DOCUMENT RESUME ED 450 545 EF 005 790 AUTHOR Olle, Teresa M. TITLE "P" Is for Poison: Update on Pesticide Use in California Schools. CPR Series Report. INSTITUTION Californians for Pesticide Reform, San Francisco.; California Public Interest Research Group, San Francisco. Charitable Trust. SPONS AGENCY Mott (C.S.) Foundation, Flint, MI.; Richard and Rhoda Goldman Fund, San Francisco, CA.; California Wellness Foundation .: Clarence T. Heller Charitable Foundation, San Francisco, CA. PUB DATE 2000-00-00 NOTE 33p.; Funding also received by Columbia Foundation, David L. Klein, Jr. Foundation, Foundation for Deep Ecology, Morris Family Foundation Fund. For another CPR report on pesticide use in California schools, see EF 005 939. AVAILABLE FROM For full text: http://www.pirg.org/calpirg/reports/toxics.html. PUB TYPE Reports - Evaluative (142) EDRS PRICE MF01/PC02 Plus Postage. DESCRIPTORS Elementary Secondary Education; *Pesticides; *Pests; Poisons; *Public Schools; Surveys IDENTIFIERS *California; *Health Hazards; Policy Issues #### ABSTRACT This report reveals school pesticide use, pest management decision-making notification, and record keeping in California school systems. All 13 of the most populous school districts that responded to the survey reported using 1 or more of 42 particularly hazardous cancer-causing pesticides. The majority of California schools have failed to adopt and implement less-toxic means of pest control and have been either unable or unwilling to produce basic information about pesticide use in schools, leaving parents, teachers, and policymakers uninformed. Pesticide-linked trends in children's health continue to mount: about 8,000 children are diagnosed with cancer each year, and asthma has become the number one cause for student absenteeism. The report recommends that policymakers eliminate school use of pesticides which cause cancer, that school districts should implement policies which would eliminate use of cancer-causing pesticides, and that parents, teachers, and students should request information about pesticide use around their schools and participate in school pest management decision-making. Appendices present survey response information by school district, the active ingredients in highly toxic pesticides now being used in California school districts, biographies of the surveyed schools, a list of resources for further information, a model Integrated Pest Management policy, and study methodology. (GR) ### "P" is for Poison ### **Update on Pesticide Use** in California Schools Teresa M. Olle, Toxics Policy Advocate, Staff Attorney CALPIRG Charitable Trust Full text available at: http://www.pirg.org/calpirg/reports/toxics.html U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) This document has been reproduced as received from the person or organization originating it. Minor changes have been made to improve reproduction quality. Points of view or opinions stated in this document do not necessarily represent official OERI position or policy. PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY Teresa Olle TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) EF 005 79 One in a series of reports by Californians for Pesticide Reform #### "P" is for Poison #### **Update on Pesticide Use in California Schools** #### **Author** Teresa M. Olle, Toxics Policy Advocate, Staff Attorney California Public Interest Research Group Charitable Trust #### Californians for Pesticide Reform Californians for Pesticide Reform (CPR) is a coalition of public interest organizations committed to protecting public health and the environment from pesticide proliferation. CPR's mission is to 1) educate Californians about environmental and health risks posed by pesticides; 2) eliminate use of the most dangerous pesticides in California and reduce overall pesticide use; and 3) promote sustainable pest control solutions for our farms, communities, forests, homes and yards; and 4) hold government agencies accountable for protecting public health and Californians' right to know about pesticide use and exposure. For more information on pesticides and how you can work to reduce pesticide use and protect your health and environment, contact CPR: 49 Powell Street, Suite 530 San Francisco, CA 94102 tel: (415) 981-3939, 888-CPR-4880 (in Calif.) fax: (415) 981-2727 email: pests@igc.org website: www.igc.org/cpr #### California Public Interest Research Group Charitable Trust California Public Interest Research Group (CALPIRