling and

3 2 2Q



communication) about modelling in their attitudinal factors is interesting. It suggests
there may be differences of understanding of the concept causing differences in
attitude towards modelling, or they may be three aspects which are regarded as of
greater or lesser importance by teachers. We note that some 'experts' may regard
communication aspects as quite separate from modelling itself and note that only 11
out of 50 teachers gave communication skills as definitive. Indeed, unlike engineers,
pure mathematicians may consider 'modelling' to be about translations within
mathematics, and regard the 'reality' as irrelevant to their concept.

Of particular interest is the first factor of the MMQ which accounted for the largest
proportion of the variation in the teachers' beliefs. Like technology, teachers see this
as a separate issue. Assessment has always been a major factor determining the extent
to which teachers may practice modelling in particular and any innovation in
general. It is also natural that teachers see their practice of assessment as being
detached from their personal beleifs.

The instrument has now been used to study the effect of training and courses taught
on teachers' beliefs, establishing some links between the syllabus and the belief in the
importance of assessment in mathematical modelling, for instance, and the lack of a
link between attitudes and previous in-service training (See Kyeleve, 1994). The
same methodology of factor analysis has further been employed in the reliability
analysis of a student's attitude to mathematical modelling scale; it appears the factor
structure is slightly more complex, but linked to the same factors identified in the
teachers instrument.
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INNOVATION-IN-PRACTICE: TEACHER STRATEGIES AND
BELIEFS CONSTRUCTED WITH COMPUTER-BASED

EXPLORATORY CLASSROOM MATHEMATICS.

Chronis Kynigos .

*Dept. of Philosophy, Education and Psychology,
School of Philosophy, University of Athens and

Computer Technology Institute, Patra.

Abstract: This is a report on research' into the strategies and beliefs constructed by eight
teachers after six years of innovative practice supported by teacher education and involving a
one-hour-per-week computer-based maths classroom activity by small cooperating groups of
pupils. All teachers were observed for 3 teaching periods, verbatim transcriptions were made
from video-recordings and semi-structured inteviews were subsequently taken. Combined
qualitative and quantitative analysis indicates that the teachers had constructed idiosyncratic
reflexive pedagogies which as a whole could be characterised by means of the type of pupil
activity they intended to encourage, i.e. self-motivated interplay between reflective and
directed activity with emphasis on the former regarding references to mathematics.

Theoretical Framework
Research on mathematics teaching seems to have progressed from perceiving
the teacher as the implementor of pre-prescribed teaching methods or
innovations and interpreting teacher performance with respect to the extent to
which the implementation has met its objectives (Hoy les, 1992). Interrelations
between teacher pedagogy and teacher attitudes has come into focus, the latter
disaggregated into attitudes towards the teacher's role, mathematics, the
teaching of mathematics. The role of teaching process came into play, with
distinctions like the one between teachers' espoused beliefs and those enacted
in the classroom (Ernest, 1989) providing useful insights into the formative role
of the classroom situation. The perception of a teacher constructing and
reorganising a personal pedagogy through interrelation with classroom culture
and the wider culture is emerging (Moreira and Noss, 1993), posing new
methodological and theoretical tasks in providing interpretative frameworks.
Olson's (1989) distinction between bureaucratic and reflexive curriculum change
is based on teachers making sense of their environment as they act upon it.
Lerman (1992) has called for the need to map relations between beliefs and
beliefs-in-practice, termed "situated beliefs" by Hoy les (1992).

This is a report on research into eight teacher's strategies and beliefs
constructed after six years of innovative practice supported by teacher

'Funded by the E.E.C. through the Greek General Secretariat for Researth and Technology, PENED 612/91
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education and involving a one-hour-per-week computer-based exploratory
maths classroom activity by small cooperating groups of pupils. Our theoretical
orientation in interpreting our classroom observations of teacher activity was
that of the teachers constructing and reorganising pedagogy as they act upon it
during their practice (Olson, 1989). We see knowledge as constructed through
social interaction within cultures and feel that although we are best informed by
combining Piagetian and Vygotskian theory, there is a lack of a theoretical
framework focused on and deriving from the kind of teaching and learning
interactions we observe (Mercer and Fisher, 1992).

Background to the study
The study took place in the context of a longitudinal school project (Psychico
College) involving a computer-based development of cooperative small-group
investigation activity supported by teacher education (Kynigos 1992, Kynigos
and Preen, 1995). From year 3 to 6 inclusive, all 500 pupils and 25 teachers take
part. Each group carries out four-hour long investigations and prepares a
written report to orally present to the rest of the class. Elsewhere, we have
given brief descriptions of how centrally mediated information transmitting,
exam-cramming processes characterise an encyclopedic, theoretical and content
based Greek educational system (McLean, 1990). Not surprisingly (Noss, 1992)
the advent of computers has enhanced rather than diluted these characteristics
(Polidorides and Kynigos, 1993, Kynigos, 1995). Like Psychico College, some
schools offer hours over and above those set by the system, in order to cultivate
some creative and constructive activity in their pupils. It was thus in this
framework that the "investigations" hour took place.

Teacher education was carried out by the researchers, was built within the
teachers' working schedule and had as a main strategy to set up opportunities
for the teachers to reflect on and discuss their practice and encourage
developing pedagogies. The computer was used a) as a medium for expression
and for generating exploratory activity and, b) as a "window" (Weir, 1986) to
children's thinking for teachers and researchers and to teachers' strategies and
beliefs as described in this report. More details on the background and on other
research within the project can be found in Kynigos and Preen, 1995, Kynigos
et. al, 1993. Studies of related issues in school settings can be found in, Hoy les
and Sutherland, 1989.

Method
In the above setting, we investigated a) the teachers beliefs as constructed
during this practice, regarding learning mathematics, their pedagogical role and
that of the computer and b) their intervention strategies regarding the extent to
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which they were embedded in the pupils' investigations, the aspects of the
learning situation they referred to, and the kind of pupil activity they intended
to encourage.

Eight teachers were chosen so that their classes spanned all the age groups and
were video-recorded during three teaching hours each. A remote microphone
enabled transcription of all their utterances capturing the responses of the
group of pupils in which they intervened. The person taking the recording was
aware of the issues which could be interesting during the analysis. Semi -
structured interviews were subsquently carried out regarding the teachers' views
on the ways in which children learn during the "investigation" hour, how they
perceive their own role and pedagogical strategy and how they compare this
kind of pedagogy and learning to the one which goes on during the normal
curriculum activities. Verbatim transcriptions of audiorecordings were made.
Background data was also collected, i.e. all the pupils' written presentations of
their investigations and researcher notes on specific aspects of each particular
hour which may have influenced the atmosphere (e.g. a broken down
computer).

Results

Comment Characterisations
We analysed the teachers' discourse into "notional units", giving each a
characterisation according to our interpretation of a) whether it was embedded
in pupil activity, b) to which aspect of the learning situation it refered to and c)
the kind of pupil activity it intended to encourage (Kynigos and Preen, 1985
and for the latter, see also Boyles and Sutherland, 1989). We avoided
attempting to "objectify" the notion of "discourse unit", negotiating between
ourselves to relate it to the characterisations themselves using pilot analyses of
the same data to check for interpretative discrepances. Fig. 1 provides a
representation of this analysis showing how each embedded comment (A) was
further given three characterisations (B, C, and D).

embedded comments (A)

aspects of learning situation
disembedded comments ( \

/ maths (B) intent

trivial ("" (C)
'Nlogomaths

computer control
other reflectiveprocess
techie facts group dynamics motivational

\. .1 directive\ .1
Figure 1: Comment characterisations
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So, for example, in the following pupil - teacher verbal exchange, we
interpreted the teacher's comment as consisting of the following four units
(marked u I, u2, etc): ul = process, reflective, future, u2 = process, directive,
fact (it would have been method if the comment was e.g. "haven't I told you to
play turtle - in such cases as this one"), u3 = process, reflective, future, u4 =
Logomaths, reflective, future.

pupil: "And how will I make it go like this?" (make the turtle turn from the
perpendicular)
teacher: "What do you say?" (u1) "Didn't I tell you to think you are the turtle?" (12)
"What would you do?" (u3) "Towards where would you turn to face that way?" (u4)

We suggest that the information derived from the combined analysis of
reference to aspects of the learning situation (as these aspects emerged from
the data) and intended encouragement of types of pupil activity is helpful in
describing teaching strategies as they are constructed during teaching practice.
The aim was to gain insight into the ways in which the classroom culture and
the dynamics of the situations emerging within each group of pupils interacted
with teacher beliefs and teaching strategies regarding the above and
mathematical ideas. Although these results are useful, there are limitations in
their interpretative power. A major problem is the extent to which each
comment can be connected to the context of the situation it was made in. It is
not easy for instance to draw information on whether a comment refering to
one aspect of the learning situation has influence on another aspect. The same
applies for the types of activity. For example, taken out of context, the
interpreter may characterise the following comment as refering to Logomaths,
since the discussion seems to be about a turtle turn. Following all the
interventions regarding these two pupils, however, revealed that the teacher
was really trying to establish communication between them - so the comment
refers to group dynamics.

"Wait a minute, wait a minute. Andoni, whenever you think of something do youjust do it or do you communicate with the others? Because just now Nikiforos was
puzzled, (he asked) 15?", as if he did not know what you were going to do."

In characterising the comments we thus took into account these contextual
issues to the extent that the video recordings made possible. Finally, this
analysis is considered in conjunction with, on the one hand, vignettes taken
from one or a series of episodes, and on the other, the building of a
quantitative picture of each teacher and all the teachers as a whole.

A vignette

Teacher A has had 12 years working experience at primary level. She has taken
part in the "Investigations" project from the start, and had taught third and
fourth grade students during the six years of the project's duration. She did not
have a mathematics qualification more than that provided by her primary
teacher's degree. She herself does not feel confident with what she terms
"mathematics" as an object of study. However, she believes that there is
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another, natural, everyday kind of maths from which school teaching diverts
pupils to perceiving it as alien territory.

"I believe that maths is in our life, in ourselves and we do it subconsciously - but
someone comes and says to us: "look, what you were doing till now is fine, but I will
teach you to do it differently like this and this and this", so you don t do it at all and
you say: "ale mathematics is difficult, that's it, I cannot do Ir."

Regarding the meanings she brought to the project, she did seem to make
specific connections with her pedagogical aspirations to encourage cooperation
and autonomy amongst pupils.

"1 thought it was very important when 1 was given the chance to teach them to
cooperate, to make some decisions on their own and to try to understand what
they are doing and why."

In describing her strategies, she saw herself as offering services to problematical
situations already arisen. That is, when her pupils or herself have identified a
problem hindering further activity, then comes the intervention.

If they call me I usually go, if they don't I just walk around and when I see that they
are stuck.... I ask "what s going on, what's the problem?"

She further feels the need to "explain" her directedness and the urge to provide
pupils with answers, indicating internal conflict on the issue of controlling her
interventions.

"Many times the answer comes out naturally, its difficult to hold yourself."

In the following episode, teacher A intervened on her own accord after a group
of two third-year pupils had taken some time reiterating fd 10 It 15 fd 10 It 5
and at some point changing to fd 10 It 10 fd 10 It 5, in order to construct a
planet to go with their rocket project and after the teacher had initially
encouraged them to try to make a circular planet not letting them settle for a
square one.

T: "Have you come to some conclusion? (yes) What?"
P: "To make these sides It 15 and It 5 and those here It 10 and It 5"
T: "Ah, so not to have the same It everywhere, ok, try it, but can you think
beforehand and imagine more or less what shape will come out?"
P: "It will not be exactly a circle. In some parts it will be rather straight"
T: "Ah, then it's worth thinking about the turnings again, since here (points to
screen) with these commands you don't get large straight bits, but she goes and
turns bit by bit, while with these command you get large straight bits... maybe you
should consider the commands again and instead of you getting a long eggy shape
with straight bits you can get something more round? Have a Took, compare these
bits which get you quite a round bit and these which do not get you much of a round
bit. Don't delete old commands, it will confuse you, yes leave them so you can
check. To see, for example what happened there, where we changed the It's what
changed in the shape? Or where our It s were the same, what was the shape like? '

The teacher's agenda seemed to have been for the pupils to investigate how to
make a circle and to progress to the "right" answer, which she was clearly
aware of. Reading her comments gives the impression that she is internally
struggling between providing too much information and steering the activity
towards constant turns. Even though she will accept constant turns (and not
necessarily the classic It 1 fd 1) as a didactical goal and attempt to not
dissociate her intervetion to the pupils agenda for making a planet e.g. by
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referring to "round" and "egg-like" shapes, she seems "pushed" by the situation
- time constraints, poor pupil results, lengthy lapsed time of pupil investigative
inertia. She seems to be impatient with the lack of an exploratory culture - she
perceives that the pupils do not reflect, check commands against their results of
the screen, compare sets of commands, enjoy hypothesising and making an
effort to make a more circular shape. So she "tells" them to do so, in one
instance. In fact, their agenda seems quite different from the one aspired, or
expected by the teacher, and the fact that after this episode they simply ignored
the comments, typed a few more commands and went on to write an essay on
how great their rocket was (and not a word about the planet) is a clear enough.
indication. So, in attempting to encourage investigation, the teacher in effect
gave a relatively large number of "technical directions" hoping with this one-off
intervention to influence pupil activity from then on.

The Quantitative picture

The total number of comments (around 3,500) allowed a quantitative picture to
emerge regarding individual or collective information between comments,
teachers and year-groups. Three types of analysis were carried out: a) the
aggregate relative frequences of all categories for all the teachers as a whole
and for all the observed teaching periods of each teacher individually, b)
statistical tests for the significance of the distance between individual and
aggregate values for teachers and comment characterisations and c) tests for
significance in differences between specific categories of interest and amongst
teachers for these categories. Some such results are presented at this point.

embedded comments intent

maths 5 reflective 40
logomaths 31 motivational 6
computer control 19 directive 44
process 25
group dynamics 10

maths and logomaths

reflective past 13 1 20reflective future 7
motivational 2
directive discipline 2
directive method 4 13
directive fact 4
directive nudge 3

Table 1: Aggregate relative frequences of comment characterisations (%)

The following observations are made: a) the embedded comments (90%) by far
outweigh the disembedded ones, b) there are,few motivational comments,
implying that there was little need for teacher - prompted motivation, c) we do
not have a significant difference between reflective and directive comments on
the whole, but have significantly more of the former when it comes to
comments with specific reference to maths and logomaths and d) regarding the
reflective comments in the latter two categories we have significantly more of
those referring to the past. In general, we see a large percentage of comments
with no reference to maths (at least 54%), which at least supports justifying the
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characterisation with respect to the aspect of the learning situation and
provides some indication of the nature of the discourse and classroom culture.

In order to investigate individual teachers' and comment characterisations'
deviations from the aggregate picture, we calculated the expected values (the
values corresponding to the aggregate score), did a chi-square test for the
differences between observed and expected values and then tested for the
significance of each difference individually using a special test taken from
biometrics (Haberman, 1973). We then observed the significance of this
difference in two ways: "horizontally", in order to study variations amongst
comment categories and "vertically" to do the same with variations amongst
teachers. The results show that we have large variations regarding the aspects
of the learning situations and insignificant variations regarding intent. For
example, in the former comment category, only 1/8 teachers were close to the

aggregate for the procedure and group dynamics categories and 4/8 and 3/8 for
the maths and logomaths categories respectively. Moreover, regarding these
four categories, only two teachers were close to the aggregate in three of them,
and three teachers varied significantly in all four. The rest were close only with
respect to one aspect. With respect to intent, the picture changes, as shown in
table 2, where on the left we have the ratios of teachers with insignificant
differences to the aggregate scores and in the centre and right the ratio of intent
categories for which each teacher did not vary significantly from the aggregate.

directive 5/8 teacher 3a 3/3 teacher 5a 2/3

reflective 5/8 teacher 3b 1/3 teacher 5b 2/3

motivational 6/8 teacher 4a 3/3 teacher 6a 2/3

leacher 4b 3/3 teacher 6b

Table 2: Cases of insignificant variation from the aggregate scores

Furthermore, as pupil grade increases, the results show a decrease in maths,
group dynamics and process, while there is no such trend regarding logomaths.
Regarding maths this could indicate that the teachers relate less and less school
maths to exploratory, mathematical activity as the pupils' age and the school
maths content changes. This may point to the need for further reflection on the
part of the teachers on how to help the pupils synthesise understandings
emerging from this activity to school content (Hoy les and Noss, 1993).

Conclusions
We suggest that characterising teacher comments by combining aspects of the
learning situation they refer to and kind of pupil activity they intend to
encourage is useful, especially with the informative role of their quantitative
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handling and the illuminating support of qualitative analysis and vignette
construction. However, there is need for more focused methodologies for
systematic ways of connecting results from varying methods such as the above.
The results describe teaching innovation as acted out and constructed in the
classroom by teachers supported by systematic but not intense or directive
teacher education. Qualitative analysis supports the view that espoused beliefs
can be different to enacted ones, but more importantly, that individuals' actions
may be influenced by belief systems, but not necessarily by one, or in any
systematic prescribed or reproducible way. Aspects of the situation, classroom
culture and wider culture may have central bearing on activity. Analysis of the
characterisations of teacher comments indicate that the teachers had
constructed idiosyncratic reflexive pedagogics which as a whole could be
characterised by means of the type of pupil activity they intended to encourage,
i.e. self-motivated interplay between reflective and directed activity with
emphasis on the former regarding references to mathematics. To end, we
suggest that providing time slots which can play the role of outlets in the
system for trying out alternative methodologies may help generate more
reflexivity amongst teachers.
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THE IMPLEMENTATION OF CURRICULUM POLICY ON CLASSROOM
ORGANISATION IN PRIMARY MATHEMATICS IN CYPRUS

KYRIAKIDES LEONIDAS
Nicosia, Pedagogical Institute Of Cyprus

ABSTRACT

This paper presents findings, from a larger study of Cypriot primary teachers'
perceptions of curriculum reform in Mathematics, concerning the ways used by
them to organise their classroom. Questionnaires were distributed to randomly
selected sample of 10% of all Cypriot teachers. No group of teachers organised
their Mathematical lessons in order to distribute their time equally between
working as a class, working on individual tasks and working on collaborative
group tasks. Relationships between teachers' perceptions of curriculum reform
in Mathematics and the ways use to organise their classroom were identified.
Statistically significant differences in the ways use to organise classroom were
associated with years of teaching experience, and characteristics of the class
taught. Implications for the process of change in Cyprus are drawn.

I) Introduction
Curriculum reform has not proved easy to effect in many countries partly
because its success is not dependent on the substantive content of the reform
alone (Howson 1991, Rudduck 1991). The failure of much curriculum innovation
has been attributed to the neglect by innovators of teachers' perceptions. Fullan
(1991) has argued that the reasons for the failure of most educational reforms
goes far beyond the identification of specific technical problems. He supports
the argument of Wise (1977) that policy-makers are frequently "hyper-rational"
and points out that:

"innovators need to be open to the realities of others: sometimes because
the ideas of others will lead to alterations for the better in the direction
of change, and sometimes because the others' realities will expose the
problems of implementation that must be addressed and at the very least
will indicate where one should start" (p. 96).

On this analysis, the process of curriculum change in Mathematics should be
conceptualised not only in terms of teachers' abilities to implement the reform
but also by reference to their perceptions of teaching Mathematics.

The importance of the role of teachers' perceptions derives from examining
the effectiveness of the models of curriculum change which have been
developed by several commentators (Havelock 1971, Schon 1971) to explain the
systematized change. In Cy.prus, the process followed for the design and
diffusion of curriculum change has been a "centre-periphery" model, operating
in what is a highly centralised system. The failure of centre-periphery model
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has been attributed to the fact that teachers' perceptions were typically
inadequately considered at two important stages; the adoption, ie the teachers
decision to use an innovation, and the implementation, ie its realisation.

This paper is concerned with some of the findings of a larger study into
Cypriot teachers' perceptions of curriculum reform in Mathematics. It is an
attempt to present the findings concerned with the implementation of
curriculum policy at classroom level and especially with how Cypriot teachers
organised their classroom. The reasons for dealing with how teachers organised
their classroom rather than how they thought that a Mathematics classroom
should be organised has to do with the policy requirements that the time for
teaching Mathematics should be distributed equally in working as a whole
class, individual tasks and collaborative tasks (Ministry of Education 1994).
Cypriot policy documents referred to this as "balance".

II Methodology

In April 1993, questionnaires, designed to identify perceptions of reform policy
on curriculum and assessment in primary Mathematics, were sent to randomly
selected sample of 10% of Cypriot teachers. A response rate of 72% was
obtained. Semi-structured interviews with 20 teachers who responded to the
questionnaire were also conducted in order to test the validity of the
questionnaire findings by matching the qualitative data derived from interview
with each teacher against the quantitative data gathered by his/her individual
questionnaire. A measure of match was derived by comparing most of the
questionnaire with the interview data gathered by this study. Although this
measure does not necessarily imply that its validity is high since it is possible
that they are both invalid, the use of both questionnaire and interview methods
provides a basis for triangulation of data. In using these two methods, I could
also collect both quantitative and qualitative data to explain more fully and
study from more than one standpoint teachers' perceptions of curriculum
reform in Mathematics.

III REPORT AND ANALYSIS OF RESEARCH FINDINGS

This section is divided into two parts. The first one deals with the findings
arising from questionnaires. A comparison between data derived from semi-
structured interviews with 20 teachers and their own responses to the
questionnaire is provided in the next section. Interview data are also used to
assist in interpreting the questionnaire findings.

A) Questionnaire Findings

An item of the questionnaire asked teachers to estimate the proportions of
time in Mathematics lessons that their pupils spent in working on individual
tasks, on collaborative group tasks and as a whole class. Cluster Analysis was
used to identify relatively homogeneous groups of Cypriot teachers according
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to their responses to this item. Means and standard deviations of the ways used
by the whole group of Cypriot teachers and those of the six groups of teachers
to organise their classroom derived from Cluster Analysis are shown in Table 1.

Table 1: Means and standard deviations of time in Mathematics lessons that the
pupils of six cluster groups and of the Whole Group of Cypriot teachers spent
in working on individual, on collaborative group tasks, and as a whole class.
Group of Teachers
(Number)

Whole class
Mean S.D.

Collaborative tasks
Mean S.D.

Individual tasks
Mean S.D.

Type I (N = 38) 83.45 6.30 9.37 5.55 7.13 3.91

Type II (N = 51) 48.00 4.01 31.29 6.11 20.00 6.07
Type III (N = 9) 21.00 6.00 22.78 6.67 56.11 7.82

Type IV (N = 42) 66.78 5.61 24.76 8.18 9.88 2.81

Type V (N = 34) 60.50 9.09 14.65 6.72 26.03 8.54

Type VI (N = 8) 21.00 4.43 58.75 9.54 20.00 9.26
Whole Group (182) 59.04 19.17 22.96 13.52 18.30 13.94

The following observations arise from Table 1. First, most teachers (91%)
organised their Mathematics lessons in such a way that children spent more
than 50% of their time in working as a whole class. This is revealed by the fact
that pupils of teachers who are members of most of the clusters (4 out of 6)
spent most of their time in working as a class. There are only nine teachers
(Type III) who organised their class in such a way that pupils spent more than
50% of their time working on individual tasks and eight teachers (Type VI)
who organised their class so that pupils spent more than 50% of their time in
working on collaborative group tasks. Second, there is no group of teachers
which organised their Mathematical lessons in order to distribute their time
equally between working as a class, working on individual tasks and working
on collaborative group tasks.

We can now describe each group of the six-cluster solution on the basis of
their responses to this item. Teachers of the first group (N=38) are those who
spent most of their time in working as a class (80%) and the rest of the time
was equally distributed to individual and collaborative tasks. However their
pupils were very rarely involved with either collaborative or individual tasks.
Their practice was mainly based on a teacher-centred approach to teaching
Mathematics. They can be called as the "whole class instructors".

Teachers of the fourth and fifth groups were also "whole class instructors".
They organised their classes in such a way that their pupils were working as a
whole class for more than 60% of their time. However, pupils of the fourth
group had also the opportunity to work on collaborative tasks (25%) and pupils
of the fifth group spent 30% of their time in working on individual tasks.

The second group of teachers organised their classes in such a way that their
pupils spent less time in working as a whole class than pupils of the above
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three groups. Their pupils did not spend more than 50% of their time in
working as a whole class. This is the group of Cypriot teachers who organised
their classes relatively close to the suggestions of the policy documents
emphasising the importance of distributing their time equally to the three ways
of classroom organisation.

The third and the sixth groups are those which are consisted of the few
Cypriot teachers who did not spend most of their time in working as a whole
class. The third group of teachers (N=9) based their teaching in Mathematics
on individual tasks (50-63%) and the rest of their pupils' time was equally
distributed to collaborative tasks and whole class tasks. These teachers can be
called as the "individualisers". On the other hand, teachers of the sixth group
(N=8) organised their teaching Mathematics in such a way that pupils were
mainly involved with collaborative tasks (50-67%) and the rest of their time
was equally distributed to whole class and individual tasks. We can call them
"group workers".

Relationships between teachers' perceptions of curriculum reform in
Mathematics and the ways used to organise their classroom were explored.
Correlations about general aims for the curriculum in Mathematics and
methods of classroom organisation were identified. There was correlation
between support for the general aim of Mathematics related to mathematical
communication and the amount of time which pupils spend in working as a
group (r=.61 n=183 p<.01). There was also a negative relationship between the
perceived importance of this purpose and the amount of time spend in working
on individual tasks (r-=-.53 n=183 p.01). Significant relationships between
teachers' responses to items concerned with different issues of Mathematics
pedagogy and their responses to the item concerned with classroom
organisation were also explored. There was a correlation between agreement
with the opinion that there is a fixed sequence of Mathematical topics and the
amount of time which pupils spend in working alone (r=.56 n=181, p<.01).

Finally, I attempted to identify whether there is any association between
teachers' characteristics measured by the independent variables of the
questionnaire and their responses to the item concerned with how they organise
their classroom. Statistically significant differences (p.05) in the ways used to
organise their classroom were associated with years of teaching experience, and
characteristics of the class taught (ie class size, and pupils' year group) but they
were not associated with differences in their professional training.

B) REPORT AND_ANALYSIS DE INTERVIEW DATA

Teachers' comments in response to my open question on approaches to teaching
Mathematics raised the following issues concerned the classroom organisation
for teaching Mathematics. First, all of them mentioned that they spent most of
their time in teaching the whole class, a finding on the questionnaire also.
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There was also a match between their responses to the interview and a ranking

of these three ways of classroom organisation which was done on the basis of

their responses to the questionnaire item.

Second, there were twelve teachers who acknowledged that they spent most of

their time in working with the whole class, but this was not because they

considered it as the most appropriate approach. A gap between teachers'
perceptions of teaching Mathematics and their curriculum practice was
identified. Seven of them took the view that working in group tasks took
pupils more time to cover Mathematical topics and to adjust to this way of
working. The following comment echoes this perception:

"I like to provide opportunities to my pupils to work in collaborative
tasks but I can not do it so easily. I do not have much space in my class
to arrange tables in groups. But what is the most important obstacle of
working in groups is the content of the curriculum which we have to
cover. This cannot be achieved, if we use this approach. If I were not
under stress, I could use group work more often and work with the
whole class less often" (Teacher B.2)

The other five teachers indicated that they wanted to spend more time on
individual tasks, but that they did not have adequate time to teach all these
topics of the curriculum following this approach. Manageability problems and

problems with their planning were also seen as obstacles for any attempt to use

the individual approach for teaching Mathematics and especially since they did

not have many resources to individualise tasks. The national textbooks were
seen as not helpful. Furthermore, they acknowledged that spending most of
pupils' time in working as a whole class was appropriate only for pupils who

are neither low nor high attainers. They, finally, argued that although the
content of the curriculum could be taught to the whole class by spending most

of pupils' time in working as a whole class, this might not help low attainers to
learn it and high attainers to learn as much as they could. That is to say they

saw it as leading to difficulties in differentiation.

In response to my last open question concerned with ways of improving
curriculum practice, three teachers considered having smaller class size than

now as the most important way of improving practice. They argued that they
saw this as related to a focus of classroom organisation, in which pupils can
spent most of their time in working on individual tasks.

V) DISCUSSION: IMPLICATIONS OF RESEARCH FINDINGS FOR
CURRICULUM REFORM POLICY IN CYPRUS

The evidence presented above can be discussed in terms of its implications for
the implementation of curriculum reform in Cyprus. The research data reveal
that there is no group of Cypriot teachers who organised their classes close to

the suggestions of the policy documents emphasising the importance of
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distributing their time equally to the three ways of classroom organisation.
Working as a whole class is the dominant way of teaching Mathematics in
Cyprus. Evidence about classroom practice in England revealed that although
teachers are encouraged by the policy documents (DES 1989, 1991) to organise
their classroom so that their pupils will spend their time equally on working in
individual tasks, in group tasks and working as a whole class, English pupils
spent most of their time in working alone on a Mathematics tasks (DES 1978,
Gallon et al 1980, Barker-Lunn 1984, DES 1992). It can be therefore claimed
that although classroom practice in Cyprus is different to that found in
England, teaching time is not equally distributed to these three ways of
classroom organisation in either England or Cyprus. These findings raise doubts
about whether curriculum practice can change merely by the publication of
national curriculum documents which mechanistically encourage teachers to
spend their time equally on individual, group and whole class methods of
organisation.

However, only very few Cypriot teachers organised their classroom in such a
way that pupils spent all of their time working as a whole class and none of
the cluster groups revealed comprised teachers using only one approach. This is
in line with studies on English curriculum practice which reveal that the
exclusive use of a single teaching method was rarely found (eg DES 1978,
Bennett, 1976; Barker-Lunn 1984, p. 179).

The qualitative data revealed also that none of the 20 teachers interviewed,
agreed with spending most of teaching time in working with the whole class
but their practices were dominated by this way of classroom organisation. This
conflict between the teachers' ideal version of practice and their actual
practice has implicati'ons for their occupational culture. Cypriot teachers in
recognising the discrepancy between their beliefs about classroom organisation
in Mathematics and practical realities attributed it to the pressure of time
arising from an overloaded curriculum. Both experienced and beginning
Cypriot teachers considered the content of the New Curriculum in
Mathematics as difficult for their pupils to understand (Kyriakides 1994). It can
be claimed that the implementation of policy on classroom organisation will
not have to face barriers of ideological kind (Howson et al 1981) from teachers.
The main source for the gap between perceptions of teachers and their practice
may lie in the way the system is operating and particularly policy requirements
in respect to the content of the curriculum they have to teach in their class.
This led teachers to organise their classroom in such a way that pupils spent
most of their time in working as a whole class even when neither the teachers
nor the policy documents consider this as the most appropriate way of
classroom 'organisation.

It can be also claimed that barriers to the implementation of policy on
classroom organisation in primary Mathematics of Cyprus may lie in the high
degree of central control at school level through national textbooks, a national
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curriculum specifying the content of the Mathematics curriculum to be taught

to each age-group of pupils and .a specified length of curriculum time. These
contribute to a mismatch between the ideology promoted by the curriculum

policy and the administration of the system. And although teachers' perceptions
of classroom organisation were similar to the policy requirements, the fact that

this control did not promote flexible classroom strategies limited the policy's

effectiveness.

It is also important to examine the policy on classroom organisation in relation

to the other issues raised by the policy on curriculum reform in Mathematics.
Teachers considered working conditions such as class size and the lack of
resources as significant barriers in implementing the policy on classroom
organisation. However, there is no intention by the government for reducing
the size of the classes. Thus, teachers may not be encouraged to give more
thought to the best way to respond to individual learning needs. In addition,
teachers believe that national textbooks are not designed in order to enable
them to provide different mathematical tasks for pupils who have different
learning needs. Nevertheless,' there is no intention by the Ministry of Education
to publish new textbooks or to provide teachers with relevant resources to
enable them to provide each child with learning experiences which take
account his/her characteristics and learning needs.

Policy on purposes of Mathematics seems to be an important aspect related to

the policy on classroom organisation. Although a low priority was given by
Cypriot teachers to the role of language in teaching Mathematics (Kyriakides
1994), the development of pupils' ability to communicate by using Mathematics

is not considered very important purpose of primary Mathematics by the New
Curriculum. However, a correlation between the perceived importance of this

purpose and the amount of time pupils spend in working in co-operatively
group tasks was found. Thus, barriers to the implementation of policy on
classroom organisation in relation to the use of group work may lie in teachers'
perceptions of purposes of teaching Mathematics. It is therefore important that
Ministry of Education, in addition to concentrating on the importance of using

Mathematics in communication, should also provide teachers with more
specific ways to organise their classroom in working on group tasks and at the

same time provide opportunities to children to communicate by using
Mathematics.

It should be, finally, indicated that the consideration of balance in classroom
organisation by policy documents seems to be problematic. It should not be
seen in terms of Mathematical proportion. The critical notion of classroom
organisation is that of fitness for purpose. Teachers need the skills and

judgement to be able to select and apply whichever way of classroom
organisation - class, group and individual - is appropriate to the task in hand.
The judgement should be educational and organisational rather than a matter
of mathematical proportion (Alexander et al 1992). A balance between class,
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individual and group work is necessary not only because of the need for a
variety of approaches but also for the fact that each one fulfils different
purposes.
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PARTITIONING AND UNITIZING

Susan J. Lamon
Marquette University

The goal of this study was to better understand the development of children's
unitizing processes. Using a cross-sectional design, the study analyzed the
partitioning strategies of 346 children from grades four through eight in terms of
a framework that translated economy in the marking and cutting of the shared
objects into sophistication in unitizing. At each grade level, a greater percentage
of students used economical partitioning strategies than used less economical cut-
and-distribute strategies. As grade level increased, the percentage of students
using economical strategies increased, indicating a shift away from the
distribution of singleton units toward the use of more composite units.

Background
There is a consensus that as one encounters the domain of rational

numbers, changes in the nature of the unit largely account for the cognitive
complexity entailed in linking meaning, symbols, and operations (Hiebert &
Behr, 1988; Behr, Harel, Post, & Lesh, 1992; Hare! & Confrey, 1994). Unitizing
is the cognitive assignment of a unit of measurement to a given quantity; it refers
to the size chunk one constructs in terms of which to think about a given
commodity. For example, given a case of cola, one could think of it as 24 cans
or (1-unit)s, 2 (12-pack)s, or 4 (6-packs). The ability to form and operate with
increasingly complex unit structures appears to be an important mechanism by
which more sophisticated reasoning develops. Research in proportional
reasoning, for example, indicates that one of the most salient differences between
proportional reasoners and non-proportional reasoners is that the proportional
reasoners are adept at building and using composite extensive units and that they
make decisions about which unit to use when choices are available, choosing more
composite units when they are more efficient than using singleton units (Lamon,
1993a, 1993b).

Research in other rational number domains (Pothier & Sawada, 1983,
1984; Hunting, 1983; Kieren, Nelson, & Smith, 1985) highlights partitioning
activities as important mechanisms for building rational number understandings
(Piaget, Inhelder, & Szeminska, 1960; Pothier, 1981; Kieren, 1976, 1980;
Streefland, 1991). The ability to divide an object or a set of objects into equal
parts appears critical to the logical development of part-part and part-whole
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relationships and notions of equality and inequality, and may influence children's
understanding of other mathematical topics such as measurement and geometry
(Pothier & Sawada, 1990).

Together, the bodies of research concerning unitizing and partitioning
suggest that the two processes build different and essential perspectives toward
the understanding of rational numbers. Partitioning is an operation that generates
quantity; it is an experience-based, intuitive activity that anchors the process of
constructing rational numbers to a child's informal knowledge about fair sharing.
Unitizing is a cognitive process for conceptualizing the amount of a given
commodity or share before, during and after the sharing process.

The purpose of the study reported in this article was to make children's
tacit unitizing process explicit through partitioning activities, to define more
clearly the relationship between the two processes, and to connect children's
partitioning and unitizing strategies to given contexts. By taking snapshots of
children's partitioning strategies at each grade level, fourth through eighth, it also
sought to identify trends or stages that characterize the development of
increasingly sophisticated unitizing ability.

The hypothesis underlying this research is that the mathematical power
afforded by the notion of equivalence should, for concrete operational students,
also work to help them to compose units. Growth in sophistication of the
unitizing process, signified by the use of more composite units or larger units,
should be reflected in students' partitioning processes. After the partitioning
stages characterized by Pothier and Sawada (1983), additional stages should
emerge in which partitioning strategies grow increasingly economical.

Procedure
Children from grades 4 through 8 were given 11 tasks in which they were

asked to draw pictures to show how they would share various types of food
among given numbers of people. Five children were chosen at random from
each grade level to participate in standardized clinical interviews. They were
given the same tasks in the same written format as the rest of their classmates, but
were asked to think out loud while they were working so that the researcher
could gain further insights into their methods and reasoning.

24, 3 234



Sample
The 346 students who participated in the study came from three schools in

two midwestern cities. Three intact classes from each grade level, grades four
through eight (n4 = 63, n5 = 60, n6 = 72, n7 = 69, ng = 82) from one
parochial (K-8) and two public schools (K-6 and 6-8) participated in the study.
Each class was heterogeneously grouped and culturally diverse. All teachers
reported that they had never given their students partitioning activities.

Tasks
The partitioning tasks used in this study are described in Table 1. The

tasks were designed to include several known and hypothesized influences on
children's partitioning activities. In addition to the usual distinction between
discrete and continuous elements, tasks were differentiated according to the
manner in which food items are packaged. For example, the packaging of food
items may suggest or constrain certain partitionings, as in the case of eggs
packaged in standard arrays in cartons, and sectioned candy bars. Composite
units such as 6-packs of Coke or packs of gum may be left intact or opened to
reveal individual items. Differences in partitioning were also expected when the
items to be shared were alike, such as several piz7As all with the same topping, as
opposed to sharing pizzas with different toppings or several different Chinese
dinners.

Framework for Analysis
The Behr et al. (1992) semantic analysis represents idealized models of

partitive divisions. Children's actual partitioning activity often involves other
details. For example, to divide 3 pies among 4 people, some children cut each of
the 3(1-unit)s into 8 parts and then distribute the pieces. Sometimes there are
differences in the way children mark fractional parts on the objects and in the
way they actually cut them. For example, when the whole consists of 4 (1-units)
to be partitioned into 3 shares, each of the(1-unit)s may be marked as sixths and
cut into thirds, or in three of the (1- units, halves may be marked, and only the
fourth (1-unit) might be marked and cut into thirds. This study is concerned with
some of those finer details because they provide insight into the sophistication of
children's unitizing process and dependence on perceptual supports. To account
for these distinctions, partitioning is defined in this study as determination of
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Table 1
partitioning Tasks Used to Study Unitizing

Task

Characteristics

discrete
subsets separable
array form

discrete
subsets separable
composite form

You have the canon of 12 eggs pictured below, and 3
people who want to eat them for breakfast.

LAL-11. AAAAA

1.-4L_/ ..A...J0 L .1

You have 5 packs of gum and 4 people. (A pack of gum has
5 sticks of gum inside.)

You have 8 six-packs of cola and 3 people.

You have 2 six-packs of juice and 4 people.

continuous You have 4 pepperoni pizza pies and 3 people.
elements dissectible
like items You have 4 chocolate chip cookies and 3

children.

You have 4 oatmeal cookies and 6 children.

continuous You have 1 cheese pizza, 1 mushroom pizza, 1 elements dissectible
sausage pizza, and 1 pepperoni pizza for 3 people.

unlike items

people to eat dinner.

continuous
subsets separable
prepartitioned

You have 3 Chinese dinners (1 pork, 1 beef, and 1 chicken) and 6

You have 4 Chinese dinners (1 pork, 1 beef, lchicken,
and 1 seafood) and 3 people for dinner.

You have the 2 candy bars shown below and 5 children

11111
11111

11111
11111
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equal shares and is viewed as a multi-stage operation: marking objects, cutting
them, and clearly indicating one person's share.

Pilot studies were used to classify children's fair-sharing strategies. These
studies revealed that strategies may be differentiated along at least four
dimensions: (a) preservation of pieces that did not require cutting in cases where
each person receives more than one object in a discrete quantity; (b) economy of
the marking (not using sixths when thirds suffice); (c) economy of cutting (not
making more cuts than necessary); and (d) the nature, packaging, and social
practices related to the objects being shared. Based on the these characteristics, a
hierarchy of 9 partitioning strategies (described more fully in Lamon, 1996) was
used to code student work. In general, a higher level of sophistication in the
unitizing process involves the ability to use more composite units,
and in the context of these activities, is indicated by the preservation of pieces that
do not require cutting and by economy in making marks and cuts. That is,
decreasing sophistication in unitizing may be denoted by the increasing
fragmentation of a share of the food. However, an exception occurs when
customary practice supersedes concerns for economical marking and cutting, as
would be the case when sharing three pizzas, each with different toppings, among
three people. The obvious and most economical way to share is to give each
person one pizza, but it is customary for each person to have some of each pizza.

Results

When partitioning wholes consisting of continuous, dissectible, like
elements, such as pizzas of the same type, the data show trends toward economy
from grade 5 to grade 8, and within grade, a preference for economical marking
and cutting. When the composite wholes were composed of unlike elements, such
as Chinese dinners, students cognitively differentiated the situation from one in
which like items were shared. In this case, they favored a strategy in which all
pieces of the whole were marked and cut and a piece of each was distributed to
each person. Their strategies were heavily influenced by social practice related
to the commodity being shared.

When partitioning composites of discrete items, such as packs of gum or
six-packs of beverages, although the results still showed an increasing ability
from fifth through eighth grade to use economical strategies, a greater number of
students at each grade level had a stronger need to see individual items when

using prepackaged discrete elements to be sure that each person was getting the
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same number of pieces. The students who required this perceptual support drew
the packs of gum (a unit of units) with the five sticks showing. Students tended
to use economical strategies , even in the case when they are cutting arrays and
prepartitioned items, such a cartons of eggs or sectioned candy bars. Although
these items might present constraints or tend to suggest certain cutting patterns
and discourage others, most student strategies reflected an effort to partition
using as few cuts as possible.

The results of this study characterize children's unitizing process as one
that develops over time and with experience in varied contexts. Decomposition
of a given whole into small units appears to happen immediately and naturally in
the course of fair sharing activities, but reunitization into composite pieces,
shown operationally as greater economy in marking and cutting fair shares,
develops less rapidly. In this study, students engaged in intuitive activities in
which they experienced amount, not merely number; the relevant question
switched from "How many?" to "How much?" and their partitioning strategies
illuminated some of the stages they went through as they applied and extended the
number sense and counting processes that had served them through whole number
concepts and operations in order to make sense of more complex operations that
generate quantity.

This study also highlights the subtle and often tacit interaction of context
and cognition as it affects the shape of one's mathematics. It showed that student
partitioning strategies were situationally specific and showed a strong observance
of social practice and practicality. The role of visual cues in mediating the step to
unit composition was more salient in these written activities than it could have
been in real life sharing activities. For example, students were able to see that
they could group two one-sixth pieces of pizza and cut as if they had marked
thirds. In the end, a more composite unit was used than the student may have
intended at first due to a visually induced operational equivalence. Students were
"experiencing" equivalent amounts.

This study suggests that partitioning has not been fully exploited as a
didactic device for helping children to develop rational number ideas. For the
teachers whose classes were involved in this research, either partitioning was a
foreign notion, or it was considered a third grade introductory fraction activity.
This study strongly invites partitioning activities into the middle school
curriculum and, in order to develop sophistication and versatility in unitizing,

3 - 238



encourages their sustained use until students have attained economical strategies
across a wide variety of contexts.
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Simultaneously assessing intended, implemented and attained
conceptions about the gradient
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Abstract
The research question guiding this study was: What are the conceptions about
gradient effectively attained in a specific calculus course, how are they implemented
and how are they related to the conceptions that the curriculum intends to convey? A
group of four graduate and two undergraduate students decided to investigate and
modem their own mathematical conceptions formed and being formed in calculus and
analysis courses. One teacher agreed to conduct tutorial meetings, whose reports
were taken as research data. The conclusion was that the attained students'
conceptions are related to the intended curriculum conceptions in a fragmented
manner. The conceptions' fragmentation appear to be implemented by the demand
imposed on the students by the use of a text book, whose analysis indicated that an
obsession with loosing control over neglected infinitesimals, ends up hiding the
essence of the physical and geometric properties of the gradient under the heavy
mantle of mathematical rigor.

Research question and theoretical references

In late 1995, a group of four graduate students in mathematics education
showed dissatisfaction with their mathematics conceptions formed along
undergraduate calculus and analysis courses. They decided to investigate and overhaul
these conceptions. One teacher accepted to coordinate the group. Two undergraduate
(sophomore) students joined in. The group realized the possibility of investigating
simultaneously the intended, the implemented and the attained curriculum (Robitaille
and Dirks, 1982). The subject of gradient was chosen, since it was the topic being
addressed in the calculus course in which the undergraduate students were enrolled at
the time. A research question as in the abstract of this article was agreed upon.

The meetings aimed at understanding what was known by the students about
gradient, and how it was coming to be organized in the simultaneous calculus course.
The meetings focused "on conditions under which students will choose to modify,
reject, or extend their conceptions" (Confrey, 1990, p. 22). Strike, Hewson and
Gertzog (1982, reference ibid. p. 22) "require that a student be dissatisfied with an

' Undergraduate student in mathematics at the State University of Sao Paulo (UNESP), Rio Claro.
2 Masters student in mathematics education at UNESP, Rio Claro.
3 Doctoral student in mathematics education at UNESP, Rio Claro.
4 Undergraduate student in mathematics at UNESP, Rio Claro. (Partial support from PET/CAPES.)
5 Professor at UNESP, Rio Claro, with partial support from CNPq.
6 Doctoral student in Mathematics and Science Education of the School of Education, University of
Sao Paulo USP. (Full support from CAPES )
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existing conception and find a new conception intelligible, plausible and fruitful", in
order that accommodation can occur. In the case of this research, dissatisfaction with
existing conceptions was granted from the beginning and the other conditions were
supplied along the way. According to Piaget (cited in Confrey 1995, p. 4) "knowing an
object does not mean to copy it - it means acting on it". It can be inferred that, in order
to know student's conceptions, it is necessary to act on them, producing changes
through a teaching practice. Such was the guide-line of this research. For the final
remarks we drew on psychoanalytical theory (Lacan).

Research procedure

A weekly forum of discussion and reflection was started. In our initial planning
meeting, it became clear that, whether the participants had seen gradient three or more
years ago, or whether they had seen it that morning, their spontaneous conceptions',
centered in the belief-statement "vector of partial derivatives" would not enable them
to sustain a dialogue about such questions as: "What is it used for? What does it
mean? What is the geometric representation? Give an example." In brief, there was no
other sense for gradient than the strict mathematical meaning of the definition. They
did not "remember" any physical or geometrical meaning associated with this word..
To understand how this "forgetting" occurs, it seemed important to investigate the
context (classroom, exams, textbook, teacher, etc.) in which the meanings are
negotiated during the functioning of the Calculus II course and the subsequent
Mathematical Analysis courses. This was partially done and is reported bellow.

At the beginning of each session, the participants carried out the exercise of
talking about what had occurred in the last session; that is to say, the entire process
was reviewed in the form of a synthesis. The coordinator intervened to point out the
mathematical lapses in the discourse of the person who was speaking, posing
questions. At any given moment, someone would be unable to contain themselves and
go up to the blackboard to justify what they were saying. When that did not occur,
someone was designated by the group to fulfill this role. When someone grasped a
point that was being made before the others did, that person was asked to guide the
others through questioning in the same manner as the coordinator.

A diary was kept of the first sessions that was presented to the coordinator who
made some editing comments. These comments were discussed by the group, with the
aim of producing a final script in the form of an article. A fragment of this diary is
reprinted below. The teacher's comments, in brackets, reproduce part of his personal
notes, taken during and after the sessions. Throughout this process, there was an
ongoing attempt at teaching guided by the mathematical concepts themselves;
however, the teaching practice was always subordinate to the learning. At no time did
the coordinator push beyond what those present were able to comprehend, as
evidenced by the justifications they made, even when this tactic lead to long periods of

"Spontaneous conception" refer to student's conceptions before the research started. For the uses
of the term "conception" see Confrey (1990).
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silence. The following basic rule was always upheld: If you do not know, explain: if
you do know, ask questions. Only on the occasions of synthesis did the person who
knew explain. A psychoanalysis inspired principle was followed: it is through speaking
that one learns and through listening that one teaches.

The attempts at justification outlined by the students led the group to draw the
perspective of graphs of real functions with two variables, especially the design of the
paraboloid, which functioned as a model for all the properties of the gradient. The
difficulty in recognizing the points and curves in the perspective, always precariously
drawn on the blackboard, led the coordinator to construct a model, initially improvised
using the hard cover of a notebook but, the following week, constructed from acrylic
boards, representing the coordinate planes, the tangent plane and lines, the normal and

the gradient. From the moment
---------Tangent plane this model was detached from the

paraboloid, it became possible to
enunciate and justify the
properties of the gradient as

r beliefs of the group, applying only
rY elementary geometric reasoning to

the model: the gradient is the
projection of a lower normal to\ -i the tangent plane on the xy plane,

Tangency pint
is a vector that is perpendicular to
the level curves and has length

Gradient vect 3- equal to the largest growth rate of
the function at the point. The
question then came up: Where

does the textbook (Guidorizzi, 19868) state these properties, and how does it proceed
to justify them? Why had they escaped the students in their careful page-by-page
reading during the Calculus course? The participants then began by locating the
statements about these properties in the textbook and examining the book in retrospect
to know what steps the author took in an attempt to justify them.

Commented report of first meeting: the paraboloid (August 21" , 1995)9

The teacher asked if we had seen the gradient in Calculus 11. We responded that we

had. What is it, the gradient?, he asked. We wrote (-41 61) G.. we an example, he

requested. After some reluctance, we proposed the function f (x,y)= x
2

+ y
2

. What

8 In fact, this is a Brazilian author, but similarity of Calculus textbooks indicate that any other choice
would probably have led to the same results.
Taken from the diary of two undergraduate students.
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does this Junction do?, he asked. The question surprised us. What do you mean, what does it
"do"? we replied. Well! Functions function, they have a domain and a counter-domain.
How does that one work? We responded that we had no doubts that it was a paraboloid.
Then draw it, he said.

[They did not return to me the conception of function as a
correspondence. A diagram like this one on the side does not appear to

(x,y) nx.y)

form part of these students' spontaneous conceptions about functions. It
would not help to "explain" or "talk" about this since, throughout their
schooling, these student must have heard these "speeches" about "correspondences"
innumerable times. I prefer to continue and come back to this point using the graph of the
paraboloid as a point of departure]

The teacher suggested that we mark the point (3, 4, 25) and think about the graph of
the function.

[They are not seeing the link between the drawing and the points they marked.]
The following definition of graph came up:

Gf =1(x, y,z) 913Iz = f (x, y);(x, y) E 912 )

We finally made explicit the set of level curves.

[It has been a lot of work for me to get them to read the definition as "the set of
points (x,y,z) such that...". Remark added later: It is interesting to note that, in the report,
there is a reference to something else: to the "set of level curves", not to level curves as sets
of points. That would have demanded they use the concept of inverse image, and that would
demand that they think of functions as correspondences.]

The teacher asked us to point out the values assumed by the function at the points of
the curve of "level one". He emphasized: the curve of level one. At that moment we had
doubts since, even though we had written the definition of graph, we were not using it.
Upon analyzing ci we perceived that a function assumes constant values at all points of the

curve x2 + y2 = 1. By the end of the session, the definition of level curve was clear to
everyone.

[We did not go back to the gradient; the drawing was never corrected with respect to
parallelism; the point (3,4,25) was never located as the intersection of the paraboloid with
the planes x = 3 and y = 4.]

[The function x2 +y2, which should be an example for studying the gradient,
became a problem in itself. There was no discussion of a correspondence, but of a
"paraboloid". The design of the graph, which should lead to recognition of the domain and
counter-domain, became another problem. The sketch of the ellipses inscribed in
parallelograms, necessary for the perspective, would have led to the problem of graphic
representation of tangents, which I preferred not to get into. The marking of points in the
horse-back perspective, which should have aided the sketching of the graph, turned into a
time consuming problem of careful measuring. Resorting to the level curves to fix the graph
did not work. The level curves were yet another problem. In the meantime, the definition of
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the graph of a function was evoked in a surprisingly immediate fashion. It was remembered
(but not used) and generated a new problem: What does the definition have to do with the
"mug"? The memories associated with the equation of the circumference, as a function of
two variables, did not lead them to put the level curve on the plane, much less to evoke a
cylinder in space.]

[Throughout, the imagination had the model of the mug as a reference. The
paraboloid, as a geometrical object, occupied the first plane of attention. "The paraboloid?
Sure, we don't have any doubts about it. We know what it is. Axes? Oh, yeah. You have to
design axes on the paraboloid. You have to mark the points on the paraboloid. You have to
design the level curves of the paraboloid. Finally, you need to connect the definition of
"graph of a function" with the paraboloid." One sees that, in the absence of the conception
of function as correspondence, which should be the function as a principle, the spontaneous
conceptions are generated by nucleation of models; in this case, the paraboloid.]

[The nature of the fragmentation of the spontaneous conceptions is now somewhat
more clear. There is a nuclear model that the student grasps onto and to which the schemes
that are stored in different "files" refer, ready to be used there, and only there. In the
absence of this model, the "file manager" is lost, and he/she only "remembers having seen
it".]

[It is conjectured that it is not the student who is fragmented, and that the problem is
neither understood nor resolved with considerations of cognition only. The fragmentation is
in response to a specific demand of the university which is fragmented into required
courses, optional courses, and exams. In the next course, the paraboloid will no longer be
considered; therefore, all that was hanging on it will be without a control center. The "file
manager" will be lost. "Why learn another way of marking points on the graph if we already
know how it looks like? Why learn to draw inscribed ellipses in a parallelogram if there are
no exams in this course?" they seemed to say.]

Commented report of the analysis of the textbook (November 5-19, 1995)10

Through our thoughts and reasoning about the acrylic model, and using only the
resources of elementary geometry, everything seemed very clear to us. We had summarized
our understanding with the following points:

- the gradient is the vector of partial derivatives (definition)
- the gradient is perpendicular to the level curves
- the gradient points in the direction of the greatest growth of the function
- the length of the gradient is the rate of growth of the function in its direction

Not one of these properties seemed unusual to us. Now we were certain that we had
already heard about them, that we had seen them in classes and earlier readings. We were
curious to know how these properties that looked so familiar to us, were discussed and
demonstrated in calculus books like the one used as a textbook in the course in which two of
us were enrolled.

10 Taken from the report of two graduate students in Mathematics Education.
r-r
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We started by locating the perpendicularity statement and went searching backwards
in order to find out how it was demonstrated and on what previous results the author made it
to it depend. We looked for the essential nature of the proposition hoping for the
transparency that we had obtained through our reasoning about the model. We found that
the corresponding material in the textbook is complicated; it consists of a series of premises
and statements that led us astray when we tried to trace back the theoretical path leading to
the properties. We concluded that it was necessary to read the book from the first page.

These fundamental statements appear "en passant" and, to justify them, the author lays out a
virtual arsenal of theorems, including the chain rule, internal products, and even,
unnecessarily, the implicit functions theorem! Finally we found a text of U. D'Ambr6sio
about the mystification of knowledge that best expressed what we felt. We can affirm that,
in our study group, the phenomenon of demystification of knowledge occurred in a very
clear form. It was actually a study of ethnomathematics.

"Rarely does anyone argue that the origin of knowledge resides in the people and
obeys a very specific socio-cultural context. The explanations given for this knowledge are
naturally partial and at times it appears with an apparent lack of coherence and comes im-
pregnated with a strong mysticism. This knowledge generated by the people passes through
a process of structuring and coding that, afterwards, is expropriated by powerful groups. In
this way, this same knowledge (...) originating in the people becomes accessible to them
only in a structured, coded form, most of the time subjected to mystification that results in
institutional processes of devolution, such as schools, professions, academic grades, and the
whole series of training mechanisms. The executors of the devolution to the people of these
diverse bodies of knowledge should be recognized by the same power structure, in such a

way as to secure their ideological commitment. This credentialing occurs by way of a sys-
tem of filters; the individual normally loses sight of the process by which they are being co-
opted and which goes from the mystical, normally present in the origin of knowledge, to the
mystified, as though this same knowledge presents itself to be dressed in a system of codes"
(D'AmbrOsio, 1989).

The future teachers, as social agents, should offer guarantees, just as the textbook
guarantees all of the steps presented therein, Nonetheless, it is necessary that they "lose
sight of the process", precisely to better exercise their guaranty function. For this, the book
was perfect.]

(The operation of II separating from the surface of the paraboloid, the plane and the
tangent lines made concrete and tangible by the model, did not impede the students. From
the moment we substituted the surface by a plane and the coordinate curves by tangent
lines, Euclidean geometry took care of the rest and everything became clear. On the other
hand, the author seems determined to keep under vigilance the infinitesimals that are to be
overlooked, making explicit the errors that tend to zero when divided by their respective
increments. It appears that in this book, as in most calculus books, a true obsession with loss
guides the entire presentation and ends up hiding the essence of the physical and geometric

" This is basically an operation of overlooking the second order infinitesmals.
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properties of the gradient under the heavy mantle of a premature control of the mathematical
rigor. In vain, the students try to make sense of what they read. They can only follow the
book line by line and check the rigor of. the mathematical meaning. The organization of
didactic books is, after all, one of the factors that allows us to explain the fragmented
appearance of spontaneous conceptions. The obsession with the control of the overlooked
infinitesimal institutes an accountability of loss that takes precedence over learning.]

Final words: some psychoanalytical inspired remarks

Initially, some of the participants demonstrated a relationship with mathematics
somewhere between afflictive and fuzzy. As they have already graduated from college
and could be doing something else with their time, for one reason or another, they
chose to be there and prolong or relive this old relationship; in this we should
recognize a repetition that, for Lacan, is "the sister ofjuissance". It has to do, then,
with a symptom. A transferential (affective?) relation installed itself at that point that
made it possible for these participants to enter into the experience of learning. It was
expected that the coordinator would occupy the position of speaker, the subject-
supposed-to-know.

The desire of the participants was, certainly, sustained in fantasies which we did
not intend to delve into, except for those which were undeniably present in the
process. As to what lay beyond selective listening, the "fantasy of omnipotence
through the domination of knowledge" (Walkerdine, 1988, Chap. 9) was present
"- Now it is so clear. Why did we not learn this in this way?" exclaimed the students.
The symptom brought by the image of the severe father, the one that awakens the
hysterical, revealed itself during the process, when one of the participants verbalized
"- 1 keep looking for responses to give to him (the coordinator)! Actually 1 don't have
to do that." She sat down but a bit later she was back at the blackboard. This same
symptom revealed itself again at the end, in the report of a dream of another
participant who went to a party at the moment a third one was struggling to resolve a
problem that was necessary to write this article: "- / dreamed 1 was at a party and he
(the coordinator) was there looking very angry. He was sitting on a sofa with a
computer in front of him, writing . . ". At the beginning, clearly, everyone thought they
should know the answers to the questions that were asked. Later they began to
verbalize that not knowing was irrelevant. Finally the "I know/I don't know"
problematic disappeared. Meanwhile, one question remains open. To the point that
psychoanalysis projects itself beginning with selective listening, it remains to be seen
if this could be the correspondent to what lies beyond fantasy?12.

The affliction and the fuzziness go on. Although they show comprehension more
quickly when asked about the subjects worked on at the beginning, fuzziness is still
present when a new subject is addressed. It seems as though they incorporated
affliction and fuzziness as their way of being with respect to mathematics. We can say
that they identify themselves with affliction and fuzziness, whose memory they have

On this point, there is some disagreement among the authors.
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so much fun with. They no longer appear worried about freeing themselves of these
symptoms; on the contrary, we would say they enjoy them. Affliction and fuzziness
became the "high" of the group. The student who dreamed about the "severe father"
later revealed that "- I didn't tell you everything." She recently broke up with her boy-
friend of two years, who told her "- You're not the same person I started out loving."
There is a passage there, forbidden to the teacher, that only the psychoanalyst can
transpose. This virus is truly dangerous.

Where would traditional teaching have guided these people, who came pushed
by symptoms and images of the severe father and the search for knowledge,
reproducing afflictive fuzziness from this same subject of knowledge? Certainly, it
would have guided them to one of those "recycling courses", so that their demands
would have been attended to before the image of the severe father, disguised as a
teacher, who attempts to transmit knowledge by way of explanations, showing himself
as a plain subject. Simultaneously, the symptoms of affliction and detachment would
be driven away by a loving hoax and by whatever trick at the hour of evaluation,
always in the hope of, by having learned, no one would demonstrate fuzziness nor
affliction. To the degree to which traditional teaching repeats this scheme, there is a
symptom there as well, that calls for interpretation. As a repetition, it has to do with
juissance, but whose?

Instead of this, we followed the opposite path. Instead of trying to suppress or
modify the symptom, we strove for people to identify with it. Interpretation of the
symptoms (Cf. Szizek, 1992, Cap. VII).
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When change becomes the name of the game:
Mathematics teachers in transition to a new learning environment

liana Levenbecg and Anna Sfard
University of Haifa

The paper presents some of the data collected during the first stage of an ongoing
stuck on secondary-school mathematics teachers in the process of transition to a new
learning environment. The study has been inspired by the first author's own
experience documented in the journal she kept during the first year of her
participation in the innovative project. In the paper. the focus is on two other
teachers from the same school. one of them with twenty years of experience and the
other one just beginning her professional career. Their attitudes toard the change.
which are presented and compared he /ow. have been investigated with the help of a
written questionnaire and tape-recorded interviews.

Introduction
The idea of the study presented in this paper was born out of the experience of

the first author, Dana, through which she went when an innovative mathematics

curriculum was introduced to her school. The project, called "Seeing

Mathematics", promoted an intensive use of computers and was based on

group work and guided inquiry learning (Yerushalmy, Chazan & Gordon
1988). For an experienced teacher like herself, with twenty five years of

traditional frontal teaching behind her, this meant a true professional

earthquake. She was thrown all at once, after only a short period of general

preparation, into a completely new learning environment in which everything --

the students and their learning, the teacher and her role in the process, and even

the mathematics itself -- seemed completely different from what she was used

to. She felt that her past and new classrooms were words apart. No wonder,
therefore, that she joined the project with lots of doubts and fears. As a
reflective practitioner, and in accordance with the advice she had found in
recent literature on teacher change (e.g. Tripp, 1987), she decided to document

her experience in a personal journal (Levenberg, 1995). At first, the journal
served as means for "blowing steam" and for making explicit the many
dilemmas she was facing day after day. Along the way she found, however, that

being a mirror of what was going on in the classroom, the journal did not
always please her. More often than not, it just reflected her lack of satisfaction
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with the situation, with students' learning, with her own teaching. There were

so many things she struggled with, so many changes she had to adjust herself
to, and so many new things to learn.

While re-reading the journal by the end of the school year she felt that in order

to come to grips with what she went through it might be helpful to compare her

own experience to that of other teachers. Thus, she was happy to begin the
comprehensive study on teachers in the process of transition to new learning

environments, which is now under way. A few initial findings of the first-stage

of the project will now be presented and cast against the background of
excerpts from Dana's journal.

Although in the- paper we will only refer to a very small initial segment of the
study, a few words about the whole project would be in place. The overall aim

of the investigation is to document and analyze the process of teacher's change

rather that just its outcomes. Of special interest are the ways in which
experienced teachers who find themselves in a new learning environment

reform their beliefs and knowledge (compare Shiffter, 1994: Russell et al, 1994)

on the one hand, and adjust their teaching practices, on the other hand. A
number of case studies conducted during one year of teaching in the new
environment will be reinforced with data on teachers' attitudes toward change

collected within a much larger sample. To get as exhaustive a picture as
possible, we have addressed a highly heterogeneous group of teachers, covering

a wide range of ages and experiences. The participants were asked to react to a

long list of statements, all of them inspired by liana's journal (see examples in

Figure I). The same questionnaire was administered to the case study teachers

at the beginning of the school year and it will be answered by them again by
the end of the year. In this paper we will report on the attitudes of two case
study teachers for whom the year of our study was the second year of teaching

within the new environment. The data to be presented in the next sections come

from the questionnaire and from interviews conducted at the beginning of the
year.

Case study teachers: Dafna and kit
/),,Mai is an experienced teacher whose professional biography is quite similar

to liana's. She has been teaching for twenty years now and spent the last eleven

'Case stuch leachers' names have been changed.
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Fie. 1: Excer t from the attitudes uestionnaire'
ITEM DAFNA HUT

1. The expectations I had from teaching with
computer" have been fulfilled.

4 I

2. I had many fears before I started teaching with
computer.

I 5

3. I was afraid mainly of
a. technical problems 2 4

b. of students' superior computer skills 2 5

c. of too high a number of students in the lab I 4

d. of disciplinary problems 2 4

e. of unexpected mathematical problems 5 5

f. of the amount of work 5 5

g. of not knowing what to do in the lab 5 5

IL of not being able to cover the material 4 5

4. New learning environment significantly changes
my role as a teacher.

5 2

5. In the new learning environment I have to prepare
myself to lessons much more carefully.

5 5

6. In the new environment the ways of assessing
students' work change completely.

4 4

7. The computer significantly improves the teaching. 4 2

I . strung agreement; 2, agreement, 3. neutral position; 4: disagreement, 5: strung &sago:err...1u

This exprcnion, as well as "learning with computer" or just ^the computer" (see item 7), are but metonymies for the

comprehensive duinge in the leaning environment, the change which includes transition to inquiry learning and group

wort

years in the comprehensive secondary school in which she is now working.

Like liana, she has been teaching mainly at the senior secondary level, but she

does have some experience with the younger students. As a participant of the

project aimed at the junior secondary level project, she is now teaching in the

seventh grade (students' age: 12-13). Until eighteen months ago she has never

tried any of the innovative forms of teaching on which the new curriculum is
based. Thus, even now, after one full year in the project, she may still count as

a newcomer to the environment where mathematics is being done with
computers, where learning occurs through inquiry, and where students work in

groups while the teacher is expected to act mainly as a guide in problem-

solving and as a facilitator in classroom discussions.

Dafna's younger colleague Irit is a new and relatively inexperienced teacher.

The year of our study is the third year of her teaching career. She has got her

professional preparation at Haifa University were a thorough introduction to
the "Seeing mathematics" curriculum and to its underlying principles is a
regular part of pre-service teacher training program. Thus, what for liana and

Dafna was new and foreign, for Irit was familiar and natural. As a teacher, she
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has already been born into the new environment. Since, however, during her

first year in the school the new curriculum has not yet been introduced, she
spent that year giving traditional frontal lessons.

Last year, liana, Dafna, and Irit joined the innovative project as seventh-grade

teachers. Along with all the other teachers in the school involved in the
experimental teaching, they participated throughout the year in a series of
project meetings. Although at the face of it the meetings provided a perfect
opportunity for sharing experiences and for mutual support, they were devoted
exclusively to planning further instruction. For Ilana, her journal was an only
outlet for her feelings and doubts. She has not shared her notes with anybody

and until the beginning of the present study she has never asked her colleagues
about their experience. It is worth mentioning that frit, notwithstanding her
superior preparation, was an ardent -- and widely accepted -- participant of the
project team meetings.

In the reminder of this paper we shall quote from Ilana's journal and then
describe selected aspects of the initial attitudes toward the change reported to
us by Dafna and kit. We should stress here that in the situation of a radical
change in learning environment, teachers' own testimonies turn out to be a rich
source of valuable information. As evidenced by liana's journal, the change
boosts teacher's reflectivity, and raises the level of her awareness and self-
awareness. When she can no longer rely on her old instincts, the teacher must

make a conscious effort to regain the lost balance. While struggling for
adjustment, she becomes much more aware of what is going on around her. So,

for example, Ilana's eyes suddenly opened to students' difficulties and lack of
understanding:

There is a huge gap between my understanding and that of the students. I can feel it
clearly.... Only now. after so many years of teaching. do I discover the big difference
between what I would like them to understand and what they actually understand.

She has also become much more self-aware -- not necessarily a blessing for her
self-confidence:

In many ways, I feel as I used to in my first year as a teacher, except that now I am
much more critical toward myself In the first year / was quite pleased with myself
as far as I remember... Why is it that as a young teacher I did not have all these
doubts? I just jumped into the water and swam.
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On expectations and fears
In her journal, Ilana does not mention any expectations she might have had
while entering the project. Instead, she meticulously documents the numerous
difficulties she encountered and the many fears she had to live with throughout
her first year of the innovative teaching. After a few weeks in the project, she

wrote:
The technical aspects still take much too much time. The lack of technical skills
bothers me a lot. I would like it to flow just like writing on the blackboard, but it is
not so... I still cannot relax and just peacefidly move among the tables and
computers... I am tense all the time, preoccupied with urgent technical problems: the
mouse does not work, the computer refuses to upload a program...

liana finds it particularly difficult to cope with the uncertainties and the lack of
clear structure inherent in the new ways of teaching:

Here lin the project class'. I am devoting incomparably more time to preparations
than I use to in my other classes. In the other classes I can plan everything and then /
am confident the lesson will not be had. Here. uncertainty lurks from every corner...
At the next meeting we are going to prepare a new worksheet. / always feel more
comfortable when the things are structured and ready. Both I and the kids feel it is
easier to work this way (old habits die hard?).

As can be judged from their reaction to item 1 in the questionnaire (see Figure
I), Dafna and Irit came to the project with differing expectations. In fact, Dafna
had hardly any expectations at all:

I had no special curiosity because I didn't know where / was heading to. I didn't
really have any one to ask... / knew I had ro face it, and that 's it.

Irit, on the other hand, was full of anticipation. Recalling her one year of
frontal teaching she said:

/ was really waiting for the day when I would start teaching differently from how I
was taught in school.

Above all, she believed that the new ways of teaching will greatly improve
students' understanding of mathematics:

See [the program as providing' a wonderful opportunity to show that math is one
whale and not a collection of separate subjects. Here I cart move back and forth all
the time. 'Seeing Mathematics' makes understanding much easier.

The difference between Irit and Dafna grows even bigger when one compares
their answers to the questions on the fears they had while entering the project
(items 2 and 3 in Figure I). While Dafna testifies to being scared of great many
things -- technical problems, students' superiority, disciplinary problems, etc.,
Irit declares her readiness to cope with whatever difficulty she might encounter.
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In the light of this, Dafna's lack of enthusiasm about the project becomes quite
understandable:

When I started the new program I knew nothing, I was scared to death. All the
technical skills were difficult for me. At the first stage of adaptation, learning to
control the computer is the main difficulty. All the efforts and thoughts are focused
on that, and there is also the fear' of course, that the students will be better than you
are.

On the change in the ways of teaching and in teacher's role
How the teachers perceive the nature and significance of the change in the
learning environment on the one hand, and what they think about the ways in
which their own practices should be modified, on the other hand, are two
related but different questions. liana's notes make it clear that she views the
change in the learning environment as quite far-fetched, almost revolutionary.
In the new setting, everything seems different: the way the students work in the
lab ("Forty students sitting in pairs and talking"), the way they act back in their
classroom ("Mathematical discussion is a new phenomenon"), the pace of the
learning ("A sense of waste of time would not 'go away; I keep thinking about

how much 1 could manage to do in the regular classroom"), the methods of
assessment ("Lab reports are not easy to manage", "In the tests there is more
than one answer to every question... there is no possibility of copying from
other students"), and the list is still long.

On many occasions, she reports on the difficulties she has with adjusting
herself to the new scene and reflects on this difficulty's possible reasons:

/ have habits and expectations as to how the classroom should look like. Evidently.
these habits are very difficuh to change. Faro, students sitting in pairs and talking
one to the other! Do they learn? Yes, it seems so. The computer is an exciting tool
and in many respects it is more successful than me and my talking. But one has to
know to get used to it.

Elsewhere, she complains about her inability to put up with how the new class
sounds like:

I find it difficult to get used to the noise in the classroom. Arik, the lab assistant, says
it is all right but I still can feel the need to control the classroom.

The inability to give up her central role may be the reason behind liana's
nostalgia for frontal teaching, expressed time and again in her journal:

/ prepared a frontal lesson introducingvariables. Frontal teaching raises the level of
my self-confidence. If I feel students' eyes on me, I know that I am teaching (am I?)

It should be stressed that liana's difficulties do not make her hostile toward the
change. Being fully aware of the resilience of old habits, she is prepared to
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suspend the judgment until she gets a better grasp of the new ideas and until
she feels more comfortable with the new practices. She keeps reminding herself
that if there is a difficulty, the problem may be basically hers ( "1 have not fully

adopted yet the idea of inquiry learning"), and she repeatedly expresses her
commitment to the change ("One has to learn to accept this [e.g. the noise in

the lab/ and modem her own behaviors"). Her vision of the change in the
environment and of the required change in her own habits are fully consistent

with each other.

Dafna's attitude seems less coherent. In the interview, she admits that the
change brought to the classroom by the "Seeing Mathematics" project is
comprehensive and far-reaching:

The entire approach changed, even when I teach without computers I let the students
'explore arrive at things on their own\ I say less .

On the other hand, her negative response to item 4 in the questionnaire ("New
learning environment significantly changes my role as a teacher") shows that
in spite of the change in the environment, she believes in the possibility of
preserving her old role and old habits.

There is no such inconsistency in Irit's attitude. Like in liana's case, her
awareness of the significance of the change is accompanied by a conscious
effort to be a new kind of teacher. Unlike liana, however, kit does not have to
act against her own habits. The only comparisons she can make are with the
teachers who taught her in the past:

I am not going to teach the same way I was taught . In my class pupils get an
assignment and start to explore, and this is certainly very different from what I did in
school. I show students my confidence in their ability to cope. I feel that ill were just
standing in class and teaching, their creativity would be lost.

Conclusions and questions for further study
The three teachers we have presented in this paper disclose three quite different
attitudes toward far-reaching change in the ways of teaching. hit views the
change brought by the computer and inquiry learning as radical and enters the
new environment with obvious enthusiasm. This does not come as surprise. Her
ability to appreciate the significance of the transition sterns from the fact that
while studying the new program at the university she had a chance to get to
know it in detail and to make its principles her own. Moreover, being a young
teacher with no experience behind her, she does not have deeply rooted habits
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to change. For her, the new teaching method is the only one she knows from
her own teaching practice.

Both Ilana and Dafna are also fully aware of the radical nature of the change in
the learning environment. However, while Ilana recognizes the necessity of
modifying herself as a teacher, Dafna seems convinced that she nay adhere to
her old habits. At this relatively early stage of the project, neither Ilana nor
Dafna seem very excited about the change. This lack of enthusiasm on the part
of the experienced teacher is easily understandable. There might be much
promise in a far-reaching change of the learning environment, but from the
point of view of a person who does reasonably well within the traditional
setting, the change is also -- and perhaps above all -- a threat. While turning
old habits into useless and old instincts into obstacles, the change ruins
teacher's self-confidence, forces her to work harder, gives her a feeling that she
is competing (and losing!) with younger colleagues or even with her own
students, in short -- deprives her of all the advantages of being experienced, the

advantages to which she got used through many years of practice. She is left
with only disadvantages of her rich experience: with her acute, often
paralyzing, awareness of the many difficulties and pitfalls which threaten to
hinder the process of teaching and learning.

In this paper, we have presented only the first preliminary fragment of the
study, and even here many interesting observations have been left out for the
lack of space. While these words are being written, Dafna, kit, and a few other
teachers are regularly interviewed and observed in their classes. Our aim is to
describe the process of change they are going through. While doing this, we
will try to get hold of those psychological phenomena which seem inherent to
the process rather than dependent on the particularities of its external causes.
Of special interest to us is the question whether the change of teaching
practices keeps pace with theachers' evolving beliefs.
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THE COMPETITION BETWEEN NUMBERS AND STRUCTURE

Liora Linchevski Hebrew University
Drora Livneh Hebrew University

In this paper we intend to show that naive solvers do not consider the properties of
operations to be context-free they perform as if some of these properties are dependent on

the specific numerical context. The way they interpret an expression seems to be dependent

upon such factors as the place of a particular operation within the expression, and
particularly the unique numerical combination at hand In order to investigate some of these
hypotheses we presented 6 grade students with three different numerical versions to the same

algebraic structure. The results support our hypothesis that the specific number combination

in each example encourages the use of certain sequences of operations and discourages
others. The particular number combination in the expression competes with the algebraic

structure.

Hidden Structure
Previous research has pointed at structure as a central notion in the study of algebra (Kieran,

1988, 1992; Booth, 1984, 1988). These researchers attributed many of the fundamental
difficulties experienced by beginning algebra students to their failure to identify equivalent
forms of an algebraic expression according to the properties of the given operations.
According to Kieran (1988), structural knowledge means being able to identify "all the
equivalent forms of the expression". Linchevski and Vinner (1988) argued that this definition

should be modified to include the ability to discriminate between the forms relevant to the
task--generally one or two forms--and all the others. Booth (1981, 1984, 1988) emphasizes
that students construct their algebraic notions on the basis of previous experience in
arithmetic. Thus their algebraic system inherits structural properties associated with the
number system they are familiar with. She. suggests (Booth, 1988) that "the students'
difficulties in algebra are in part due to their lack of understanding of various structural
notions in arithmetic". Lins (1990), suggests that the students' informal processes, which are
probably borrowed from their previous knowledge, are "incompatible" with algebraic
methods. Thinking algebraically means, according to Lins, operating within the right field of
reference. Using other sources of reference results in inadequate ways of structuring the
situation. Greeno (1982) and others (e.g. Kuchemann, 1981; Avila, Garcia and Rojano, 1990)

have found that, to a great extent, these structural difficulties are quite tenacious and tend to
last a long time. Even repeated exposure to algebraic structure does not eliminate them.

Matz (1980) claims that students'. mistakes stem from either the use of.a known rule without
modification in a new situation where it is inappropriate or from the incorrect modification of
a known rule in order to use it to solve the given problem. She defines the notion of linear
decomposition as working with a decomposable_okect by treating each of its parts
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independently. She claims that the problems experienced by students who make mistakes in

working with algebraic expressions begin when it becomes necessary to abandon linear
processing. These students continue to use the old method of decomposing the situation into

non-interactive sub-processes, trying to attain the goal by attaining each sub-goal in a linear
sequence. According to Matz, the solutions of naive solvers to unfamiliar algebraic problems

are uniform and fixed, whether they are correct or incorrect. Even the occasional mistakes
made by experienced solvers are surprisingly uniform. This leads her to claim that there are
regularities in the way people use familiar rules in unfamiliar contexts, whether successfully or

not. There are regularities in the way they perceive the structure of a new problem according
to their prototype of a familiar problem or rule, whether correctly or wrongly. These
assumptions lead Matz to search for a general theory which considers structure one of the
main factors in algebraic competence and to suggest a method of categorizing errors.

Green, in contrast, claims that the mistakes related to the mathematical structure are random

and inconsistent. In his paper of 1982 he mentions a specific difficulty of beginning algebra

students, the fact that they partition algebraic expressions into component parts in ways which

seem aimless, mistaken and arbitrary.

Numbers as a cover story
In the present paper we intend to show that the difference between these two viewsthe one
claiming that mistakes are consistent and the one claiming that they are random and
unsystematic--is partly the result of ignoring a major element in the process. This element is

the context of the expressions--in our case, the numerical context. Our assumption is that at

the beginning of algebra the focus shifts from concern with the numerical properties of the
terms in the expressions to the properties of the operations. These properties do not change
according to the arbitrary, one-time configurations of the numbers being operated upon. This

way of looking at the matter leads naturally to viewing expressions as being context-free
entities and there-by to the concept of structure as a central one in analyzing the way students

work. The legitimate structures of an expression are compared to the structures used by the
solvers, in an attempt to either find some systematicity in the solvers' use or to reach the
conclusion that there are no regularities in this area.

We will try to show that naive solvers do not consider the properties of operations to be
context-free -- they perform as if some of these properties are dependent on the specific
numerical context. The way they interpret an expression and the alternative structures that
they spontaneously associate with it, seems to be dependent upon such factors as the place of

a particular operation within the expression, and particularly the unique numerical combination
at hand.

For example, if we compare the expression (1) 217 - 17 + 69

with the expression . (2) 267 - 30 + 30

we see that the type of numbers in the expressions leads to sequential computation from left to

right much more easily in the case of expression (1) than expression (2), as the latter
encourages operating on -30+30 before operation with the 267. While the first expression will

rl600 3 258



not evoke any alternative scheme, whether correct or wrong, the second expression may
evoke the correct alternative scheme of -30+30 "giving zero" (that is, subtracting 30 and then

adding 30 is the same as doing nothing). It may also evoke the incorrect alternative of
performing 267-60, that is, detaching the 30+30 from the subtraction operation (Herscovics

and Linchevski, 1994 ; Linchevski and Herscovics, 1994; Linchevski and Herscovics, 1996).
Examples like 530-10H-10+10 should greatly increase the probability of evoking this sort of

incorrect scheme.

We assume that an example like: (1) 12 x 5:2 x 17

should evoke an entirely different scheme

in some people than the following example: (2) 150 x 2 : 2 x 150

with the same algebraic structure.

It is quite plausible that the correct solution--computation from left to right--will be chosen
most often in the case of (1), while there will be a tendency to choose alternative schemes,

which are not necessarily correct, in the case of (2).

A similar contrast should obtain with the following two

examples: (3) 100: 2 x 25 : 5
(4) 25 : 5 x 2 : 7

Whereas in the first pair [(1)&(2)] the different schemes will sometimes lead to a correct
solution and sometimes to an incorrect one, in the second pair [(3)&(4)] the ultimate result
will not necessarily reveal the use of alternative schemes. It is likely that a student who solved

100 : 2 x 25 : 5 by inserting "mental parentheses", thus actually calculating (100:2) x (25:5),
which gave 50x5=250, was not doing this for the right structural reasons, out of a flexible
view of the algebraic structure: a:bxc:d = (a:b)xc:d = (a/b)xc:d = Raxc)/bld = (axc/b)x(1/d) =

(axc)/(bxd) = (a/b)x(c/d).
Its more likely that the particular numbers that appeared in this example were what led the

student to the view according to which the calculation was performed.

We therefore decided to investigate some of these hypotheses. In this paper we will report on

some of the examples we designed and administered.

Method
In order to sample a wide range of abilities, we interviewed individually all sixth graders in
two classes of the public school system in Israel and in Montreal, where the average age of the
students interviewed was 11:6. All the students had learned the order of operations in class

prior to the interview. Each subject was interviewed individually. We prepared a script with
exact wording of each question. However, the interviews were only semi-standardized, in the
sense that the interviewer could re-phrase the questions. In our report we present the wording

of the questions because we found that even small variations could alter the students'
responses. An observer was presented at each interview to take notes, and also participated

later in the analysis of the students' responses.
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The rationale and design of the tasks
Each of the examples was constructed according to the following considerations. Three
different numerical versions of each algebraic structure were prepared. In one version the
numerical context "went together with" the structure--that is, according to our hypothesis, the
numerical combination encouraged operating according to the correct algebraic structure. In

the second version the numerical context "went against" the structure--that is, according to
our hypothesis, the numerical combination encouraged operating in a way that was opposed to

the correct algebraic structure. In the third version the numerical context of the structure was

"neutral"--that is, the numerical combination, in our view, did not encourage the solver to
operate in either one of these ways.

Consider the following example of an algebraic structure of the form: a - b x c

The following numerical combination "goes together with" the structure: 21 - 2 x 5

The following numerical combination "goes against" the structure: 27 - 7 x 15

A "neutral" numerical combination could take the following form: 20 5 x 3

as the two possibilities, doing the multiplication first (5x3) or doing the subtraction first (20-5)
are equally appealing.

A different sort of "neutral" combination is illustrated by 131 - 17 x 6 where both possibilities
are equally unappealing.

The examples were presented to the students in random order rather than blocks of examples

with the same algebraic structure. Each example was presented separately. In our presentation

of the results, we put together the data for each block to make it easier to interpret the results.

Since the differences between the results of the students in the two classes was non-significant,

we combined the data of both classes for presentation in the table.

Results

The students were first asked: Here is a string of operations. Can you show me a quick
way to find the answer to this problem? ... You may use the calculator if you want, (A
simple calculator was available to be used as a number-facts table when needed).

Item 1

la) 23 5 x 21 lb) 27 - 7 x 51 1c) 27 - 3 x 5

Multiplication first 61% 33% 52%

Subtraction first 39% 67% 48%

Item 2

2a) 27 - 7 + 3 2b) 25 - 7 + 3 2c) 27 - 5 ± 3

Subtraction first 87% 69% 78%

Addition first 13% 31% 22%
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Item 3
3a) 24 : 3 x 5 3b) 240 : 15 x 2 3c) 24 : 3 x 2

Division first 91% 62% 67%

Multiplication first 8% 38% 33%

Item 4
4a) 8 x 5 : 2 x 17 4b) 150 x 2 : 2 x 50 4c) 19 x 16: 15x 17

Left to right 92% 81% 87%

(axb):(cxd) 8% 15% 13%

Item 5

Left to right

a:(b:c)

Item 6

5a) 75: 25 :3
89%
5%

5b) 75 : 9 : 3 5c) 64 : 8 : 4

42% 41%

58% 59%

6a) 168 - 20 + 10 + 30 6b) 130 - 10 + 10 + 10

Left to right 63% 52%

a-(b+c+d) 30% 42%

Item 7
7a) 147 - 16 : 4 + 3 x 5 7b) 37 - 5 : 2 + 4 x 3 7c) 28 - 8:4 + 3 x 2

a-(b:c)+(dxe) 89% 74% 89%

(a-b):c+(dxe) 0% 16% 0%

Discussion

The results support our hypothesis that the specific number combination in each example

encourages the use of certain sequences of operations and discourages others. The particular

number combination in the expression competes with the algebraic structure.

The algebraic structure is supposed to focus attention on the rules of operations, while the

specific number combination is in the best case supposed to encourage searching for the best

alternative among the legitimate structures--the one which takes advantage of the specific

given number combination--without changing the meaning of the expression. The results,

however, indicate a somewhat different picture. The specific number combination often shifts

the focus of attention from the structure to the numerical properties of the given elements in

such a way that the meaning of the expression is changed.
The interaction between the structure and the specific number combination seems to us to

explain, at least partially, what Greeno (1982) sees as random and inconsistent mistakes.

Greeno claims that the specific difficulty confronting beginning algebra students is that they

partition algebraic expressions into component parts in a way which seems aimless, mistaken

and arbitrary. This difficulty stems at least in part from the competition between the structure
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and the biasing number combinations, which frequently encourage decomposition of the
expression at the wrong points.

This phenomenon should not be surprising. In other areas, such as logic and language, there
are many instances of sentences with the same logical structure conveying different meanings

when they have different linguistic content. Earlier research of Linchevski and Nesher (1978)
investigated students' logical judgment of sentences with the same logical structure in different
contexts. Even after the subjects had studied the truth tables and practiced analyzing sentences
and propositions according to the criteria of their logical structure, the verbal context still had
a considerable biasing effect on their perception of the logical structure of the sentence and the
truth value that should be assigned to it.

Leonard (1994) makes use of the distinction between the metaphoric and the metonymic axis
originated by Sassure. Specific words in a sentence can be replaced on the "metaphoric axis"
without changing the logical structure of the sentence, while changes along the "metonymic
axis" lead to a change in the structure of the sentences even if its key words remain the same.
In the second case it is obvious that the change generally produces a change in the meaning of
the sentence, but Leonard notes that even in the first case, when the structure of the sentence
has not changed at all, substituting words in this axis has the effect of changing the
interpretation.

Is there a conflict between number -sense and structure-sense

Mother important consideration is the possible role of focusing on number sense in the
competition between the structure of the mathematical sentence and the specific numbers
composing it. There may be an interaction between the activities aimed at developing number
sense and the great influence of the context on the method, whether correct or incorrect, that
students use in working out arithmetical expressions. One of the components of number sense,
according to Markovitz and Sowder (1994), is mental calculation, which, they claim, involves
the invention of nonstandard methods of calculations based on the properties of the numbers.
They argue that number sense involves using numbers flexibly thus, in developing number
sense the attention should be focused on the particular numbers involved in the calculation.
All this means that the bulk of the teacher's/student's attention in activities intended to develop
number sense is devoted to the specific numbers used in the structure. This factor is the
primary justification for replacing the standard algorithmic procedure by an alternative one.
The goal of developing number sense in the student makes it necessary for the teacher to
carefully choose the specific numbers and operations to use in expressions presented to the
students, so that non-standard solution procedures will lead to more elegant and efficient
calculations. In other words, developing number sense involves taking advantage of the
properties of the numbers in the specific example.

Moreover, number sense is developed in those educational stages in which considerations of
algebraic structure are still only a secondary aspect of the learning process. The examples
presented to students are intended to provoke a search for numerical relations between the
elements and encourage taking advantage of these relations. We call examples of this sort

2:6 9, 3 262



"context- proof or "structure- proof' combinations of numbers and operations, as they are

designed, intentionally or unintentionally, to avoid any conflict between the immediate,

spontaneous alternative procedure, governed by the type of numbers involved and the
algebraic structure. In our opinion, examples like these should be balanced by others in which

such a conflict does arise, in order to provide an opportunity to illustrate the competition

between the structure and the properties of the numbers in the specific combination.

Consider, for instance, one of the examples presented by Markovitz and Sowder, 76 + 53 + 17

- 53. It is plausible to assume (although there is not enough information in the paper) that

canceling the 53s was considered as a strategy indicating greater number sense. However,

according to Linchevski and Herscovics (1994), the slightly different combination, 76 + 17 -

53 + 53 would have led some of the students to a mistaken procedure. They would have

added the 53s as if the combination had been 76 + 17 - (53 + 53), due to what have been

called "detachment of a term from the minus sign" (Linchevski and Herscovics, 1994).

To be sure, we do not claim that flexible, specific solving procedures should be discouraged.

They should indeed be encouraged, but not under conditions that could lead to over-

generalizations. If they, consciously or unconsciously, turn into a goal in itself they might

have dangerous potential in cases where there is a conflict between the structure and what

seems to be a correct use of the properties of specific numbers. The danger is that in these

cases the numbers will beat the structure in the competition between them.

Following our assessment study we initiated several discussions with the students. The

purpose of the discussions was the search for activities aimed at developing structure-sense.

We presented the students with conflicting expressions that were very likely to induce a high

rate of misinterpretations of the algebraic structure. Forexample:

D is presented with the exercise: 136 -36 + 29, he solves it from left to right and gives 129 as

an answer. The following exercise was: 54 - 2x8 + 20,
D: First I have to do the multiplication, 2x8 =16, 16+20 gives 36, 54 - 36 equals 18.

T: I have a question. In the previous question, (136-36+29), another student did the addition

first, Is it O.K.?
D: No, it doesn't make any sense, we better go from left to right

T: In the second example you first added 16+20

D: Here it's O.K. because here it does not make any difference. I mean here it doesn't make

any difference if I first add 16 and 20 and only then subtract it from 54

T: I don't follow, so why in the first one it is not allowed?
D: Here, (in 136-36+29), I can't start in the middle, but here, (54 - 2x8 + 20), I am any way

already in the middle so I just continue, I can do it like that.

We are trying, now, as well, to arise some conflict and to initiate a discussion modeling verbal

situations. For example:

Y (one of the students who evaluated 430 - 15 + 15 as 430 - 30) was told the following story:

R had 47 marbles. He played two games, in the first game he lost 13 marbles, in the second

one he gained 21. Which of the following expressions reflects (represents/embodies) the
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story... which of the following expressions reflect/s the number of marbles he ended up with ...
(1)47 -13 +21; (2)47- (13 +21)

/ think... the second one..., no, ... I don't know
T: .... you are not sure...

Y: I'll try (Y starts to evaluate the second string) ...it gives 33, not 34...um...47 minus 34
gives 13.... (Y looks very doubtful, not convinced by the result)
T: ...well...
Y: doesn't make sense
T: Why?

Y: He should be left with more than 47 marbles. I had 47 marbles, I lost 13 and after that I
gained 21, / got back the 13 1 had lost so I had again 47 and I goteven more. try the first
one

It seems that viewing the expression as modeling the situation has been a good starting point
for a discussion between Y and the teacher regarding the alternative structures of the
expressions.
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SITUATED INTUITIONS, CONCRETE MANIPULATIONS AND THE
CONSTRUCTION OF MATHEMATICAL CONCEPTS:

THE CASE OF INTEGERS

Liora Linchevski Hebrew University of Jerusalem, Israel.
Julian Willamt University of Manchester, UK.

Abstract
A teaching experiment is described which draws on the children's intuitive.
understanding of a disco situation and their manipulations of a double abacus to
keep track of movements in and out of the disco-gates, to facilitate their
construction of the integers and to develop strategies for performing integer
operations. The aim is to provide a situation where the children naturally construct
the integer concept from the class of gates with the same 'report', and to provide
intuitive support for the abacus manipulations required for the integer operations of
addition, and crucially, for subtraction. There is evidence that the children can do
this. At least certain aspects become 'obvious' to the children even though we have
not yet achieved 'comprehensiveness' in the models put forward.

Background
Negative numbers introduce a new aspect into the study of mathematics: for the first
time reasoning in an algebraic frame of reference seems to be required. While
counting numbers are constructed by abstraction from real objects and quantities,
and operations performed on them are related to concrete manipulations, operations
on negative numbers and the properties of these numbers are given meaning through
formal mathematical reasoning. Moreover, some of these properties contradict
intuitions that have been developed in constructing the counting numbers, (for
example, you can't get something from nothing!). Over the years this situation has
led people in the mathematical community to one of two positions. One alternative
has been to completely avoid any attempt to give practical meaning to the negative
numbers, and to recommend treating them formally from the outset (Fischbein,
1987; Freudenthal, 1973). The other alternative is to look for an embodiment, a
'model' that will satisfy the need for providing a practical intuitive meaning to
negative numbers, arithmetical operations on them, and the relations between them
(e.g. Thompson and Dreyfus, 1988; Peled, Munkhopadhyay and Resnick, 1989;
Munkhopadhyay, Resnick and Schauble, 1990; Liebeck, 1990; Janvier, 1985).

Fischbein (1987) argues against the use of the existing models for negative numbers.
At best such models justify only some of the algebraic properties of these numbers,
they do not satisfy the criterion of 'comprehensiveness' (see as well Battista, 1983).
Moreover, Fischbein claims that the models are based on artificial conventions and
thus do not address the cognitive obstacles confronting the students. He believes that
the purpose of a model is to add 'obviousness' and 'correctness' to mathematical
concepts and operations on them, but that this purpose is not achieved by the
artificial models in current use. Moreover, the very definition of the negative
numbers makes it impossible for there to be such a model, because these objects
cannot be described directly and realistically. Their existence and the relations
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among them can only be deduced formally. Fischbein therefore concludes that the
topic of negative numbers should be taught only when the students are ready to cope
with intra-mathematical consideratiOns and justifications, using 'at least' the
inductive-extrapolation method (Freudenthal, 1973, p. 281). Let us now consider the
three requirements suggested by Fischbein: comprehensiveness, correctness and
obviousness. The requirement that a single model should satisfy the need for
comprehensiveness in teaching a mathematical concept is practically impossible to
fulfil. Rejecting models because they are only partial would lead to rejection of all
the existing models in mathematics education, since by definition every model has
aspects that are not in the concept and vice versa (Ost, 1987). Bher et al. (1983, p.
102), note that "the rational number project has shifted away from attempting to
identify the "best" manipulative aid for illustrating all rational-number concepts
toward the realization that different materials are useful for modeling different
rational-number subconstructs."

Moreover, people attempting to solve mathematical problems often make use of
several models in the process of finding the solution. Different parts of the problem
may lend themselves to the use of different representations, including the
combination of concrete thinking with abstract formal reasoning (Bher et al., 1983;
Usiskin, 1988; Sfard and Linchevski, 1994; Gray and Tall, 1994).

The requirement of correctness in models is especially interesting. Resnick and
Ford (1981) also claims that the main purpose of a model is to create a mental image
of 'goodness' and 'correctness' for the system of concepts being learned.
According to these views the purpose of a model is not merely to provide a well-
defined interpretation for a mathematical theory but also to give the theory or
concept a 'correct representation'. This cannot possibly be fulfilled. Every
mathematical theory has or can be given alternative models that provide the user
with different images of the concepts in the theory and the relations among these
concepts. Fischbein's requirement of correctness stems from the fact that the new
concepts being acquired are often extensions of existing concepts (Semadeni, 1984).
Therefore the proposed model must preserve the intuitions and schemes that were
constructed in the narrower frame and transfer them to the extension. When this
condition is satisfied, the person using the model has a feeling of 'correctness'; if it is
not satisfied, the person has a feeling of 'fabrication' or 'obscurity'.

Inherent in the 'obviousness' criterion is the requirement to avoid artificial
conventions that would make a model seem detached from reality. Moreover, in
order for the model to fulfil its cognitive function it must describe a reality that is
meaningful to the student, in which the extended world (for example, the world
which contains negative numbers) already exists and our mathematical activities
allow us to discover it (e.g. Vinner, 1975). In the specific case of negative numbers
this world must include the practical need for two sorts of numbers. It is also
necessary to present situations in this world in which the relevant laws can be
deduced without 'mental acrobatics' (Janvier, 1985), and without inducing a feeling
of contradiction with known truths.
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In this report we describe an experiment in teaching the negative integers to sixth-
grade students, with an attempt to fulfil the third of Fischbein's (1987) criteria, that
of 'obviousness' for addition and subtraction of integers. The construction of the
integers essentially involves the construction of an equivalence class of pairs of
natural numbers, involving a recognition of the' sameness' of a class of pairs such as
1(5,0), (6,1), (7,2)...) and the attachment of some label or sign, eventually this will
of course be +5. We want this to be constructedintuitively thus, the 'procept' (Gray
and Tall, 1994), for the integer will attach itself to an action-in-situation (which
holds some meaning and can evoke intuition), a representation on an abacus (which
can be manipulated independently) and some label, initially just a verbalisation "5
more in", but which in a later episode becomes the formal mathematical symbol,
"plus 5".

Design of the study
The study involved a series of teaching episodes with small groups (of three children
at a time usually) of year 6 pupils who have not yet received any instruction in
negative numbers. The researchers are both teachers and interviewers, actually
participant-observers who presented the whole exercise to the children as an activity
in which they will help to improve the teaching of other children later. All the
meetings were videotaped to allow further analysis. The sequence of episodes is
designed to lead the children to construct the integers from their experience with a
game while using an abacus as a manipulative aid. The teaching interventions are
designed to identify opportunities and obstacles the children meet on the way, the
role of their intuition for the situation (situated intuition), their use of the double
abacus and the spontaneous strategies they develop.

A disco situation (D) is presented which is designed to embody the ring of integers
under addition as an extension to addition and subtraction of natural numbers. This
is done in the context of a crowd of people at a disco, with more disco dancers
arriving or leaving every minute by a number of gates. Each gate is controlled by a
child, who is asked to keep track of the numbers coming in and out, (these being the
embodiment of the natural numbers to be extended) using an abacus (A) with two
wires and two colours of beads (yellow and blue) labelled OUT and IN, respectively.
The 'game' is played by the children drawing cards which symbolise (S) the number
of dancers arriving (blue card, later a pink card with a plus sign, with a numeral
0,1 ,2,3,4...) or departing (a yellow card, later pink card with a minus sign, with a
numeral, 1,2,3,4...) Occasionally the children are required to report the action at
their gate to a controller who records the total scores on the controller's abacus, so
as to decide if the room is getting dangerously full. A rule is made up that if the
controller records 20 more dancers in the room than when the game started, the
disco closes and game ends. (In later sessions these recordings entered the game as
instructions on cards to "Report to controller: if the room is too full then stop").
The children are encouraged to make sense and to extend their understandings by
translation between the three elements of the triple: D, A, and S.
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Results: recording and reporting, towards the notion of equivalence
The children take to the game, the symbols on the cards and the recording on the
abacus naturally: the disco-game seems 'real' for them. In the first sessions, the
video and transcript show that the children find it obvious to record the movements
of people in and out of the gates with the double abacus, and to report the chahge in
the numbers in the room according to the difference in the piles of beads on their
abacus, thus the children ( Je, A and S) report to the teacher (T):
Je: One more There is one more on this side than on this side.
T: How can you tell.
Je: That one is higher than this one One.
T: Why are you sure?.. Did you count or there is a quick way?
(Je looks at the abacus checking with her eyes only)
T: (to A) What about you , A?
A: Sure.
T: Show us.
(A moves the extra blue bead up the rod with her finger to show the extra one.)

The natural reporting by the children of the change at their gate is performed either
by a) counting all the blues/ins and the yellows/outs and taking the difference, or b)
identifying the difference between the piles and counting them. For small
differences it appears to be a visual subitisation, for larger numbers the children
tend to raise the beads which signify the difference and then count them. A third
strategy is to take away the same number of blues as yellows from both sides to
obtain a simplification:
T: Stop we might be full. .... (to S) What are you going to report?
S: More, one.
T: So can you cancel out so you have only one on your abacus?
(S pushes all the yellows and all the blues besides one blue to the back of the abacus.)
T: What did you just take away?
S: Oho, goodness!!
(He does not know how many beads he has removed from each wire, which shows
that he wasn't counting the beads he took away, he noticed only the difference.)
T: Does it matter?
S: No!

It seems here that the child attended to the difference between the piles of beads and
reduced the gate to a simple equivalent form: this has only rarely arisen
spontaneously so far, but can arise after teaching about equivalent gates. When asked
to produce a gate with the same report as one shown to them, but maybe busier or
quieter, the children, without any difficulty, can produce busy gates and quiet gates.
Usually the 'quietest' gate produced has at least one bead of each colour, but in most
cases the canonical gate (with beads of only one colour) is eventually produced as the
'quietest possible gate'. However, when asked to reflect on the transformations they
make to obtain these equivalent gates, the children may still attend to the difference
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between the piles of beads, and maintain this difference (the 'three more blues') by
placing arbitrary numbers of both yellows and blues and then adding the required
difference 'of three blues'. They do not necessarily attend to the addition and
subtraction of equal numbers of beads as such, though this may be spread from child
to child or may require focussed teaching.

Towards a concept: flexibility in selecting a representation
Another obstacle arose when the children played the game on until they ran out of
beads. A variety of solutions have been offered by different groups. Some want to
stop the game and report to the controller. One ingenious solution was to send the
people to another gate which still had some beads (though the children saw this
wasn't realistic in the situation, and therefore that the game should outlaw this). In
the following extract we see a group which first chooses to record the extra
movements in writing, and then develops 'cancelling', 'cancelling-elision' and
'compensation' strategies. This is in their second session of the game, after some
work the previous day on reporting, equivalent gates and their canonical forms, and
some spontaneous recording in writing when the disco became too full. The game
progresses until the abacuses become nearly full, then Ad and Lu suddenly have too
few beads available to them to record the cards they have picked up. Ad has a blue-
2-in but only one blue left, and Lu has a blue-4-in card and only one blue bead left
to bring over (she also has three yellow beads available to bring over). Lu suggests
writing it down as in the previous session, and the teacher presses for an alternative
solution: "Is there another way?"

Ad: Ah . . . you take one off . . . there. .

Ad is removing a yellow bead from his abacus, a compensation for adding a blue,
checking with the teacher non-verbally to see if this is OK. But he is not certain
enough on his own and T's prompt "go on' isn't enough. Lu interrupts, she takes
her one blue, and not having the other three blue beads she decides to cancel 15
beads from each of the wires. This is done by taking back 15 yellows and 15 blues
from the front of the abacus: but she counts the 15 blues starting from 3, thus
leaving the three blues which remained to be recorded!).
Lu: You take 15 off there, (15 yellow beads go over) then take 15. ..(She means

blues but she starts counting from 3), that 'cos 1 added the 4, ..1 added 3 on
because of the 4 ...take 15.

T: VERY interesting, now what did you do there?
Lu: Well the 15 people that had went out, / took o f f the 'ins' and so 1 pushed all . . .

Here she justifies her manipulation by appealing to the situation of the outs and ins.
Notice also the revealing language where the beads are spoken of as 'outs' and 'ins',
that is to say they are the objects, nouns, which represent the history of the process
of people moving in and out. We now return to Ad's solution to his problem,
adopting Lu's method now:
Ad: Could 1 go like that, 'cos that? (takes 2 off both sides puts 2 blue heads hack

because of the blue 2 card he is wanting to count.)
T: What has he done there, Cl?
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Cl: Well, here, it was, ...had no change, so he took two off, (she means off each
wire) because there'd still be no change, (she means the report would still be
'no change' even after cancelling two beads from each wire) but that'd make it
the same, but then he wanted two blues so he put them over.

The game continues, Ad gets a blue 4 card and is again stuck. Because Lu took 15
beads of each colour over she has plenty. of beads available and has no problems, CI
got a zero. Ad takes 4 yellows away from his abacus because he has to count a blue
4 card but has not enough blue beads left:
Ad: Is that OK?(Ad pushes back 4 yellows) Could I do that? (looks around): Is that

all right?
Lu: You should take 4 blues and 4 yellows away but then put the 4 blues hack.
In the ensuing game, CI takes three off both sides so she can put 3 blues back,
(cancelling). Lu is cancelling but sometimes is seen clearly to elide the process, half
transferring a bead before letting it slip back (cancelling-elision). Ad is using a
different strategy: taking off yellow beads instead of adding blues. It is not yet clear
if this is cancellation with elision, i.e. he simply curtails the manipulation, or
whether he sees the actions as really compensatory.
Ad: Seeing as I've got one 'out' (he means he has a yellow one-card and wants to add

a yellow bead to the 'outs' pile, but can't) ..can 1 take one off the 'in'? (Here he
wants to take away a blue bead instead of adding a yellow. Before, he was
always taking off the yellow pile instead of adding to the blue. We may see this
as a recognition of the symmetry of these manipulations, but he still has doubt
because he lacks justification in the situation of the disco.)
. . ...Because .. um.. This bead has gone 'out' so I put one 'out', and this I 'out' so
I put one on the 'ins'.

Then Ad gets stuck again, he has run out of beads in a new way. Actually he has
reached the limits of the abacus. He needs 4 blues and he only has one blue at the
back of the abacus, and 2 yellows at the front of the abacus.
Lu (to Ad): Take 4, no take two out then put two of the yellow ones in . . . and then

take ...just write it down until you get, . . . write "one in".
This extract illustrates a number of features, but especially the way the children can
develop strategies based on an appreciation of the equivalence of the different gate
representations, (they have the same report, the same effect on the numbers in the
room, and this justifies cancelling and bringing over the same numbers of yellows
and blues when needed). They also justify certain equivalences of operations on the
abacus, viz. the equivalence of adding blues and taking away yellows. This lends
potentially intuitive support to later algebraic formulations. Notice the importance
of the abacus in reifying the processes in the situation. The children are able to
manipulate the beads fluently without recalling their situated meaning each time.
They begin to think and talk about the actions on the beads themselves, and their
equivalences. Finally, we note the language constructed by the children, in referring
to the beads as 'ins' and 'outs' illustrates the duality of the process-object of an
integer elegantly, and helps them to translate from the disco situation to the abacus
and back again as necessary.
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Integrating explicit subtraction
We aimed at constructing subtraction naturally from the (disco) situation while
taking advantage of the multi-representation of each number, as a natural extension
of the concepts acquired through previous experience with the game and
manipulations. As long as subtraction meant 'taking away' a number of beads from
the relevant wire and there were enough beads on each wire to take off no cognitive
obstacle has been raised; e.g. -8 take away -3 is -5, since the -8 and -5 were
understood as numbers of yellow beads, and the taking away maintained the same
sense as in their previous experience with Natural numbers and sets. However, when
calculations involve a passing through the zero, e.g. +3 take away +5, or +3 take
away -2, in which the beads are not there to be taken, a shift into the idea of the
equivalent reports and representations is required. Subtraction was justified to the
children as the operation required to recover the state of the gate before a given card
had been added. When presented with the need to undo a card such as -5 when there
are only 2 yellow beads on the abacus the children could reason that there must have
been some cancelling done, and were able to un-cancel by bringing forward yellow
and blue beads sufficient to be able to perform the 'take-away'. This finally led some
children to the point of symbolic subtraction using the double abacus to represent the
integer and carry out the required manipulation.

Discussion
Following earlier research by Diriks (1984) and others the teaching was based on a
model in which the neutralisation of equal amounts of opposites allows every integer
to have many physical representations (Lytle, 1994). This feature supplies grounds
for constructing addition and subtraction as an extension of the children's existing
schemas. However, in contrast to most of these studies we did not want negative
integers and the operations on them to be introduced formally in the context of a
ready made model accompanied by an imposed set of operating rules. We wanted
them to be constructed intuitively so the model developed would be 'obvious'.

The children were encouraged to make sense and to extend their understandings by
translation between the three elements of the triple, Disco, Abacus and Symbol.
Thus the abacus was introduced as a means of recording the movements of dancers
in and out of a gate into the disco, (D--A). The children were asked to report the
score on their abacus in terms of "how many more dancers are in the room?' (A--
D), and to undo a recording by 'reversing the recording on the abacus' by removing
the required number of beads and this was interpreted later as subtraction.
Manipulations and simplifications of the abacus were justified by the teacher or
students with reference to the meanings in the disco situation (involving A-D, then
D--A again). Key elements in these translations were the verbalisations of the
children and teacher, which facilitate and describe (but in some cases hinder) the
making of the appropriate connections. We have found that the abacus
manipulations lent additions and some subtractions immediate 'obviousness'.
Subtraction which involved passing through the zero (e.g. -2 take away +5) requires
flexible use of abacus representations which are justified by the equivalences of the
reports in the game, and in which the obviousness to the children is based on the
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strength of the connection with the situation in which the intuition is based. Further
work on the this strategy is in progress.

The children, as an answer to the abacus' limitations, have spontaneously introduced
written symbolism into the 'game'. The introduction of formal symbols adds two
more sides to the triangle of translations. "Plus 3" symbolizes the action of adding
to the abacus, as well as the resulting report of the abacus "3 more in the room", and
calculations can be motivated by situations (D--S), symbolic calculations executed
through the abacus manipulations (S-A-S) and new problems solved by using abacus
manipulations formalized from earlier justifications based on actions in the disco
situation (reification). It seems to us that by the end of the fourth session many of
the children were ready to abandon the situation, (D), and to operate directly in the
S-A-S translations. However this aspect of the study is also still under investigation.
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SECONDARY PUPILS' TRANSLATIONS OF ALGEBRAIC
RELATIONSHIPS INTO EVERYDAY LANGUAGE :

A HONG KONG STUDY

Francis Lopez2Real
University of Hong Kong

Nearly 600 Secondary pupils in Hong Kong were tested on a series of simple
algebraic problems likely to produce the well-documented 'reversal error'. The two
problems involving the interpretation of an algebraic relationship and its translation
into everyday language were found to have very low facility rates compared to other
items on the test. Analysis of these two items revealed clearly identifiable response
patterns that were very stable across both problems. These response patterns are
illustrated and passible underlying reasons are discussed.

Introduction
The algebraic error known as the 'reversal error' is well illustrated by the following
popular example: "In a College there are 6 times as many students as professors. If the
number of students is denoted by S and the number of professors by P, write an
equation that represents this relation." Typically, the 'reversal error' response is then
6S = P. The continuing research interest in this phenomenon is due to its frequency, its
resilience to correction, and to the difficulty of finding an adequate theoretical
explanation. Various hypotheses have been proposed in terms of the misapplication of
natural language rules (Kaput, 1987), direct syntactic translation (Mestre, 1988),
incorrect frame retrieval (Davies, 1984), and the idea of static comparison (Clement,
1982). More recently, McGregor & Stacey (1993) have argued that none of these
models satisfactorily explain all the situations in which the reversal error occurs. They
in turn propose a theory of cognitive models (developed from Clements' static
comparison) in which reversals are explained as "direct representations of cognitive
models in which the numeral is associated with the larger variable" (p.228). The
present study focused on four situations (and variants) that are likely to produce the
reversal error. These are illustrated by the matrix below (non-referent means that no
real-life objects are mentioned, simply numbers).

Multiplicative Additive
Concrete-referent
Non-referent

The Student/Professors problem is an example of the Multiplicative/Concrete case. An
example of an Additive/Non-referent case is "p and q are numbers. p is 6 more than q.
Write an equation that describes this sentence". The typical 'reversal' response is then
p + 6 = q. The detailed results of this study are discussed in Lopez-Real (1995). The
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conclusions supported the McGregor-Stacey theory but also provided strong evidence
that the construction of cognitive models is a function of the syntactic structure and
lexical items of a given statement as well as its semantic content.

Translation from Symbols to Everyday Language
In common with previous research on the reversal error, the present study
concentrated on items in which the pupils had to construct a mathematical equation
from a statement written in everyday language. (These are referred to as 'construction'
items later in this paper). However, two questions were included that required the
opposite process; that is, the interpretation of a mathematical equation into everyday
language. One example of this type of question was used by McGregor & Stacey
(1991) at the 'trial' stage of their project but none were included in the final testing.
The purpose of including these two items was to determine to what extent the reversal
error would still be evident when interpreting an algebraic equation. Since these
questions involved interpretation rather than construction, it was anticipated that they
would be easier than the other items on the test. This would be in accord with general
theories of language acquisition in which 'decoding precedes 'encoding' and is
therefore assumed to be easier (e.g. Aitchison, 1989). In fact, the results showed
exactly the opposite with these two questions having the lowest facility rates in the
test. Moreover, being more open-ended in nature, it is perhaps not surprising that a
greater variety of responses was produced. The range and complexity of these
responses meant that they could not be adequately covered in the initial report of this
study (Lopez-Real, 1995) and were therefore omitted at that time. This paper now
deals largely with the analysis of these particular items.

Sample and Background
A total of 577 Form 2 pupils from 6 secondary schools in Hong Kong were tested for
the study. Hong Kong has a selective system at the transition stage from Primary to
Secondary schools and pupils are assigned to one of 5 band-levels according to their
academic performance at the end of primary education. Secondary schools will then
cater for a narrow range within this band structure (e.g. a school may be described as
a Band 2 & 3 school etc). Schools may opt to use English or Cantonese as the
medium of instruction. At the present time about 70% of the secondary schools are
described as operating an English-medium policy. However, in the case of
mathematics it is very common for teachers to use a mixed-code presentation whereby
many of the explanations are given in Cantonese with key phrases, especially those
involving technical terms, emphasised in English. Nevertheless, the pupils in such
schools use English language textbooks and take their examinations and tests in
English. The schools chosen for this study were English-medium schools covering
Bands 1 to 3. Hence the pupils were 'average-to-high' in terms of academic
performance. The test consisted of 10 items.
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Items and Response Patterns
For simplicity, the two 'interpretation' items are numbered Q I and Q2 below, although
they did not appear in these positions in the test :

QI. Mrs Chang has N oranges and M apples. Write a sentence to explain the meaning of
the following statement: N = 3M.

Q2. Mrs Leung has P oranges and Q apples. Write a sentence to explain the meaning of
the following statement: P = Q + 5.

Nine clearly distinguishable response patterns were identified for both the additive
and multiplicative problems. Idiosyncratic or rare responses were classified as
miscellaneous and there was a final category for omissions, making eleven in all. Each
of the nine response patterns is listed below with a brief explanation and illustrative
examples.

i) Correct Description
The most important characteristic that had to be evident here was some understanding
that the equations referred to the number of oranges and apples. Nevertheless, very
flexible criteria were used as far as grammatical construction was concerned. All of
the following were admitted:

The number of oranges is 3 times of apples. (QI)
Mrs Chang's oranges are 3 times as much as her apples. (QI)
Amount of oranges is 5 more than apples. (Q2)

ii) Reversal Description
This involved a sentence structure similar to (i) but with the relationship reversed:

Mrs Chang has 3 times as many apples as oranges. (Q1)
She has 5 more apples than oranges. (Q2)

iii) Implied Reversal
Here a 'ratio' or 'unitary' description was given, or an illustration using numbers, that
implied a 'reversal' conception:

There are 3 apples for each orange. (Q1)
If she has 2 oranges she has 2+5=7 apples. (Q2)

iv) Direct Substitution
A description using both fruit and the letters of the equation that suggested pupils
simply substituted words into the equation :

N oranges is the same as 3M apples. (Q1)
P oranges is equal to Q apples add 5. (Q2)

v) Correct Relation
A sentence using fruit and one of the letters in the equation. This is in contrast to (iv)
insomuch as the statement now suggests that the correct relationship is understood:

If she has M apples she has 3M oranges. (Q1)
There are P oranges and P-5 apples. (Q2)
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vi) Number Relation
This is characterised by the fact that no reference is made to the fruit. It is a simple
description of the equation per se, and no attempt is made to explain the meaning:

N is the product of 3 and M. (QI)
P is 5 more than Q. (Q2)

vii) Number Reversal
As in (vi) this is purely a description of the number relation but here the reversal error
is also evident:

M is 3 times N. (Q1)
Q is 5 more than P. (Q2)

viii) Price or Weight
Although neither cost nor weight are mentioned in the problems, these descriptions
include such extraneous references:

An orange weight is 3 times an apples weight. (Q1)
The money of an orange is the money of an apple plus $5. (Q2)

ix) Manipulation of Equation
No attempt at a written sentence but the equation is either manipulated or some
related mathematical expression is given:

N/3 = M ; 3M + M = 4M (Q1)
(Q+5) + Q = 2Q + 5Q ; P - Q = 5 (Q2)

Results
It should be noted that in the above classifications some of the responses may be
correct in a limited sense (e.g. "P is 5 more than Q" correctly describes "P = Q-+-5")
but are not considered correct in terms of the requirements of the question. In the
following table some of the classifications have been grouped together. Thus,
"Correct" now incorporatis categories (i) and (v), while "Reversal" incorporates
categories (ii), (iii) and (vii).

Table I : Distribution of Response Patterns

Q1 Q2 Overlap
(Q1)n(Q2)Category Number % Number %

Correct 136 23.6 147 25.5 136(119)147

Reversal 95 16.5 78 13.5 95(54)78

Substitution 98 17.0 1 1 1 19.2 98(97)111

Number relation 122 23.6 123 21.3 122(115)123

Price/Weight 34 5.9 24 4.2 34(23)24

Manipulation 47 8.1 42 7.3 47(41)42

Miscellaneous 32 5.5 32 5.5 32(15)32

Omit 15 2.6 20 3.5 15(12)20
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It can be seen from Table I, and the
bar-chart on the right, that the

distribution of these responses is very
similar for both problems. Moreover,
the degree of 'stability' or 'consistency'
across the two problems can he further
illustrated by looking at the 'overlap' for
each category. (This is shown in the
last column of the table by the number
in the brackets. That is, the number of
students who answered both questions
with the same type of response.)

U 1:12

.... A
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Taking all the categories together, we find that 476 out of the 577 students (that is,
82% of the students) gave precisely the same type of response for both problems.

The facility levels for the 'construction' items on the tests ranged from a low of 50% to
a high of 96%. (It will be recalled that the pupils in this study were 'average-to-high' in
terms of academic achievement). Thus, the performance on these two items (with
facility rates around 25%) represents a striking difference. Table 2 shows a
comparison of these two 'interpretation' problems with the two lowest-facility
'construction' type problems, with the incidence of the reversal error highlighted. The

latter problems are labelled Q3 and Q4 here for convenience:

Q3. In a college there are 10 times as many students as teachers. If there are N teachers

and M students, write down an equation showing the relation between N and M.

Q4. In a classroom there are 6 more girls than boys. If there are N boys and M girls,

write down an equation showing the relation between N and M.

Table 2: A Comparison between Interpretation and Construction Items

Correct Total Facility

(%)

Errors Reversal

error

Reversal as

% of Total

Reversal as

% of Errors

Q1 136 577 24 441 95 17 22

Q2 147 577 26 430 78 14 18

Q3 97 194 50 97 63 '32 65

Q4 116 194 60 78 44 23 56

(Note that the total number of responses for Q's 3 & 4 is not 577 since parallel versions of these

problems were also given whereas Q's 1 & 2 were given to all pupils.)
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Discussion
In the introduction it was anticipated that the interpretation of , a mathematical
statement into everyday language would be an easier task than the construction of a
mathematical relation from a statement in natural language. For the cases examined in
this paper, the results clearly show that interpretation can be at least as difficult, if not
more so, than construction. Why should this be? First, the rather naïve analogy with
decoding and encoding in natural language acquisition is patently not valid. In such a
case, one is dealing with two processes acting on the same language whereas here we
have a translation or transformation process between two languages, namely natural
language .and symbolic mathematical language. In fact, the situation is rather more
complex than this description suggests since, in both the interpretation and
construction problems, at least one of the sentences used involves both symbolic and
natural language. Taking Q's I and 3 as examples we can diagramatically represent
them as follows:

Q3. In a college there are 10 times as many Natural language

students as teachers.

Mixed natural and symbolicIf there are N teachers and M students, write down

an equation showing the relation between N and M.

Possible solution: SymbolicM = ION

Q I Mixed natural and symbolicMrs Chang has N oranges and M apples.

NaturalWrite a sentence to explain the meaning

of the following statement:

1'

N = 3M Symbolic

Possible solution: Natural languageMrs Chang has 3 times as many

oranges as apples

There is little here to suggest an intrinsic reason why one translation direction should
be more difficult than the other. However, we may note that the final required
sentence can be considered more 'open' in the interpretation case than the
construction. In Q3, once we have been instructed to write an equation relating N and
M we have a clearly defined goal (whatever our capabilities may be in attaining it).

0
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This was evident in the test papers where, apart from omissions and some
idiosyncratic answers, over 90% of the students produced some form of equation or
mathematical expression. However, it is clear from the response-patterns listed earlier,
that in the interpretation problems no such clear goal was apparent to the pupils. It
may also be a significant factor that Q's 1 and 2 begin with a mixed natural/symbolic
sentence whereas Q's 3 and 4 set the scene with a purely natural-language sentence.

This would need to be explored with further testing.

It would appear that the open-ended nature of the interpretation problems allows for a

myriad other influences to act on students' solution attempts. And it can be argued that

what is most revealed by these different response patterns are the underlying
perceptions and assumptions that pupils hold with respect to mathematics and
problem-solving. For example, consider the Number Relation Category in which pupils

completely ignored the reference to fruit. This is strongly suggestive of the divorce of
mathematics from real-world contexts in the pupils' minds. If mathematics is really all
about numbers and equations, then when asked to explain the meaning of a
mathematical relation the obvious response is to give a literal description of the
equation. Similarly, the Manipulation category suggests that for many pupils the over-
riding perception of mathematics concerns performing algorithms. Unless one is
actively operating on and manipulating numbers or symbols then one cannot be doing
mathematics. The descriptions involving Price or Weight, which are brought in quite
gratuitously, are indicative of pupils' attempts to link the questions to familiar 'text-
book' problems. These pupils' strategies for problem-solving are almost certainly
dependent on identifying key words and contexts (in this case, the association of fruit
with shopping perhaps since, in sex-stereotype fashion, the protagonists are female).
Finally, let us consider the Substitution category which uses both fruit and symbols
e.g. "N oranges is the same as 3 times M apples" and "Q apples plus 5 is the same as
P oranges". The reason for describing this as 'substitution' is that the attempt to
explain the equation is met by simply replacing N and M by N oranges and M apples
taken from the initial sentence. The two variables remain effectively unrelated in the
final sentence since there is no appreciation that one is a function of, or dependent on,
the other. This is particularly clear in the phrase "Q apples plus 5" where we are
forced to ask "5 what?"
Table 2 superficially suggests that although the reversal error is still an important
element in the interpretation problems, it is no longer as dominant as in the
construction problems. Certainly this is so when we look at the reversal errors as a
percentage of all errors. However, this may not be surprising in view of the fact that
the facility rate is so much lower due to so many other error-responses coming into
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play with the interpretation problems. (It can be argued that in the construction case, if
an error is made then it is likely to be the reversal error simply because the number of
alternatives is limited). In any case, it is clear that the reversal error is still frequent
enough to warrant serious attention, particularly in those cases where the students
attempted to write a natural-language sentence.

Conclusions
A number of interesting questions and issues are raised by these results. First,

although the students in this sample are competent in English, it must be remembered
that it is their second language. The problems described as 'interpretation' here do
indeed involve interpreting the algebraic equation but of course they also involve the
construction of the natural-language explanation. Is this a significant difficulty for
second-language students? Secondly, although the initial focus of this study was the
reversal error, the results suggest that the interpretation of algebraic equations and
expressions may be far more complex than supposed. It may well be that there is far
too much emphasis in most mathematics curricula on the 'construction' aspects of
mathematics (i.e. doing mathematics) and not enough on making our students
mathematically literate (in the sense of being able to 'read' mathematical content
meaningfully). In statistics there certainly has been a change of emphasis in recent
years towards more interpretation and understanding of graphs and charts rather than
their production.
In order to explore more fully pupils' abilities to interpret algebraic expressions and
equations, further testing is currently being undertaken and it is hoped to report on this

in the future.
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LETTING GO: AN APPROACH TO GEOMETRIC PROBLEM
SOLVING

Eric Love
Centre for Mathematics Education-

Open University UK
This paper develops an argument concerning the use of dynamic geometry software in the
teaching of geometry. The use of such sqftware offers opportunities for creating the geometrical
objects necessary for solutions to geometric construction problems and can give insight into
relationships involved. A technique involving releasing constraints construction problem is
described, which has curricular implications and raises issues of students' capabilities..The
paper concludes with suggestions for further enquiry.

GEOMETRICAL CONSTRUCTION PROBLEMS

Geometric construction problems have a long history both in mathematics generally
and in school curricula. They range from 'basic' constructions, "Construct a
triangle given the lengths of each of the three side", to ones which involve the use
of many supplementary geometrical objects and ideas. Traditionally, such
construction problems have been solved by reasoning, and any new geometrical
objects needed for the construction were called into being as a result of mental
imagery, possibly augmented by drawing on paper. Where students were called
upon to create constructions for themselves (rather than reproduCe previously
taught ones), the majority of students had difficulty in imagining which new objects
would be helpful and so were unable to solve the problems without considerable
assistance (see, for example, Schoenfeld 1987).

Polya (1962) produced an analysis of the principles underlying many such
constructions, which he described as 'the pattern of two loci'. He illustrated this
with the problem of constructing a triangle given its three sides. One side, a, is
drawn with endpoints B and C. Then a circle of radius b is drawn with centre C
and a circle of radius c is drawn with centre B. the intersection of the two circle
the two loci gives the third vertex of the triangle.

Fig 1 Constructing a triangle

Polya's analysis highlights two features. He claims that the first essential is to
reduce the construction to that.of creating a single point (the vertex A in this case).
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By laying down the segment a, we have already located two vertices of the
required triangle, B and C; just one more vertex remains to be found. In
fact, 1...) we have transformed the problem to another problem equivalent to,
but different from, the original problem. (Polya p.4)

The second feature is to `... split the condition into TWO parts, so that each part
yields a locus for the unknown point; each locus must be either a straight line or a
circle'.

However, the use of Polya's method requires that the loci are already envisaged,
which, in turn requires a realisation of how they can be used in solving the
problem. In effect, the problem is imagined as solved before the construction is
embarked upon. It is this Imagined as solved' feature which causes great difficulty
for many learners.

LOCUS CONSTRUCTION IN DYNAMIC SOFTWARE

With the availability of dynamic construction software such as Cabri- geometre and
Geometer's Sketchpad, new techniques become available that do not rely on the
learner visualising the loci in advance. Learners can create loci without previously
having to. imagine them, and these loci can be used as the basis for solving
construction problems.

When using dynamic construction software, one can follow Polya by separating the
conditions of the problem and consider them separately. In practice, this means
dropping one of the conditions while constructing a figure subject to the other
constraints. This creates a dynamic configuration which is constrained by the
other conditions. The key feature available in this software is the drag mode (see
Laborde (1995)). When dragging a point, other geometrical objects move,
retaining their relationships in the total figure; by then observing the loci of
relevant points, the solution to the problem can be seen amongst the possible
positions. Moreover, by obtaining and examining the loci, an actual construction
method which can solve the problem can be inferred. To fix the discussion, the
following problem will be used as an example.

Example 1. Given a point A and two lines b and d. Construct a square
ABCD with B on line b and D on line d.

Fig 2 The envisaged constructed square
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A method which uses the described features of the software is illustrated by the
following solution:

The condition that D should lie on line d is dropped, and a square is to be
created with adjacent vertices at A and on line b. To do this, a variable point
B is created on line b and a square ABCD is constructed on side AB.

When B is dragged along line b, the locus of D appears to be a straight line,
call it tn. The intersection of line m with line (twill give the desired position
for D, and so give the square ABCD.

d

Fig 3 The locus of D

The locus of D has now been made overt: that it appears to be a straight line (and
perpendicular to line b) now becomes part of appreciating the problem and a
significant step in the solution.

Using the sgitvare to gain further insights

There is, of course, a further stage in solving the problem: the position of line m
has to be determined. This requires finding a point on line in. The geometric
software has a role to play in this also.

Dragging B to the foot of the perpendicular from A to line b (call this point P)
gives rise to this configuration:

d

(Q)
(P)

Fig 4 A particular position of B.
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This indicates that line In cuts line b at point Q where PQ =1AP. Again, the drawing
suggests how the intersection of line to with line b is related to the distance of point
A from line b and thus enables the intersection point to be constructed. Thus all of
the elements are now available for the solution of the problem.'

Of course, while the software has assisted in solving the problem, it has not been
proved that this is a solution. Such a proof requires insight into the relationships
between the geometric objects. Further experimentation with the software can help
here also. In Sight can be gained by asking further questions and exploring in
outcomes in the drag mode.

What is the effect on line in of dragging each of the given elements in the
diagram? That is, of moving point A; of moving line b; of moving line d.
Moving point A moves the line in parallel to itself. Moving line d (whether
rotating or translating) has no effect on line tn. Moving the line b by
translating moves line to parallel to itself; moving the line b by rotating
rotates line in, apparently at the same rate, so line in remains perpendicular
to line b.

The relationships evoked by these might lead to further insights. A solution to the
original problem could then be stated concisely as:

Construct P, the foot of the perpendicular from A to line b. Construct Q on
line b, with PQ = AP. Draw the line in through Q perpendicular to line b.
The intersection of this with line d gives the point D. Construct the square on
the diagonal AD.

FEATURES OF THE METHOD

Thus, the assistance provided by the software is three-fold

producing the geometric objects necessary for solution;

relating those objects to the given conditions;

giving insight into the relationships between the objects in the solution.

The essential feature of the method is to separate the conditions in the problem and
drop one part of the condition. This enables the locus that plays a crucial role in the
construction to be created.

What the approach offers

It might be argued that the solution above could have been obtained by insight and
reasoning, and that no recourse was needed to dynamic geometry software. While
this is so, the hitherto unknown elements required for solution are made visible by
the software and so do not have to be simply imagined or deduced from other
properties by the solver. This is invaluable for the student, who now has the
elements of a solution at their disposal, rather than having to think what they might
be. There is still the issue of justifying the results obtained experimentally, but
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unlike traditional approaches involving reasoning, this approach separates the use
of reasoning to obtain the elements from its use in justifying the solution.

History (.,f the approach

Although Polya was taken as the exemplar of this method, the ideas behind the
method are very old. Polya claims that his method is foreshadowed in Descartes
and, much earlier, Proclus. In recent times, the idea of letting go a constraint is
closely connected to the method, developed by Brown and Walter (1983) of "What
if not? Their technique consisted of listing attributes of a situation and asking what
might be possible if one of the attributes did not hold. They used this technique as
means of generating problems, whereas here the related version is used as a means
of creating solutions. Goldenberg (1995) has advoCated a method of examining
geometrical theorems using dynamic construction software by 'seeing a theorem as
a function or recasting static statements of fact to be dependencies on some variable

element' (p.205).2

FEATURES OF THE APPROACH

Further implications of the 'letting go' approach are shown by two further
examples.

(a) The method is not algorithmic.

Example 2: Given: two concentric circles and a fixed point A, within the
larger circle. Construct a line segment with one end on each circle and its
midpoint at A.

Using a similar approach to this problem, it is possible to separate the conditions
that the line segment has one end on each circle and also has its midpoint at A.
Conditions can be dropped in one of two ways:

drop the constraint that the segment must have its ends on the inner circle and
find the locus of the unattached end.( Fig 4(a));

drop the constraint that the midpoint must be at A and find the locus of the
midpoint of the segment. (Fig 5(b)).

(a)

Fig 5 (a) and (b). Dropping different constraints
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Here it matters crucially which constraint is dropped: dropping one constraint leads
to a curve that is not constructible using traditional methods. Dropping a different
constraint leads to a circle (in fact, of the same radius as the larger circle) and an
easy construction. In the case of the construction implied by 5(a), experimenting
with the given objects can again suggest further relationships.

(b) Objects used in the constructions..

In the traditional methods, ruler and compass alone are used. Where a problem
cannot he solved using these methods, the software can still effect on construction.

Example 3. Given two parallel lines, / and in and a point between them, A.
Draw a circle that is tangent to both I and in and passes through A.

There are several ways of dropping a condition to solve this problem. One, perhaps
not so obvious, is to create a variable point, M, on line m and create the locus of
points which are equidistant from A and from M. Where this locus intersects with
the line parallel to and mid-way between lines / and m will give the solution.

1

m M

Fig. 6 A locus solution

The construction in this case leads to a parabola, which cannot, of course, be
constructed with ruler and compasses. Polya dismisses a related solution to this
problem because

although splitting the condition into these parts is logically unobjectionable it
is nevertheless useless: the corresponding loci are parabolas: we cannot draw
them with ruler and compass it is an essential part of the scheme that the
loci obtained should be circular or rectilinear. (Polya (1962), p.6)

However, parabolas can be constructed in Cabri-geometre and so the intersection
point found. This construction raises the issue of what might be allowable objects in
constructions.

SOME CURRICULAR IMPLICATIONS

The suggestibility of results

The figures obtained in the constructions are suggestive rather than definite. Indeed
it is easy to think, mistakenly, that some locus is a particular kind of curve (a conic,
say) when it is not. What the results do is to suggest certain relationships, which are
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then overtly available for reflection, discussion, amendment. Loci on the screen
provide indicators: they are not definite means of construction.

Types of constructibility

In the examples above, some solutions to the problems relied upon ruler and
compass methods, whereas others required the use of conic sections. Traditionally,
the methods available for construction in school mathematics have been restricted
to the use of ruler and compass. Largely because of the influence of Euclid on
school mathematics, ruler and compass constructions came to be seen as the pre-
eminent and often the sole allowable means of constructions. The earliest
versions of the software being used here also restricted themselves to such
constructions. The work of Knorr (1986) on problem-solving in ancient Greece has
clarified and overturned this ancient legacy. Knorr demonstrates that, far from
pursuing the use of ruler and compasses methods as a means to establish a formal
programme of Mathematical constructivism, the mathematicians of the time were
engaged upon 'the activity of investigating problems of construction'.

By the time of Apollonius, I...1 the wealth of results permitted one to gain a
sense of the structure of the field: which forms of conditions give rise to
planar loci (circles and lines), which others to solid loci (conic sections), and
accordingly, which kinds of problems are amenable to planar or solid solving
methods. (Knorr p.369)

We can now assume that the restriction to ruler and compass was part of a project
to classify. problems involving constructions by the kinds of methods employed.
The facilities available in Cabri-geometry now allow constructions involving conic
sections as well as circles and straight lines.3 This offers a challenge to the
development of school geometry: in what sense is a construction obtained by the
intersection of a conic and a circle less valid, when the means of producing conics
is available?

Psychological Issues

The inhibiting effects of students' perceptions of geometry on their geometric
problem-solving have been outlined by Schoenfeld (1987). Although some of these
difficulties may be mitigated when dynamic construction software is used, others .

are likely to remain, and it is possible that new ones will arise, as is suggested by
Laborde (1995). For example, it may be conjectured that students are likely to have
difficulty in separating the various conditions in the problem. With the locus-
construction method outlined above, one additional difficulty is likely to be in
ignoring one condition and still assuming that a solution can be found. On the one
hand, it might felt that such a 'reduction of the cognitive load' would make a
problem easier to deal with. However, this is to ignore the emotional cost of
leaving out (leaving behind) some of the stipulations of the problem.
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CONCLUDING REMARKS

To assess the viability of these methods by students a research programme is
needed. Such research -would need to focus on:

how well students can separate the constraints in a construction problem;

the psychological barriers to dropping constraints;

what criteria they use for choosing the constraint to be dropped;

whether, once the locus is found, together with sufficient means for constructing
it, students appreciate the need for justification (and if not,-how this need might
be fostered);

what are the problems for students associated with the methods of construction
involving loci from ruler and compass (i.e. circles and straight lines) as against
those involving conics.

It is hoped to examine these issues in a further paper.

NOTES

I One different method is to create points on the locus and use them to create the line m. The
intersection point of line in with line d can then be found. This method raises other issues about the
status of objects in Cabri-geornetre.

2. The Connected Geometry project at the Educational Development Centre is attempting to recast the

curriculum in such a way.

3 Although Cabri-gionletre does not provide intersections between two conics, but only between a
conic and a line or a circle.
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LEARNING TO FORMULATE EQUATIONS FOR PROBLEMS'
Mollie MacGregor and Kaye Stacey

University of Melbourne

We report an investigation of students' attempts to formulate equations for
word problems. A sample of 90 students aged 14-16 was tested three times
over a 10-month period. Some students used no algebra in any test, some
tried to use algebraic formulation without success, and some were able to set
up equations that could be used to solve the problems. In this paper we trace
a progression from naming quantities through describing relationships to
writing equations. Certain well-documented errors were not as common as
expected. Integrating all the necessary information into one useful equation
was a common difficulty. We discuss the effects of particular teaching
approaches on the use of algebra for solving problems.

Over the past two years we have been investigating students' performance in
formulating algebraic equations for word problems. In Stacey and MacGregor
(1995) we reported our findings concerning the effects of problem presentation on
students' solution strategies. The majority of students in our sample had not
attempted to use algebraic solutions. However we observed that a considerable
number of them used algebraic letters to name quantities in a problem or to label
parts on a diagram, but did not go on to make use of the notation. To solve the
problem they switched to arithmetic calculation or numerical trial and error.
Others tried to express the relationships implied in the problem (i.e., the
equivalence between the sum of three unequal parts and a given quantity) but did
not produce a useful equation. One of the schools tested in 1994 allowed us to use
the same test items on two more occasions with the same students. The test results
indicate that, although students' use of algebra had progressed, the majority still did
not formulate a correct equation and solve it. By comparing students' written
responses over the 10 months between the first and last tests, we were able to see
how students approached the task of formulating an equation for a problem, in
what ways they improved, and what the difficulties were that prevented success.

Cortes (1995) identified several types of errors in the formulation of equations for
word problems. Some of these errors were associated with (a) recognising
relationships between quantities in the problem situation and writing them
correctly, and (b) writing an equation or system of equations that would enable the
unknowns to be calculated. One cause of error in representing relationships was the.
reversal error in writing an expression or equation for compared quantities (e.g..
students wrote the incorrect x 120 = y to represent "x is 120 greater than y").
There is much evidence (Lochhead & Mestre, 1988; MacGregor & Stacey. 1993)
that when students write algebraic equations and expressions about two compared
quantities reversal errors are common. Cortes found that 30% of his student sample
made the error in a problem-solving context. Another difficulty in representing
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information given in a word problem is the symbolisation of sums and products.
Stacey and MacGregor (1994) found that in some situations students write
conjoined terms for sums and use exponential notation for products. It is likely
therefore that representing the separate relationships given in a word-problem, - an
early step towards formulating the final equation or system of equations - is a
major obstacle for students. Integrating these relationships as an equation in one
variable is another crucial step, as Cortes has found. In the present study we looked
at students' progress in these two steps in writing equations to solve word
problems.

Test items
The tests comprised six algebra word problems varying in difficulty. Students were
asked to write an equation for each problem and solve it. In Figure 1 we show three
of the problems, and we refer to them in our discussion of students' difficulties.

Bednarz and Dufour-Janvier (1994) used problems of this type ("unequal partition"
problems) for testing students with different amounts of algebra experience. They
found that when a problem was worded so that two quantities could be expressed
directly in terms of the first one, students found it easy to solve; when this was not
the case, problems were harder to solve. According to Bednarz et al.'s data,
Problem I (see below) would be far more difficult if it were expressed so that
Monday's distance was related to Sunday's distance instead of to Saturday's. In the
easy version, both Monday's journey and Sunday's journey are related directly to
Saturday's journey. We have used the easy problem format for all three of our
problems, thus ensuring that difficulties in comprehension cannot be attributed to
avoidable linguistic factors.

WORK OUT THE ANSWERS BY WRITING EQUATIONS AND SOLVING THEM

1. A group of scouts did a 3-day walk on a long weekend. On Sunday they
walked 7 km farther than they had walked on Saturday. On Monday they
walked 13 km farther than they had walked on Saturday. The total journey
was 80 km. How far did they walk on Saturday?

2. Jeff washes three cars. The second car takes 7 minutes longer than the first
one. The third car takes 11 minutes longer than the first one. Jeff works for
87 minutes altogether. How many minutes does he take to wash the first car?

3. The three sides of a triangle are different lengths. The second side is 3 cm
longer than the first side, and the third side is twice as long as the first side.
The side lengths add up to 63 cm altogether. How long is the first side?

Figure I. Test items
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Subjects and Results

The students were in Years 9 and 10 (age 14-15) for the initial test, and Years 10
and I I (age 15-16) for the final test. All classes involved were mixed-ability classes.
Test papers showing all written working and answers were obtained from 90
students who had done both tests. Their progress, judged on all six problems, is
shown in Table 1. Students' best performance is represented. For example, if a
student used algebraic letters to record given information in only one item of a test
and used no algebra at all in the other items, this student is counted in the "Partial
Use" category for that test.

In Table I, "No algebra" means that there was no attempt to use any algebraic
notation. "Partial Use" means that the student had attempted to use some algebraic
notation, even if only to denote an unknown quantity by a letter (e.g., labelling a
diagram for Problem 3 with the letter x on one side). "Equation" means that a
correct equation was written. By "correct equation" we mean an equation in one
variable that could have been used, or was used, to solve the problem (e.g.,
x+x+3+x+x= 63 for Problem 3).

Table I
Progress in students' use of algebra over 10 months (N = 90)

Final test

Initial test No algebra Partial use Equation

No algebra 53 I I 2

Partial use 2 9 8

Equation 0 0 5

TOTALS 55 20 15

For each problem approximately 70% of students wrote correct numerical answers.
Most numerical answers to all the problems, whether right or wrong, were
obtained by non-algebraic methods, as used by the younger students in Bednarz et
al.'s (1994) study. As Table I shows, there were 35 students (39% of the sample) in
the final test who attempted some algebra. Five students formed and solved
equations correctly in all three tests. However three of the five did not use standard
algebraic techniques for solving their equations. For example, one used a systematic
trial-and-error routine, trying different values for x in his equation.

It might be argued that since algebraic methods are not necessary for solving the
problems. students who were capable of using algebra may not have done so and
therefore have been wrongly classified in the "No algebra" category. However
algebra was required for the harder problems in the test. The students who
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demonstrated their capability to use algebra for these harder problems had used it
for all the problems.

We had expected that in the time between the tests many students would move from
using no algebra to being able to formulate equations. However, as Tablet shows
(see first row), 53 students continued to make no attempt to use algebra, 11 moved
from "No algebra" to "Partial use" and only two students moved from "No
algebra" to writing a correct equation. The second row of the table shows that eight
students moved from being partial users to writing an equation, and nine did not
progress. There were 20 students at the time of the final test who used some
algebraic notation but had not yet progressed to a stage where they could write an
equation for these relatively straightforward problems. Two students used some .

algebra in early tests but no algebra in the final test. Their apparent regression can
be attributed to the effects of teaching. Their responses, and the responses of other
students in their class, indicated that they had been trained to use a systematic and
successful trial-and-error approach to problem-solving. This training may be a
reason why so few of the partial users of algebra did not progress, and why so
many did not use algebra at all in either test.

Students attempted to deal with the information given in the problem in many
different ways. Some of these were helpful ways of recording, whereas others
contained specific well-documented errors that obstructed progress towards writing
an equation. Stages in this progression, and examples of difficulties at each stage,
are shown below. All the examples are chosen from students' written responses to
Problem 1, unless stated otherwise.

1. Naming the unknown quantities referred to in the problem
The use of letters as abbreviated words, widely referred to in the literature, was a
cause of difficulty for only three students. For example, to begin Problem 3 one
student wrote:

3 car = lc + 11
2c = lc + 7
3c = 87

He has written "3 car" to mean "time taken for the third car", "Ic" to mean "time
taken for the first car", and 3c to mean "total time for three cars". He understands
the relationships in the problem situation, but has not understood the crucial
difference between letters as abbreviated words and letters as representing quantities
or variables. It is widely recognised that in certain circumstances students tend to
use algebraic letters as shorthand names for objects. However for the problems used
in this study, only three students used letters as names, as illustrated above. For the
majority. identifying and naming unknowns was not a significant obstacle.

2. Expressing the relationships between the parts

Many students were able to express the relationships in the problem situations, often
in correct algebraic notation (e.g.. x + 7, x + 13) . For Problem 3. diagrams
were frequently drawn and labelled appropriately. However there were some

299 3 - 292



instances of well-documented errors in notation that blocked further use of an
algebraic method. These errors were (a) reversal, (b) concatenation for addition,
and (c) exponential notation for a product.

The reversal error was seen in the work of only two students; for example,
a, b +7, c + 13 to indicate that a is the smallest quantity, b is larger by 7, and c is
larger by 13, instead of the correct a, b , c, where b = a + 7 and c = a + 13.
Concatenation for addition was seen in the work of four students; forexample, x7
and x13 to mean "7 more than x" and "13 more than x". Exponential notation for a
product was seen in the work of six students; for example, x2 to mean "twice x".

All these errors blocked further development of an algebraic procedure.
Summarising the data above, we see that of the 37 students who attempted to use
some algebra, 10 students (approximately one-quarter of the sample) were
prevented from writing correct equations by their misunderstandings of algebraic
notation for sums and products. Their misuse of notation may indicate a poorly-
developed concept of multiplication and its relationships with repeated addition and
repeated multiplication (Stacey & MacGregor, 1994). The reversal error was far
less frequent than expected, given Cortes (1995) finding of a 30% rate of reversal
in formulating equations for word problems.

3. Writing a useful equation that integrates the problem information
Some students wrote correct equations or expressions for all four relationships but
did not combine them into an equation in one variable. For exathple, for Problem 3
a student labelled the three sides of her diagram of a triangle as

A
B = A + 3
C = 2 x A

and then wrote the equation A + B + C = 63. She did not make any use of this
equation and did not solve the problem. Another student wrote, for the same
problem,

S I = x, S2 = x + 3, S3 = 2x
Although this also looks a useful beginning, where Si means "Side I" and correct
expressions in terms of x have been written for each side of the triangle, the student
wrote as his equation S I + S2 + S3 = 63. He then abandoned any further use of
algebra and solved the problem by a trial-and-error method.

Several students did not know how to write equations in the standard way, although
they appeared to understand what relationships were involved and how to integrate
them. They were able to solve the problems by non-algebraic methods, and perhaps
had used their "equations" in some way to guide reasoning and calculation.
Examples are shown in Figure 2. These eight examples represent almost one
quarter (8/37) of the students who tried some algebra. These students knew that they
should represent the sum of three parts, expressed in terms of one variable. It seems
likely that with appropriate instruction they would quickly learn how to write
equations in the standard way. It is puzzling why they had not learned to take this
small last step.
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(viii) [Problem 3] X.* 3

Figure 2. Attempts to integrate problem information

4. Equations as descriptions of procedures used for calculating
Several students calculated answers to each problem by arithmetic reasoning, and
then wrote their calculations as "equations". This method of dealing with algebra
word problems has been observed by other researchers (Arzarello, Bazzini &
Chiappini, 1993). The pseudo-equations were not representations of problem
structure, but descriptions of the procedures students had already used to get each
answer. For example, the equation for Problem 3 was written as

x = (63 3) ÷ 4.
It can be argued that this is an acceptable equation for that problem. However in the
harder problems on the test, which were too difficult to solve by mental reasoning
and arithmetic, students who were limited to writing a description of the solution
method had no chance of success. Their reluctance or inability to engage in
algebraic thinking restricted them to carrying out a sequence of arithmetic
procedures with a numerical answer at each step.

Discussion
In much of the literature, it is suggested that failure to solve a word-problem is
often caused by not comprehending the problem situation. Our data indicate that
major difficulties in formulating equations in our test did not lie in students' failure
to comprehend the written information, to understand the problem structure, or to
see how the parts were related to each other and to the whole. Most students could
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solve the problems by non-algebraic methods, providing confirmation that under-
standing the problem situation was not a difficulty. Their difficulties were due to
misuse of algebraic notation, including not knowing how to write an equation.

As Arzarello et al. (1993) have commented, writing equations for problems is a
complex process. These researchers have suggested that the process of naming (i.e.,
the choice of variables) and understanding the main relations in the problem are the
most crucial steps. Our data indicate that naming variables and understanding
relations were not difficult for the simple problems we used. Knowledge of how to
use algebraic notation to express this understanding was a far more important
factor in the equation-writing process. Most students who tried algebra could name
quantities, and there was little difficulty related to expressing several quantities in
terms of one variable. When writing relationships, about one-third of students
experienced difficulty, although the well-documented errors of reversal and
concatenation were not the major causes. As we have shown, students used
unconventional formats such as arrow-diagrams, vertical addition, or invented
notations to try to denote the equivalence between three parts and their sum. They
were unable to write an equation to integrate relationships they had already
deduced correctly from the information given. Others had not learned that an
equation is written to represent the problem situation; they wrote a description of
the calculation procedure they had used.

In a typical school algebra curriculum, the first problems given to students to solve
by algebraic means can also be solved by simple arithmetic. Until they achieve a
certain level of fluency, students see algebra as an extra difficulty or unnecessary
task imposed by teachers for no obvious purpose and not as a useful tool for
making problem-solving simpler. This attitude is reasonable, since the problems
they have so far encountered (such as the three problems presented in this paper)
are not good examples of the power of algebra. Cortes, Vergnaud & Kavafian
(1990) state that if students are to learn to formulate algebraic equations for solving
problems, teachers need to discourage the search for arithmetic solutions. We
support this view, while reminding readers that it is difficult to find problems that
are sufficiently complex to warrant an algebraic solution but easy enough for
students to work through with understanding and learn from. We suggest that
simple problem situations with harder numbers would help students to see the
advantage of an algebraic method (e.g., changing the perimeter of the triangle in
Problem 3 from 63 cm to 61.8 cm makes it more difficult to solve without
algebra).

In Australian schools some students get very little experience in solving problems
by formulating equations. Methods preferred by many teachers are the trial-and-
error approach, which bypasses the need to learn algebraic techniques and even
avoids the need for writing an integrated equation to represent a problem. The use
of spreadsheets and graphical methods, also currently advocated, is intended to
develop ideas of equations and functions, of substituting values in expressions, and
of understanding what a solution to an equation or set of equations really is.
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Routine manipulation methods for solving equations are not needed for solving
problems by these methods, but even so the equations still have to be formulated. A
question for teachers is how to give the majority of their students a sound
understanding of algebraic ideas firmly grounded in numerical instances, whilst at
the same time helping them to overcome their reliance on arithmetic processes and
develop expertise in the use of formal algebra.
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ORIGINS OF STUDENTS' INTERPRETATIONS OF
ALGEBRAIC NOTATION

Mollie MacGregor & Kaye Stacey
University of Melbourne

Research studies have extensively documented students' misinterpretations of
algebraic letters. The principal explanation given in the literature has been a
general link to levels of cognitive development. In this paper we provide more
specific explanations for particular misinterpretations by analysing written and oral
responses from secondary school students to four simple algebra items. The 24
schools involved had followed different teaching programs. Students' ages ranged
from 11 to 15. We trace the origins of misinterpretations to the making of intuitive
assumptions and pragmatic reasoning about the unfamiliar, to drawing analogies
with familiar symbol systems, to interference from new learning in mathematics,
and to the effects of misleading teaching materials.

The research literature on algebra learning extensively documents students'
difficulties in learning fundamental aspects of algebraic notation such as how to
write simple expressions and equations containing letters, numerals, operation signs
and brackets (e.g., Assessment of Performance Unit, 1985; Booth, 1984;
Cambridge Institute of Education, 1985; Herscovics, 1989; Kiichemann, 1981).
Kiichemann classified students' interpretations of algebraic letters into two major
divisions:(i) letter ignored, given an arbitrary value, or used as the name of an
object; (ii) letter used as a specific unknown number or as a generalised number.
Kiichemann suggested that these interpretations were associated with Piagetian
stages of cognitive development. Nevertheless there is evidence that cognitive level
is not a sufficient predictor of success in interpreting algebraic letters. Firstly, in
the Concepts in Secondary Mathematics and Science [CSMSI research project (Hart,
19M1), some students with below average IQ scores reached unexpectedly high
levels of understanding in algebra. Secondly, many mathematics educators at the
present time recommend an approach to algebra that depends on students' ability to
grasp the concepts of generalised number and unclosed expression. Thirdly, the
success of students in experimental computer environments (Cohors-Fresenborg,
1993; Sutherland, 1991; Tall & Thomas, 1991) suggests that at least some of the
difficulties and errors in traditional algebra learning are caused by the nature of
students' learning experiences and do not reflect their cognitive capacities. These
counter-indicators suggest that other factors besides cognitive level need to be taken
into account when explaining students' understanding of algebra.

In the many years since the CSMS project, it has been widely accepted that
cognitive level is a sufficient explanation for the ways in which algebraic notation is
interpreted. If cognitive level is viewed as a barrier preventing the construction of
certain concepts, it explains why students cannot do certain algebraic tasks.
However it does not explain why they interpret the notation in particular ways and
why they make certain errors. In this paper. we outline some of the reasons behind
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specific misinterpretations, exposing factors which are more accessible to
improvement by teaching than is cognitive level. We present evidence that the
origins of students' interpretations include:

intuitive assumptions and sensible, pragmatic reasoning about an unfamiliar
notation system;

analogies with symbol systems used in everyday life, in other parts of
mathematics or in other school subjects;

interference from new learning in mathematics;
poorly-designed and misleading teaching materials.

Research questions and testing
In this short paper we analyse student's responses to a small number of items (see
Fig. 1) which are concerned with the interpretation of algebraic letters and the
writing of simple unclosed expressions.

DAVID
David is 10 cm taller than Con. Con is h cm tall. What can you write for David's height?

SUE
Sue weighs 1 kg less than Chris. Chris weighs y kg. What can you write for Sue's weight?

TWO OPS
n stands for an unknown number. Write the following in mathematical symbols:

"Add 5 to n, then multiply by 3"

DISTANCE
What is the distance around these shapes?

% cm

5crn

7.C.01 cm

8 cm

Cm

Figure I. The four items discussed in this paper

We discuss the following questions:
I. How do students who have not learned any algebra interpret letters and try

to write expressions?
2. How do students' interpretations of letters and simple algebraic expressions

change over three years of school algebra learning?
3. What are the roots of specific errors and misunderstandings?

The data in this paper are drawn from pencil-and-paper tests given to a large
representative sample of approximately 2000 students in years 7-10 (ages 11-15) in
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24 Australian secondary schools. Some schools used the test across year levels, thus
providing comparative data. Other schools tested the same cohort of pupils on two
or three occasions, providing us with longitudinal data on individual students.
Parallel versions of the items (not shown 'here) were used when the same
individuals were re-tested. At one school 14 students were interviewed and audio-
taped while working on selected items. The schools involved were not randomly
selected, but because of the sample size, the number of schools, and the range of
school types (State, Catholic and private, in working-class and middle-class
suburbs), there can be little doubt that those findings which are common to all the
schools apply to the general population of students. Results which are not uniform
across schools point to the influence of factors specific to particular schools.

In the following discussion of results, we first look at the way in which algebraic
letters were interpreted by students who had not been taught any algebra, and
discover that they tended to make intuitive assumptions or draw on analogies with
familiar symbol systems. These interpretations were subsequently found to be made
by more experienced students. Next we report the results of tests used for several
hundreds of students in Years 7 to 10 in 22 schools, all of whom had studied some
algebra. Some of the misinterpretations and errors made by older students were not
observed in younger students, indicating interference from new learning. Finally
we trace the progress of 156 individual students in three schools who were tested
three times, and link their progress to features of the teaching programs.

Intuitive assumptions and analogies with other symbol systems

To examine students' unschooled ideas about algebraic letters, the algebra items
were included in a test for two mixed-ability classes (n = 42) of Year 7 students
(age approx. 11-12 years) who had not been taught any algebra at school. We
expected that most if not all these students would not attempt the items containing
algebraic letters. if answers were written, we expected them to be at Kiichemann's
(1981) lowest level (i.e., letter ignored, given a numerical value, or used as a label
for an object). Two-thirds of the students did not write any answers, but the
responses of the other 14 are useful indicators of students' intuitive interpretations
of what algebraic letters might mean. Table I shows the responses to the item
DAVID and the likely explanations for them.

We see in Table 1 nine sensible answers to what must have seemed a strange
question. Two students used h to represent a quantity to which 10 cm could be
added, and one wrote the correct expression 104-ii. One student used letters as
abbreviated words. Three students attended to the alphabetical position of h, two of
them deriving a numerical value. as they often have to do in puzzles and codes and
as was used in Greek numeration (a = I, (3 = 2, etc.). Two students reasoned that if
Con's height could be represented by a letter, then so could David's. Two students
assumed they should take a value for Con's height, since it was not given. The other
five students, not knowing what to do, had tried to write something related to the
numbers in the question, ignoring the letter. Table 2 shows the responses of these
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14 individuals to the two items, and explanations for their responses to SUE. It is
clear that students' reasoning across the two items was highly consistent.

Table 1. Responses to item DAVID from 14 students

Frequency Response Assumed reasoning

1 10+h [correct] Add 10 to number or quantity denoted by h.
I h 10 Add 10 onto h.
1 Uh Abbreviated words "Unknown height".
2 18 h is the 8th letter of alphabet, therefore 10 more is the 18th.
2 t, g Choose another letter or adjacent letter for David's height.
2 110 Think of a reasonable height for Con, add 10.
5 10,20,"half' No comprehension of the question; use of the given value 10

and operations "double" or "half'.

Table 2. Responses to items DAVID and SUE from 14 students

Frequency DAVID SUE Assumed reasoning for SUE

1 10+h Y-1 Subtract 1 from number or quantity denoted by y.
I h 10 x Although 10 can be "joined" h, as 10h, 1 cannot be

"removed" from y. To denote I less than y, write x.
1 Uh Uw Abbreviation for "Unknown weight".
2 18 24 y is the 25th letter and 1 less is 24.
2 110 [no response]

2 t, g o, x Choose another letter or adjacent letter.
4 10, 20 1 No comprehension of the question; use of the given

value 1.

I "half' [no response]

These students displayed responses from Kuchemann's lower (letter ignored,
abbreviated word, and numerical value assigned) and higher (letter as unknown
quantity) levels and drew upon analogies with familiar symbol systems and codes.

Interference from new learning

In this section, we demonstrate that older and more experienced students often
misinterpreted and misused algebraic letters as a result of interference from new
learning in mathematics. The four items were included in tests used by 22 schools
for Years 7 to 10. All students in this sample had been taught some algebra. The
Year 10 students were more successful than the Year-7 students, but there was not
the great improvement that we had hoped for. Table 3 gives the success rates.
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Table 3. Percentages of students in Years 7-10 correct (N = 1463)

Item [answer) Yr 7 Yr 8 Yr 9 Yr 10

(n =307) (n=5111 (n=338) (n=307)

I. DAVID 0+10) 39% 52% 63% 73%

2. SUE b.-11 36%. 46% 60% 64%

3(i) DISTANCE 13x1 42% 44% 65% 61%

(ii) DISTANCE (21.+181 27% 35% 55% 53%

4. TWO OPS [3(n+5)1 14% 17% 25% 47%

At all year levels, letters were used with several different meanings, and included

the intuitive interpretations made by Year 7 beginners. However, new
misinterpretations appeared. They were:

as a label associated with an object or quantity (e.g., C to mean "Con's
height" and D to mean "David's height" inC+10 = D).

letter equals 1 unless otherwise specified (e.g., 10+h = II).
letter has a general referent that includes various specifics (e.g., h means

"height", so it means both "David's height" and "Con's height" in the statement
h = h+10).
Furthermore, a few students seemed to believe that if a coefficient is on the left of
the letter it indicates subtraction and if it is on the right it indicates addition. They

wrote h10 to mean "add 10 to h" and ly to mean "take 1 from y". This notion may
come from their knowledge of Roman numerals (as in VI for 6, and IV for 4), or
from their experience with adding and subtracting along the number line (to add,
move right; to subtract, move left), or may be based on intuitive metaphorical
concepts associated with addition and subtraction (Lakoff & Johnson, 1980).

Older students had more opportunities for making mistakes than younger ones
because of interference from new schemas only partly learned or because of their
expectations of being able to use more advanced knowledge. For example, the
misuse of exponential notation (x3 instead of 3x) increased steadily over the four
year levels, from 5% on one item at Year 7 to 18% at Year 10. When students were
interviewed on DISTANCE, they made comments such as "That's the hypotenuse",
or "If it's 8 across that way, then rule off the line and cut straight up". It was
interesting to see that for part (ii) several Year 10 students wrote x2+52+8. Their
uncertainty about how to write "twice x" may have contaminated their knowledge
of how to write ''twice five", and their expression containing a sum of squares
superficially looks like Pythagoras's theorem.

Younger students often ignored the algebraic letter and chose a number for Con's
height in DAVID. For DISTANCE some measured the lengths marked "x cm" with
their rulers. They probably thought this was what the teacher wanted. Our data
indicate that some numerical responses from older students were not due to the use
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of arbitrary numerals or measuring. An example is the following, written by a
student in Year 10 and producing the answer 5 for DAVID:

10 + h
10 + h h

h x h
2h 10

= 5

This student has written the correct expression 10+h but has then tried to use
routine manipulation techniques, possibly recently learned. It is possible that
numerical responses of this type have been misclassified in previous studies as letter
ignored or arbitrary numeral.

Another source of numerical responses, also undetected in previous studies, is the
belief developed by some students that any letter stands for 1. This was strongly
evident in two schools in our sample but rare in others, indicating that it is
probably partly due to aspects of instruction. The origins of this belief became clear
in the interviews. A Year-10 student said, "x is just like 1, like having one
number". Another said "By itself it is .1, the x". For DISTANCE (ii) a student
worked out the answer as 20, and explained that 8 plus two 5's is 18, then "1 more
for each x makes 20". One likely cause of this belief is a misunderstanding of what
teachers mean when they say "x without a coefficient means lx". The student gets a
vague message that the letter x by itself is something to do with 1. Another cause of
misunderstanding is the fact that the powei of x is 1 if no index is written (i.e.,
x = xl). Answers that we had first classified as arbitrary numerical value (e.g.,
David's height = 11) or inaccurate measurement (e.g., 20 cm for DISTANCE (ii)),
could in many cases be attributed to the letter equals 1 belief.

Misleading teaching materials
At three schools, teachers tested their students three times, twice in one year and
once the following year. Table 4 shows results for the 156 students who did all
three tests on the three items DAVID, SUE and TWO OPS. As noted before,
superficial differences were made to the items in the later tests.

Table 4. Percentages correct in groups each tested three times (n = 156)

School A, Yr.8-9 (n=70) School B, Yr.8-9 (n=60) School C, Yr.9- l0 (n=26)

hem 1st 2nd 3rd I st 2nd 3rd I st 2nd 3rd

DAVID 70 86 96 70 90 90 50 69 65

SUE 57 90 93 75 95 90 38 65 46

TWO OPS 20 41 74 35 35 55 31 81 62
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No teaching strategies or learning materials were suggested to the teachers at the
three schools, except as discussed below. Trends in success rates on the table entries
are therefore mostly due to the normal teaching that took place. As Table 4 shows,
students at Schools A and B made good progress in coping with algebraic letters
and unclosed expressions (DAVID and SUE), whereas School C continued to have
difficulty. Success on. TWO OPS improved at all schools, with a dramatic rise in the
performance at School C. The reasons for these trends are explained below.

Teaching strategies and misinterpretation of algebraic letters

Misinterpretation of algebraic letters was a persistent difficulty at School C over all
year levels. At Year 9, several students were guided by alphabetical order and
wrote R for DAVID (i.e., ten letters after H) and X for SUE (i.e., one letter before
Y). This error had not been recognised by the teachers concerned, and was easily
corrected after it was brought to their notice. Other misinterpretations, in partic-
ular the use of letters as abbreviated words (so that "Con's height" was represented
by C or Ch but not by h), were more resilient. Discussion with the teachers
revealed that teaching materials that had been used in Years 8 and 9 for these
students explicitly present letters as abbreviated words (e.g., c could stand for "cat",
so 5c could mean ."five cats"). In contrast, teaching materials used at Schools A and
B consistently present letters as standing for unknown numbers. In the data from
these two schools, there were only two instances of letters used as abbreviated
words in the first test and none thereafter. It seems probable that the widespread
and persistent misinterpretation of letters as abbreviated words by the School C
students can be attributed to the misguided teaching approach that had been used.

Teaching students to co-ordinate two operations

The item TWO OPS initially had a low success rate in the three schools and there
was a very great range of incorrect responses. We had expected that omission of
brackets (giving n + 5 x 3) and the use of conjoining for addition (giving 5n x 3,
I5n, or 5n3, for example) would account for most errors, but this was not the case.
We have no explanations for students' reasoning behind many of the other forms of
incorrect response, and the large percentage of omissions at all levels.

At School C, between the first and second tests, teachers used a lesson designed by
the researchers to address difficulties in coordinating two operations as required in
the item TWO OPS. This lesson used examples of English text as well as mathe-
matics to make students aware of the potential for ambiguity in certain expressions.
The lesson stressed that mathematical statements cannot rely on the support of
context which reduces ambiguity in natural language. For example, in the phrase
"French men and women" the word "French" modifies both "men" and "women".
However in the phrase "French fries and coke" the word "French" is not a modifier
of the word "coke". In the phrase "Twice five plus three" it is not clear whether
"twice" modifies 5 only, or both 5 and 3. Students were given practice at generating
expressions of this type, inserting brackets to resolve ambiguity, and evaluating
them. The teachers used this lesson to teach the use of brackets for grouping and
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distributivity, and they were clearly very effective (see Table 4). In the third test
some months later, several students omitted brackets from otherwise correct ex-
pressions, suggesting that their knowledge of the purpose of brackets had not been
used and was consequently forgotten. There were however no other types of error,
in contrast with the great variety of errors seen elsewhere. We conclude that the
lesson had been effective for the majority of students. We are not sure why it also
seems to have been effective in eliminating the other types of error. The reason
may be that students had learned to focus more clearly on what an algebraic
expression means and to see how a slight change in notation affects this meaning.

Conclusion
We have shown that some common misunderstandings are the results of particular
teaching approaches, and can be avoided. Others have been developed by the stud-
ents themselves, with origins in the drawing of analogies, use of pragmatic
reasoning or interference from new learning. Whilst some algebra errors are
notoriously resilient to change, our research has identified some errors which are
quite easy to fix. If teachers are made aware of the beliefs and assumptions about
letters and mathematical notation that students bring with them to algebra learning,
they can take account of these sources of misinterpretation in their teaching.
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MATHEMATICAL BELIEFS BEHIND SCHOOL PERFORMANCES

Marja-Liisa Malmivuori and Erkki Pehkonen
Department of Teacher Education, University of Hekinki, Finland

-A study on mathematical beliefs examined the important components of seventh-
graders' belief structures and their effect on the'mathematical performances. The
data based on a self-report instrument-and student scores in four mathematics tests
included 476 seventh graders from 25 classes and 19 school over Finland. Factor
analysis of the belief data revealed three main factors indicading self-confidence in
mathematics, efficiency in mathematics learning and external view of mathematics,
and of these high self-confidence was clearly the best predictor of performances.

The role of mathematical beliefs in affecting mathematical problem solving
performances has been widely recognized. According to the given classifications
and definitions (e.g. Garofalo, 1989; McLeod, 1989; Schoenfeld,1985) these beliefs
can be divided into three main categories: beliefs-about the nature of mathematics
and mathematical tasks, beliefs about mathematics learning and teaching, and beliefs
about oneself as mathematics learner and knower. Each of these sets carry
important culturally and socially determined values and conceptions of mathematics
which are developed and reflected in mathematics learning situations. The
significance of mathematical beliefs and belief systems can be attached to the self-
regulatory or metacognitive aspects of mathematics learning (e.g. Garofalo &
Lester, 1985; Schoenfeld, 1987). Thus firmly established mathematical beliefs
function as directive constructions which importantly affect the, use and further
construction of mathematical knowledge and skills. Moreover, mathematical beliefs
seem to create a framework for students' powerful affective responses toward
mathematics, as well as for such self-regulatory behaviours as decisions to persist in
mathematical performances or choice of mathematics courses (e.g. Fennema, 1989;
McLeod, 1989).

Beliefs included in the three categories interact with each other. Thus for
example, students' beliefs about the objects or practices of mathematics learning
can be derived frOm their beliefs about the nature of mathematics and mathematical
problems. And again beliefs about oneself in mathematics are interwined i.a. with
beliefs about mathematical problem solving or mathematical ability (Garofalo &
Lester, 1985; Lester et al., 1989; McLeod 1989). When we come to the
motivational aspects of mathematics learning, beliefs about oneself become impor-
tant. "Beliefs about oneself and motivation are inseparable." (Underhill, 1988).
Constructions of self in relation to mathematics form the basis especially for the
important self-regulative (metacognitive) learning actions as persistence in
mathematics or choice of mathematics (Fermenta. 1989: McLeod. 1989). As another
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influential motivational part of mithematical.belief systems has been suggested the
so-called external vs. internal orientation in mathematics. Externally oriented
students tend to view mathematical ability as fixed entity and mathematics
performances as indicators of one's intelligence, and thus prefer ego enhancement
in their learning goals. Internal orientation instead is connected to the incremental
view of mathematical ability, internal rewards as mastery of mathematical tasks,
and often to high effort expense. (Dweck, 1986; Kloosterman, 1988) These two
different orientational basis together with students' self-confidence in mathematics
and few other belief constructions has been studied against students' mathematical
achievements below.

Method

Subjects and Execution
The sample included 453 seventh-grade students (age 13) from 19 ordinary

lower secondary school and 25 classes over the country with 219 girls and 234
boys, and with varying levels of mathematical achievements. The data was collected
in connection with an international reseach project named the so-called Kassel
project (Blum & al., 1992) directed by Prof. Burghes (University of Exeter, U.K.).
The actual part of this project is involved in studying the development of students'
mathematical skills at lower secondary school level during two years in different
countries. The first part of this project was carried out in Finland in the autumn
1994 by the authors. In this connection, the data of mathematical beliefs was
collected, too.

Measures
The data measuring students' mathematical beliefs constituted of students'

responses to six parts of a self-report questionnaire. These parts dealt with students'
beliefs about mathematics teaching (14 items), about solving mathematical problems
(9 items), about mathematics learning (14 items), about their own activity in
mathematics (8 items), and about their self-confidence in mathematics (12 items).
The responses were given at a continuous scale ranging from -5 (fully disagree) to
+5 (fully agree). The self-confidence measure was mainly adopted from Fennema
& Sherman's (1976) Confidence in Learning Mathematics Scale and modified to
measure as defined by Fennema & Sherman (1976) - students' confidence in their
ability to learn and perform well on mathematical tasks (e.g. "I think I could learn
more difficult mathematics.", "I am not the type to do well in mathematics."). The
rest of the items in the questionaire were adopted from earlier studies on students'
mathematical beliefs (e.g. Kloosterman, 1988; Pehkonen, 1992) or constructed for
the study.
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The part measuring students' beliefs about mathematics teaching dealt with their
views about a teacher's and students' actions during learning situations under the
title of "Things Pertaining to Mathematics Teaching:" (e.g. "... teacher always
carefully explains all things to pupils.", "... students solve mathematical problems
together with other students."). Students' beliefs about solving mathematical
problems were measured with items as "In solving mathematical problems, making
mistakes is a sign of a low ability." or "In solving mathematical problems, there is
usually only one correct solution.". Items on beliefs about learning concentrated in
the part measuring students' understanding of how you can learn mathematics (e.g.
"You can learn mathematics only if mathematics teacher teaches well.", "You can
learn mathematics by working hard for it by yourself."). The activity in

mathematics problems dealt with students' observations of their few self-regulative
(metacognitive) actions or knowledge in the face of a problem, and was measured
by items as "When I am about to solve a difficult mathematics problem I always
carefully map out, how to do the problem." or "I know, what kind of mistakes I
usually do in mahematics problems." The executed factor analysis mainly supported
the partial scale construction.

Mathematical performances were measured by using the sum of the scores in
four mathematical tests (Potential Test - 26 tasks, Number Test - 47 tasks, Algebra
Test 31 tasks, and Geometry Test - 20 tasks), which resulted in maximum 176
points. The problems of each of these tests of the Kassel project (Blum & al., 1992)
were organized according to increasing difficulty, so that most of the problems
especially in algebra and geometry tests remain unsolved by the students. The total
sum of scores was then clearly below the maximum scores.

Results

Structure of beliefs
The first question of the study concentrated on the main factors describing

students' mathematical beliefs on the basis of the data, i.e. which were the principal
themes in students' mathematical belief structures included in the self-report
questionaire. With all the items of the questionaire the factor analysis based on a
scree-test resulted only three factors indicating students 1) active participation and
effort in mathematics learning, 2) self-confidence in mathematics learning, and 3)
external view of mathematics and mathematical tasks (in this order). This belief
structure accounted only 24.8% of the total variance.

Based on the structures included in the questionnaire as well as on the
eigenvalues of the factors, a more detailed description of the data was constructed.
After excluding altogether 12 ill-behaving items from the scales, the factor analysis
revealed 6 factors that were consistent with the views of earlier studies and that
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accounted 40.9% of the total variance. The factors were named 1) self-confidence
in mathematics, 2) effort and regulative orientation, 3) external view of
mathematics, 4) teacher dependence, 5) clear self-image in mathematics, and 6) co-
operative learning (in the decreasing order of significance). The given factor
solution reflected important features suggested to explain students mathematics
learning actions and achievements through their motivational dynamics. The first
three factors accounted together 70.2% of the explained variance (which was 40.9
% of the total variance) and the first factor - self-confidence - alone accounted 33%
of the explained variance.

In accordance with the obtained six factors, six variables was constructed as sums
of the item scores included in each factor, the Cronbach coefficient ranging from
0.736 (for self-confidence) to 0.399 (for co-operative learning). The correlations
of these variables are given in the table below.

Variable 1 2 3 4 5 6

1. Self-Confidence 1

2. Effort-Regul. .299*** 1

3. External view -.199*** -.132** 1

4. Teacher depend. .117** .356*** -.098 1

5. Clear self-image .083 .222*** .161*** .123** 1

6. Co-operative 1. .003 .17*** -.005 .179*** .127** I

Table 1. Correlations for the given six variables of mathematical beliefs (N=453,
and *** are for the error p<.001, ** for p<.01).

High self-confidence in mathematics correlated positively with high effort
expense and regulative actions, with teacher dependence, and negatively with the
tendency for external view of mathematics. High effort expense and regulative
actions again correlated positively with teacher dependence, clear self-image and
preference for co-operative learning, but negatively with the tendency for external
view of mathematics. Moreover clear self-image correlated significantly with high
tendency for external view of mathematics and teacher dependence, and preference
for co-operative learning correlated positively with teacher dependence.

The correlations between variables were thus positive with the exception of
tendency for external view of mathematics having negative correlations with self-
confidence, and effort expense and regulative actions. One of the variables effort
expence and regulative actions was significantly connected with all other
considered beliefs, indicating that it has important mediating role among the
variables.
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Influence of beliefs
The second question of the study concerned the role of the given factors as

predictors of students' mathematics achievements. The correlational study indicated
highly significant (p<.001) positive correlations between high score of mathematics
achievements and self-confidence, and high effort expense and regulative actions.
And tendency for external view of mathematics correlated negatively (p<0.01) with
the scores. These results were confirmed through the regression analysis of
mathematics achievement scores (r2 = 0.084) with all the six variables as predictors
of students' mathematics achievements. The stepwise regression analysis resulted in

an equation of only one predictor - self-confidence - with B-coefficient 0.29. The

bringing of effort expense and regulative actions together with external view of
mathematics to the regression equation did not reduce this predictive value of self-
confidence compared with other variables.

Instead a stepwise regression analysis of the same variables based on the factor
scores (r2=0.099) indicated also tendency for external view (B= -.151) and effort

expense and regulative actions (0=.102) as predictors for students' achievements

after self-confidence (B=.257). Thus as shown in the table of correlations, both of
these two first features have slight predictive value for mathematics achievements.
Yet students' self-confidence in mathematics seems to be an efficient predictor of
mathematics achievements compared with these two sets of mathematical beliefs,

even if these two features correlate significantly with the achievements. This
predictive value of students' self-confidence in mathematics remains even in using
the factor scores of the three factors produced by the scree-test in the stepwise
regression analysis (r2=.094). The factor of self-confidence is then clearly a better
predictor (B=.265) of mathematics scores than the chosen second predictor (8 =-
.133) labelled as an external view of mathematics. Further, the first factor of the
three given factors indicating students' active participation and effort in

mathematics learning, became rejected from the regression equation. Thus in
addition to students' self-confidence in mathematics as a clear predictor of high
mathematics achievements, also students' tendency for external view of
mathematics and mathematical tasks can be seen to predict low mathematics
achievements.

Conclusions

The study presented revealed important aspects of students' mathematical beliefs
systems in secondary school: students' confidence in one's ability to learn and do
mathematics, an external orientation based on viewing mathematics as specific and
fixed ability oriented school subject, and a uniform efficiency in mathematics and
orientation to mathematics learning situations with effort expense and self-
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regulatory behaviours. Froin these belief structures students' self-confidence in
mathematics appeared as the most powerful predictor of mathematics school
achievements. Since students' confidence in mathematics has been noticed as one of
the main factors affecting willingness to study mathematics and persist in
mathematical learning performances as well as the arousal of affective responses
during learning (Fennema, 1989; McLeod, 1989), there are significant con-
sequences included in the levels of students' self-confidence in mathematics. This
influence also appear as an important discriminator between girls' and boys'
mathematics achievements (Fennema, 1989) which also can be seen in the highly
significant difference (p=.0001) between girls' (-2.076) and boys' (8.245) means of
confidence and in the difference (p=.011) in their achievement scores of this study,
both beneficial to boys.
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PRESERVICE SECONDARY MATHEMA TICS
TEACHERS' BELIEFS: TWO CASE STUDIES OF EMERGING

AND EVOLVING PERCEPTIONS

John A. Malone

Curtin University of Technology

Perth, Western Australia

Abstract

Case studies were conducted to identify, describe and compare two preservice
teachers' beliefs about teaching and learning mathematics during their year in
a teacher education program. The research framework used Ernest's (1989)
model to specify the beliefs under investigation. Repertory grid interviews
were conducted to elicit emerging perceptions as the program began, and
evolving perceptions eight months later. Other data included responses to a
beliefs instrument and observation field notes. Subjects shared three emerging
perceptions: teacher involvement/management, degree of student independence
and communication. They shared three evolving perceptions: student centered
learning, student active involvement in learning, and classroom management.

Introduction

Both the Curriculum and Evaluation Standards for School Mathematics
(National Council of Teachers of Mathematics [NCTM], 1989) and A National
Statement on Mathematics for Australian Schools (Australian Education
Council [AEC], 1991) proposes that problem solving, communication,
reasoning, and mathematical connections provide a foundation for the
development of mathematical power in all students. The standards call for
reform of the curriculum and for changes in its delivery. Classroom teachers
have now been charged with choosing suitable mathematical tasks, with
engaging students in active mathematical investigations and with the
introduction of appropriate technology into the classroom.

This is a new area for today's serving and preservice mathematics
teachers, the majority of whom have probably learned mathematics in
situations where they were passive receivers of decontextualized facts and
procedures passed on by their own teachers. Beliefs about teaching and
learning, developed from successful learning experiences in such situations,
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present serious impediments to the changes called for in the reform of
mathematics education (NCTM, 1989; AEC, 1991).

The research reported here examined the beliefs of two preservice
teachers as they began a teacher education program. Investigation of teachers'
beliefs has become a significant research endeavour in recent years (e.g.
Clark, 1988; Clark & Peterson, 1986; Pajares, 1992). Studies of preservice
teachers' beliefs conducted within and across disciplines suggest that as
students enter teacher education programs, they do possess established
although incomplete conceptions of teaching (Mertz & McNeely, 1991).
Prospective teachers generally believe they will be successful, with judgements
based on social and affective perceptions: Teacher education students express
their enjoyment in working with school students and believe that they can
relate to them (Weinstein, 1989). Research has shown that prospective
mathematics teachers possess considerable knowledge of the general
behaviours of mathematics teachers such perceptions are often rooted in
school experiences, including memories of past teachers, methods courses, and
preservice teaching experiences (Mertz & McNeely, 1991).

Purpose of the Study

The study reported here utilised a naturalistic paradigm (Lincoln &
Guba, 1985) in which the researcher was a participant observer. The aim of
the study was to identify and describe the perceptions of teaching and learning
mathematics expressed by two preservice teachers as they participated in the
initial year of a mathematics teacher education program. The study compared
the perceptions that emerged as the two teachers began program involvement
with the perceptions that evolved after eight months in the program. The term
"perception" is used here to describe characterisations of patterns of beliefs
held by the two preservice teachers.

The study is primarily descriptive in nature and offers insights into
possible transitions in preservice mathematics teachers' beliefs about what is
central to the task of teaching. In addition, the methods employed hold
promise as a way to document the evolution of teachers' beliefs in programs
that explicitly attempt to challenge existing beliefs.

3 - 314



Theoretical Framework

While wide-ranging conceptions of teaches' beliefs are prevalent among
educational researchers (Kagan, 1990; Pajares, 1992; Thompson, 1992), some
characteristics of teachers' beliefs are said tO be held within organised systems
of the mind. Although beliefs may play an active role in the thought processes
of teachers (Clark & Peterson, 1986), the beliefs themselves are considered
through structures stored in the mind (Ernest, 1989). Within an organised
system of beliefs, certain beliefs follow from others, beliefs vary in how
strongly they are held, and beliefs become clustered in order to prevent
ongoing confrontation among those which are. in conflict (Green, 1971).

Another characteristic of teachers' beliefs is their disputability. There
are no generally agreed-upon standards for evaluating beliefs. Knowledge
may be justified as true through objective proof or by consensus of informed
opinion, but such standards hardly apply to beliefs (Grossman, Wilson, &
Shulman, 1989). One preservice teacher may believe that checking homework
when class begins is the most effective way to assure that students have
completed it; another preservice teacher may dispute that belief, claiming that
it is more effective to collect the work at the end of the period. Both views
may be regarded as equally valid.

As the example typifies, beliefs are highly personal in nature. Beliefs
are often grounded in vivid singular experiences stored in episodic memory
(Nespor, 1987). The highly personal nature of beliefs suggests an association
with the affective domain, rich in feeling and subjectivity (Ernest, 1989). In
that sense, one may conceive of beliefs as dynamic. Individuals continually
restructure belief systems as they compare their present beliefs with their
ongoing experiences. At the same time, beliefs can be very resistant to change
due to the lack of standards for evaluating them. Logical argument may
convince one of the truth or falsity of possible knowledge, but without direct
experiences to the contrary, beliefs can be difficult to change.

These three characteristics of beliefs - their organisational structure,
their disputability, and their highly personal nature grounded in'experiences
helped to provide a framework for this research and to interpret its results. A
model by Ernest (1989) was used to specify the beliefs under investigation.
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His model includes beliefs as a component of mathematics teachers'
thought structure. It stipulates four elements of teachers' beliefs: (a) a
teacher's conception of the nature of mathematics, (b) a teacher's model for
teaching mathematics, (c) a teacher's model for learning mathematics, and (d)
a teacher's general principles of education. The researcher used these
elements to conceptualise components of teachers' beliefs to be identified,
described, and compared in the study. Particular attention was given to
teachers' models for teaching mathematics, described by Ernest as: "their
conception of the type and range of teaching actions and classroom activities
contributing to their personal approaches to the teaching of mathematics. It

includes mental imagery of prototypical classroom teaching and learning
activities, as well as the principles underlying teaching orientations" (Ernest,
1989, p.22).

Methodology

The research setting was a secondary mathematics teacher education
program at a university in Perth, Western Australia.. As the 18 pre-service
teachers began the program, the researcher collected and analysed data in
order to select two subjects who were broadly representative of the group.
Each of the 18 participants responded to a belief instrument (Van Zoest, Jones
& Thornton, 1994) and completed a semi-structured interview to follow up on
responses to the instrument. The Likert-type responses to the instrument were
aggregated and the interviews were taped and transcribed. To select the
research subjects, the researcher analysed the data to avoid selecting two
subjects with very similar responses. The researcher used biographical
information to further compare the potential subjects and finally selected a
male (Ken) and female (Denise). The two participants entered the one-year
program with no previous studies in education; each had already earned an
undergraduate degree in mathematics. The program activities included a fixed
sequence of courses as well as extensive field experience.

Data Collection and Analysis

Generating emerging perceptions. Upon selection, the researcher engaged
each of the two subjects in a two-part repertory grid interview (Cronin-Jones
& Shaw, 1992; Kelly, 1995). The researcher asked each subject to imagine
teaching in an ideal mathematics classroom setting and to describe what the
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description, what were to become the elements of the repertory grid were

recorded. The researcher then asked the subjects to describe why those

events, behaviours and activities would be occurring. These descriptions

generated the constructs of the repertory grid. Subjects then completed a two-

dimensional grid on which they indicated their feeling on the relationship
between an element-construct pair (1= no relationship; 2= neutral relationship

and 3= definite relationship). Principal component analysis with varimax

rotation (DeVellis, 1991) was applied to each subject's grid, identifying
groups of construct statements for each subject. Each subject was asked to

state a word or phrase (a perception) to characterise the relationship among

the constructs in a group, and the researcher studied the data to capture the

perceptions each subject identified.

Monitoring subject's perceptions. Data collection continued throughout the

following eight months in order to monitor the development of each subject's

perceptions.

Generating evolving perceptions. After eight months of program involvement,
each subject again completed the two-part repertory grid interview with the
researcher. This was conducted and analysed in the same way as the previous

procedure, and the results used to identify evolving perceptions in the subjects'

model for teaching and learning mathematics.

Comparing perceptions. Two levels of perception comparison were conducted

by the researcher. First, Ken and Denise's emerging and evolving perceptions
were compared separately. Similarities and differences were noted. Second, a

cross-case comparison was made Ken and Denise's emerging perceptions

were compared with each other as were their evolving perceptions.

Results

Analysis revealed that the subjects shared three emerging perceptions:
teacher involvement/management, degree of student independence, and

teacher-student/ student-student communication. These perceptions, identified

by the researcher as subjects began the mathematics teacher education
program, tended to emphasise structural components of the classroom as well

as affective factors. Subjects stated preferences for using formal classroom

settings and for organising and managing a classroom. Teacher authority was



settings and for organising and managing a classroom. Teacher authority was
paramount with little emphasis on independence among students. Teacher-
student communication was to be encouraged, but no mention was made of
student-student communication. Differences in emerging perceptions included
Ken's view of students' need for advance organisers in learning and Denise's
recognition of being in transition from student to teacher.

The subjects shared three evolving perceptions: a focus on student
learning, students' active involvement in learning and classroom management.
These showed a shift in emphasis and perspective from the emerging
perceptions: there was less commonality across perceptions, and the evolving
perceptions that shared elements with the emerging perceptions- management

and student independence - were identified from a different perspective. Ken
and Denise's emphasis shifted to preferences, intentions, and concerns

provoked by experiences with secondary school students. Differences in
evolving perceptions included Ken's attention to student responsibility and
attention to assessment, and Denise's regard for the classroom environment.

Discussion

Ken and Denise's initial program field experience and methods-course
work represented their induction to mathematics teacher education. They had
already completed a mathematics degree. Never before had their education
explicitly focused on teaching and learning secondary school mathematics. It
was a new perspective with which subjects entered secondary school
classrooms and worked to fulfil methods-course requirements. The study
sought to identify and describe subjects' beliefs about teaching and learning
mathematics that emerged from this new perspective as well as to compare
emergent beliefs with those that surfaced after eight months of program
involvement.

The subjects' perspectives mirrored their program involvement with
secondary school students. When the emerging perceptions were identified the
subjects were, for the first time, entering school classrooms with the
perspective of a teacher. Structural and affective stimuli were most apparent
to the subjects. They attended to desk arrangements, grouping of students,
student behaviour, and the ways classroom teachers related to their students.
Eight months later, the subjects had long ago acquainted themselves with a
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mathematics lessons to secondary school students as required in their field
experience. Other stimuli were more apparent at this time, such as a need to
generate reasons for teaching and learning the topics they were responsible to
help students learn. This suggests that the context and focus of the field
experience had significant impact upon the subjects' beliefs and perspectives

The case studies show that during the preservice teachers' initial year of
program involvement there was an evolution in their perspectives on teaching
and learning mathematics. The study found that subjects' beliefs about what
was central to the task of teaching were in transition.
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ON 'HIE NOTION OF FUNCTION
JOANNA MAMONA-DOWNS

UNIVERSITY OF MACEDONIA

Abstract

This paper concerns certain topics about functions and potential problems students might
have With them. The focus is on the more creative aspects, e.g. identifying, forming and using
functions, rather than analysing given functions. The statement of the Fundamental Theorem of
Calculus is used as a running illustration of many issues brought in.

1. Introduction

This essay deals with the concept of function. We shall he fairly broad in our
discussion, and although much of it will concern functions in connection with real
calculus we shall also consider the concept at its most basic and general level. To
broaden our scope, in fact, we will also touch on the topic of functions in elementary
abstract algebra.

Much literature on functions has been produced by the community of
Mathematics educators. The majority of this research, however, concentrates on
educational issues concerning properties of functions in the context of the Calculus.
The result is not only a restriction of the types of functions looked at but also gives
a stress on functions given in some explicit way (i.e. either algebraically .or
graphical). This tendency reflects the way that functions usually appear in secondary
schools. This may be unfortunate, in that the real power behind the concept is in
identifying functions and constructing.functions for particular ends, and this source
is largely untapped when students leave secondary school. This paper will examine
some issues concerning functions in this particular light.

2. The Problem Illustrated

The applicability of functions is extraordinarily flexible. The definition of a
function, when historically it was finally decided what it should be, was deliberately
made such that this would he true. We shall discuss this further in the next section.
The problem seems to be that most students never gain an understanding of this
flexibility. We illustrate the above by considering the statement of the Fundamental
Theorem of Calculus.

The Fundamental Theorem of Calculus, of course, involves the equality of two
functions. Let f be a real, continuous function and let a be a fixed real number.
Then the function given by the area under the graph representing I from a to x
equals the antiderivative of 1 which has the value U at a. The theorem usually is
expressed more symbolically and less descriptively than the above statement, which
makes the functions involved seem less explicit. However they are no less present.
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The theorem is of great interest as regards to examining how developed is the
concept of function in students minds. Both functions need imagination to conceive
of, and require a jump in abstraction to equate the functions (forgetting about
"meanings"). This will be discussed more in section 5.

Research .findings in 161 suggest that very few students have a conscious
comprehension of the significance of the Fundamental Theorem after studying it. It
was conjectured that a major cause was that the two functions which comprise the
main proponents in the Theorem were somehow not appreciated. In the case of the
area function, this was reinforced by asking a group of students, under examination
conditions, the following question:

The question

For every XER lx represents the vertical line in the plane passing through the
point (x,0). Let f(x) be the area of the part of the rectangle R which is to the left of
x Write down a formula for f(x). What is its domain and image?

A

(1,4) (3,4)

R

(1.0) (3,0)

Only 22 out of 71 students attempted the question. Only 7 scripts obtained the key
component of the algebraic expression, none gave a fully correct answer.

This research (and others, e.g. [7]) gives convincing evidence that most
students are not able to conceive of such functions formed by areas under curves.
We shall not attempt reasons here, but in later sections we shall hint some. For now
we simply make the conjecture that a contributing factor is that students generally
lack the background to feel comfortable and to work with functions which are given
descriptively rather than algebraically. It is then reasonable to assume that the
students are far from having facilities to identify and to use functions, facilities which
are so basic and commonplace in high level abstract mathematics.
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3. Formal Definition against Informal Descriptions

,Definitions (of conceptual weight) always should inspire inquiry. Could I
have expected this definition from my previous mathematical knowledge, or my
intuition? Do I really understand why the definition has the exact form it does
have? Students do not have the culture to analyse definitions in this way, and this
contributes to the common sentiment that "in Mathematics you can prove
anything". Students tend to categorise definitions into "understood" and not-
understood" (when often it is more fair to say that the true case, with some mental
effort, is "partially understood").

The general formal definition of function, based completely in Set Theory, is
certainly out of reach for even a reasonable understanding for school level students.
A more informal description has to replace it. This is a trade off; our description
will seem closer to the naive expectation that a function is a correspondence, but we
lose sharpness into exactly what a function is (rather than what it involves) and we
run the risk to make functions seem more "procedural" than desired. (The question
of what a function is in informal terms causes even many teachers discomfOrt,
see[8]). However with reservations, one might finally agree with [10] that the formal
definition is of purely technical interest.

But it does not matter how we define or initially describe functions, the
mathematical motivations to introduce such objects remain the same. We have to
return to the questions with which we began the section. In 191, these motivations
are studied and found to be vastly complicated. There is no reason, given the
complication, that students immediately gain any insights into usage of functions.
Students learn about functions through examples (even more crucially than in other
topics). If the majority of examples of functions given in the class are formed from
algebraic expressions, these then become the only bona-fide type of functions. The
concept of function is very sensitive to personal experience, and it is probably only
Mathematics graduates who ever sense its whole significance. If we want students to
appreciate, say, the semantics of the statement of the Fundamental Theorem of
Calculus, a stimulus must be introduced in earlier teaching to prematurely broaden
the sense of function. The flexibility needed by the student to feel comfortable in
identifying functions given descriptively might require a substantial teaching
program.

4.GriAptglin : Pros + Cons

Historically speaking, the evolution of the concept of function was largely
influenced by the evolution of real Calculus. The elementary concepts of real
Calculus were motivated by considering curves in the plane; the rtile of functions
was to find a more mathematically valid description of these curves. The task then
was to decide on the most appropriate definition for this aim. (Which was
tantamount to deciding which types of curves are best thought of as basic for
consideration). Not surprisingly there were animated arguments as to what exactly
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the definition of function ought to be. It was only when it was realised that many
theorems of real Analysis could be extended to other metric spaces that the more
general notion of function became widely accepted. For more details of this history,
see Boyer [2].

Within the context of real Calculus / Analysis, the emphasis on graphing
functions is somewhat natural. However the practice does rather reverse the
historical motivation, in that the graph is drawn in response to a usually
algebraically expressed function. At school, graphing may seem rather academic, as
you rarely use the graphs; they are just an end to themselves. They constitute a
convenient mode to summarise some properties of the given function obtained by
algebraic analysis. It is uncommon that, in the other direction, students are
encouraged to use common sense or informal reasoning to deduce properties of
functions from their graphs (for a simple example to deduce that between two local
maxima of a differentiable function with domain R there must be a local minimum).
This is a pity , as this is much more fruitful course to broaden experience in using
functions (though, still, in a rather limited context). Eisenberg in [3] identifies and
bemoans the apparent reluctance of students to visualise when thinking about
functions; this is partly due to the above mentioned trend in the school syllabus.

In a more general context, it is more questionable whether the graph should
he preferred to any other representation of a real function. However the legacy left
from the Calculus tack obviously places the graph in a privileged position. In fact
students, who may lack the sophistication involved in distinguishing a
"representation" from the original object, may confuse the graph with the function
itself (this confusion would he compounded if the students are exposed to a
definition of function involving ordered pairs). The fixation on the idea of the graph
may well impede the facility to recognise and accept functions which can he formed
naturally from other geometric parameters or descriptions. (An obvious example
would be from polar co-ordinates instead of Cartesian co-ordinates). It is
interesting in this light that in 7 out of the 22 scripts who attempted the question
described in section 2 there was evidence of some confusion between f (function of
area) and the constant function 4 over [1,3] whose graph is suggested by the given
diagram.

As an aside, graphing also has more practical problems. Not only is it difficult
to "do" even quite simple "operations" of functions from their graphs, it is confusing
to understand exactly what you are doing; are you operating with functions or are
you operating with transformations of the plane? In this way, choosing your
standard representation of a real function as an imbedding in the plane may be
unsatisfactory. Inspired by this and other considerations, another more "dynamic"
(computer aided) representation of real functions was suggested by [4] for exposure
to school students. In short it involves two separate "real lines", one representing
the domain, the other representing the codomain. A cursor on the domain line is
moved which controls another cursor on the codomain line according to the given
function. This certainly seems to give a more honest description of what a function
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is on the most basic level, and the authors are optimistic of the potential of this
teaching tool: "...we came to believe that this and other dynamic representations
might have potential to help the student to objectify the function concept, provide a
much-needed foundation for the techniques of constructing and interpreting a
variety of graphs, and even develop in students a broad and flexible concept of
function, including functions whose domain and range are not sets of numbers". In
short, answering a lot of the concerns of this essay!

5. Questions of Meaning and the ROle of Variables

Functions extracted in a descriptive way from, let us say, a geometric
configuration, cannot preserve any meaning from the context from which it was

conceived. Functions essentially are abstract objects. This may be difficult for
students to accept. Let us consider the two functions (the "area function" and the
antiderivative) which are the main "players" in the statement of the Fundamental

Theorem of CalcJlus, (see section 2). These two functions are formed from an .
original, unspecified function which we term the "parent function": we assume that

the parent function is continuous on R. Of the two functions, the area function is

more directly formed from the parent function but retains a strong linkage with
regions in the plane.

Region with area Aix)

parent function

a X.

The antiderivative is less directly formed from the parent function (in fact to

the extent that it is tar from obvious that it exists). It is an hypothetical function
which is related to the parent function through a property (differentiability) of the
hypothetical function. This may seem perverse in that we seem to be constructing
the "known" function from the "unknown" function. To understand how we can
accept that the antiderivative is in fact formed from the parent function (rather than
vice versa) we have to move on the conceptual level from the "constructive mode"

to the "existential mode". (This, we maintain, illustrates a general shift of vast
importance for comprehending the potentiality of using functions, but the same shift

perhaps is a fair candidate for the best description in a few words of the distinction
between nave and abstract mathematics. As such, this shift is gradual and difficult).

Because of the indirect way the antiderivative is obtained, any meaning

attributed to it is not going to be sharp. However, tentatively, tangents of the
antiderivative can form some reference (as for every x the slope of the tangent of
the antiderivative at x equals the value of the given parent function at x ). Hence
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both the real functions (the area function and the antiderivative) do have references
to geometric objects which can contribute to the feeling that they have "meanings".
This brings to the fore the definition of equality of functions. Were these two
functions considered intrinsically connected with their geometric references and that
the definition of equality of functions was not made explicitly, there might be a
tendency not to acknowledge the equality proposed in the Fundamental Theorem on
the grounds that we are trying to compare incompatible geometric objects (i.e.
regions and tangents). This illustrates a crucial motivation for the development of
the notion of function; its abstract nature (with what seems at first a rather empty
definition of equality) allows working in the same framework constructs frorri
completely different contexts, at the same time enabling associations to be retained
if desired.

The Fundamental Theorem, being a general theorem, does not allow the
reducing of the two functions into specific algebraic expressions which might be
more acceptable psychologically to equate. However even if we take a specific case
the reduction may involve some epistemological problems. Let us illustrate with the
area function f in the question in section 2. For any value of xe [1,3] we may show
that I(x)= 4(x-I). Hence /(x)= 4(x-1) for all__x in the interval. The use of the
variable x may seem mundane here, but the way it enables the consideration of the
particular to become simultaneously the consideration of the general is in fact quite
subtle. (It bears analogy to the switching between thinking a function as a process
and as an object). If students do not appreciate the reple of variable they are
seriously handicapped in working with functions.

Variables clearly are very important in influencing the notion of function.
Their "neutral" character is difficult to accept, and the natural feeling that variables
are an integral part of a function may bring various problems. Some research has
been conducted on variables (e.g. [I], [11]), but the author feels there is still a lot to
examine.

6. Functions on Finite Sets

A function comprises not only a correspondence but also the two sets forming
the domain and the codomain. It is the structure of the domain and the codomain
which largely determines the ways that the function might be used. The structure of
the real numbers is very complicated and so the issue of how real functions can be
used would naturally be also complicated and elaborate. To obtain breadth in the
notion of function surely functions with domains of other types (i.e. domains not
containing an interval of the reals) should be considered. For simplicity finite sets
would seem most profitable, as we might hope the simplest domains / codomains
would give the most fundamental insights into the concept of function.

If we were given two finite sets (neither with internal structure, e.g.
operations) the characterisation of all functions having the one set as its domain and
the other as its codomain is fairly straightforward. The task of enumerating these
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functions is a reasonable test to investigate whether a student understands the

situation. Similarly if the same finite set (with n elements) was both the domain and
the codomain, the bijections are easily identified and enumerated. Up to now, we
seem to have little of real depth. However it we make a slight abstraction by
thinking of the bijections as objects, composition as a binary operation, the set of
bijections Sn is one very much with structure, and invites many questions. For
instance, one might attempt to identify all subsets of Sn that are closed with respect
to composition and inverses. This problem in general is very difficult (if we were to
vary n over the positive integers, the problem would include identifying every finite

group up to isomorAism). We see that our apparently limited situation of
considering bijections on finite sets leads fairly naturally (though not perhaps

intuitively) into one of the most rich branches of abstract algebra.

Isomorphism of groups (and other classes of mathematical objects) are very
interesting vis- a vis in understanding what functions can do. Isomorphisms form
mediums to allow different objects in the same class to be considered the same if
they have consonant structure. The definition of isomorphism (which differs for
each class of mathematical objects) specifies exactly what of the structure is

relevant; the rest of the structure may be forgotten. This provides a basis of
working on all objects which are isomorphic as one. Isomorphisms, and other types
of functions in other guises, can be seen as devices allowing the mechanisms of
Mathematical reasoning to run smoothly.

What is noticeable is that functions on finite sets seem to have a different feel
than real functions, but, against expectations, the issues are probably as deep.

Despite of this, little research in educational circles seems to have been done in this

direction. However see in [5J some fieldwork on isomorphisms of finite groups.

7. Final Remarks

As a student progresses from higher secondary level to tertiary level
mathematics, he / she will become more and more dependent on a good "sense for
functions" to understand the statements of theorems (and even more their proofs).
In this way, the statement of the Fundamental Theorem of Calculus may be regarded

as a landmark in that many subtle considerations come in as this paper has shown.
As students often fail to comprehend this theorem, it seems their notion of function
is lagging behind their needs at the time.

Corrective teaching action seems in order, but this aim is complicated by the
fact that the notion of function is very dependent on context, so it is inevitable that
much of the enrichment of the notion has to eventually rest on the shoulders of the
student himself / herself. However attempts could be made to illustrate the main
issues by choosing suitable contexts to boost the process; this might be served
simply by stressing and discussing explicitly the roles of functions in topics that are
already taught. The main issues would include many concerns brought up in the
paper: not to be too influenced by graphs. to he flexible in identifying functions in

3



different contexts and in forming functions from others, how to treat meanings and
how to use variables, and to understand how functions are often specially designed
as tools which allow Mathematical discourse and theory building.
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Reasoning geometrically through the drawing activity

M.Alessandra.Mariotti
Dip. Matematica University di Pisa, Italy

Abstract. The role of drawings, and in particular the activity of drawing , is
inspected in order to focus the main functioning of drawing in the construction
and evolution of geometrical reasoning on the sun shadows phenomenon. The
discussion is based on the analysis of some protocols taken from an
experimental activity at the 5th grade level and is inspired by the theory of
figured concepts (Fischbein, 1993).

Introduction
This paper discusses the role of drawing in the geometrical approach to

the sun shadows phenomenon. The experience we refer to is part of a long
standing project, in which "An everyday life field of experience is worked
away for a long time and the work is basically directed by the requirement of
the development of the knowledge concerning the field of experience itself...."
(Boero et al. 1995, p. 156)
In the reference frame of this project, previous investigations highlighted some
aspects related to drawing. For instance, "the importance of the sign systems
proposed by the teacher in order to stimulate the transition to a scientific
conception of the phenomena" (ibid., p. 158) and more generally, that "the
"shadow diagram" seems to modify even the way of thinking the relationship
between the height of the sun and the length of the sun shadows"(Boero et al.
1995, p; 159).
The following analysis aims to go further and investigates the role of drawing
in the evolution of meaning of geometrical modeling.

Physical space, drawing and geometry
Geometry is deeply rooted in everyday life experience of physical space

with which maintains a complex link. The complexity of these connections
corresponds to the complexity of teaching and learning; unfortunately, too
often the relationship between physical space (generally referred to as space)
and the theoretical domain is not questioned and the move from observation to
theory is considered as being natural. Despite the undeniable link between
geometry and experience, a sharp distinction must be made between the ideal,
abstract space of geometry and the space where all experiences arc
accomplished. In this complex frame of reference what is the particular role
played by drawing?
From a general point of view, a drawing has an intermediate position between
concrete reality, of which it participates, and the abstractness of geometry, of
which it can be a -representation(Gonseth, 1936).
In order to clarify this point, it is useful to refer to the theory of figural
concept, as it was introduced by Fischhcin (1993).
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Although geometry is a theoretical construction, from the psychological point
of view geometrical concepts conserve in the reasoning process an objective,
pictorially representable property of reality which is space .
In this sense and for this reason, geometrical figures are mental entities which
possess, simultaneously, both conceptual and figural properties. A figural
concept is then a mental entity which is controlled by a concept, but which
preserves its spatiality (Fischbein, 1993). As a consequence, geometrical
reasoning is characterised by a dialectic tension between the two components
of geometrical concepts (Mariotti, 1991, 1993, 1994).
Let us consider a graphic representation, a drawing, of a geometrical concept;
for instance, let us consider the drawing of a square. As soon as a square is
drawn, it becomes a particular instance of the concept of square, sharing with
it the figural component, but missing some basic characteristics of the
conceptual component, mainly its generality. For that reason a drawing can be
used productively in geometrical reasoning, only if it can be conceptually
controlled. Drawings are particular and this fact may be an obstacle to a
correct conceptualization, if generality is not completely attained. On the other
hand, conceptualization is possible only through keeping the mental control of
the drawing. Passing from 2-D to 3-D geometry, the mental process becomes
more complicated, in particular when the relationship between the geometrical
concept and its representation is ruled by geometry itself, as in the case of
perspective (Parzysz, 1991), but still of the same nature.
A completely different problem arises when drawing is involved in a modeling
process. In this case, a drawing has an intermediate position between the real
world of which it represents some aspects and geometry of which it represents
some concepts and relationships; the representing process must be articulated
anew, relating the graphical representation at the same time to the physical and
to the geometrical referent.
The aim of the following analysis will be to consider the status of drawing in
the very specific situation of a geometrical model of a physical phenomenon.
The ambiguous role of drawing may be determinant in triggering a dialectic
interaction between the descriptive function of graphic representation and the
modeling process, which leads to a geometrical interpretation of the physical
phenomenon.

The Shadow Diagram in the teaching experiment
Let us consider the sun shadows phenomenon and its geometrical model.

In the experimental framework of the Genoa Group project (see Boero et al.,
1989) the sun shadows phenomenon constitutes a basic context, a field of
experience, in which the mathematical modeling activity is developed. One of
the crucial points is the evolution from the common sense conceptions of the
pupils to scientific (in particular, mathematical) models of reality provided by
the school culture. The "shadow diagram" represents a key element in the
geometric model of the phenomenon, but previous investigations show how
difficult is the mastery of this clement and the weakness of its use in problem
solving situations (Boero et al., 1995a).

3 330



Producing and illustrating a hypothesis
At the fifth grade level, a specific situation was set up in order to better

analyse the functioning of the shadow diagram. After some activities on
shadows and the introduction of the "shadow diagram", the following problem
situation is presented to the pupils. At this point the "shadow diagram" and its
characteristic elements are well integrated in the conceptualization of the
phenomenon

Two hoards with two nails of identical length are horizontally placed one
in the yard and the other on the terraced roof of the school. How are the
'funs" of the shadows recorded at the same hours of the same day?"

Pupils are asked to formulate a
hypothesis about the length of the
shadows in the two cases and to express
their hypothesis through a drawing .

Different hypothesis are given and
according to these hypotheses different
drawings are drawn. The "shadow
diagram" is widely used; it appears a
partial model of the phenomenon, with
a descriptive function, both in the case
of the correct and the incorrect hypothesis.
The protocol of Noemi is a good example in the case of the hypothesis about
the difference of the shadows' lengths (see the annexe). On the other hand, in
the case of hypotheses about the equality of the shadows' lengths , most of
them seem to refer to particular situations, characterized by the presence of
certain regularities; for instance, a symmetry in respect to the sun, as in the
case of Sara's drawing (see the annexe); in this case, the global figure is well
organized in an isosceles triangle. Generally, in this first approach to the task,
the drawings are consistent with the corresponding hypothesis about the
phenomenon and no conflict appears. The drawings simply accompany the
verbal expression and aim to illustrate the hypotheses. The problem of
representing the situation is solved by drawing the main elements, the sun, the
nail and the shadow; but, instead of the actual spatial relationships among
them, the drawing reproduces a contract, quasi symbolic, version of them. The
representation is organized by a triangle but, according to the standard
"shadow diagram", and in contrast with any geometrical consistency, it
contains the sun too (see fig. I). This is possible only through a symbolic code
of representation, which overcomes the actual spatial relationships. The
drawing seems to result from a dialectics between "knowing" and "seeing",
which accomplishes (fits) the descriptive function but is not geometrically
consistent, i.e. it is not yet a geometrical model. These kinds of
representations, based on the shadow diagram, express the hypotheses, but they

fig. I The "shadow diagram"
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contain a potentiality for conflict, because of the intrinsic inconsistency of the
spatial relationships among the elements that they represent: because of the
presence of the sun the parallelism of the rays conflicts with the possibility of
representing their origin in the sun .
As soon as a reasoning about the physical phenomenon will be transferred on
the drawing, in other words a geometrical reasoning is attempted on the
diagram, the required harmony between the figural and the conceptual aspect
of the figure may reveal the inconsistency and conflicts can appear.

Drawing to explain
Soon after this activity, pupils can directly observe the phenomenon and

realize that in both cases the shadows have the same length. The teacher
presents the second task to the pupils

"Explain what you observed, use a drawing for your explanation, too."

As soon as the drawing must be used
with the specific aim of explaining the
phenomenon, conflicts may appear. Let
us consider the following protocol.

Stefano: "In my opinion, the fan would
change, because if on the morning we
move it to Peg li (a village to the east)

the ray would react the bard earlier and the shadow would be shorter. On the
(=vary, if we move it to Voltri (a village to the wig) the shadow would he longer
because the ray would be more inclined and would go further."

10 drawing

After the observation of the phenomenon.

"Maybe, the shadows are aim!, maybe, because in spite of the fail that the in ray is in
different points, it could rwch both boards and the slope of the ray is equal and thus the
stradows btxxxne

Teacher: "Can you explain to me why only one
ray?

Stefano: "Yes, because, maybe, the boards were
[turned' to the same direction and so were
the two mils and thus the mine ray
ricted thcin both. It is persible to verify
it by drawing the two fans one over the
other and sue if all the shadows were one
over
the other and we also if there were equal distanas

Teacher: "R is bun the ,Itn always there?"
Stefano: "No ... now I and that there are two different rays."

r Drawing

3 - 332

33g



Stefano starts to draw. (Fig. 2)

After many attempts
he says:

"I pnfu to explain it
by words, I cannot

draw it" ... at the end
he writes "In my
opinion, I could draw
the parallel rays and
thus maybe, the
shadows are equal

fig. 2

The verbal expressions Stefano uses, in particular the word "maybe" ("forse",
in italian ) suggest that the pupil considers the situation that he observed
(shadows of equal lengths) a particular case in the general framework of the
sun shadows phenomenon; thus, when he wants to give an explanation through
a drawing, the particular case must fit into the standard representation, i.e. the
"shadow diagram". At this point, the potential conflicts arise and Stefano does
not succeed in his attempts. Stefano wants to draw parallel rayS in the standard
frame of the shadow diagram, where the rays converge into the sun; the
inconsistency of the 'model' available is revealed.
Mentally, Stefano is able to conceive and perhaps he can even imagine the
possibility of this specific situation; but, when he wants to transfer this idea
into the drawing he cannot find the same coherence. In the drawing, as soon as
the three elements (sun, nail and shadow) are represented so are their spatial
relationships: the graphic representation and the real situation share some
spatial properties. Thus, the drawing of the two "shadow diagrams" must
determine the spatial relationship between the two shadows as a consequence.
The request of producing an explanation inside the graphic context, forces to
look for consistency inside the drawing, i.e. the drawing must become a
geometrical model of the phenomenon.
Comparing the graphic and the verbal representation of the same situation, one
realizes that the two modalities differ essentially. In the graphic mode, the
claim for consistency between the spatial properties is intrinsic of the nature of
the drawing, which represents spatial properties through spatial properties. In
the verbal mode, the spatial properties of the representation (spatiality of the
written words) are not expected to fit the spatial properties of the situation that
they represent. As Stefano says:
"I prefer to explain it by words, I cannot draw it" ...
Verbally he can express the justification, but it is not possible to draw it.
It is interesting to remark that not everybody experiences the possible conflict:
different levels of geometrical consistency can he required by pupils to their



drawing, so the drawings provided can represent different conceptualizations
of the situation. For instance, the first drawing provided by Noemi (see the
annex) presents perspective elements, which witness of a descriptive intention
in this representation; the "shadow diagram" is inserted into the picture.
In the first picture, Noemi maintains the correspondence with the real situation
and draws only one sun for both the triangles, in the second picture, the two
triangles are separated and the conflict between the model of the shadow
diagram and the situation observed is overcome moving to a symbolic level. In
fact, the sun is drawn as part of the "shadow diagram", as a symbol to indicate
that the diagram refers to the shadow phenomenon and certain segments are to
be considered sun rays. Noemi does not refer to the sun, rather to the rays and
says: " I drew the rays with the same inclination ..."

Discussion
The previous analysis shows the complex relationship among a drawing,

a real situation and a geometrical model; it highlights the crucial role played
by the graphic representation, both as a process and a product, in developing
the meaning of geometrical modeling in relation to a physical phenomenon.
The theoretical frame of figural concepts suggests an interpretation of the
solution process; in particular, the notion of figural concept focuses on the
distinction between spatial description and geometrical reasoning on the model.
The. crucial passage is from the descriptive function to the explaining function
of the drawing; in this passage the conceptual aspect concerning the geometry
of the diagram must be logically co-ordinated to the interpretation of the
phenomenon, so that the geometrical logic of the diagram must fit the
interpretation of the diagram according to the phenomenon.
The need of consistency between the conceptual component and the figural
component prompts a dialectic process which makes conflicts to appear and
opens the way to a new relationship among the drawing, the phenomenon and
the model.
The meaning for "geometrical modeling" may emerge through the interplay
between interpreting and reasoning geometrically .
The spatial nature of the representation directs pupils' reasoning towards
spatial considerations and helps to overcome conceptualizations of different
nature like the following (see also Boero et al., 1995a).

Daniele (II year old) : "... In my opinion, the shadow is the result of the fight between the two
extreme powas, good and evil I...1 At a certain moment, the shadow is longer than us
because the prnver of the devil is stronger and it is shorter when God, his power, is
sinner than that of the devil." "

Generally speaking, drawing represents a mediation between reality and
geometry, the role of mediation is accomplished in the passage from the
descriptive function to the interpreting function, and corresponds to the change
of status of the drawing from a picture of the real situation, resulting from a



well adapted compromise between observation and knoWledge ("the shadow

diagram"), to a model (geometrical model) of the phenomenon.
The change of status is helped by . the particular nature of the graphic
representation, which in the case of spatial properties has an isomorphic
character; that is, spatial relationships are represented by the same spatial
relationships. For instance, the inclination between the sun rays and the nail
arc represented by the inclination between the lines representing the sun rays
and the segment representing the nail.
From the didactic point of view, it is interesting to remark the role played by
the teacher. The direct intervention of the teacher breaks the coherence
reached by the pupil in his mind; pressing, him to explain his thoughts by a
drawing, the teacher makes the conflict appear. It is important to remark that
what determines the change of status, from a picture embodying"a knowledge
to a model interpreting a phenomenon, is not only the drawing in itself, but
also the fact that the meaning of the task suggests that the drawing becomes the
working environment for elaborating an interpretation. Actually, the function
of the drawing is derived from the specific task: using a drawing, first express
a hypothesis and then, give an interpretation of the phenomenon.
The specific task introduces the idea of a consistent graphic description of the
phenoinenon, through which an explanation can be found. Reasoning on the
drawing and looking for a logical explanation introduce the pupils to the
modeling process; in particular, because of the spatial nature of the properties
considered, to geometrical modeling.
While looking at the drawing (picture) and reasoning on the phenomenon,
there is a shift to reasoning on the geometrical figure without forgetting its
interpretation (geometrical model); looking for consistency inside the drawing
(for instance, the presence of the sun becomes a problem as well the presence
of two suns!) is at the same time looking for an explanation of the phenomenon
and looking for a reasonable geometrical relationship among the elements of
the figure, i. e. reasoning geometrically on a model.

Acknowledgements. I thank Paolo Boero and Rossella Garuti for the
passionate discussions from which this ideas arose.
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Annexe

Noemi: "In my opinion, the shadow changes because the inclination of the sun
changes. The inclination of the sun changes because I can stay nearer of
further with respect to the sun .

1° drawing 2° drawing

"I drew the two tables equal and both in the same place. In both cases, I
tried to draw the ray with the same inclination and I saw that the shadow
was equal. Actually, I wrote that it was different, because I thought that
the table had been moved form right to left, actually one of the table was
in the yard and the other on the terrace ..."

Teacher "How did you draw the rays?"
Nonni: "I drew the rays with the same inclination , because we saw that, if

the ray is more inclined it produces a longer shadow and when the ray is
less inclined it produces a shorter shadow; thus in order not to have
different shadows I drew the rays with the same inclination."

Sara: "In my opinion, if the table is
moved the fan of the shadows
does not change because when we
were younger we observed the
shadows, we spread in the yard
and the shadows were all in the
same direction. Thus the fan is
the same."
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THINKING ABOUT GEOMETRICAL SHAPES IN A COMPUTER-BASED
ENVIRONMENT

Christos Markopoulos Despina Potari
Roehampton Institute London University of Patras

This study investigates children's constructions of the concept of geometrical shape
in a specifically designed computer-based environment. The focus- is on the ways
children relate figures with their properties and on the possible hierarchical
relationships that they JOrm. .4 constructivist teaching experiment is used 10 explore
children's thinking. Four pairs o f I I years old children participated in this study and
the results from one of the pairs are presented in this paper. In this specific context,
children seem to use intuitive and dynamical models to built relationships between
the shapes and their properties, and between different classes of shapes.

Introduction

Children's thinking about geometrical shapes has been studied by different
researchers. These studies have mainly focused on children's ability to identify
geometrical figures by relating concept's definitions and figures, and on children's
conceptions ( Wilson, 1986; Hershkowitz, 1989; Patronis & Spanos, 1991;
Warren & English, 1995 ). The research in this area has also been greatly
influenced by the work of Van Hides as it appears in the review paper of
Clements and Battista (1992).

A number of studies have emphasized the role of computers in teaching and
learning geometrical shapes. In particular, LOGO environments have influenced
the way children conceive geometrical figures (Kieran & Hine!, 1990; Clements &
Battista, 1990; Battista & Clements, 1992; Kynigos, 1993). Laborde (1993)
analyses the contribution of geometry software like Cabri and Geometric
Supposer to consideringlunctional and analytical aspects of geometrical objects.
Dorfler (1993) supports the view that with computer tools, geometric figures,
constructions, and systems of relationships themselves can become the objects of
activity and are no longer just the products of the drawing activity.

In this study, a computer environment has been developed to help children link
the properties of geometrical shapes with their visual images and form "figural
concepts" ( Fischbein, 1993). In particular, the program aimed to help children
to construct hierarchical relationships of polygons within the constraints imposed
by the use of software . The screen shows a straight line segment that the pupils
can break to get a number of different pieces. They can rotate these pieces and
form different polygons, all of which would have the same perimeter. Children
can save their constructed figures and study their similarities and differences. A
ruler for breaking the segment, the lengths of the pieces and the angles formed in
each case are given if required. The idea of transforming a geometrical figure
whose perimeter remains constant has mainly been used for the study of the
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relationship between area and perimeter (Montangero & Smock, 1976). Details
about the development of software and its philosophy are given by Markopoulos
& Potari (1995).

Briefly, we consider this computer program as a tool for organising a possible
learning environment for the children by developing tasks relevant to the goals
of the participants' of the learning process. In particular, this study aimed to
investigate, under the posibilities and constraints of this specific context:

children's constructions of the concept of geometrical shapes, and how these
develop

whether and how children can relate figures with their properties and what
kind of hierarchical relationships they build.

Methodology

To explore children's constructions we have used a "constructivist teaching
experiment" ( Cobb & Stet-le, 1983; Steffe, 1991) where the researcher acts as a
teacher who models children's constructions. The researcher interacts with the
children by selecting tasks according to his/her interpretations of children's
actions in each teaching episode. The researcher also studies the development of
children's constructions over extended periods of time.

In this experiment we worked with four pairs of 11 years old children . Each pair
worked on the developed software in a 45 -minute session per week for 10 weeks.
The sessions were videotaped and transcribed. The pairs were selected from two
fifth-grade classrooms of the same school according to their responses to a given
task. Children were asked to draw three different quadrilaterals and give a
written description to one of their friends about their drawings. Then they
exchanged their descriptions and tried to draw the figures according to the
descriptions they received. At the end, they compared their initial drawings with
those produced from their written descriptions and gave a new description if. they
wanted. This way, we identified two groups in each classroom according to the
way they could relate the figure with its properties. These groups seemed to
belong respectively to the first two Van Hide levels of thinking (Crowley, 1987).
Two pairs were selected from the first group and two from the second. We also
took into account the gender (5 girls and 3 boys) as well as the teachers' opinion
about the personal relationship of the children.

The tasks used were based on our interpretations of children's actions. They
varied from a simple construction of figures that children wanted to make to
more goal directed tasks, where children were asked to make shapes with a
common property; for example, to make different quadrilaterals with equal sides.
In most episodes; we encouraged children to face extreme cases, e.g to make a
triangle which can just be formed, and generalisations about the hierarchical
relations of figures based on their differences and similarities.
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Results

We present below our preliminaly results coming from our analysis of the
teaching episodes of one group of children: Artemis and Lambrini. These two
girls had been initially characterised as conceiving the geometrical figures
visually. The tasks that these children faced concerned mainly quadrilaterals with
the exception of two episodes which referred to triangles. The transcribed
episodes were analysed to identify children's actions and to interprete them. The
possible change that occured on children's actions, conceptions, justifications
throughout all the episodes was also examined. We summarise below some points
that arised from our analysis:

The appearance of the prototype phenomenon

The phenomenon of looking for "super examples" for a concept described. by
Hershkowitz (1989) as "prototype" was apparent particularly in the first episodes
and especially for Lambrini. Children tended to draw regular forms in the
upright position. In the case of triangles their first choice was an equilateral
triangle but because of their difficulty to cut the segment in three equal lengths,
the closest regular form that they chose was an iscoceles triangle with one of its
equal sides horizontal. They characterised this triangle as " almost a triangle" .

As early as the first episode, Artemis was aware that the different orientation
does not change the figure but for her the location is a factor that makes things
look different. She supported her opinion by imagining a transformation which
was keeping the shape and its size unchangable "they look different but they will
be the same if we rotate them". This conception is not geneiralisable in non-
familiar shapes. This is evident in the subsequent episode where she doubts about
the rigidity of an obtuse-angled triangle which she had constructed. Throughout
the experiment, Artemis developed a different line of argument for supporting the
rigidity of an acute- angled triangle. Now, she considers the angles of the triangle
as a way to determine its rigidity: "these cannot come closer" (while showing the
sides of an angle of the triangle). The developing of this awareness has been
probably encouraged by the work done on quadrilaterals with equal sides where
the different shapes were the result of the change of the angles. Moreover,
Artemis can anticipate now the rigidity of the triangle without the need to
experiment. She is certain for the result of her actions before acting: "No matter
how we turn it, it is always the same".

On the other hand, Lambrini was not always certain about the rigidity of the
triangle. When the change of the position was apparent, she considered the
figures as different. Her image of the triangle depended on its orientation. It was
a fixed image which could not rotate. Although Lambrini constructs the same
shape in different locations on the screen, their static apperance dominates her
conceptions. In subsequent episodes, Lambrini recognises that the triangle is the
same when viewing it from different points but she tends to come back to her
initial beliefs. The change of the context by the teacher: "imagine that you cut
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these two triangles and you place one over the other", or: " you stand up and then
you lie down. Do you change?" seems to have helped her to consider that a
different orientation does not necessarily imply a change of the properties of the
figure.

Although we identified the existence of the visual - perceptual limitations
described by Hershkowitz (1989) , especially in the first teaching sessions, we had
indications that the overall interaction between the children, the teacher and the
tasks assigned to them based on the computer environment, helped children to
overcome to a certain extent these limitations. The fact that, in the whole process,
children were not given any verbal definitions for the particular shapes but they
were encouraged to experiment, reflect and discuss the results of their actions,
seems to have an effect on their initial conceptions and beliefs.

Relating figures with their properties

The program itself led children to consider the relationship of the sides in order
to draw their chosen shape. For example, to make a square they had to cut the
initial segment into four equal pieces. Although children had faced simple
geometrical shapes and their properties in school, they used this knowledge
mainly to recognise and name figures that they had constructed. The following
example (7th episode) gives some indication of how children come to identify a
parallelogram and how they relate it with other familiar shapes. In this episode
children had already constructed different shapes with two pairs of equal sides
(non- adjacent) and now they study an oblique parallelogram having the
conventional orientation of a rhombus (figure 1).

T: What is this figure?
L: Rhombus.
A: Yes, almost.
L: It does not have all its sides equal.
A: Almost, almost.
L: Almost. If we see it from this point, it is a rectangle.
Now if you look at it from the front, it is like a rhombus ( I )
A: Yes, like a rhombus, something like that.
L: Yes, but it does not have all its sides equal.
A: Well, this is a rhombus but it does not have all the sides equal.
L: Yes, but then it is not a rhombus.
A: Right.

All of a sudden, Lambrini relates her school knowledge with the present
situation.
L: It can be done. It is an oblique parallelogram.
A: Yes! Yes!
T: How do you know it?
A - L: We have done it with our teacher.
T: Why is it an oblique parallelogram?

Figure I
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A: Because the sides are equal... the two angles are equal and the other Iwo are
equal again.
L: Yes, and it slants like the oblique parallelogram.

The above extract shows that now even Lambrini considers the properties of a
rhombus very crucial for deciding the type of the figure while in the first episodes
her decisions were mainly perceptual. The last part of this extract shows how
children can give meaning to their school knowlege, something that was not very
obvious in the earlier episodes. Lambrini's comments in dialogue (I) above, could
he interpreted as showing children's tendency to view figures in perspective but
also an ability developed through involvement to consider things from different
points of reference: "if you see it from this point... if you look at it from the
front". Throughout the preceding episodes , this tendency was very strong for
both children and it first appeared when children had constructed different
quadrilaterals with four equal sides and they were asked to find out their
differences. Both children were viewing the figures as objects in space, a
conception that although it seemed to have changed in some cases, it was coming
back again quite often ( a similar case was reported by Clements and Battista,
1990).

Building hierarchical relations

The emphasis of the tasks on identifying similarities and differences of figures
and the focusing on extreme cases, seem to have helped children to exhibit
dynamical models similar to those found in young children by Gagatsis &
Pa tronis (1990). These models helped them to build hierarchical relations
between figures and also to make generalisations in novel situations. We cite
below some examples which illustrate the use of such models.

Relating squares and rhombuses

Children had made eight different quadrilaterals (figure 2a), some, as they
described them, "very very squeezed" and others "very longish" then they
compare them.

A: Some are in the middle, some are smaller and others bigger...
L: Anyway, all are different.
T: Which of them will he in the middle?
L: It will he regular.
T: What do you mean by regular?
L: Neither the squeezed ones, nor the longish.

Children, intuitively, seem to recognise a rhombus with equal diagonals as a
"regular" quadrilateral. It is apparent from their explanations that, at this point,
they do not seem to connect this regular form with the conventional form of a
square. Later in this episode, Artemis considers the angle as a way of
distinguishing square from rhombus: rhombus has its sides oblique while the
square has them straight".
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Figure 2a

Relating different classes of polygons

Children had constructed different kites (figure 2b) with the same division of the
initial segment. The teacher poses the question: "Can all the four angles be
acute?", and the children think that they can. This question comes after they had
faced problems such as drawing a kite which was just constructible, and talking
about the size of the angles in that case.

Artemis makes a new hypothesis: "In this case one angle must be obtuse because
these two sides are small and the other two are large". She comes to the
conclusion that she has to have equal sides, and also that in this case it is best to
have right angles: "Let's make a square then all the angles are right". She
recognises that to have all the angles acute is possible only for the triangle, and
she tries to generalise this insight in other types of polygons. She talks about
polygons which can have all the angles obtuse and she approximates the circle by
suggesting to cut the initial length into 200 segments. All this reasoning is an
unexpected behaviour of an I I-year old child considering, especially, her initial
visual limitations.

ffleliaSs
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Figure 2b

Children's reasoning about the area of quadrilaterals with the same perimeter

Children compare the area of a rectangle with the area of an oblique
parallelogram of the same perimeter (episode 7) (figure 3). Lambrini compares
the two figures perceptually while Artemis initially extends her previous
dynamical models to transform the oblique parallelogram to a rectangle.

L: This will take more. This is more (rectangle)
A: Both are the same.
L. Yes... Both are the same.
E: How do you know this?
L: We know, we saw it. Figure 3
A: We 've imagined it. If we make straight these two lines (the non horizontal sides
of the oblique parallelogram), then this (rectangle) will he the same as that.

In the end of the discussion the teacher expresses her'opinion which leads Artemis
to find out a way to compare the area of these two figures. She uses her figures to
measure the .distance between the horizontal sides and then she uses the ruler to
measure what she calls the "breadths" of the two shapes. Artemis has intitively
developed an appreciation of the role Of the height in the area but she cannot use

N N

3 - 342



this insight to justify her choice. At the end, she agrees with Lambrini's
explanation who uses Artemis's approach to extend her own initial perceptual
justifications: " I mean that both have the opposite sides equal, so the sides are
equal. But, we' ye made this slant (the rectangle), so it became an oblique
parallelogram and its area has become smaller while we were moving the sides".
This kind of reasoning shows an integration of perceptual and "dynamical"
models that Lambrini used to compare areas by constructing implicitely the "area
formula".

Conclusions

Clements & Battista (1992) have underlined the need for research that describes
the development of geometric concepts and thinking in various instructional
environments. The initial results of our project indicate that, in the specific
context of this study, the pupils, starting from visual considerations of the
geometrical shapes, had, towards the end of the process, developed connections
between the figures and their properties, and formed hierarhical relationships
between different classes of shapes. The thinking involved in building these
relationships was not just the result of a conjuction of a number of critical
attributes that correspond to the figure but it was inseperable from the intuitive
and dynamical models developed by the children. Children, by relying on these
models, had used reasoning integrating perceptual, imaginary and factual
aspects, to justify their choices. We believe that further analysis of our data from
this case study, together with the analysis of the work of the remaining groups,
will help us to systematise further and extend our observations and
interpretations.
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THE QUEST FOR MEANING IN STUDENTS' MATHEMATICAL
MODELLING ACTIVITY

Joao Matos Susana Carreira
Universidade de Lisboa Universidade Nova de Lisboa

Abstract
The central claim that every mathematical model is based on a certain interpretation
of reality motivates the search and examination of the meanings that support students'.
modelling activity. In this quest for meaning and its evolution we analysed three
episodes extracted from a modelling activity developed by a group (4. faur lOth grade
students. Our results strongly support the conclusion that students' models are
mediated by their particular interpretations and dialogic activity, and by their
mathematical, technological and symbolical tools.

Introduction
The mathematical modelling of real world situations is often recommended for its
potential in making mathematics meaningful to students. Some of the recurrent
questions students have in their minds when they do their mathematics are related to
the potential uses, purposes and relevance of the established curricular topics.

Without denying the later conception of meaning, it is our conviction that the
problem of meaning is not reducible to the utility or to the relevance of mathematics
in solving real problems.

Therefore we have set ourselves the goal of searching for meanings and of sounding
their origins in students' modelling activity. We shall do it by closely looking at their
interactions and listening to their utterances and by interpreting their actions and
words.

Theoretical background: the main stream of our approach
Our approach to the problem of finding meaning in students' modelling activity
draws from a set of relevant perspectives which have their stronger references in a
sociocultural view of the development of thought and learning.

(1) Learning is viewed as a social and cultural activity. Meanings emerge as a result of
a situated and shared activity. The setting where students develop their activity is not a
neutral element and their actions are not immune to it.

It is also important to recognise that students' voices are not always unchangeable
(Wertsch, 1991). Sometimes they look like interrogative voices; other times they
assume a more critical or. on the contrary, a more condescending tone. Students'
voices may be more spontaneous or more conditioned and eventually they may sound
like the voice of the teacher as in an act of ventriloquism (Wertsch, 1991).

(2) Meanings are mediated by external signs. Some of the important external signs
that mediate students meanings are of a linguistic nature (Vygotsky,l987 /1993). The
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words used by the teacher to describe a real situation that is chosen to be modelled by
the class are important mediating elements in the images students make of the
situation. The mathematical inputs or clues that are often included in such
descriptions can have a pertinacious effect in students' mathematical modelling.

Meanings also permeate students' dialogic activity and their mediating tools. When
one of those tools is a technological device,. there are additional matters to take into
account like the logic of the tool functioning and the logic of its use in a particular task
(Skovsmose, 1994).

(3) Students own modelling processes are different from those of experts in crucial
aspects: The first mark of distinction between students' modelling and experts'
modelling is immediately connected to the setting where the modelling activity takes
place. The point is that students are confronted with a problem already formulated in
terms' of school mathematics a problem about a real situation or phenomenon
which for several reasons is found adequate to be presented to the class. The situation
is somehow adapted to a certain group of students and the problems are quite often
simplified so that they can stay within students' reach.

The reality that enters the classroom is a certain reality, a reality that differs from
that of the research laboratory or of the real world exploration conducted by a team
of science practitioners (Sabo & Wyndhamn, 1993).

The empirical setting of the study
Our data result from an empirical study developed in a regular mathematics class
over a period of four months (Matos & Carreira, 1994). The participants were the
students and the teacher of a tenth grade mathematics class.

During the first term the teacher brought simple modelling and application problems
to the class and students were organized in small groups to work on them. The teacher
undertook the supervision of students' work and she was seen by the groups as a
consultant and a guiding resource. By the end of the first term she introduced them to
the basic features of the electronic spreadsheet.

In the meantime, she and a team of researchers worked on the elaboration of
materials to support a weekly session on modelling problems during the second and
third terms. In each of the eleven modelling sessions, three groups of students were
observed, videotaped and audiotaped during their activity.

The search for meanings
In our analysis we shall focus on the activity of a group of students. They will be
identified as Carla, Sofia and Roberto.

The real situation presented in this class involved the calibration of an hour-glass so
that time could be measured in small intervals during the process of running. It was
decided to study a hypothetical hour-glass made of two identical conic vessels united
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by their vertices (see figure 1).190'
Volume of each cone: 226 cm3
Height of each cone: 8 an
Draining Velocity: 0.5 cm3/8

Figure 1. The diagram and information provided about the hour-glass functioning

From the entire record of\the activity we have selected three episodes found worthy
of a close attention.

Episode 1: Local inverses and formal inverses
Sofia initiated the discussion about the hour-glass running. She described it in simple
terms, saying that the flowing of the water would cause an increase of liquid in the
lower container and a decrease in the upper container. She also mentioned that the
water subtracted from the upper cone would be precisely the water added to the lower
cone. Carla developed a mental image of the volumes changing, assuming that the
upper cone would be initially full. She considered time changing in seconds:

Carla: "After the first second, it remained 225.5 [in the upper vessel]. That's 0.5 less. After
two seconds, it's...' 1 less. After three seconds its 1.5 less, that is, 0.5 times 3. And in the
lower one it increased. It became 0.5; 1; 1.5.

Roberto: "The amount that came into the lower one is equal to the amount that came out of the
upper one. So, in the upper cone, the volume will be the total volume which is 226
minus 0.5 times the time value."

Cada: "And down there, the volume will be the total which is 0 plus 0.5 times the time
value."

At this point Roberto suggested a way of relating the volumes of the two cones but
Carla immediately reacted to his conjecture.

Roberto: I think that the lower cone must be the inverse of the upper cone".

Carla: "Not the inverse! 1-low could that be, if we're about to see that the two volumes are
directly proportional?"

Sofia did not interfere in this dialog and the discussion between Carla and Roberto
was not prolonged. The group used the formulae to represent the two volumes as
functions of time and graphed simultaneously the two functions (see figure 2).

Figure 2. The graph of the two volumes against time obtained on the spreadsheet
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As they were interpreting the two straight lines obtained, the notion of inverse came
back in a subtle way and, this time, in the comments of Carla:

Sofia: "This one that goes down is the upper cone."

Carla: "That's right. It starts with... and... it decreases. It looses to the other, and in the other it
happens the inverse."

Meanings and their origins
While Sofia was making the description of the hour-glass behavior, she came across
several opposite words. She mentioned increasing and decreasing as well as adding
and subtracting as she spoke about the volume change in each of the cones. Carla
began to express this variation in a more quantified manner and Roberto completed
her reasoning by introducing new opposites: the water conies out of the upper cone
and conies into the lower cone. The word inversion became a natural sign to represent
that very phenomenon. It translated what had been spontaneously captured from the
pairs of opposites that tilled students' interpretations. We shall say, accordingly, that
this type of dialogic activity gave room for the creation of a local model of the hour-
glass functioning.

However, when Roberto proposes this same notion to initiate a process of relating
both volumes, Carla replies with another voice. She seems to cut out with the local
model used so far and she switches to a formal model of inverse. She takes it from a
scientific or scholar position and she disagrees with Roberto based on scientific
concepts. She stresses her point of view by using mathematical arguments and she
shows him that the inverse (the reciprocal) of 225.5 is not equal to 0.5. Everything
gets a new formal aspect and the case is closed.

What is important to notice here is that the local model was intercepted by a formal
and scientific model. The status of the last one showed to be strong enough to repress
the more intuitive and tacit models. The discussion about the relationship between the
two volumes did not continue. Nobody questioned the direct proportionality or tried
to verify it. No attempt was made to graph the pairs of values in the two volume
columns to see what would come up.This is quite in contrast with what is supposed to
happen in an expert modelling behaviour since conjectures would be submitted to test
and confronted with the real situation.

The conjecture about a direct proportionality only meant a formal argument to
reinforce a formal voice within the modelling process. This formal voice turned out
to be an important constraint in the modelling process. It held back Roberto's
suggestion even though it did not erase the former intuitive model. Obviously, the
position of the two straight lines in the graph invigorated the idea of inversion and
Carla herself was caught in the temptation of mentioning it.

Episode 2: A graph that is drawn from right to left
Back in the beginning of the session the teacher made some comments to the whole
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class where she summarize the questions formulated.
Teacher: In question I you' re going to explore how the volume changes with time. In 2, you'
ll see how the water level changes with the volume of water. In 3, what is finally required is
that you look for the way the water level changes with time. So we may see a transitivity
here..."

Once more it was Sofia that tried to figure out how the water level changed as the
volume in the upper cone decreased. She draw the following diagram of the situation
where she depicted the liquid remaining in the upper cone in successive instants (see
figure 3).

Figure 3. The scheme made by Sofia to represent the level variation in the upper cone

Roberto noted that the water level decreased with the volume of water. Sofia pointed
out that constant decreases of level did not correspond to constant decreases of
volume.

Sofia: Only if they were cylinders there would he constant variations of volume for constant
variations of level. But as these are cones, the variations are not constant and so its a different
situation."

As soon as students got a formula for the height of the cone as a function of volume,
they implemented it in another column of their spreadsheet table. A first reading of
the values told them that the level of water started to decrease very slowly.

Roberto took the initiative to draw a sketch on the paper and his representation was
accepted by the two girls (see figure 4).

Figure 4. The graph Roberto sketched before plotting level against volume on the spreadsheet

He explained the general idea of his graph where he did not label the axes. Anyway we
can see by Roberto's words and gestures that he was referring himself to the labels
level and time on the y-axis and x-axis, respectively.

Roberto: "The level begins with its maximum value and, as time passes, it decreases until it
gets to the minimum value, which is zero, when all the water.has come down to the lower
container".

When they used the spreadsheet to plot the level against volume they found a different
representation from Roberto's (see figure 5).

re P".
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Figure 5. The graph of level against volume obtained on the spreadsheet

At first they didn't understand what was wrong with their initial idea but after a while
Roberto came forward to clear up the matter.

Roberto: "Basically this is the graph that were expecting with the only difference that it is
reverted. Here it's as if time went backwards, as if time was running in the opposite way of
ours".

A few moments later, Sofia had a remarkable observation about the graph obtained in
the spreadsheet:

SDLIA: "When the curve is drawn here on the computer, it begins from up there (pointing to the
right edge of the curve) and it makes all the way to the axis line. So, its as the starting point
was on the right and not on the left. And it really matches with what we were thinking before".

Meanings and their origins
The essential question treated in this episode was to understand how the water level
would change with the water volume in the upper cone. In analysing how students
dealt with this problem we can see two models of the situation. We will call them the
dynamic model and the computer mediated model.

The first model was developed through the pictorial representation made by Sofia.
She depicted what she imagined to be the dynamic behavior of the liquid flowing out
of the upper cone. In her drawing the time variable was already an important feature
of the model. It almost looked like successive shots in a film sequence of the upper
vessel. Therefore the conclusion was: the level decreases as the volume of water
decreases. But when Roberto proposed a graphical representation, he actually
considered the variation of level with time. and so students' model grew out of a
dynamic vision of the level variation. Even when students obtained the true graph
.(level against volume) on the spreadsheet, they did not reject their dynamic
interpretation. On the contrary, they searched for details that could support such an
interpretation. For instance, they claimed that both graphs were compatible if one
realised that time was inverted in the computer graph. The fact that the computer
plotted the graph curve from right to left was used as a good argument to sustain the
idea of time being inverted.

What has been described suggests the conclusion that the time variable became very
central in students' reasoning. Although having accepted the computer graph, they
used a feature of the computer output (the graph is drawn from right to left) to
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reinforce their own perception of the relation level-time.

Episode 3: Why is a cone different from a cylinder?
Students finally plotted the graph level against time on the spreadsheet to get a better
insight of how time should be marked on the hour-glass (see figure 6).

Figure 6. The graph of level against time obtained on the spreadsheet

They came to realise that Roberto's previous graph indicated a slow decreasing
towards the end of the emptying which did not match the real phenomenon. This way
students revised their graphical representation of the function level-time. The new
graph provoked some discussion between the students. They analysed the type of
variation represented and discussed it.

Carla: "When there isn't much water left and the cone, is almost empty, then it goes down
faster, doesn't it"?

5ofi4: "Yes, and the graph translates the water movement as it goes down in the upper cone".

Carla: "That's right. At start, when there's still a lot of water, it has to be decided which is
going down first... (smiling). But when there's only a little liquid, then it all goes down at
once".

Sofia: "We got this curve because we're talking about a cone. If it was a cylinder it would be a
linear model".

Roberto: "True, for in that case the water flow would always be the same... The width of the
container would not change. But if it's a cone, and if it's quite full... the water flow is
different. It makes a difference in the water flow if the cone is quite full or if it's almost
empty".

Meanings and their origins
Two ideas seem to cohabit in students' reasoning.. One is the idea that the shape of the
vessel makes the level variation non-linear. The other is related with the notion of an
increasing speed of water flow as the cone gets emptier.

Carla used a metaphor where she insinuates that the liquid flow would not have a
constant speed. Only Sofia kept an accurate idea about the influence of the vessel
shape in the level function. Roberto aimed at combining both perspectives. Ina way
he followed Sofia's interpretation when he noticed that there was a variation in the
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width of the cone. But at the same time he went along with Carla's image according to
what the water did not flow at a constant rate and in the beginning it would be slower
than in the end. It all seems to indicate that Roberto tried to accommodate both views
of the problem.

What happened then were three voices raising to explain the non-linearity. Sofia's
voice pointed to the shape of the vessel, Carla's to the changeable speed of water flow
and Roberto's showed a mixture of both. All of them brought different meanings to
the situation but those meanings were not seen as contlicting. On the contrary, they
were combined in a two-sided version of the phenomenon.

Conclusions
To look for meaning in students' modelling activity implies the recognition that
students' modelling behavior is fundamentally tied to the setting where the modelling
takes place. There are all sorts of mediating elements contributing to the emergence
of meaning. We have identified and discussed sonie of those elements, namely
students' dialogic activity, the role and value of everyday language, its
contextualization in the analysis of the situation, as well as the uprising of formal
voices, sometimes in a ventriloquism of the voice of reason.

We have also looked at the way some of students' models come from their intuitive
views of the problem and how they can become rather persistent even when in the
presence of contradictions. Students can find their own processes of accommodating
different interpretations and concepts and of using their tools to reinforce such
processes.

In many aspects there are notable differences between what students do in their
mathematical modelling activity and what is supposed to be the performance of a
modelling expert. This will not come as a surprise if one is willing to appreciate the
reasons why students come up with their own senses of a certain real situation and its
mathematical grounds.
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THE ROLE OF IMAGERY AND DISCOURSE IN SUPPORTING
THE DEVELOPMENT OF MATHEMATICAL MEANING

Kay McClain Paul Cobb
Vanderbilt University

The study reported in this paper investigates the role that situation-specific imagery
and classroom discourse play in grounding students' activity as they develop
mathematical meanings. Issues addressed in this paper emerged during a teaching
experiment which was conducted in one first -grade classroom. The teacher in the
study participated as a collaborating member of the research team. The notion of
imagery as discussed in this paper is related to Pirie and Kieren's (1989) recursive
theory of mathematical understanding. The analysis presented provides an example
of the general issue of maintaining a grounding in imagery and its potential
importance in teacher development efforts.

This paper focuses on the role that situation-specific imagery and classroom
discourse play in grounding students' activity as they develop mathematical
meanings. The issues addressed in this paper are related to Pirie and Kieren's
(1989) recursive theory of mathematical understanding. They argue that
mathematical understanding is a "recursive phenomenon and recursion is seen to
occur when thinking moves between levels of sophistication" (Pirie and Kieren,
1.989, p. 8). The first level they discuss is characterized as "primitive doing."
Mathematical actions at this level typically involve the use of physical objects,
figures, or symbols. The first recursion occurs when the learner is able to form
images out of this "doing" and is called "image making." At the next level, the
images are replaced by a form for the image. This "image having" no longer
requires particular actions as examples and .is considered a first level of abstraction.
Pirie and Kieren (1989) note that "it is the learner who makes this abstraction by
recursively building on images based in action" (p. 8). As the learner is able to
examine the images for specific properties, the next level occurs. It is important to
note that for Pirie and Kieren (1989), the actual process of learning does not
proceed in a linear manner through the levels. While activity at an inner level can
be used to build more complex ways of knowing, it is often necessary for the
learner to fold back to a previous level. When one does fold back to a preVious
level, the action at that prior level is not the same. The experiences at the outer
level serve to inform the re-visited inner level. It is this recursive process that
makes mathematical understanding a dynamic process. It is important to note,
however, that Pirie and Kieren's notion of folding back was developed as a way to
describe shifts in individual activity. As the focus in this paper is on classroom
discourse, we will adapt Pirie and Kieren's notion to describe shifts in collective
activity.
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The sample episode discussed in this paper is taken from a first-grade classroom
in which the teacher participated as a collaborating member of a research and
development team. Our intent is not to offer an example of exemplary teaching,
but to illustrate the importance of imagery and discourse in supporting the
development of mathematical meaning. This paper will be of more than local
interest if it serves as a paradigmatic case that can both help others develop
understandings of their own practice and contribute to the growing research
literature on effective teaching.

In the following sections of this paper, we will first describe the teacher and
classroom that are the focus of this paper, and then outline the data corpus. Against
this background, we will present a classroom episode intended to exemplify the
importance of students' activity remaining grounded in situation-specific imagery.
We conclude by discussing the significance of imagery-in-discourse for the
development of mathematical meaning.

Ms. Smith's Classroom
The majority of the eleven girls and seven boys in Ms. Smith's first-grade (age

six) classroom were from middle or upper middle class American backgrounds.
There were no minority children in the classroom, although a small percentage
attended the school. The students in the class were representative of the school's
general student population. Although not a parochial school, morals and values
were considered to be part of the responsibility of schooling and children regularly'
participated in religious activities.

Ms. Smith's classroom is of particular interest because an analysis of
videorecorded interviews conducted at the beginning and end of the school year
indicates that the students' conceptual development in mathematics was substantial.
Students who, at the beginning of the year, did not have a way to begin to solve the
most elementary kinds of story problems posed with numbers of five or less had, by
the end of the year, developed relatively sophisticated mental computation strategies
for solving a wide range of problems posed with two-digit numbers.

The teacher, Ms. Smith, was a highly motivated and very dedicated teacher in
her fourth year in the classroom. She had attempted to reform her practice prior to
our collaboration and voiced frustration with traditional American mathematics
textbooks. Although she valued students' ability to communicate, explain, and
justify, she indicated that she had previously found it difficult to enact an
instructional approach that both met her students' needs and enabled her to achieve
her own pedagogical agenda. When we began working with Ms. Smith, it soon
became apparent that she continually reflected on and assessed both the instructional
activities she used and her own practice. In addition, she had a relatively deep
understanding of both mathematics and her students' thinking. Ms. Smith was
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seeking guidance with her reform efforts; we were seeking a teacher with whom to
collaborate as we developed sequences of instructional activities.

Data Corpus
Data were collected during the 1993-94 school year and consist of daily

videotape recordings of 103 mathematics lessons from two cameras. During whole
class discussions, one camera focused primarily on the teacher and on children who
came to the whiteboard to explain their thinking. The second camera focused on
the students as they engaged in discussions while sitting on the floor facing the
whiteboard. Additional documentation consists of copies of all the children's
written work; daily field notes that summarize classroom events; notes from daily
debriefing sessions held with Ms. Smith; and videotaped clinical interviews
conducted with each student in September, December, January, and May.

A method described by Cobb and Whitenack (in press) for conducting
longitudinal analyses of videotape sessions guided the analyses. This method fits
with Glaser and Strauss' (1967) constant comparative methods for conducting
ethnographic studies. It involves constantly comparing data as they are analyzed
with conjectures and speculations generated thus far in the data analysis. As issues
arise while viewing classroom videorecordings, they are documented and clarified
through a process of conjecture and refutation.

In the following section, we will present an episode which highlights the
importance of imagery and discourse in ensuring that students' activity remains
grounded. The episode provides an examplefolding back.

Classroom Episode
Our collaboration with Ms. Smith between March and May of the school year

focused on the development of an instructional sequence called the empty number
line. The empty number line is a number line which is "empty" of or lacking in
numerical increments. This sequence was designed to support the development of
counting-based concepts of ten, and strategies for estimation and mental
computation with two-digit numbers. The initial instructional activities in the
sequence as it was originally outlined by its developers involved the use of a bead
string composed of 100 beads (Treffers, 1991). The beads were of two colors and
were arranged in groups of ten. We decided to modify the sequence by omitting
these instructional activities because the bead string did not serve as a means by
which children might explicitly model their prior problem solving activity.
Instead, we attempted to develop the empty number line sequence by building on the
scenario of a candy shop. Students would be given amounts of candies in the candy
shop and asked how many candies the candy shop owner would have if she either
made more candies or sold candies. The empty number line was used to record
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these transactions where incrementing or decrementing on the number line
corresponded with the appropriate candy shop activity (see figure I).

II) i0

30 40 50
27 52

Figure I. Twenty-seven candies and she makes 25 Inure.

As the sequence progressed, we inferred that most of the students' activity was
grounded in situation-specific imagery of activity in the candy shop. One of the
primary sources of evidence was the fact that students, working in pairs, created
empty number lines to tell stories about what happened in the candy shop.
However, a classroom episode that occurred on March 30 provided convincing
evidence that, for at least some of the students, acting with the empty number line
had become a purely calculational activity that was situated in purely calculational
discourse involving explanations speaking "exclusively in the language of number
and numerical expressions" (Thompson, Philip, Thompson, & Boyd, 1994, p. 8,
italics in original).

In this crucial lesson, Ms. Smith posed addition and subtraction tasks by drawing
a horizontal empty number line, and by describing transactions in the candy shop.
One of the tasks posed (see figure 2) was Mrs. Wright has 90 pieces of candy and
she sells eight of them. How many candies does she have left?

90
Figure 2. Ninety candies in the shop and she sells eight.

In the subsequent discussion, Bob explained the following solution :

Bob: I think its eighty-one. Because if were already down to ninety and
then you don't count... you don't count ninety because if you have eighty
and then you take away nine, it would get you down to eighty.

Here, Bob argued that the entity signified by "ninety" should not be included in
those taken away. As a justification, he observed the "90" would not be counted
when counting backwards. On this basis, he reasoned that as the result of taking
away nine would be 80 (i.e., 89, 88, ... , 81), the result of taking away eight is 81.
A detailed analysis of this and other contributions to the exchange revealed that
while most of the children gave number words and numerals quantitative
significance, there were qualitative differences in their individual interpretations of
terms such as "ninety." This in turn indicated the absence of taken-as-shared
imagery underlying the number line (see Cobb, Gravemeijer, Yackel, McClain, &

3 - 356

:362



Whitenack, in press). A range of interpretations emerged, as evidenced by Dan's
explanation of his answer of eighty-three.

Dan: I think it's eighty-three because I'm counting the ninety as a number.
T: Now were talking about pieces of candy. There're ninety pieces of

candy. Okay?
Dan: Okay, if you have ninety pieces of candy and... and it couldn't be eighty-

two 'cause you'd be... 'cause the ninety, if you're taking away it and
counting one, well it would just be the ninety-eight 'sic'. It... you would
be counting something extra. So you would take away two... the ninety-
eight and the ninety-nine !sic'.

Dan appeared to misspeak when he said ninety-eight and ninety-nine instead of
eighty-eight and eighty-nine. At first glance, it might seem that he had arrived at
his answer of eighty-three by counting backwards starting from ninety rather than
eighty-nine. However, his comments in the remainder of the episode indicated that
his interpretation of the task was relatively sophisticated. Collectively, these
comments suggest that, for hiM, the ninth decade when counting comprised 80, 81,

82 89. The "ninety" to which he referred appeared to be of special
significance in that it signified an additional item beyond this decade. By this
reasoning, the solution to 90 - 8 involved taking away "the ninety" and then seven
from the decade 80, 8 1 , 82, .. . , 89. The result for Dan was then eight-three

rather than eighty-two.

T: We're at ninety... we have ninety pieces. You said if you took away one
of those pieces you would have... (she notates, see figure 3).

Dan: Eighty-nine. If you took away another one you would have eighty-eight
(Ms. Smith notates, see figure 3). Now, you've got three pieces away.
Now, you take away...

T: Now wait a second. You took away, Dan, you said you took away one
piece, and that left you with eighty-nine. Is that what you said? (Dan nods
in agreement). Then you took away one more piece, and that left you
with eighty-eight. Is that right? (He nods again.) So how many pieces
have you taken away so far?

Dan: Three.
T: Okay, show me where are the three pieces you took away.
Dan: The ninety, ninety-eight, I mean the ninety, the eighty-nine, and the

eighty-eight.

88 89
90

Figure 3. Dan's solution to the task.

For Dan, three rather than two candies had to be taken away to leave eighty-
eight because there was an additional candy beyond the ninth decade, "the ninety."
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Following this line of reasoning, ninety take away two would be eighty-nine because
it was necessary to take away the ninety and then one from the ninth decade.
Although it could be argued that the numbers held quantitative significance for Dan,
the lack of a taken-as-shared interpretation of the number line led to Dan and Ms.
Smith talking past each other. Ms. Smith's recasting of questions in terms of
candies was insufficient because there was a lack of shared interpretation of the
number line itself, not of the original task situation that involved candies.

This lack of basis for communication continued to be evidenced as several
students disagreed with Dan's claim that eighty-three candies would be left. To this
Dan responded:

Dan: I still think it's eighty-three 'cause if you're counting the ninety which you
have to 'cause if you have ninety pieces and if you didn't count ninety,
you'd just have eighty-nine.

Dan's clarification of his position led to a discussion about whether or not to
count "the ninety." At this point, it appeared that students were unable to
effectively communicate. Their explanations appeared to carry the significance of
acting on experientially-real arithmetical objects. The difficulty arose from the fact
that Ms. Smith and the children interpreted the empty number line in a variety of
different yet personally-meaningful ways. They were, in fact, unable to establish an
adequate basis for communication during the remaining ten minutes of the lesson.
This remained true even though Ms. Smith redescribed several of the students'
explanations in considerable detail by referring to the empty number line she had
drawn. In the absence of taken-as-shared imagery for the empty number line, the
situation remained unreconcilable.

In reflecting back on the lesson, Ms. Smith stated that she believed that the
students' explanations were grounded in the imagery of the situation. She based this
judgment on the fact that students were able to talk explicitly in terms of the candies
while explaining and justifying their solutions. This interpretation caused her to
judge that it was unnecessary to initiate a folding back process by, say, introducing
unifix cubes as substitutes for candies. Although we agreed that most of the
students' explanations carried quantitative significance, we agreed that they were
attempting to give the empty number line meaning in terms of re-presented
counting activity. Difficulties in communicating arose because there was nothing
taken-as-shared beyond the empty number line that the students could point to to
explain their counting-based interpretations.

As a consequence of these discussions, Ms. Smith introduced unifix cubes in
conjunction with the empty number line. Our rationale was that the cubes might be
constituted as countable items. With Ms. Smith's guidance, the children might fold
hack by looking at the cubes though counting and acting with the empty number
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line. The children had previously made bars of ten unifix cubes to model packing
candies into rolls of ten. Ms. Smith capitalized on this prior activity by arranging
the unifix cubes in bars of ten of differing colors. Laying the bars end to end in the
tray under the white board, Ms. Smith drew the empty number line above the

cubes: She re-introduced the cubes as candies and cast all problems in terms of the
candies. The first task posed involved incrementing and decrementing. When
students offered their solutions, she recorded them on the empty number line and
partitioned the train of unifix cubes. at the appropriate points to correspond with the
jumps on the empty number line positioned directly above the cubes (see figure 4).

10 tO

13 23: 33

McriiMil MEE= 123=MBINEINEI
Fieure 4. Supporting incrementing activity with the cube train.

Further, she on occasion, specifically asked the childreri to determine which pieces
of candy would be needed to get frOm,: say, thirty-four to forty.

Several students appeared to modify their interpretations of the empty number
line.as they participated in discussions that made reference to the cubes. For
example, Dan explained his solution to the task Ms. Wright has twenty candies in

the shop and she sells two by stating:

Dan: You take away the twenty and the nineteen leaves eighteen.
In general, the development of a taken-as-shared basis for communication

involved a recursion such that acting. on the empty number line and counting were
renegotiated as the children looked at the train of cubes through these activities. By
initiating a folding back of discourse, Ms. Smith made it possible for her students to
develop taken-as-shared imagery for the empty number line. In Pirie and Keiren's
terms, they might be said to "have" an image of the train of cubes as informed by
outer level knowing so that they could subsequently act independently of it, but in
ways such that they made taken-as-shared interpretations.

Conclusion
Throughout this paper, we have attempted to illustrate the importance of

imagery and discourse in supporting the development of mathematical meaning.
While Pirie and Kieren (1989) argue that the imagery of the situation emerges from
initial "doing" which ultimately supports students' construction of mathematical
conceptions, this is a recursive process that requires students revisiting prior levels
of image doing, making, and having. As a result, the overarching imagery of the
context as negotiated in classroom discourse is crucial for the development of
mathematical understanding to emerge.
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In Ms. Smith's classroom, the imagery of the situational context was highly .

valued. Although she typically engaged her students in skillfully-developed
narratives, the possibility of initiating a folding back of discourse did not occur to
her spontaneously. This observation is extremely significant in our view.
Elsewhere, we have documented that she was, in many ways, an unusually gifted
and reflective teacher (see McClain and Cobb, 1995). The fact that she rarely
initiated the folding back of discourse leads us to conjecture that few other teachers
initiate such shifts in discourse. This in turn suggests that these shifts and the
general issue of maintaining a grounding in imagery be given particular attention in
teacher development efforts.
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THE ORIGINS AND DEVELOPMENT OF THE NCTM
PROFESSIONAL STANDARDS FOR TEACHING MATHEMATICS

Douglas B. McLeod
San Diego State University

The reform of mathematics education in the USA has been led by the
NCTM Standards for curriculum, teaching, and assessment. This
paper reports part of a case study of the NCTM Standards project
considered as an effort toward systemic change. The story of the
Teaching Standards provides an interesting example of creativity in
writing recommendations for teaching, even though the Teaching
Standards have received less attention than the Curriculum and
Evaluation Standards, probably because of differences in funding,
organization of the writing teams, dissemination, and timing.

In 1991 the National Council of Teachers of Mathematics (NCTM) published
the second of its standards documents, the Professional Standards for Teaching
Mathematics (NCTM, 1991). Although this document, usually referred to as the
Teaching Standards, has been well received in mathematics education, it is not as

well known as the first of NCTM's standards documents, the Curriculum and
Evaluation Standards for School Mathematics (NCTM, 1989). This paper reports
some of the reasons for the differences in the development and impact of the two
documents. The analysis is part of a case study of the first two NCTM standards
documents (McLeod, Stake, Schappelle, Mellissinos, & Gierl, in preparation).

The purpose of our case study was to understand the origins, development,
dissemination, and impact of the NCTM Standards as an example of a systemic
change effort. Our methods followed the recommendations of Stake (1994).
Main sources of data included interviews with NCTM leaders and state
mathematics supervisors in the US. One of eight studies of educational change in
the US (Romberg & Webb, 1993), our project is part of an international effort
coordinated by the Organisation for Economic Cooperation and Development.
Origins of the Teaching Standards

The initial plan for the NCTM Standards came out of the work of the NCTM
Instructional Issues Advisory Committee. The plan included the preparation of
standards for curriculum, instruction, and evaluation, all of which would have
been included in one document. Although some see the origins of this plan in the
publication of A Nation at Risk (National Commission on Excellence in
Education, 1983), others say the plan arose out of concerns from NCTM
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members that recommendations on mathematics textbooks were too often subject
to political and other influences from outside of the professional mathematics
education community (McLeod, Stake, Schappelle, & Mellissinos, 1995).

As the NCTM Board of Directors planned the development of the standards
project, the Teaching Standards were delayed, even though many people thought
that teaching should come first because of its importance. As one leader
described the conflict, "I must admit that my own predilection was to start with
teaching, because I thought the classroom and what teachers do with kids is
probably at the center. But that isn't what NCTM wanted." NCTM President
John Dossey recalled how the NCTM Board decided to focuS first on the
Curriculum and Evaluation Standards:

We were talking about doing both curriculum and evaluation as well as the
teaching standards in one document. We realized that it would be too big of a
change. We felt that it would be a difficult enough task just to get everybody
to say, "We want to try and change our content and our view of content."

Since NCTM had not been able to find any funding agency that was willing to
support the entire standards project, separating out and delaying the development
of standards for teaching made the initial project smaller and easier to fund. In
some ways, the decision to focus on content first was just "being practical," as one
leader put it. Leaders and writers generally agree now that it was the right
decision. As one state supervisor put it:

It was absolutely crucial to have the Curriculum Standards be the banner.
Very few people really remember that there are also evaluation standards in
the document; they sank without a trace. If there'd been a comprehensive
document called Curriculum, Teaching, and Assessment Standards, teaching
and assessment would have dropped off. What would have gotten the attention
was the content standards.

NCTM leaders, however, were also aware that it was important to work on
changing all parts of the educational system. The experience of the 1960s
suggested that you need to "do it all," in the words of one leader. For example,
NCTM was very aware that the "widespread shortage of qualified mathematics
teachers" (NCTM, 1980, p. 24) was a continuing problem, and any move away
from traditional instruction would require strong programs for staff development
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as well as teacher preparation. However, the final decision to begin with content
and curriculum received broad support.
Comparing the Two Standards Documents

There are many similarities between the development of the Professional
Standards for Teaching Mathematics (NCTM, 1991) and the Curriculum and
Evaluation Standards (NCTM, 1989). Each document began with the
appointment of a Task Force by the NCTM Board of Directors, the preparation
of a proposal by the Task Force, and the approval of funding for the project
from the NCTM Board of Directors. Although NCTM had to provide almost all
the funding for the Curriculum and Evaluation Standards (NCTM, 1989), the
situation had changed by 1989. As one NCTM leader put it, now the National
Science Foundation (NSF) "was almost inviting us to come for money," and a
grant proposal requesting funding for half the costs was submitted to NSF.

The proposal to NSF outlined the major tasks. Writing teams were to prepare
a draft document in the summer of 1989, and NCTM would hold hearings and
gather feedback during 1989-90, a year of discussion and review. Finally, a
revised draft would be prepared during the summer of 1990, based on feedback
from the field, and NCTM would produce the final document in 1991. The plan
included standards for teaching (i.e., what a mathematics teacher should be able
to do), standards for the professional development of teachers, and standards for
the evaluation of teaching. These three areas appeared in the final version of
over 200 pages (NCTM, 1991), along with a fourth section on standards for
administrators and policymakers on support for mathematics teachers.

The proposal listed a commission (chaired by Glenda Lappan) and three
working groups (led by Deborah Ball, Susan Friel, and Tom Cooney). Each
working group had an "assistant/reactor" who had special responsibility for
responding to what the leader wrote. In contrast to the 1989 Standards, when
writing teams met in 1987-88 for three periods of two weeks each to discuss and
debate the ideas, the plans for the Teaching Standards included three-day

meetings of the working groups. There was less time (and less funding) for
group meetings, and leaders were assigned more of the responsibility for the
writing. The entire working group met to plan the writing and later to respond
to the lead writer's drafts. Individual members of the groups still made
significant contributions, but there was substantially less time for group
interaction than in the preparation of the Curriculum and Evaluation Standards.
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This change was decided upon in part because of the need to reduce costs; it

was less expensive to assign the main part of the writing to just the leaders. But
the decision was also a consequence of the difficulties with the quality of the
writing in the drafts of the Curriculum and Evaluation Standards (NCTM, 1989).

The changes in responsibility for writing, along with the reduced amount of
time that the writers spent together, are probably the main reasons for the
different impressions one gains from talking to members of the working groups
for the two documents. The esprit de corps in the writing groups for the
Curriculum and Evaluation Standards was especially strong; in the case of the
Teaching Standards, the sense of group ownership seemed somewhat less intense.
As one leader noted, "A certain camaraderie developed in the Curriculum and
Evaluation Standards that was missing in the Teaching Standards."

The change in the structure of the writing groups appeared to be the main
source of the change, but the difference in leadership style (noted by several
participants) may have been a contributor as well. As a leader put it, the two
leaders of the 1989 and 1991 projects (Tom Romberg and Glenda Lappan) "had
different leadership styles--Lappan talked about that in the first meeting. She was
not going to be a hands-off leader." Romberg was often willing to remain above
the fray of the writers' debates and rarely got involved in arguments. Lappan, on
the other hand, was seen as a leader who provided "direction without being
dictatorial." Both Romberg and Lappan received many positive comments from
the writers who worked with them.

Changes in funding, in leadership and in leadership style, in writing
assignments, and of course in the topic under discussion (pedagogy rather than
content) contributed to making the Teaching Standards different from the 1989
Standards. Perhaps the most significant factor of them all is just that the
Curriculum and Evaluation Standards came first and made a big impression,
leaving the Teaching Standards always in the "bow wave" created by the arrival
of the earlier document.
The Writing of the Teaching Standards

The writing groups met in the summer of 1989 and began their work. Since
only Lappan and Cooney had been involved in writing the 1989 Curriculum and
Evaluation Standards, some of the same issues about the meaning of the term
standards came up again. Some writers wanted to specify standards that would be
criteria to judge quality, but most writers (like the writers of the 1989 Standards)
had by this time moved away from an accountability perspective of standards
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(McLeod et al., 1995). More of the new writers were concerned that teachers
would find the idea of standards to be too prescriptive, even arrogant, and they
worried about how the phrase "professional teaching standards" would be
interpreted by teachers. The discussions were intense, and brainstorming sessions
encouraged consideration of many different ideas about standards.

One concern was that the teacher unions in large cities would immediately
reject the notion of standards. This concern was part of the reason that members
of Deborah Ball's writing group decided that they wanted to express the spirit of
teaching--an idea that was consistent with telling stories of teaching, rather than
stating standards or specifications. The stories of teaching were called vignettes.
The use of vignettes to describe teaching led in an interesting way to the
development of standards. Deborah Ball recalled:

We met for a day and we were thinking about what the different vignettes
ought to be like. The people in my group thought that it seemed reasonable
that we would write vignettes, and we talked a bit about where we would get
them and what a vignette would be. At that point, we were imagining the text
as being vignettes. In trying to conceptualize how we could have an array of
vignettes that would capture differences in teaching for understanding, we
backed into having to talk about what dimensions of teaching would be like, or
what you would have to think about so that you could have variation among
our vignettes. Over night from one day to the next, I remember saying at the
end of the day, "Maybe I could try to write down some of the dimensions that
seemed to be emerging across the day as we were talking."

The dimensions that came out of the vignettes were the basis for the opening
section of the Teaching Standards (Standards for Teaching Mathematics), with the
cirst six standards on mathematical tasks, discourse (the teacher's role, the
students' role, and tools for enhancing discourse), learning environment, and
analysis of teaching. The focus on discourse was controversial at first, but
eventually the term came to be one of the hallmarks of the Teaching Standards.
Initially the resistance to discourse came from the reluctance to introduce a term
that many teachers would find foreign. Writer Tom Schroeder recalled:

It was Deborah Ball who proposed using the term discourse, and I believe that
she was familiar with a body of research that uses that term in the sense laid .

out in the Teaching Standards (NCTM, 1991, p. 34). There were some ...
discussions in our working group on the pros and cons of the term, including
some wisecracks about "discourse, slat course, and dee udder course."
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A state mathematics supervisor was particularly critical in an early review,
but eventually was won over, as Deborah Ball reported:

At first he absolutely hated what we had done. He was one of those negative
reviewers. He wrote us this angry, vehement letter about what a stupid word
discourse was--academic jargon. He disagreed with the framework
completely. He went right to the jugular on the whole framework that we did.
That was the first summer. We thought a lot about his comments; I didn't
completely agree with him, but I really thought hard. I thought hardest about
the responses that were vehement because they were the most useful. When
we did the revision, which still kept discourse in a more prominent place, he
fell in love with them. In his second review, he wrote not only is this an
unbelievable document, but it's scary." What he meant by that was it's scary
because it has such a radical vision of teaching. He thought that if people
really got it the way that he was interpreting it, they'd be frightened. Now
that's one read. But I think that's a good read.

When that state supervisor was asked about how much teachers knew about the
two Standards documents, he expressed concern about the lack of attention to the
dissemination of the Teaching Standards:

I think that the Professional Teaching Standards are harder to attain, but more
significant by far than the Curriculum and Evaluation Standards. I'm telling
my friends at NCTM now that we've got to add Addenda programs and
videotapes and all those kinds of things to help capture what we mean by tasks
and discourse and environment.

The Dissemination of the Teaching Standards
The publication of the Teaching Standards in 1991 was a major event for

NCTM, and the dissemination plans were similar to what was done for the
Curriculum and Evaluation Standards (NCTM, 1989). The document was
distributed free to 58,000 members and sold (for $25) to 63,000 others, making
it one of NCTM's best sellers, even though it had less than half as many copies
distributed (by mid-1995) as the Curriculum and Evaluation Standards. The
Executive Summary was also circulated widely, just as for the 1989 Standards.
NCTM meetings and journals now focused on the Teaching Standards, as well as
the Curriculum and Evaluation Standards. Nevertheless, the dissemination effort
did not seem to have the same impact as the 1989 Standards. As one state
supervisor put it:
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I do not believe that there is anywhere near the level of awareness about the
Teaching Standards as about the Curriculum and Evaluation Standards. The
Teaching Standards have not been as well disseminated, not been as widely
discussed, and have not received the attention that they require. We've not
had as many meetings on them, and they have gotten lost in the shadow of the
Curriculum Standards.

Most leaders do not think the Teaching Standards have been lost in the
shadows, but many have deep regret that part of the plans to disseminate the
Teaching Standards were never realized. The Curriculum and Evaluation
Standards had been disseminated in every state through the "Leading Mathematics
Education into the 21st Century" project of the Association of State Supervisors
of Mathematics, but the corresponding project for the Teaching Standards was
never completed, to the great disappointment of a number of state supervisors of
mathematics, who felt that the 21st Century project had been extremely
successful. As one state supervisor noted:

We decided that it shouldn't be the state supervisors dealing with the
disSemination of the Professional Teaching Standards; it really needed to be
the National Council of Supervisors of Mathematics. The reasoning was that
curriculum is more of a state responsibility, and instruction is more for the
districts [and the local supervisors]. It really made sense. [Unfortunately, the
project/ got lost in the shuffle; it fell through the cracks.

The bitterness of some state supervisors was strongly felt, and some preferred
not to talk about the circumstances. One NCTM leader noted that all of the work
of preparing the proposal was essentially done, but there was just a failure of
leadership. Although the dissemination of the Teaching Standards was not
carried out to the extent planned, the document was seen by many leaders as an
innovative and effective contributor to the reform effort in mathematics
education. Its use of language has been identified as a particular strength. Tom
Schroeder noted how terms like discourse were used in special ways in the
document, an example of what he called "Standards-speak":

Each of the Standards documents uses terms (some might say jargon, but I
won't use that pejorative) that are a bit unfamiliar or unusual, in order to
draw attention to issues and re-frame them more broadly than might otherwise
he the case. The terms I have in mind include "mathematical disposition"
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instead of "attitudes toward mathematics;" and "discourse" as opposed to, say,
"classroom communication." The term "vignette" is another instance of
Standards-speak with a purpose.

Although the Teaching Standards are admired by many, there have been
criticisms of the document. Some in the mathematics community have been
concerned that mathematicians did not have sufficient influence on the document;
they may not know that many of the writers were professors of mathematics. A
criticism from an NCTM leader raised a more substantive issue about the kinds of
support that teachers need to build curriculum:

One of my problems with the Teaching Standards is that it doesn't talk about
how to put a collection of tasks together to make a cohesive unit, a cohesive
year, and a cohesive curriculum across years. You have to focus on more
than the tasks that kids do.

Criticism of the standards movement has grown in recent years, and there are
indications that federal support for the movement may be coming to a halt.
Nevertheless, the Teaching Standards (NCTM, 1991) were judged by most
NCTM leaders as a very successful project during NCTM's finest hour.
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MATHEMATICS AND THE SIGN

Olwen McNamara

Manchester Metropolitan University

The 20th century has seen a growing recognition that language provides the
framework through which we develop our understanding of the world This paper
examines the basic notions of Ferdinand de Saussure (1857-1913), a preeminent
figure in the development of linguistics and the foundation of structuralism, whose
revolutionary work set the scene for an innovative perspective on reality. It is a
model of a reality constructed through linguistic signs by the individual who is in
turn constituted by his social environment and the interpersonal systems of norms he
assimilates as culture. Language, it suggests, is the medium through which, and in
which, mathematical ideas are formed and exchanged.

Introduction

Speaking of the insights and issues which Saussure's contribution to linguistics
posed, Walkerdine remarks: "Saussure was writing seventy years ago, but we may
presume that in our time none of these questions has been satisfactorily answered.
Yet the questions, in essence, remain and may be fruitful for developmental
psychology. For example, how do children come to read the myriad of arbitrary
signifiers the words, gestures, objects, etc. - with which they are surrounded, such
that their arbitrariness is banished and they appear to have that meaning which is
conventional?"(1988 p.3). Theories of hermeneutics, phenomenology and post-
structuralism (eg. Brown I994a, 1994b, in press) go some way towards addressing
issues involving understanding and language. Theories of constructivism which are
prominent in mathematics education discourse at present, even those based in
dialogue (eg. Ernest 1994), could perhaps develop their potential to address such
questions. Von Glasersfeld (1995 pp. 129-45) introduces Saussure as a linguistic
model to augment his account of the semantic basis of radical constructivism.

The Sign

Saussure provided many insights into issues involving understanding and language
through his analysis of la langue: a language system of words combined with a set of
rules, values and norms. He identified within it the two states of synchrony and
diachrony, states of linguistic stability and change, respectively. Synchronic analysis
became the study of the structure of language during stable phases within geographic
areas. Diachrony, with its binary perspectives, traced the prospective and
retrospective evolution of linguistics; knowledge of which should not, in his opinion,
be allowed to affect the sign's relationship with other signs. Saussure portrayed la
langue as a social institution, but endowed each person with an internal
representation of it; thus permitting it access to la parole, its realisation in every day
acts of speech and writing (Saussure 1983 pp. 23-35 & pp. 114-17).
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Saussure's model of the sign is entirely cognitive; it is that of a two sided
psychological entity which comprises the signifier, or sound image, and the signified,
or associated concept or meaning. The sign constitutes the basic linguistic unit and,
significantly, both elements of it are mental phenomena; not to be confused with
either the physical sounds relating to the signifier, nor the actual referent relating to
the signified. This clear stance is adopted to deliberately exclude all contact with the
non-linguistic referent which some critics have claimed is a major flaw in the theory
(cf Walkerdine 1982). Saussure's argument would, I think, be that the referent is, in
every way, external to the study of la langue: what matters are the internal
psychological structures and relationships. Saussure identified two basic principles of
the sign, the first being that the relationship between the signifier and signified was
arbitrary, and the second, being the linear nature of the signifier. The latter provides
a point of contact with both individual speech acts, and the real time dependent
world; it leads to the observation that signs cannot signify in isolation but only within
a linguistic system. Clearly to produce particular meanings the signs must be
combined together in a certain way, but it is the linguistic system of values which
gives a word its form, not its material manifestation (Saussure 1983 pp. 97-103).

Saussure suggested that the value of a sign was produced by its relationships with
other signs in one of two ways. Syntagmatic relations exist with signs that
surrounded it in syntagmas, for example, the meaning of the word 'green' is
deferred until it is combined in an act of parole with other words: Sarah Green,
green grass, Greenpeace. Associative relations exist between signs in mnemonic
groups: psychological associations with words that could be used to replace, contrast
with, or combine with, the sign. If I am angry, for example, there are a plethora of
terms which I can use to describe my feelings (hurt, irritated, annoyed); each one
limits the range of applicability of the others (ibid pp. 170-75). Saussure's distinction
between these two types of relation is however far from well defined: there are
many examples of psychological associations which derive from frequent occurrence
in familiar phrases.

Saussure's central tenet was perhaps that, "... in language there are only
differences, and no positive terms" (ibid p. 166). The writing system exemplifies
this: its only requirement is that the letters and words which we write should look
sufficiently different from others with which they may be confused. Saussure also
explored the identity of signs; he differentiated between 'material' and 'linguistic'
similarity, perceiving the latter to be one of form not substance. To illustrate this he
gave the example of the '8.25 p.m. Geneva to Paris Express': he observed that we
refer to it as if it were a particular train, the same every day. Inevitably, however,
both the rolling stock and the personnel will be different; hence he concluded, the
'8.25 p.m.' was simply a construct, useful to differentiate it from other trains, but
not physically manifest. In the case of material similarity, however, when I identify a
car as mine, no other will do, no matter how similar (ibid pp. 150-54).

Mathematical Perspectives on the Sign
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Langue may be seen characterised in mathematics as a 'set of interpersonal rules
and norms'. To learn mathematics is to master that system which allows us to be
understood and to understand. The system is not articulated explicitly but realised
implicitly in mathematical activity, or parole; algebra, for example, "is not what we
write on paper but is something which goes on, inside our heads. Notation is one way
of representing algebra it is not algebra" (Hewitt 1985 p. 15). In algebra there are
many forms that particular algebraic expressions can take; mathematical convention
favours elegance, and brevity, but we can still analyse the expression, as a
grammatical entity, without restricting freedom of expression. In mathematics we
attempt to teach many rules directly, with seemingly little success at times. English is
taught to young children without introducing the rules of grammar overtly and yet
they seem able to recognise and correct speech inaccuracies, even in unrehearsed
sentences. Pimm (1987) notes that in foreign language teaching the emphasis has
swung from teaching rules to teaching communicative competence. It is clearly
important to strike the right balance between achieving fluency in parole, and
learning the rules of la langue. To know mathematics is not only to be able to retain,
access and reproduce skills and techniques, but also to assimilate the structure
sufficiently to be able to interpret signs and apply knowledge fluently in other
circumstances.

The difficulties involved in interpreting mathematical signs are considerable and
may be illustrated by imagining that we are attempting to interpret a sound chain in a
foreign language. If the sentence is written then we get a good number of clues to
help us on our way; if the sentence is spoken, the first hurdle to overcome is that of
partitioning it into individual linguistic units. This latter task requires us to employ
meaning: if the language, or accent, is unfamiliar, then it is unlikely that we will
even be able to differentiate one signifier from the next. The comprehension of
linguistic signs is problematic and can easily become a casualty of competing and
contradictory reasoning in a language that must, at times, seem quite arbitrary to
some of our pupils. In mathematics if I hear the word volume, for example, a sound
image and associated concept are produced in my mind. The sound image, however,
is only mathematical if associated with a mathematical idea, like 'cubical capacity';
rather than ideas such as 'book', or 'knob on a T.V. set'. Conversely, the
mathematical concept of a circle, bisected by a line, does not produce a mathematical
sign when associated with the signifier 'underground'.

Many concepts which appear entirely natural to us, endowed with intrinsic
meaning, are also arbitrary. A 'spiral', for example, at some time in our history was
thought to be worthy of having its own 'label; but there are undoubtedly societies
where it does not. This does not necessarily imply that their people have different
modes of perception, or thought patterns. The signifying systems of a society
determine what it pays regard to and in this sense our signifieds are culturally
bound. Over the centuries notation does change of course; despite collective inertia,
occasionally new symbols occur and trigger the development of new ideas. In
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general, however, our mathematical activity is confined to the pool of symbols we
inherit, and we create meaning by selecting from the symbols available to us. As
Saussure remarks, "At any given period no matter how far back in time we go, a
language is always an inheritance from the past" (Saussure 1983 p. 105).

Meaning is not invested in the sign itself, but is derived from its relation to other
signs. Signs which contrast help to define each other reciprocally; when I describe
two intersecting lines as skew, the meaning of skew is derived from its contrast to
the term perpendicular. Words used to express similar notions limit each other
reciprocally; hence, when I ask for the perimeter of a shape, I immediately imply
that the shape is not a circle, or, I should certainly have used the term
circumference. The mathematical writing system is again arbitrary and differential.
The numeral 7, for example, may be written in a variety of ways, the only important
thing is that it should distinguish itself from symbols like 1 with which it could easily
become confused.

Relationships between signs are of supreme importance in mathematics; Pimm
(1987) quotes many examples in mathematics where order, relative size, orientation
and repetition are all of major significance. The signifier 6, for example, can sign in
infinitely many ways: 63, 631, 6%, $6, 6!, 6" and 6'. Pimm observes that confusion
arises, particularly, when entities of the same form are capable of signifying
differently in the same context. He gives the example of the symbol dy/dx, the
differential coefficient, which could conceivably be taken for an algebraic fraction
and cancelled to y/x. The situation here is exacerbated because there are times when
it is useful to manipulate the differential coefficient as if it were a fraction: the
product rule dv/ds * ds/dt = dv/dt would be an example of this.

Discussing Mathematical Activity

Saussure's insights into the nature of language may illuminate our understanding
of the factors involved in facilitating communication and understanding in the
classroom and may provide a framework in which to analyse the processes of
mathematical activity. To explore this possibility I take as my example an episode
which occurred when a group of 12 year old girls were investigating the area of 'L'
shapes (McNamara 1995). The students began considering 'L' shapes that were as
high as they were wide and 1 cm 'thick'. They very quickly devised a formula which
appeared to work and set up a powerful linguistic and symbolic representation of the
situation. The formula, often referred to by the girls as, "Side plus side take corner
block", was further validated when it was found to work on 'L' shapes with sides of
different lengths, but still 1 cm in thickness. One member of the group, Joanne,
observed that: "The formula also works when the sides are different to each other.
No matter what the length of the sides are they still have a sharing block as long as
the thickness is 1 centimetre." When attempting to apply the rule to an 'L' shape with
thickness 2 cm, however, difficulties soon emerged as is seen in Fiure 1 below where
the account is again related by Joanne.
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The problems here are generated, I conjecture, largely as a result of the group's
verbal construction of the problem: it is, I feel, limited and persisting beyond its
useful life. The formula "Side plus side minus corner block" was not, in my opinion,
an inert form of words representing the referent. Saussure perceived that speakers'
linguistic concepts were not simply "private pictorial images of corresponding things
in the external world" (Harris 1987 p. 61). The expression, "Side plus side",
appeared to have focused the girls attention on the length, rather than the area of the
sides; as a consequence it appeared that the girls were regarding the 'L' shape as one
dimensional. Except, that is, in one respect, the signifier: "corner block" denoted
very clearly the two dimensional image of a "thickness x thickness" square. Saussure
would most probably refer to this as a relatively motivated signifier which is
associated naturally with its particular concept. The word parallelogram would be
another classic example of the exceptions which to him prove the rule of
arbitrariness. Harris is not convinced, he believes that Saussure has actually
misrecognised systematicity in linguistic structure for reduced arbitrariness; he
offers as an example: "... the fact that the price of a loaf of bread is arbitrarily fixed
at five francs does not mean that charging two and a half francs for half a loaf is
only relatively arbitrary. (ibid p. 133)
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When the formula mentioned above was applied to obtain the area of the new 'L'
shape with thickness 2 cm, although the signifier "corner block" allowed the group
to accommodate to the change in variables, "Side plus side" did not have the
necessary flexibility. On this occasion the error was quickly detected; although no
record survives it is probable that the group were carefully checking their results by
counting the squares which were outlined on the diagrams. This strategy quickly lead
to Joanne's realisation that the formula "Does not work", and the conjecture "Maybe
you have to double the sides (because the thickness =2)".

This latter remark is interesting in that it still does not overtly indicate that
Joanne has recognised that the 'sides' of the shape are two-dimensional. The
explanation she proffered to support her conjecture that the sides must be doubled,
"Because the thickness = 2", seems more to do with the vagaries of numbers than a
traditional length times width area sum. In fact, nowhere in their account of the
investigation do the group use signifiers, or methods conventionally associated with
area. There is even, remarkably for Joanne, a total lack of units of area on the two
pages of work. The sides of all the diagrams are meticulously labelled in 'cm' and
the first two areas are allocated the same linear dimension but after that they appear
abandoned in a dimensionless limbo.

Later in the investigation Joanne and Kay decided to put their spoken formula
into algebraic expressions and in the attempt discovered that Joanne's formula "s plus
s in brackets times t minus c" (where c represented the area of the corner block) did
not have the versatility of Kay's formula "1 plus h times t minus c." Joanne's formula
did not, they discovered, allow for the sides of the shape to be different lengths.
Joanne thus learnt of the limitations of a mathematical variable, gaining access
through this activity to 'mathematical Gangue' .

Saussure defined langue and writing as two separate systems of signs. Writing, it
is generally accepted, is semiologically secondary and existing only to represent the
speech (Lyons 1972, cites phylogenetic, ontogenic, functional, structural and
learning priorities of speech over writing). Writing has, in the opinion of Saussure,
achieved unwarranted prestige owing to the clarity and permanence of its image, the
inconsistencies between pronunciation and spelling, and the importance of literature
in a developed society. Saussure, however, does make one interesting exception to his
rule and that is in the case of ideographic writing, where he concedes that a symbol
may act as a signifier and "... represent the entire word as a whole, and hence
indirectly the idea expressed" (Saussure 1983 p. 47). Mathematics is thought by
many to reverse the natural order in favour of the primacy of writing; it seems that
it may, by virtue of the privilege allowed to ideographic languages, assert a position
as a mixed semiological system. Undue emphasis upon the written, howeirer, may
condemn mathematics, along with other 'dead' languages, to the pages of a book and
the mathematician to a rather solitary existence. The underlying philosophical belief
is still apparent in many mathematics classrooms today, where mathematics is learnt
in silent commune between the student and his text book or individualised work
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scheme. This strategy, if consistently employed over a period of time, would
potentially deny the student easy access to a major source of reflective knowledge
generated by interaction with peers; knowledge such as that acquired by Joanne in
the episode related in the last paragraph.

In their algebraic formulae the students had developed, on their own initiative, a
perfectly adequate notational representation, albeit in inherited symbols and
punctuation. Although tremendously impressed by their efforts, however, I cannot
suppress an underlying dissatisfaction and am compelled to attempt to modify their
notation. I immediately recognise that the variable 'c' can be eliminated from the
equations and replaced by 't2'. My mathematical training has taught me to favour
elegance, brevity and simplicity in an algebraic formula; I cannot resist the
opportunity of initiating the girls into conventional ways of couching algebraic
statements. My reaction is automatic and I do not evaluate in my mind the relative
merits of the available options. I cite, as my reason for wishing to eliminate 'c', that
it introduces another letter which might be confusing. There are at present four
letters in the formula, all chosen carefully to embody a particular meaning. I wonder
if anyone, apart from me, is convinced of the pressing need to reduce that to three?
Does this appear just an arbitrary whim of mine? The letter which I am proposing to
eliminate has, in fact, been the lynch pin of the entire investigation. Why did I pick
on the 'c'? Kaput (1991 p. 55) reflects upon how our notation system organises our
mathematical experience he advocates more designer input into functional
mathematics notation. Unwittingly I have endangered the group's ownership of the
algebra which they developed, and the particular meaning it held for them. It is
perhaps an ever present tension between inculcating the student into the conventions
of algebra, and recognising their right to freedom of expression, where it is
analysable as grammatically correct, using the algebraic rule system.

Of all our semiological systems, language is of prime importance in the
construction of reality. Words are not labels attached to pregiven concepts, languages
which are the "... collective products of social interaction, supply the essential
conceptual frameworks for men's analysis of reality and, simultaneously, the verbal
equipment for their description of it. The concepts we use are creations of the
language we speak" (Harris 1987 p. ix). Language is the medium.through which, and
in which, the student's mathematical ideas are formed and exchanged. The study of
language, however, is more problematic in important ways to the study of other
sciences because, whereas in science the object of study is distinct from the language
of description, in linguistics it is the perspective adopted which creates the object
(Saussure 1983 p. 23).

It is clear then, that we cannot delimit the language of learning from what is
learnt or from the viewpoint embraced. It is too restrictive a remit to ask whether
mathematics is, or is not, a language. Mathematical constructs and the language in
which they are conceived are inextricably linked within mathematical activity. We
must move away from seeing the application of language to a situation simply as a
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labelling process, and must explore further the linguistics mechanisms through which
the mathematics our students encounter comes into existence.
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ABSTRACT

The main goal of this paper is to present a psychological perspective of the
development of meaning in algebra, from a point of view where the relations
between signifiers and the signified in mathematics are seen as reciprocally
constituted in a learner's activity. The concept of algebraic activity is
suggested and illustrated through a brief case study that focuses on early
algebra students' competence at building idiosyncratic but powerful meanings
for algebra.

INTRODUCTION

The main goal of this paper is to present a psychological perspective of the development
of meaning in algebra, from a point of view where the relations between the concrete and the
abstract, and between signifiers and the signified in mathematics are seen as reciprocally
constituted in a learner's activity, as he or she continuously produces and negotiates meanings
through interaction and communication within specific cultural practices. Such a view
diverge substantially from the classical discourse and methods of algebra research and
instruction, where processes of mathematization (supposedly required to move from the
concrete to the abstract) are seen as governed by rules whose correct application presumes (or
implies) suspension of sense making (see Schoenfeld, 1991). As it is, the problem of meaning
is rarely discussed or referred to in traditional texts, where processes of symbolic
manipulation and mathematical rigor are overemphasized.

The problem of meaning, however, is a fundamental one for Psychology and for the
Psychology of Mathematics Education. Thom (1973, cited in Otte & Seeger, 1994), for
example, affirms that "the real problem which confronts mathematics teaching is not that of
rigor, but the problem of the development of 'meaning', of the 'existence' of mathematical
objects." (p. 202) The perspective presented in this paper assumes that, if we take any
conceptual entity as developed within specific social practices (which themselves create
specific types of relations among their participants; Walkerdine, 1988), to produce meaning is
equivalent to create relations among conceptual fields (Vergnaud, 1990), mediational tools
(Werstch, 1991; Vygotsky, 1978; Meira, 1995a), and activities ( Leontiev, 1981). This view,
which I will briefly discuss below, informs a psychological perspective of meaning used in
this paper to investigate students' developing understanding of algebra, in particular as a
specialized language (with its own notational system and semantics) to explore particular
worlds and to talk about them.
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Algebra, algebraic activity, and the problem of meaning. An extensive body of research
in algebra instruction and learning, not to be reviewed here, has demonstrated teachers' and
students' difficulties regarding this subject (e.g., NCTM, 1988). These difficulties are partly
due to traditional instructional approaches that focus on various aspects of algebra as if they
were devoid of meaning (as it is sometimes supposed about the process of manipulating
symbols on paper), restraining children's understanding of the conceptual and representational
objects that make this doMain meaningful. Although there have been many studies about
algebraic thinking and the difficulties involved in developing it in children, we lack a robust
psychological understanding of students' algebraic activity and the ways they generate
meaning for algebra problems. The concept of algebraic activity is explored here in
connection with Leontiev's (1981) Activity Theory. This approach considers thinking itself
as intricately related to one's motivated actions, in such a way that the social and material
organization of specific practices and situations are an essential aspect of mathematical sense
making. In such framework, meaning is seen not as a cognitive product, but as a socio-
historical accomplishment of communities of practice (Lave & Wenger, 1991). Meaning is
thus (I) inherently social; (2) an emerging phenomenon situated in activities; and (3)
intimately dependent on interactional and material resources of particular situations. A basic
assumption here is that all actions have a semantic content, that is, they have significance and
influence by virtue of the meanings they acquire in specific sociocultural contexts (Meira,
19956, p. 277).

Building on this perspective, I propose the concept of algebraic activity as a descriptor of
actions that involve, necessarily but not exclusively, a clear intention (or motive) of using
knowledge of algebra as a means to accomplish and justify responses to mathematical
problems and/or to communicate mathematical results and processes. For example, the
production of algebraic notations during problem solving engages the individual in algebraic
activity in the sense that he or she begins to share with other members of certain communities
(e.g., the classroom or the world of professional mathematics) a particular discourse about
mathematical problems. Using notations is obviously only part of the very complex process
of thinking algebraically (sometimes an unnecessary part), but that indicates and supports the
individuals' insertion in certain discursive practices that are critical for one's participation
and access to mathematics and, in particular, to algebra. In this respect, using algebraic
notations as part of a language connects the individual to "the spoken language of the
mathematics classrooms"; to "the use of particular words for mathematical ends"; to "the
language of [mathematical] texts"; and also to "the language of written symbolic forms."
(Pimm, 1994, p. 159)

It is critical to note that this view does not limit algebra to the use of its notational system,
nor algebraic activity to the meanings intended by experts. The situation is similar to the
young child that mumbles words in very simple sentences without completeness or
syntactical correction, but plenty of meaning for the communication being attempted with an
adult or a peer. If a child says "wa-wa", is that .English? From a strictly formal point of
view, the answer is no. However, if we take the context of its use, such as the presence of a
pointing gesture to a sink faucet and/or of someone acquainted with that child's vocabulary,
we may attribute to his or her attempt the intention of communicating a need for tap water
("Please give me water" = "wa-wa"). In the same sense, the student who is unable to fully
and competently use algebra as intended by experts may be engaged in algebraic activity as
he or she ,uses algebraic notation, tbllows certain routines of action and shares certain
premises of communication which are part of the algebraic discourse in the classroom (such
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as moving unknowns between the terms of an equation). He or she is producing meaning for
algebra, and is thus involved in algebraic activity.

The case study that follows attempts to illustrate the concept of algebraic activity, and the
underlying premise that, from a psychological perspective, all action involves the production
of meaning. More specifically, I take on the questions of what meanings students create
during algebraic activity, and how are these meanings related to the development of sense-
making in this mathematical domain.

A CASE STUDY ON THE PRODUCTION OF MEANINGS IN ALGEBRA

This illustrative study explores the problem solving activity of one pair of seventh grade
students, and their developing understanding of algebraic equivalencies and the mechanisms
of "symbolic manipulation". The students (S and T), aged 13, were volunteers from the same
classroom in a public school in Recife, Brazil. These students had little initial knowledge of
formal algebra. Although they had some practice with solving equations in one variable and
systems of equations, observations of their classroom showed that instruction on algebra was
limited to the presentation of procedures to solve problems about "situations" previously
modeled with algebra by the teacher or the textbook. During the interviews for this study, the
students were given a paper drawing of a two-plate scale, several individual drawings of
weights and bags marked "x", and problems about balancing the scale. Similar setups have
been studied by Vergnaud (1986) and Carraher & Schliemann (1987), who argue that the
two-plate scale may be adequately used as a physical referent for children to develop the
concepts of equivalence and unknown. (My use of the scale metaphor aimed at ,eliciting
students' algebraic activity, rather than arguing for its use as an instructional device.) The
figure below reproduces the drawings presented to the students (the drawings of bags and
weights were made in individual pieces of paper to allow possible handling of these
representations).

Sample problem: How much should the bags in the
drawing weigh to keep the scale balanced?

Many of the problems about the scale were
correctly solved by S and T (and other pairs of
students not reported here) through a "test of
hypotheses" (Canaher & Schliemann, 1987)
where numerical values are attributed to the

unknowns ("x") and the equality between the plates is checked arithmetically on the
representation. But the students also attempted to model the arrangements of weights and
bags on the scale with algebra, even when an arithmetic solution had already produced a
correct answer. The fact that these students were generally unable to build adequate algebraic
models of the arrangements is not surprising, given the nature of their classroom experience.
Nevertheless, the equations written by the students were not at all devoid of meaning. In fact,
some of these equations were consistently manipulated so as to produce the same result
originated by what the students called "logical answers" (the result of testing hypotheses).

The discussion challenges the so-called "suspension of sense making" in algebraic
activity, and attempt to show that meaning is continuously pursued by early algebra students
during problem solving, despite the school emphasis on syntactical correctness. The analysis
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focuses on the students' competence at building idiosyncratic but powerful meanings for
algebra, rather than on their inability to think algebraically or to deal with algebraic
structures. This competence is rarely explored in school, either in respect to building
arithmetical interpretations fur algebra problems, or in respect to taking algebra as a tool to
think with. From this perspective, I analyze the ways in which the language of algebra (in
particular its notational system) were transformed to fit what the students intuitively knew
about the scale, and the types of answers they expected.

The first problem, which presented two bags of the same but unknown weight in the left-
hand plate and a weight of 4kg in the right-hand plate (or "x+x=4"), was a training problem
easily solved by the students without explicit use of algebraic notation. The following
passage shows their solution, elaborated right after the arrangement of weights and bags on
the drawing of the scale is shown:

Episode I
Time Scale: rx), x.

0:00:00

0:00:09

Int: l want to know how much each bag weighs.
S: Two kilos.
T: [Two kilos.
Int: How did you do it?
T: (Pointing to the plates on the representation) Two plus two, four.

In the passage above we see that the presence of unknowns in the representation of the
problem is not enough to trigger the use of algebraic notations or procedures. In a sense, the
equation "x+x=4" can be regarded as arithmetic rather than algebraic (in accordance with the
categories suggested by Filloy & Rojano, 1989). The students' approach to the second
problem, for which an expert's model could be "x+x+3=x+5", involved instead a complex
interplay between using algebraic notation and empirically testing hypotheses. Technically,
the modeling process and the algebraic procedures employed by the students are faulty. Note
in the excerpt below, however, how the results of such an inadequate use of algebra is
profited by the students to make their work meaningful .

Episode 2

Time Scale: (X); X) :3) -6- ;.x

0:00:49

0:01:07

Int: How much does each bag weigh?
S: To balance... (Both students observe the drawings of the scale, bags

and weights very attentively.) (10 sec.)
Int: 1 want that you do it talking out loud, thinking out loud....
S: Here (pointing to the right-hand plate with 5kg and one bag marked

"x"), right, will be the following (brings a sheet of scratch paper
towards him)... five x. on the other side (pointing to the left-hand
plate with 3kg and two bags marked "x" on each) will be times three
x to the second (completes the expression on paper). Then here
(right-hand plate) we do the Plowing (turns to scratch paper)...
let's pretend that here... let's pretend that here [we] isolated this one
here, this x (next to 5)... Then put, five, times_ no, don't put times,
put five on one side equals three on the other and here you put the
two ex's. x here and x two here (writes "x=x2 right below -5=3",
as in a .system of equations). Now we do the following, now it will
invert, bring the three here (with the term -5-=), oh, the five there
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0:03:21

0:03:29

0:03:59

(with the term -=-3-1, and the x that was here (- =x2 bring here
(with the term Then add, put everything together, makes x
times x two equal three minus... it's minus here instead of

minus jive... x three equals two kilos: then this means that
each hag (pointing to hags on the scale) has two kilos (pointing to
the equations on paper). two kilos, then now We're going to add these
two (pointing to the representations of weights on the scale)... Here
(in the equation) we already now that x is equal two: three... plus five
is equal eight. Eight... (Looks attentively and alternatively at the
scratch paper and the configuration of the scale. Scratches over this
last step.) This is not going to work...

[No.
S- Ile is just asking for the result of the hugs (while pointing to the

scale). right?
Int: Yeah, how much does each bag weigh?
S: Two kilos'.
I nt: How did you do to find it?
S: / put, moved the x, did that thing oJfIrst member and second member

(waving his hand to indicate transference of elements between the
terms of the equation), that process, after that I added the x, it gave
three x. three to the, uh, x to three, equals to, subtracted three from
Jive, got two, then x equals two, each of these ex's (still pointing to
the equations on paper) is equal to two (now pointing to the plates in
the scale), has two kilos.

x-x2=3-5
x3=2

In the passage above the students' attempt to use algebra resembles a language game of
"pretending", as S himself noticed ( "let's pretend that here I wel isolated this one..."). Given
the first expression written on paper ("5x.3x2") and the procedures employed in this game, it
is at first surprising that the students achieved an answer to the problem (a "correct" one!). In
fact. we can hardly say that algebra was used at all. However, it is reasonable to suppose that
S could intuitively recognize the appropriate answer to the problem (e.g., he prefers the
incorrect "3-5=2" which produces a "good answer", over the arithmetically correct "3+5=8"
which -is not going to work"), and that he played a pretending game with the symbols on
paper in order to turn his intuitive expectations into an "algebraic result". It is also
reasonable to suppose that the answer "x=2" (that is, "x3=2") was reached entirely by
accident. Nonetheless, the students attribute to this answer the status of a correct and
meaningful response to the problem at hand. In the dialogue below, while presenting a
simpler "logical" way to resolve the problem, the students build an empirical justification for
that result.

Episode 2 (coned)
libut Scab:

0:04:00

)( ,x '3, x, 5;
T: But [you] could also do it in a simpler way.
S: Yeah, could make it simpler...
T: Because this one here (pointing to the hag in the right-hand plate)/
S: (Adel seven (pointing to the right-hand plate), seven (pointing to the left-

hand plate, and looking at the partner)...
T: Yeah, if here (hag in right-hand plate) were three (summing up 8), here (pointing to

bags in the left -hand plate) couldn't be five, no way. because the hags are equal (e.g.,
there could not be a bag of 3 plus another hag of 21... if it were three and two here
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0:04:22

0:05:39

(pointing to each o/ the two hogs in the left -hand plate), it couldn't he.
Int: And how do you do to find what number to use?... If one doesn't do it this way

(pointing to the expressions on paper); is there a way?
S: think you would add the weights, right? The weights, then you'd pass, could do like

this (handles the drawings of bags and weights, placing the weights 45 and 3 together
in the right -hand plate, and alt the bugs together in the left-hand plate), would sum up
these one (the weights), eight, to balance it must be, here was eight (right-hand plate);
two, four, six (adding the three bags now in the left-hand plate), it doesn't work.

T: doesn't work this way.
S: You're right.

Each bag weighs two kilos.
S: Then [you] would do as / did in the head from the start, using the logic (returns

weights and bags to original positions). If each bag weighs the same, for this (right-
hand plate) to he balanced with this (left-hand plate), if this was three (hug on the
right-hand plate), three kilos would be eight (5+3=8). For this to he eight (total value
on the left -hand plate), one bug would have to weigh more than the other, because
putting here two and three, it gives five, here would have to weigh three (3+2+3=8)...
in any case, one (bag on the left-hand plate) would have to weigh more than the other.
one kilo more.

Int: And doing this other way (pointing to equations), do you get it right?
S: Yeah, it gives two kilos for each bag.

The test of hypotheses is used above as a method of justifying empirically the result given
by the equations ("if here were three, here couldn't be Jive" and "if it were three and two
here. it couldn't be"). In the sequence, there is evidence that at least part of the students'
mistakes in algebra may be consequence of misunderstandings regarding how the scale
works. For example, the students equate the sum of bags to the sum of weights (disregarding
their position on the scale), much in the same way they put like terms together when writing
the equations. However, another problem remains which is related to the format of the
answer on paper: x3=2 rather than x=2. The conversation below, initiated by the interviewer,
reveals a different sense for "meaningless symbol manipulation".

Episode 2 (cont'd)
Time Scale: (x .3; x , 5

0:05:54

0:06:35

Int I'm in trouble here (pointing to the scratch paper), because it shows
x to the third equals two (pointing to "x3=2"). Then, it's not the x that
equals two, it's x to the third equals two...

S: No, it's the x. The three, we move it here (as a "power rate" to the
second member), there it wouldn't he a power rate anymore, but a
sum, putting two kilos for each bag...

Int: What does the (power of) three show?
S: The bag, the number for x, the number of bags wanted.

Paper work

x =23

Again, from a strictly formal point of view which takes algebra as a closed mathematical
domain the passages above may appear meaningless. If instead one takes activity (not
algebra or algebraic thinking) as the focus of analysis, a much different picture emerges.
From this perspective, these students were (as people always are) engaged in a goal-directed
activity in the context of which their actions become meaningful. For instance, S is all too
ready to transform the expression "x3=2" into "x=23" (no longer a power index but the
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number of bags in the physical arrangement) as long as this action sustains a meaningful
connection between his use of algebra and the world it is supposed to model.

CONCLUDING REMARKS

The perspective presented in this paper questions the traditional view of problem solving
in algebra as a stepwise process where symbolic manipulation is often seen as devoid of
meaning. The ideal (perhaps desired) situation where an algebraic model is manipulated
without reference to the modeled world, and more generally to the social and material
contexts of problem solving, may be an impalpable psychological purism and is certainly not
applicable to apprentices of an unfamiliar knowledge domain. There seems to be no place for
such things as "suspension of sense making" when early algebra students handle symbols and
languages in activity. It is certainly plausible to think of professional mathematicians as
handling complex algebraic expressions in a purely syntactical manner. But even then, there
may be certain aesthetic values that will keep the expert from turning himself or herself into a
reckoning device. In this case, the aesthetic values attributed to the procedures followed to
handle the syntax give the essential semantics to the actions performed.

This paper showed one example where the students were generally unable to "think
algebraically" (since there is little evidence that they could understand equations in terms of
general structures), but were very much involved in "algebraic activity" --in the sense that
algebraic notations and procedures were used to pursue specific goals and to get things done.
Thus, taking activity (with all that entails) rather than thinking as the unity of analysis, we
come to a psychological/epistemological perspective where the production of meaning is
ubiquitous to doing mathematics, not a possible byproduct. A central aspect of this
perspective is the stress in the so called "negotiation of meaning", bringing forth a tension
between mathematical conventions and formalisms, and the lively deconstruction and
reconstruction of mathematical meanings during problem solving activity.

The observations made here are in close connection with a view of algebra instruction
where students are encouraged to reflect on their (joint) activity and to make those reflections
publicly available. For that to happen, algebra ought to be seen as a tool for leaning rather
than as a source of direct, unmediated knowledge. Given the exploratory power of its
language and the multitude of concepts embodied in its structure, the idea of algebra-as-a-tool
suggests a renewed set of assumptions regarding early algebra instruction. Firstly, there is no
unique class of approaches that will safely conduct students away from major difficulties in
understanding this subject matter. According to Lins (1994), for example, the situations
described by two-plate scales may be good enough to deal with equations such as
"3x+10=100" but the scale metaphor is not appropriate as a physical instantiation of
equations such as "3x+100-10", since it cannot properly embody operations with negative
values. Second, modeling tasks are not an instructional panacea. The idea that using physical
devices and situations can provide "meaning" for mathematical concepts is misleading for it
abstracts away a careful analysis of the activities and contexts in which such artifacts are
made to signify. I have previously questioned the inadequacy of traditionally assumed
dichotomies which define mathematical sense making as obstruct reasoning and opposes it to
practical/concrete actions: "Making sense of instructional devices go beyond having certain
cognitive competencies, to involve 'extra-cognitive' processes such as the mutual
appropriation of goals through social interaction as well as the dialectical interplay between
knowledge and material tools." (Moira, in press) Third, tasks will always he transformed by
teachers and students in activity, in such a way that they will produce their own (individual
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and collective) meanings. This does not mean that we should not care about what tasks to
prescribe, but that they have no fixed meanings. Moreover, it means that students can be led
to make useful approximations between the idiosyncratic meanings they create with those
intended by the expert. The concept of "readiness" (to understand the expert's meaning)
could thus be replaced by that of "susceptibility" for learning, pretty much in the sense
implied by Vygotsky's (1978) concept of Zone of Proximal Development. In a related
manner, this research calls attention to the richness of students' errors in algebra and the
possibilities of preparing teachers to better understand the web of meanings underlying such
errors.
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PERFORMANCE AND UNDERSTANDING:
A CLOSER LOOK AT COMPARISON WORD PROBLEMS

Ibby Mekhmandarov Ruth Meron
The Center for Educational Technology

Irit Pe led
University of Haifa

This work deals with second graders performance and
understanding in solving compare problems. Children are
asked to solve all six types of compare problems and
explain their solutions. A large proportion of children
who solve a given problem correctly give incorrect
explanations. On the other hand, a large proportion of
children who give an incorrect solution exhibit a partial
understanding of comparison situations. Additional
information about their knowledge is obtained from their
solutions in context free situations.

INTRODUCTION

Following a large body of research on additive word problems, Riley,
Greeno, and Heller (1983) in their work extended by Nesher, Greeno, and
Riley (1982) suggest a psychological developmental theory for knowledge
related to word problems. The theory was built to explain why some
problems can be solved by very young children, while others
can be solved only at a later age.

According to their analysis children can solve additive comparison
problems (termed: 'compare problems'), which ask about the difference
or about the compared group at the part-part-whole stage. Compare
problems which ask about the reference set require a higher stage,
-specifically, the child has to perceive the order relation as a two
directional inequality.

The purpose of our research is to make a more detailed description of
the child's knowledge. Children's performance in all six types of
compare problems is observed and the children are asked to explain their
answers. As a result, it is possible to say more about those who fail and
to investigate whether a child who gives a correct answer really
understands the problem's structure.
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PROCEDURE

Second grade children from 2 classes (n=38) were asked to solve all six
types of additive comparison problems. First, each child solved six
compare problems, one of each type. Later, the children were
individually interviewed. During the interview they were asked to solve
problems that involved non-contextual situations describing relations
between sets, which correspond to the six compare problems. Then they
solved each of the written (contextual) problems again and were asked to
explain the solution process.

RESULTS

For each problem the following values were calculated:
The proportion of correct answers, the proportion of correct explanation
for the correct and incorrect answers, the proportion of correct answers
for context free situations within each of the subgroups (performance ,

explanation). In the presentation we will detail the three dimensional data
table. In this paper only a part of the existing data is presented.

Table 1 details the proportion of correct answers for each of the six
compare problems (C1 - C6) together with the proportion of correct
explanations in this subgroup.

Table 1
Percentages of correct answers and correct explanations for all six types
of compare problems.

Problem Correct Correct
type performance explanation

C 1 63 39
C2 73 52
C3 63 27
C4 62 22
C5 39 18

C6 63 21

Note: The percentage of correct explanations for a given problem is
calculated for the subgroup of correct answers to this problem. However,
the percentages in each column are of the total number of children who
answered a given problem.
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For each of the six problems presented again during the interview, an
analysis of the different explanations has been made. The explanations
have been categorized according to their content and an effort has been
made to identify the developmental level of each answer on the range
suggested by Nesher et al (1982). The developmental level has not
always been relevant and therefore also not always determined. This
happened when children did not exhibit any effort to construct an image
of the situation. For example, some of them turned immediately to a
verbal cue and used it to decide which direct operation to use.

The following answers are examples of explanations given for problem
C5 (compare 5).
The problem: Dan has 5 books.

Dan has 3 books more than John.
How many books does John have?

Answer 1 (a correct answer): 5-3=2
Correct explanation: Dan has more books and John has 3 books less

than Dan, so John has 2 books.
Incorrect explanations:

1. Dan had 5 books and now he has 3 books. This means that he gave
John 2 books. So John has 2 books.
2. Dan has 5 books. Dan has 3 books. You subtract to find by how much
5 is more than 3.
3. You subtract because 3 is less than 5.
Answer 2 (an incorrect answer): 5+3=8

Incorrect explanations:
I. Dan has 5. Dan has 3. Together he has 8.
2. John has 3 more than Dan, so John has 8.
3. / added because it says 'more'.
4. / added because you always add.
Answer 3 (an incorrect answer): John has 10.

Incorrect explanation:
1. Dan has 5. Dan has 3. Together he has 8.

John has more than Dan. He might have 10.
Answer 4 (an incorrect answer): You can't solve it.

Incorrect explanations:
I a. Dan has 5. Dan has 3. Maybe it's another Dan.

You can't tell how much John has.
I b. Dan has 5. Dan has 3. They want to confuse me.

You can't tell how much John has.

3 - 387 T-11111



Although many of the explanations are incorrect and involve the
transformation of a compare 5 problem into a simpler problem, still the
type of invented problem and its solution indicates, in some cases that the
child has some understanding of a comparison situation. For example, a
child who gave the second incorrect explanation for answer 1 shows that
she knows how to compare two given amounts. A child who gave the
second incorrect explanation for answer 2 shows that she can solve
compare 3 problems, where one has to calculate the compared set. These
two children perform at level 3 (part-part-whole).

Additional information about the child's knowledge is deduced from the
performance in context free problems. The context free problems deal
with the relations between sets in a way that corresponds to the six
compare problems. For example, the child is asked to build a set of
objects which has a certain (given) number of objects more than the
number of objects of another (given) set. This request is a context free
situation which corresponds to a compare 3 problem. These situations
involve knowledge which can be considered a prerequisite for performing
the corresponding compare problems. Table 2 shows the percentage of
children who performed correctly in the context free situations although
they did not give a correct explanation.

Table 2
Percentages of incorrect explanations and correct context free performance
for each of the six compare problems.

Problem Incorrect Correct
type explanation context free

Cl 60 33
C2 48 21
C3 72 26
C4 78 44
C5 81 18
C6 79 9

Note: The correct context free responses in this table are identified within
the set of children who gave an incorrect explanation. The percentages are
calculated as a proportion of the total number of children who answered a
given problem.

The details of these context free situations together with the
specification of examples of children's performance will be further
elaborated in the presentation.
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DISCUSSION

The findings lead to several observations with regard to the comparison

of the child's performance with her explanation (taken to indicate amount

of understanding), and with regard to the comparison of the child's ability

to handle context free situation with her ability to understand a given

problem. The main points are:
1. A large proportion of students who supposedly give a correct answer,
have arrived at this answer by using an incorrect analysis of the situation.
2. Children who give an incorrect answer might have a partial

understanding of the comparison situation.
3. Some children can analyze the set structure in a given problem type

correctly as long as the problem involves context free set relations.
Asking the child to elaborate on the way she solves a given problem

enables us to observe two steps in the process: a. The way the child
perceives the problem. b. The way the perceived problem is solved.

Verschaffel (1994) investigates the problems' encoding stage by asking
children to retell the problems. He deals with four of the six compare
problems in which the unknown is one of the two compared sets, as these

problem's are relevant for checking the consistency model. According

to the consistency model the child expects, after being told about the
quantity of one set, to hear how the other set relates to it.

The children in Verschaffel's study are fifth graders. Still, many of them

convert an inconsistent compare problem (compare 5 or compare 6) into a
consistent problem (usually compare 3 or compare 4), sometimes making

a correct and sometimes an incorrect conversion.
The children in our study are much younger (second graders), therefore

-it is not surprising that they convert a given compare problem into a non

compare problem. Sometimes the conversion is made into a change
problem, and sometimes into a simpler (even trivial) problem. The
interview enables us to detail the different kinds of problems into which a
given problem is converted. It also enables us to see how the problem is
then handled. These observations give us more information about the
child's understanding of the different situations. For example, a child
might incorrectly convert a compare 5 problem into a compare 3 problem
(keeping the word "more" instead of switching to "less" to get a correct
conversion into a consistent problem). However, this child might then

solve the new compare 3 problem correctly, showing that she has a partial
understanding of comparison situations, and also indicating that she is

able of performing a task which, according to Nesher et al (1982) requires
that the child is at level 3 (holding a part/part/whole schema).
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It is interesting to note that a child that has answered a given problem
correctly might, in fact, know less about comparison situations than a child
who answers the problem incorrectly. These findings support the claim
that children's performance should not be judged in correct/incorrect
terms, and show that even incorrect performance can tell us a lot about
what the child does know.
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GRAPHING CALCULATORS AND PRE-CALCULUS: AN EXPLORATION OF
SOME ASPECTS OF STUDENTS' UNDERSTANDING

Vilma-Maria Mesa & Pedro Gomez

"una empresa docente", Universidad de los Andes, Bogota, Colombia

Abstract
This paper presents a summary of the work done in an exploration with students of a
precalculus course concerning the influence exerted by the graphics calculator on their
understanding of the function concept, attending to the operational-structural duality
of the conceptions related to it (Sfard, 1991) and to the use of notation systems (Kaput,
1992). A quasi-experimental study showed no evidence of influence, but the whole
process gave new information about the implications of the resource in our classroOms.

Introduction
The research project "Students' Learning and Understanding and the Graphing

Calculator" is part of the research program, "Graphing Calculators and Pre-
calculus" developed by the research group of "una empresa docente" during 1993

and 1995.1 This paper will give an overview of the project, which worked on the
exploration of students' learning and understanding of some topics related to the

function concept. The theoretical framework was build upon three aspects: the

internal representations of knowledge, proposed by Hiebert and Carpenter (1992);

the dual nature (operationalstructural) of mathematical conceptions,2 proposed by

Sfard (1991); and the relationship between notation systems and school
mathematical activity, proposed by Kaput (1992).

Framework
It is widely accepted that knowledge. is internally organized in networks of nodes
and links, the nodes seen as facts or procedures, and the links seen as 'relationships'
between the nodes (Hiebert & Carpenter, 1992, pp. 66). Understanding can be

considered as the addition of a new node to the existing individual's knowledge
network or as a reorganization of that network by using relations of similarity or
difference or by using inclusion relationships (Hiebert and Carpenter, 1992, pp. 67-
69). Sfard points out that some mathematical concepts may be seen as objects and as

procedures,3 and that for a deep understanding of the mathematical concepts, the
individual has to develop the ability to use the two views of the concept, the
structural view (i. e., as an object), and the operational view (i. e., as a procedure).

1The main goal of the program was the exploration of the influence of the graphics calculator on
curriculum design, on the class interaction among the teacher and the students and with mathematics,

on the teacher's beliefs, on students' learning and understanding and on the students' attitude towards
mathematics. The program received support from Colciencias, Texas Instruments, the Comision pars

el Avance de la Ciencia y la Tecnologia del Banco de la Republica, and the PLACEM, Proyecto
Latinoamericano de Calculadoras en Educacion Maternatica. The PLACEM has members from the

following countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Mexico, USA, and Venezuela.

2 By conception we mean the set of internal representations and the corresponding associations that a

mathematical concept evokes in the individual (Sfard, 1991, p. 3).
Static structure, existing somewhere in space and time, versus a dynamic, sequential, and detailed

structure (Sfard, 1991, p. 4).
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Sfard shows that it is possible to speak about a continuum, from the operational
view to the structural view, of the individual's learning and understanding of a
mathematical concept, and that it is possible to go from one pole to the other in
three steps: interiorization, condensation, and reification. Finally, she points out
that "transition from processes to abstract objects enhances our sense of
understanding mathematics" (Sfard, 1991, p. 29). Kaput (1992) argues that as it is
impossible to see what happens in the individual's mind, the researcher has to
analyze the operations he or she executes in the physical world. So, we need to
suppose that to project the operations the individual is doing in his or her mind, he
or she will need to execute some actions in the physical world using a specific
language. Kaput defines the language as the notation system: a system of rules for
identifying, creating, operating on, and determining relationships among
characters; the 'characters' can be letters, numbers, graphs, or physical objects. He
stresses that there exists a relationship between the use an individual gives to the
notation system and the different kinds of mathematical activities done in school
mathematics:

Syntactically constrained transformations exclusively within one notation
system, with or without reference to any external meanings,
Translations between notation systems,

Constructing and testing mathematical models, which amount to translation
between aspects of situations and notation systems,

Consolidation or crystallization of relationships and or processes into
conceptual objects or `cognitive entities' that can be used in relationships or
processes at a higher level of organization. (Kaput, 1992, p. 524-525)

Kaput points out that the first type of activity strongly dominates school
mathematics and that the fourth type "as a source of mathematical-meaning
building, has longer-term effects, because it can lead the individual to the use of
cognitive objects, instead of using them as processes (counting, taking-part,
transforming)" (p 525). It is important to say that the second and third types of
mathematical activities explicitly imply a `horizontal' mathematical growth,
whereas the first and the fourth lead to a `vertical' mathematical growth.
There seems to be something common between the two last approaches proposed:
the two of them give specific ideas for analyzing the similarity-difference and
inclusion relationships that could take place in the individual's mind (see Figure 1):

4a
operational-structural duality

notation systems

Figure 1: A model for studyingtin individual's understanding.
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(1) In the individual's mind there is an organization of his or her knowledge. When
exposed to some mathematical activity (2), he or she uses internally some language
for doing the manipulations needed for working on it. In order to give a response,
the individual needs to do some physical operations (3): speech, written text, or
some other specific actions. But then, we can study the way in which the individual
uses the notation systems (4b) and the way he or she approaches the concepts
involved in the discourse or on paper, that is, structurally or operationally (4a)
and doing so, we can have an idea of the individual's understanding of the concepts
involved in the mathematical activity proposed.

The interest is, then, to see how the graphics calculator affects individual's
understanding, from two perspectives: Does it help the individual develop a sense of
the operational-structural duality of a concept? Does it encourage the use of several
notation systems in a way that helps the individual's vertical and horizontal
mathematical growth?

Methodological implications
The research on the use of graphics calculators gave us some hope about the
potential of this resource in the classroom. Although that research has not shown
positive results (Ruthven, 1995), there is a consensus about the importance of using
an integrated curriculum, instead of using the calculator as 'just another peer':
"technology-enhanced learning environments do not of themselves help students
decide which features of (the mathematical entities] are the relevant ones to focus on
nor how to describe their observations or conclusions [It is] the use of such
technology, in conjunction with the necessary instructional support of a capable
teacher, [that] can help students to objectify [those entities] to operate with and to
talk about" (Kieran, 1992, p 410).

For approaching the exploration of students' understanding, we used the basic idea
suggested by Figure 1: (a) giving the students some specific problems for work in
an environment without the graphing calculator,(b) collecting information on the
outcomes and (c) analysing the data regarding the use of the notation systems and
the use of the operational-structural duality of the function concept. In order to be
able to produce comparative results, we decide to (d) use the idea to a new group
giving the same problems to students in a graphing calculator environment,
collecting the same information, and comparing4 the outcomes. This required two
different groups of students and two different measurements of their cognitive
status; one measurement was taken at the beginning and at the other at the end of a
certain instructional period in which one of the groups used the calculator in their
curriculum, and the other followed the standard curriculum.

To reduce differences attributed to the teacher, the same teacher taught both groups
of students; and to reduce influence due to teacher's interaction with the calculator,
we decided to collect data over a semester. The standard course in the second
semester of 1992 was the calculator-free environment, and in the same course in the
first semester of 1993, the students used graphing calculators all the time. See

4We will discuss later the meaning and implications of the comparison process.
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Gomez and Valero (1996) for a complete description of the procedure we followed
for choosing the teacher from the 65 mathematics teachers in our department.
Roughly speaking, we chose, a teacher with an instrumentalist view of mathematics,
"basically a trainer" (p. 154).

For introducing calculators to the second group we developed a two pages guide for
solving a system of two linear equations. That was the only instructional activity
that explicitly required the use of the calculator. Although all the students were
given a calculator for their personal use, there were no explicit indications in the
curriculum about when or where use the resource: This was left as a personal
decision for the students and for the teacher. We adopted this attitude mainly
because we did not want to change the curricula: we wanted to have this 'variable'
controlled.5

We worked on two instruments for collecting data: a test with 6 open-ended
questions and an interview. We decided to give the test to each group twice a
semester, at the beginning and at the end of the course and to interview four
students in each group one week after each test, using a questionnaire based on the
answers given to the test.6 For producing the test, we took into account the goals,
the topics covered and the notation systems that are predominant in the precalculus
course.? This gave us a base of items for evaluating achievement and performance.
We adapted questions from Ruthven (1990), Kieran (1990) and from the text of the
course (Echeverry, Gomez, Gomez and Mesa, 1990). (See Mesa and Gomez, 1995,
for the problems used in the test.) Even knowing that giving a standard test would
make it difficult to extracting information about notation systems and about the
operational-structural duality, we thought that this kind of test would reduce the
students' anxiety that might arise if they were confronted to different kind of
problems, and we thought that the interviews would give us more information when
needed for analyzing special cases. As the university has a policy restricting the use
of calculators in examinations, the students were not allowed to use a calculator in
any of the tests.

Using the text of the course, we produced a set of typical correct and incorrect
answers to each question of the test.8 We called each of those 'the strategy' for

5 At the same time, we were exploring by ourselves the potentiality of the resource in our courses
with other students. In fact, we began to accept the use of the calculators in the evaluations, a
consideration that was reported as important for obtaining positive findings in the use of graphing
calculators in class (Ruthven, 1990; Quesada & Maxwell, 1994). This new attitude potentially
triggered a change in our views about mathematics and about mathematics teaching and learning.
(Carulla, G6mez and Mesa, 1995).
6ln this paper we are going to refer only to the outcomes of the written test.
?The precalculus course is devoted to the study of polynomial, rational, and radical functions. Each
function is treated separately covering the following topics: symbolic and graphic representation,
symbolic and graphical manipulation, relationship between the tow representations, equatiohs,
inequalities, and problem solving. The last two weeks are used for working on the generalization of
the function concept.
8Each chapter of the text has a section called "Typical Errors" and contains the errors more commonly
found in the students' tests. We included answers to questions that are learned in the middle_school.
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solving the problem. For analyzing the strategy, we adapted the 'table of
perspectives' (Table 1 of the Appendix) given by Moschkovich, Schoenfeld, and
Arcavi (1993, p 79) and used the characterizations in each cell of the table for
classifying each step of the strategy. This gave us a list of 'cells visited' for each
strategy produced.

Data collection and results

Even though the original plan was to analyze each question of the test, for reasons
time we decided to study in depth only three problems of the test.The three
exercises were chosen because at least one of the strategies used for solving them
visited all cells of the table of perspectives. We will take the 6th exercise as a
sample of the results found in the exploration because the results observed in this
problem are similar to the results observed in the other problems even thoughit was
different in style from the problems the students were used to solving. Table 2
shows the strategies posted for this exercise, the cells visited of each one, and the
proportion of the students in each groups that used each strategy in both tests (at the
beginning and at the end of the course). The text of the problem was as follows:
6. The figure shows the graph of one expression, f(x) and the graph of other expression, g(x), that
has been obtained from f(x). Write an expression for g(x) in terms off(x) such that shows the
transformation applied to f(x) for obtaining g(x). Explain your reasoning.

On the final test, the students in both groups used only the strategies that were
taught in the course. They did not use the strategies learned in school. In the group
that did not use the calculator, 45% of the students gave, on the final test, an
expression for g, using f or a verbal description of what happened to the function;
17% gave an expression for f using a polynomial expression, and used the
intersections with the x-axis for writing factors for the polynomial. No one used a
trigonometric function on the final test. In the group that used the calculator, 28%
of the students gave on the final test an expression for f and used this expression for
writing the expression for g. This was not observed in the answers given by the
group that did not have the calculators. The final answers did not show a
trigonometric expression for f, but it is interesting to point out that 43% of the
students used a polynomial function for describing f

9The students were freshmen in engineering, economics, business administration, and biology. We
took information on 18 students in each group that took both tests.
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We did not find important differences in the use of strategies attending the 'cells
visited' criterion, except for the OS (Operational-Symbolic) cell. All the strategies
had the OG ce1110. In the group without calculators, 39% of the students used
strategies that had the SS (Strategic-Symbolic) cell, and 33% of the students in the
group with calculators used those strategies. In the group without calculators, 23%
of the students used strategies that had the SG (Strategic-Graphic) cell and 33% of
the students in the group with calculators used those strategies. With respect to the
strategies that had the OS (Operational-Symbolic) cell, 23% of the students in the
group without calculators used them, and 44% of the students with calculators used
them. This large difference can be explained by the fact that the students whoused
the calculator used a special approximation. They began looking for a polynomial
for f and then did additional symbolic work writing the expression for f and
writing the expression for g. According to our classification, this corresponded to
operational work in the symbolic notation system. The standard curriculum gives
the students opportunities to produce a rationale for the relationship between the
zeroes, the intersections, and the symbolic expression for the function.
Nevertheless, we could see that the students in the group that used the calculator
worked on their own, finding the zeroes of a polynomial and used the resource for
changing the cuts interactively; so the students in the group that used calculators
were more willing to produce a polynomial expression for f, even though this was
not required for solving the problem.

Conclusions
We found the same phenomena that other researchers have observed.
First, that 'Technology, without curricula, is worth the silicon it is written on.' This
was said by James Kaput at a conference of the National Council of Teachers of
Mathematics, 1994. We need to define a curriculum, from the beginning, using the
calculator as another resource for the class. Just putting the calculator as 'another
peer,' even thinking of the need for controlling the variables, is useless for
conducting an analysis of the students' change in their knowledge.

We need to allow the use of the resource on assessments. The restriction we used
showed that the students used the calculator only for verifying procedures, instead
of for formulating and testing conjectures. We have observed this last type of use of
the calculator in groups that were allowed to use calculators all the time.

We need to find another way to conduct this type of exploration (see Dunham and
Dick, 1994, for a deep analysis of the difficulties of this kind of studies). No one
can control all the factors and variables involved in the classroom. We are
convinced that a study case, although more specific and with fewer possibilities for
making generalizations, would give us more information that this exploration gave
in the two years we worked on it. Nevertheless, the things we have learned using
this approach were indeed valuable: we began to change our view about
mathematics and about its role in the society; we have challenged our view about

10For the way the exercise was formulated, it was necessary to work p,_:7durally on the graph off

40 1 396



teaching and learning processes; and we developed a new view about our students.
That was the value of this exploration.
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Table 1 Table of perspectives. Meaning of the cells.
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Perspective Notation system: Graph in coordinate
plane

Notation system: Symbolic

Operational Plotting of points in the plane and then
connect them.

Identification of the coordinates of points
that are on a graph.

Syntactical transformations only in the
symbolic notation.

Formulas without context.

Symbolic expressions that are not used.

Structural Movements of graphs: horizontal and
vertical translations and dilatation without
a symbolic or numeric reference.

Description of characteristics of objects
using symbolic notation.

Interpretation of the meaning of a
parameter in a symbolic expression.

Recognition of an expression as an
identifier of a family of functions or as an
element of the family of functions.

Table 2: Comparison of use of strategies.
Group without
calculators

Group with
calculators

Strategy Cells

visited

% use

1st test

% use

2ndtest

% use

1st test

% use

2ndtest

Give an expression (polynomial, rational or
trigonometric) for f g is written using 'f(x)'; the
translation and dilatation factors are recognized;
there is a verbal description of what happened to f

OG -OS -SS.-
SG

6 11

Give an expression (polynomial, rational or
trigonometric) for/. g is written using this definiticn
of f(x) and the translation and dilatation factors.

OG-SG-OS II

Give an expression (polynomial, rational or
trigonometric) for f. g is written using 'f(x)'; the
translation and dilatation factors are recognized.

0G-SS-05. 6

Give an expression (polynomial, rational or
trigonometric) for f.

OG -OS 6 11 11 22

Give an expression (polynomial, rational or
trigonometric) for f. Give a verbal description of
what happened to f; the translation and dilatation
factors may have been recognized.

SG-OG 6

Give a table of values for f and use this for giving
an expression for f.

OG 6 6

Give an expression for g using 'fix)'. The
translation and dilatation factors are recognized.

OG -SS 22 22

Give a verbal description of what happened to f.
The translation and dilatation factors are recognized.

SG-OG 16 6 6

Nothing. 94 27 83 16

Unable to classify. 6

1Q4
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ON THE UTILIZATION OF ENCODING PROCEDURES
ON THE TREATMENT OF GEOMETRICAL PROBLEMS

Ana LOBO DE MESQUITA
Universite de Lille I / IUFMNPdC

The analysis reported here is a part of a on-going study on the utilization of figure
in geometry by junior high-school pupils. In this paper we analyse pupils'
apprehension of the figure and the utilization of codes made by twenty 11-12
years-old pupils when they solve a geometrical problem. Codes appears as a
powerful way to make appropriate links between the figure and the hypotheses of
the problem and can, in this way, contribute to an effective geometrical
reasoning.

This paper concerns the utilization of encoding procedures used by pupils when
solving geometrical problems and its purpose is to contribute to the understanding of
the rules underlying pupils'utilization of figures in solving geometrical problems ; it
is a part of a more general on-going study on external representation in geometry.
Before presenting our study, we will clarify some theoretical framework and
assumptions about external representation I in geometry.

Theoretical framework
I. Status of a representation. External representation doesn't have always the same
status in geometrical problems. In previous studies, we showed the importance of
what we called the status of a representation (Mesquita, 1989, 1992, 1994, in press),
which is related to the status of geometrical objects introduced by Husserl (1936/62).
To Husserl, a geometrical object has one of this status : it can be a finiteness, in the
sense of a finite and varied form in its spatio-temporality, or a geometrical form in its
ideal objectiveness, detached from the material constraints linked to external

* We thank to Mrs. Line Eymery, from Ecole Paul Verlaine and IREM, Lille, for her
participation and her interest in this study.

I In this paper, we use the term 'figure' as a synonym of external (materialized on a support,
paper or other, by opposition to mental, or internal), and ikon ical (or figurative, centered on visual
image, by opposition to other possible semiotic systems) representation of a concept or a situation
in geometry. By geometrical problem, we mean here a geometrical question posed to pupils, which
is formed by a statement and a figure.
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representation.

From a mathematical point of view, geometrical objects and their representation are
generally considered as an ideal objectiveness, unless otherwise is expressed ;
external representation is aprehended as a network of geometrical relationships
between elements. From a mathematical point of view, the status of a represented
object is less clear. Our studies, concerning pupils in junior high-school, suggest that
a represented objet can have to pupils different status: a finiteness, or an ideal
objectiveness, in the sense of Husserl, but also a status which appears as an
intermediate between these ones, which we called equivalence class ; in this case,
external representations conserve ratio and, in this sense, act as a support to
proportionnality computations. The figure is treated by pupils as an element of an
equivalence class (Mesquita, 1994; in press).
Let us consider the case of the rectangle represented in fig.1 :

Figure 1

How many rectangles are considered in figure 1 ? One, in considering the rectangle
as an ideal objectiveness (the representations ABCD, AB'C'D' and EFGH are three
representations of the same ideal objectiveness), two - for the equivalence class status
(ABCD and AB'C'D' being similar, are considered in this case as the same rectangle),
or three finiteness rectangles.

2. Types of apprehension
According to Duval (1988, 1995), external representation can mobilize different
types of apprehension, or form by which a solution of the problem can be suggested
by the figure.
We will distinguish here the two forms of apprehension underlying a part of our
analysis2 : the perceptive apprehension, or the immediate and automatic
apprehension of the figure, linked only to the figure, independently of the hypotheses
mentionned in the statement. It is a form of apprehension associated with the

2 Other forms of apprehension are described in Duval (1988) and analysed in Mesquita (1989).

E
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gestatltist laws of perception.
Another form of apprehension of a figure in geometry depends exclusively on the
status accorded to propositions by the statement of the problem ; it is linked with the
properties mentionned as hypotheses ; in this case, the figure appears as "a piece of a
theoretical discourse" (Duval, 1988) : it is the discoursive apprehension. To
apprehend discoursively a figure means to consider it as a network of properties
given by hypotheses in the statement of the problem.

Figure 2

In the exemple given by fig. 2, the perceptive apprehension suggests the capital letter
"L", or "a square from which another square had been removed",where M the half-
point of AB : it is possible to describe it without any statement (J.C. Rauscher, cited
in Mesquita, 1989).
A discoursive apprehension of the same problem is impossible to determine without
the statement of the problem : M would be the half-point of AB, if the hypotheses
mentionned in the statement clearly explicite it.

Definition of the problem and methodology
This study reports a part of a more general on-going study on the utilization of
external representation by junior high-school pupils. External representations have a
central importance on the learning of geometry, but they appear as a bidden part on
this learning. Figures are used in different ways, including symbolic ones, but the
rules of this symbolism remain implicit ; pupils use them in personal manners.

To study the personal utilization of figures, we prepare a program of intervention in a
junior high-school class (twenty -five 7th graders, 11-12 years-old), from a school
considered in a difficult area in Lille, France. Our main goal is to explicit the
.different ways how pupils apprehend and use the figure. This program of intervention
is based on the assumption that encoding procedures is a mean of stimulating
discoursive apprehension of the problem ; it includes the utilization of different kinds
of representations (hand-made figures, ruler-made figures, sotfware-made figures,
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pictures), using differents supports (squared paper, computer screen, photographies).
Our interventions, made in the framework of the class, is based on the work with
different external representations ; we pass some questionnaries and made clinical
interviews with pupils. We enregistrate some moments of our intervention, and
analyse the protocols and other productions of pupils

We analyse here the first part of our intervention. In this phase, pupils are asked to
solve some problems, in which encoding procedures can facilitate the resolution.
We analyse here pupils' answers to one of these problems :
These are the givens of a geometrical problem (fig. 3) :

1,2, and 3 are equilateral triangles,
4 and 5 are rectangles,
6,7 and 8 are squares.

the length of AB is 4m.

Can you find the lengths of QP ? of LJ ? of EF ? Explain your answer.

Pupils are asked to keep all the traces of their work, correcting but not erasing
answers they judge incorrect ; their drafts were returned to us. We asked pupils to try
to mark on the figure what it was known about the figure, with some physical marks
or in any other way.

Analysis of task. The situation was specially designed to stimulate encoding
procedures ; therefore, the task was based on the utilization of a) basic properties
concerning triangles and quadrilaterals (rectangles and squares), b) a transitive
property of equality. The statement and the figure are not congruent, in the sense that
the information issued from the figure and from the statement are not the same
(rectangles and squares are represented in a similar way), and in consequence, the
problem needs of a discoursive apprehension to be correctly solved.
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Results
Use of encoding procedures
In the following, we described the kind of encoding treatments used by pupils,
according to the type of marks used and to the links between these codes made by
pupils.

Types of encoding marks
Numerical marks. In this phase of the study, the great majority of pupils (twelve,
from the twenty pupils) used almost exclusively numerical marks (measure or
abstract number) : they write, near the correspondant sides, their measures, a number
accompagnied by the respective unity, or only its value, sometimes with errors (see
below). They use measure marks to express the measure of the length, i. e., to
mention that the length equals 4m, writing "4m" or "4" near each side.

Abstract marks. In this study, graphic marks such as- slashes, are used by two
pupils. One pupil used (abstract) numbers as encoding marks : this pupil, Fatima,
used the cipher I " to designate the equality of lengths, near of the respective sides ;
keeping a certain distance of the "I", she mentioned "4m". Another pupil, Samir,
used abstract marks (slashes) and numbers to express, in a particular way,
relationships between sides (see below Samir's utilization of slashes).

Errors observed in the encoding procedures
Pupils make errors of three types in coding the figure : perceptive errors, dues to
making encoding marks based on a descriptive apprehension of the figure (for
instance, coding a rectangle as it was a square). In fact, in these cases, the six pupils
make errors in associating the given measure (4m) to sides from which the statement
does not enable to conclude it.

Another type of errors concerns a bad report of encoding marks : they used 4cm
instead of 4m ; in general, the two pupils doing this error, do it systematically.ln this
reporting errors, they write "4cm" (instead of 4m) near the correspondant side
(whose measure was different from).

A third group of errors concerns the code of their own figure : pupils code the figures
according to the dimensions of their own figure, drawn by themselves ; for instance,
they use numerical codes like "3cm". Only few pupils made this kind of errors four
pupils do it.

As a conclusion, we can say that the great majority of pupils of this study used
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numbers (with or without unit) as encoding marks. It seems that codes express, to
these pupils, the length of the sides rather than a relationship between segments or
their length. The codage appears here as an indicator of lengths, as a particular
property. In this sense, we will speak on concrete codage.

In this study, one pupil used numbers as a transition to higher elaborated encoding
marks. In this case, encoding (symbolic) marks, express a relationship existing
between sides or segments, or its lengths, which seems to be more abstract, more
symbolic.

Links between marks
Connected codes. Almost all the pupils using encoding procedures made
connections among their codes. codes in a linked way. In the given situation, the
great majority of the pupils repeat systematically the length of the sides. In general,
they repeat it correctly, based on the properties given by statement.

Independent, local marks. Dissociated codes. One of the pupils, Samir, make a
different use of codes : he codes separately each subfigure, without making any
linking among them. Different local codes are used by Samir : graphic marks
(slashes in different quantity and different colours), in general without articulation
between information (fig.4). This kind of code, without any treatment, asks for
complements, i. e., the description of relationships between (common) segments : in
this sense, we call it a dissociated codes.

Figure 4

This pupil used measure codes, slashes andcolours in the same figure. He considered
encoding marks concerning each subfigure and coded it correctly, using numerical
(measure) codes, slashes and different colours in the different figures ; however, he
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used the same manner (double coloured slashes) in coding independent squares, as if
they were equal, which could not be determined by given conditions. However, he
did not make the necessary association between subfigures and respective marks. He
codes each subfigure, but he did not do the necessary association between the fact of
some sides are common to several subfigures. He was able to answer correctly the
answers, but not justifying it correctly.

Encoding procedures and apprehension
Perceptive apprehension. The great majority of the pupils thirteen pupils- used
encoding marks suggested by the perceptive properties of the figure; in this sense,
they have a perceptive apprehension of the figure. In fact, most of them code the
perceptive properties suggested by the figure of the problem, rather then the
properties mentionned by the statement. It reveals that for these pupils perceptive
apprehension of this figure is dominant. A small group had a apprehension of the
same type, but they mixed in their justifications properties mentionned in the
statement and properties issued from the figure.

Discoursive apprehension. Few pupils -three pupils- have, in this study, a
discoursive apprehension of the figure.

Status of the figure
In this study,a great majority of the twenty pupils identify the external representation
as a equivalence class. Their figure appears as to these pupils as a representant of this
class. In this case, pupils use the figure as a support, or a basis, to proportionnality
computation, and considered it invariant by similarity. It was the case of twelve
pupils. Some others, a small group of six pupils use the figure as a finiteness, having
difficulties in working with something different from their own representation of the
geometrical problem. Only for two pupils, the external representation is considered
as an ideal objectiveness.

Conclusions and discussion
Encoding procedures are used by 11-12 years-old in some personal manners :
numerical codes (measure and abstract ones), graphic codes or mixed codes (using
several types of marks, in a consistent way. In general these codes are used in an
articuled, but personal way. The errors observed in the encoding procedures are in
general issued from the perceptive apprehension of the figure. Some of these
procedures are more abstract than others. The procedures more abstract have been
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observed in the pupils using mixed ways of encoding.

The mixte way of encoding, where numbers and graphic abstract marks are used
simultaneously, suggests an emergence of symbolic conventions.

From a didactical point of view, this study gives some indications on the importance
of doing in classes this kind of work with pupils, as a preliminary to a further
introduction of conventions.
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CHILDREN'S DEVELOPING MULTIPLICATION AND DIVISION
STRATEGIES

Michael Mitchelmore and Joanne Mulligan

Macquarie University, Sydney, Australia

60 female students were observed 4 times during Grades 2 and 3 as they solved the
same set of 24 multiplication and division word problems. From the correct
responses, various calculation strategies were identified and grouped into categories.
It was found that the students used three main categories of calculation strategy:
direct counting, repeated addition and multiplicative operation. A fourth category,
repeated subtraction, only occurred in division problems. The results are interpreted
as showing that children acquire an expanding repertoire of calculation strategies,
and that the strategy they employ to solve any particular problem reflects the
mathematical structure they impose on it.

Several recent studies have shown that students can solve a variety of multiplicative
problems long before formal instruction on the operations of multiplication and
division. For example, Kouba (1989) found that 30% of Grade 1 and 70% of Grade 2
students could solve simple equivalent group problems and Mulligan (1992) found a
steady increase in success rate on similar problems from over 50% at the beginning of
Grade 2 to nearly 95% at the end of Grade 3. More recently Carpenter, Ansell, Franke,
Fennema and Weisbeck (1993) found that even kindergarten students could learn to
solve multiplicative problems.

Of particular interest has been the solution strategies children use. Anghileri (1989),
for example, classified the strategies used across multiplication problems with six
different semantic structures as follows: physical modeling followed by unitary
counting; rhythmic counting (e.g., 1, 2, 3, 4, 5, 6); skip counting (2, 4, 6); additive
calculation (2 + 2 + 2); and multiplicative calculation (2 x 3). As she noted, the
increase in sophistication from rhythmic counting to additive calculation seems to be
more a result of children's deepening understanding of addition rather than any change
in their conception of multiplication. The use of a multiplicative calculation, by
contrast, implies a more advanced conception of multiplication as a binary operation.

Kouba (1989) investigated the solution strategies children use for both multiplication
and division, but only in three semantic structures: equivalent groups for multiplication
and partition and quotition for division. For our purposes, her most pertinent finding
was that partition and quotition problems did not generate different calculation
strategies. She reported, without citing specific data, that both types of division were
solved using either repeated subtraction or repeated building up.

Children's division strategies have also been studied by Boero, Ferrari and Ferrero
(1989), Murray, Olivier and Human (1992), and Bryant, Morgado and Nunes (1993),
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while Carpenter et al. (1993) comment in general terms on both multiplication and
division strategies. However, no-one appears to have looked closely at the relation
between multiplication and division strategies or to have investigated how children's
strategies change over time.

The present study was designed to extend previous studies by including a wider
variety of semantic structures for both multiplication and division. The following
research questions were posed:

1. Can categories of strategy be identified which occur in children's solutions to both
multiplication and division word problems?

2. Does the semantic structure of the problem influence children's strategies?

3. How do children's strategies change over time, especially as a result of instruction?

A previous paper (Mulligan 1992) described children's solution strategies in general
terms. The present paper reports on a classification of their calculation strategies,
considered independently of modeling strategies (such as concrete modeling,
visualization and symbolic modeling). We decided to concentrate on calculation
strategies because, although modeling strategies are important in practice, we feel that
they probably reflect children's familiarity with a particular calculation strategy rather
than any fundamental change in the way they structure their solution. Further details
are to be found in Mulligan and Mitchelmore (in press).

Method

Six multiplication problems were constructed with five of the semantic structures
identified by Vergnaud (1988), Greer (1992) and others: equivalent groups,
multiplicative comparison, cartesian product, rectangular array and rate. Six division
problems were constructed with quotition, partition, multiplicative comparison and rate
structures. Each problem was written in two forms, one with the product between 4
and 20 and one with the product between 20 and 40. All problems were set in contexts
which are familiar to young children, and all involved only whole number data and
answers. The problems were written on cards and read aloud to children in a fixed
order.

The sample consisted of 60 female students. Clinical interviews were conducted by the
first author four times in two successive years when the students were in Grades 2 and
3. At the time of the first interview, students had received teacher instruction in basic
addition and subtraction but not in multiplication and division. Between the third and
fourth interviews, all students were given instruction in basic multiplication facts
involving the 2- to 10-times tables but not in related division facts. During the
interviews a number of small cubes were available on the table, but no paper or pencil;
so students were forced to use either concrete modeling or mental calculation
strategies, or both. Each interview was audiorecorded, and neutral prompts were used
whenever the child's response was unclear.
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Classification of calculation strategies

Since the vast majority of incorrect responses resulted from superficial strategies
(mainly adding the two given numbers), it was decided only to consider correct
responses. The first author initially coded children's calculation strategies. A research
assistant then independently coded every fifth interview, with a 92% agreement rate.

The various calculation strategies were examined to identify underlying principles. It
was found that they could be grouped into four categories corresponding very closely
to those reported in previous research: direct counting (DC), repeated subtraction
(RS), repeated addition (RA) and multiplicative operation (MO). DC, RA and MO
occurred in both multiplication and division, but RS occurred only in division. All
occurred with and without concrete modeling. Table 1 describes the various strategies
in each category; we give some examples below.

Table 1: Classification of children's calculation strategies

Category Calculation strategy

I. Direct counting (DC)

2. Repeated subtraction (RS)

3. Repeated addition (RA)

4. Multiplicative operation (MO)

Unitary counting,
One-to-many correspondence
Sharing*
Trial-and-error grouping*

Rhythmic counting backwards*
Skip counting backwards*
Repeated subtracting*
Additive halving*

Double counting forwards
Skip counting forwards
Repeated adding
Additive doubling

Known multiplicative fact
Derived multiplication fact

*Only found in division problems.

Direct counting (DC) strategies consist of modeling the problem (using either cubes or
visualization) and counting the objects or groups of objects. DC strategies were
frequently observed for both multiplication and division. For example, asked to find
how many children sit at two tables, four to a table, Michelle put out three blue and
five red cubes in two groups of four, said there were three boys and five girls, and
calculated "3+5=8." Asked an inverse problem, Julia counted out the total number of
cubes and dealt them out two at a time to the correct number of imagined tables. In DC
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the problem is essentially solved by the concrete materials themselves, the strategy not
taking advantage of the equal sizes of the groups.

Repeated subtraction (RS) strategiesonly observed for division problemsall start
with the dividend and use a systematic calculation procedure in which the number in
each group is repeatedly taken away. For example, to place 16 children 2 to a table,
Amy counted out 16 cubes and then took away groups of 2 cubes, saying "16, 14, 12,
10, 8, 6, 4, 2, nothing left ... that's 8 tables." The distinction between Amy's strategy
and a DC strategy is that Amy simultaneously counted both the number of cubes left
and the number of groups already formed. All RS strategies create a sequence of
multiples starting with the dividend.

Repeated addition (RA) strategies also take advantage of the equal-sized groups
present in the problem situation and create a sequence of multiples, but starting with
zero and ending with the product or dividend. Children seemed to use RA equally
fluently for multiplication and division, including the partition division structure where
the size of each group has to be guessed in advance. For division, RA may be more
advanced than RS because it allows the same strategy to be used for both division and
multiplication problems.

In multiplicative operation (MO) strategies, the student gives a correct response
without appearing to form the entire sequence of multiples. Typical MO responses to
multiplication problems were "I made one group of 3 and timesed it," and "It's three
multiplied by four ... I multiplied it straight off." For division, the solution was often
guessed and checked by multiplication; in other cases, the student appeared to search
for a multiple of the divisor which was equal to the dividend. (Only a few students
demonstrated an explicit awareness of division as an operation, mostly in a halving
strategy.) We justify including the use of derived facts as an MO strategy because,
even though addition is used, the basic aim is to calculate a product without creating
the entire sequence of multiples.

Choice of calculation strategy

Figures 1 and 2 show how children's choice of calculation strategy in their correct
responses to the multiplication and division problems changed from Interview 1 to
Interview 4. Although children were only instructed in multiplication (starting between
Interviews 2 and 3), the patterns for multiplication and division are surprisingly
similar. In both cases, the most common correctly used strategy at each interview was
repeated addition (15-30%); DC strategies remained more or less constant at about
10%; and MO strategies were rare in Interviews 1 & 2 (less than 3%) but increased
dramatically by Interview 4 (to 28% for multiplication and 17% for division). The one
strategy unique to division, RS, only led to correct responses in 4-12% of the
solutions.
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Figure 1. Percentage of sample giving correct responses to multiplication problems at each
interview, classified by strategy.

70

60

50

40

30

20

10

0

2 3

Interview Stage

4

Figure 2. Percentage of sample giving correct responses to division problems at each interview,
classified by strategy.

The size of the numbers in the problems had a fairly consistent effect on choice of
strategy. For both multiplication and division, successful use of DC was more common
for large numbers than small numbers (13% compared to 9%) whereas the reverse was
true for both RA (18% compared to 32%) and MO (7% compared to 11%). Correct
solutions of division problems using RS were also less frequent for the large number
problems than the small number problems (5% compared to 11%). Many students who
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had successfully used RS or RA for a small number problem seemed to experience a
processing overload when attempting to use the same strategy for the corresponding
large number problem; they then often solved the problem using DC. Similarly,
students who had used MO for a small number problem were often unable to retrieve
the number fact required for the corresponding large number problem and reverted to
RS or RA.

By contrast, the semantic structure of the problems had little consistent effect on
choice of strategy. Only three problems consistently attracted DC strategies: array
multiplication problem (22% of all responses), the equivalent groups multiplication
problems with large numbers (20%), and the quotition division problem (23%).
Correct use of RS strategies was only consistently common on the small number
partition problem (31%); this was the only division problem easily solved by additive
halving, which many of the students used.

As an example of inconsistency, consider the rate problemsmost frequently solved
successfully using RA for multiplication but MO for division. All four problems
involved multiples of 5, which seem to be second only to multiples of 2 in terms of
their familiarity to young children. In the small number division problem the
multiplication fact 4 x 5 = 20 was frequently recalled, and on the large number division
problem 8 x 5 was often derived from it by doubling. However, in the small number
multiplication problem, doubling 5 was most often solved using a "5 and 5 makes 10"
argument. In the large number multiplication problem, the odd multiple of 5 seemed to
be relatively unfamiliar and students simply counted in 5's.

Another example: Despite the primacy of RA overall, MO was the most frequent
correctly used strategy for the comparison multiplication problems. The cause seemed
to be a linguistic cue in the problem statement, namely "Sue has 4 times as many"; for
example, Lisa responded to this problem by saying "times as many ... that's multiply ...
three fours."

Most students were not consistent in the strategies they used at any interview stage. At
each interview, there were some students who used the same strategy on all problems
but there were others who used as many as three different strategies. On the other
hand, students showed a consistent progression in the strategies they used from
interview to interview in the strategies they used for each problem. On all 12
multiplication problems, in only 3% of the cases did students successfully use a more
primitive strategy to solve a problem which they had successfully solved at the
previous interview and only 2% failed to solve it. For the division problems, the data
confirm our earlier claim that RS is a more primitive strategy for division than RA: On
all 12 division problems, there was not one single case where a successful use of RA
was followed by successful use of RS at the next interview.
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Discussion

Among students in Grades 2 and 3, we have been able to clearly identify three
categories of calculation strategy used for multiplication (direct counting, repeated
addition and multiplicative operations) and four, for division (direct counting, repeated
subtraction, repeated addition and multiplicative operations). As the names imply,
there are basically only four strategies. Our data show a consistent progression in the
strategies used by students in Grades 2 and 3, from direct counting to repeated
addition or subtraction to multiplicative operations.

Previous findings that the calculation strategies children employ vary from problem to
problem have been confirmed. However, the structure of the preferred strategy did not
necessarily correspond to the semantic structure of the problems: All strategies were
employed across all problems. Many of the observed differences in preferred strategy
were readily explained by the size of the numbers, the particular multiples involved,
and the language used to describe them.

We did not expect to find such a strong preference for a repeated addition strategy of
division across all semantic structures. This phenomenon appears to be a result of the
close connection which students see between division and multiplication problem
situations before they receive instruction in division. The same close connection is
evidenced by students' spontaneous use of an multiplicative operation strategies for
division shortly after instruction in multiplication.

These conclusions are, of course, limited by the problems used in this study. In
particular, the strong effects of multiples of 2 and 5 were not anticipated. A clearer
picture of the variation in strategies would be obtained if the numbers were better
controlled. Also, although we have included a wider range of semantic structures than
previous studies, there are still many others which could be investigated.

Despite these limitations, our findings do not seem to be in agreement with Fischbein,
Deri, Nel lo, and Merino(1985) who proposed that "each fundamental operation of
arithmetic generally remains linked to an implicit, unconscious, and primitive intuitive
model" (p. 4) and that "the structure of the problem determines which model is
activated" (p. 7). Instead, it would seem that children develop a repertoire of
increasingly efficient strategies (direct counting, repeated addition/subtraction, and
multiplicative operations) which they can apply to both multiplication and division
problems of all semantic structures. The strategy employed to solve a particular
problem does not reflect any general problem characteristic but rather the
mathematical structure which the student is able to impose on it.

Conclusions

The present study raises several questions about traditional approaches to teaching
multiplication and division of whole numbers in elementary school. Children would
surely benefit if teachers provided them with opportunities to solve multiplicative word
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problems as early as the first year of schooling, and if they linked multiplication and
division much more closely. The teacher's task is to acknowledge that students use a
wide variety of strategies and to encourage them to expand their repertoire. It would
also seem possible to include multiplicative word problems involving rational numbers
much earlier than at present. For example, Confrey and Smith (1995) describe a broad
category of measurement situations which appear familiar to young children and easily
extend into rational numbers. Also, Behr, Harel, Post and Lesh (1994) show how
rational number arithmetic can be approached in such a way as to make the connection
with whole numbers explicit. Only further research will reveal whether such
approaches are likely to be more successful than traditional methods.
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CHILDREN'S CONCEPTS OF TURNING: DYNAMIC OR STATIC?

Michael C. Mitchelmore, Macquarie University, Australia

Paul White, Australian Catholic University, Sydney

To investigate how children conceptualise and classify various turning situations, 36
children selected from Grades 2, 4 and 6 were questioned on the similarities they saw
between an oven temperature knob, a door, and bends in a road. Between Grades 2 and
6, there was a general increase in children's tendency to recognise angle-related
similarities. The data suggest that children conceive of turning around a central point as
essentially the same movement as turning around a hinge. Turning around a bend is
conceived differently: The similarity to turning around a point or hinge is usually based
on the static appearance of the angles and not on the dynamic way they are formed.
Implications for the early teaching of angle are explored.

For some time now, mathematics educators have recommended treating angle in terms of
turning, at least in the elementary stages (Wilson & Adams, 1992). This view has found
general acceptance; for example our local mathematics syllabus for Grades K-6 refers to
angle as "the amount of turning between two lines about a common point" (New South
Wales Department of Education, 1989, p. 79). Defining angle in terms of turning is
intended to stress the relation between the arms of the angle and to facilitate angle
measurement.

However, two studies we carried out recently (Mitchelmore, in press; Mitchelmore &
White, 1995) suggest that the above definition might not be appropriate for young
children. In these studies, children in Grades 2 and 4 were presented with models of a
number of physical angle situations (a doll turning about a fixed axis, a variable hill, a
pair of scissors, a map of some bending roads, a ball game, and floor tiles). They were
then questioned on their understanding of each situation and the relation between them.
The children were surprisingly good at visualising rotations of the doll, but several
findings suggested that they did not interpret turning as an angle:

Many children represented the turning doll by a single turning line. Only 54% of the
responses in Grade 2 and 76% in Grade 4 represented the rotation with an angle.

Few children could represent turns in a drawing. Only 8% of the Grade 2 children and
33% of the Grade 4 children showed a turn by two radii joined by an arc or arrow.

Few children recognised appropriate angle-related similarities between the turning
doll and the other physical angle situations presented.

Although the Grade 4 children had all studied angle as amounts of turning in school,
none stated this definition of angle or gave turns as examples of angles. Furthermore,
42% explicitly stated that the turning doll situation did not involve angles.

Further evidence that turning is a more difficult and complex concept than has often been
assumed is provided by the common finding that children learning LOGO cannot easily
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relate the turn parameter to the angle formed by the turtle's path (Clements & Battista,
1992). Clearly children's concepts of turning deserve closer investigation.

A tentative classification of turning situations

Results from our previous studies suggest that young children might classify turning
situations as follows:

Unlimited rotations about an interior point. Such objects (revolving doors, fans,
merry-go-rounds, wheels, and so on) often possess rotational symmetry.

Limited rotations about an interior point. In such situations (e.g. control knobs, door
handles), there are well-defined limits between which the turning occurs.

I- hinges (such as normal doors and most instrument pointers), where a single, linear
object is hinged about one end and can rotate between well-defined limits.

V-hinges (such as pocket knives and book covers), where two linear objects are
hinged about a common end-point.

X-hinges (such as scissors and latticework), where two linear objects are hinged about
a common interior point.

Bends which can be regarded as two line-segments with a common end-point (as
distinct from bends which are better modelled by a continuous curve). In contrast to
V-hinges, the turning movement in this situation occurs at the common end-point
during a forward movement along the path formed by the two line-segments.

This classification clearly needs validation from further empirical data.

The present study

The present study was designed to investigate how well children recognise the
similarities between different turning situations. Three situations which previous studies
suggested might be conceptualised differently were selected for closer study: limited
rotations, I-hinges and bends. The basic research question was:

What angle-related similarities do children recognise between the three turning
situations?

Children of different ages were included in order to investigate how the recognition of
similarity changes over time. The study was part of a larger investigation and only those
aspects related to similarity recognition are reported here.

METHOD

Subjects

36 children from two Catholic schools in the north of Sydney participated in the study.
There were 6 children (3 boys and 3 girls) from each of Grades 2, 4, and 6 at each
school. Median ages were 7.1 yr, 9.5 yr and 11.3 yr respectively.
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Materials

Realistic models were constructed of an oven temperature knob (limited rotation), a door
(I-hinge), and a road network (bends). The knob could rotate clockwise through about
300° and the door could open through 180°. The road map showed two routes between a
"factory" and a "hospital", each consisting of four straight segments rounded off slightly
at their joins; the children were asked to drive a toy ambulance as fast as they could
along both routes.

Procedure

Interviews were conducted individually and were audio-taped to assist in the data
analysis. After a lengthy introduction designed to allow children to become thoroughly
familiar with the movements in the three models, children were asked if there was
"anything the same" about each pair of models. (The pairs were presented in the order
knob-door, knob-roads, door-roads). Neutral prompts such as "Is there anything else?"
were used until children could think of no further similarities.

When children gave global responses to the first pair, such as "The knob and the door
both turn," the interviewer closed the door, turned the knob through about 45° from the
"off' position, and asked the child to turn the door the same amount. When children gave
global responses to the second or third pair, such as "The knob [door] and the road both
turn," they were asked to turn the knob or open the door by the same amount of turning
as is required to drive around the depicted 45° road bend (i.e., a turn of 135°). When
children gave analytical responses to any pair, such as "They both have two lines meeting
at a point," they were asked to indicate the two lines and the point on both physical
models.

RESULTS

Tables 1 to 3 show the percentages of the sample who recognised some similarity
between each pair of situations, the reasons they gave, and the accuracy with which they
matched turns in the two situations. Many of the children gave several reasons why the
two situations were similar, including reasons (both made of wood, painted white, and so
on) which are irrelevant to the angle concept. All percentages are based on a maximum
of 12 responses in each cell; because of multiple responses, the percentages giving each
reason do not necessarily add up to the percentage recognising similarity.

The frequency with which the knob and the door were judged similar (Table 1) increased
steadily from Grade 2 to Grade 6. Most of the children recognised a similarity between
the two movements, and almost all of them could match a door turn to a knob turn with a
reasonable degree of accuracy. However, relatively few children spontaneously referred
to the movement as turning. A very few children stated that both situations involved two
lines meeting at a point; all these children also recognised a similarity between the
movements of the knob and the door.
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Table 1
Percentage distribution of similarities recognised between knob and door
Item Gd 2 Gd 4 Gd 6
Knob and door are "[sort of] the same" 58 75 92

Reasons given:
Both turn 25 25 25
Both open and close 8 17 25
Both move 25 8 33
Both show two lines meeting at a point 0 8 17
Irrelevant features only 0 25 8

45° knob turn shown by door opening 45° ± 30° 58 67 83

Table 2 and 3 show that children recognised a similarity between the bends and the knob
or the door about as often as they recognised the similarity between the knob and the
door. However, there were in these cases far fewer explanations in terms of movement
and more in terms of lines meeting at a point. Also, there was a larger proportion of older
children who gave only irrelevant explanations.

Table 2
Percentage distribution of similarities recognised between bends and knob
Item Gd 2 Gd 4 Gd 6
Bends and knob are "[sort of] the same" 58 67 83

Reasons given:
Both turn 42 33 25
Both make angles 0 25 33
Both show two lines meetingat a point 0 8 33
Irrelevant features only 17 8 25

45° bend shown by knob turning 135° ± 30° 17 8 25

Table 3
Percentage distribution of similarities recognised between bends and door
Item Gd 2 Gd 4 Gd 6
Bends and door are "[sort of] the same" 50 75 92

Reasons given:
Both turn 17 17 17
Both open 0 25 0
Bend is like an open door 17 25 25
Both make angles 0 8 33
Both show two lines meeting at a point 0 17 33
Irrelevant features only/no reason given 17 25 25

45° bend shown by door opening 135° ± 30° 8 25 25
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Children had great difficulty showing the sizes of the turn needed to drive around the
road bend by turning the knob or the door. Of the children who claimed to see a
similarity between bends and the knob, only 24% correctly made a 135° turn of the knob;
44% showed a 45° turn, 20% showed 315° and the remainder (12%) showed 225°. Of the
children who claimed to see a similarity between bends and the door, only 27% made a
135° opening of the door; 65% made a 45° opening and the remainder (8%) did not know
what to do.

DISCUSSION

Most of the young children in the present sample claimed to recognise a similarity
between knobs, doors, and bends, the percentage increasing from about 50% in Grade 2
to about 90% in Grade 6. However, the percentage of the similarity explanations which
were angle-related was somewhat greater for the knob-door than for the bends-knob and
bends-door comparisons; and size matching was also far more accurate for the knob-door

comparison.

A further difference lies in the type of angle-related similarities recognised. Two
viewpoints can be distinguished: In some cases, a pair of situations was perceived as
similar because of the turning movement involveda dynamic similarity. In other cases,
the perceived similarity was based on a configuration of two lines meeting at a pointa
static similarity. For example, in Table 3, "both turn" and "both open" are clearly
dynamic similarities while "both show two lines meeting at a point" is clearly static.
From the interview tapes, it seemed that "the bend is like an open door" and "both make
angles" were intended to express static similarities.

Table 4 gives the percentage of the sample giving each type of response at each grade
level. (Because of multiple responses, the percentages giving dynamic and static
responses do not.always add up to the percentage giving an angle-related response.) The
knob-door comparison evoked a large percentage of dynamic similarities at all ages, but
the bends-knob and bends-door comparisons evoked a smaller and steadily decreasing
percentage of dynamic explanations and a corresponding increase of static explanations.
By Grade 6, all children who recognised an angle-related similarity gave (at least) a
dynamic explanation for the knob-door comparison and a static explanation for the
bends-knob and bends-door comparison.

We note also from the data on accuracy of size matching that, although most children
seemed to compare the knob and door on the basis of the dynamic angles formed in both
situations, they compared the dynamic angles formed by the knob and door with the
static angle formed by the bend.

These results strongly suggest that young children conceptualise knobs and doors (and
presumably other examples of rotation and hinging) quite differently from bends, the
differences becoming clearer as children grow older. Children in Grade 6 have come to
regard knobs and doors as essentially the same in that they both involve a similar, easily-
related movement. However, they regard bends differently: They are not so sure whether
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bends are similar to knobs and doors, and if they are, it is usually because they show a
similar configuration and not because they involve a similar movement.

Table 4

Percentage distribution of angle-related similarities recognised in three comparisons
Measure Gd 2 Gd 4 Gd 6

Knob-door comparison
Percentage recognising angle-related similarity 58 50 83

Reasons given:
dynamic 58 50 83
static 0 8 17

Bends-knob comparison
Percentage recognising angle-related similarity 42 58 58

Reasons given:
dynamic 42 33 25
static 0 33 58

Bends-door comparison
Percentage recognising angle-related similarity 33 50 67

Reasons given;

17 42 17dynamic
static 17 50 67

It is clear that each situation (rotations, hinges and bends) can be interpreted dynamically
and statically. It would appear that young children spontaneously focus on the dynamic
aspect of rotations and hinges, but on the static aspect of bends. To put it another way,
they regard rotations and hinges as predominantly dynamic and bends as predominantly
static.

We may speculate even further: The data suggest that children up to Grade 6 will have
difficulty recognising similarities between every pair of physical angle situations where
one is predominantly dynamic and the other is predominantly static. Furthermore,
children are more likely to perceive such similarities by interpreting the predominantly
dynamic situation statically (by identifying the two lines that constitute the angle, namely
the starting and finishing position) rather than interpreting the static situation
dynamically (by visualising or remembering a turning movement between the two given
lines).

CONCLUSIONS

The above findings further question the received wisdom of teaching angle as an amount
of turning. Certainly many significant everyday angle situations do involve turning, and
children do come to recognise this (without necessarily calling the movement turning,
however). But there are many other significant angle situations which children do not
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naturally interpret dynamically. Furthermore, many young children do not spontaneously
conceptualise turning as a relation between two lines through a point, as is required in the
definition of angle as "the amount of turning between two lines about a common point."
Forcing children to interpret all angle situations in terms of turning is therefore unlikely
to be an efficient teaching approach.

A more successful strategy is likely to be one which follows children's natural
development but seeks to strengthen it by making the implicit concepts more explicit and
by making stronger connections between different angle experiences. In particular,
children need to learn how to interpret predominantly dynamic situations statically as
well as interpreting predominantly static situations dynamically.

It would seem that teaching young children to interpret a bend in terms of movement
along a path, and then focusing on the turn at the vertex, is an inefficient means of
relating dynamic and static angle interpretations. All the evidence from this study and the
literature cited earlier points to the difficulty of identifying the turn at the vertex and the
even greater difficulty of relating its size to the size of the static angle. Using LOGO to
teach about angles might better be left until after children have firmly established a link
between static and dynamic interpretations of more familiar angle situations, including
cases where the two interpretations lead to different angles.

The conclusions of the present study are limited by the small sample size, the restricted
age range and the small number of contexts investigated. A larger study supported by the
Australian Research Council is currently underway to test whether our interpretation of
the present data is valid and to extend the conclusions to further angle contexts.
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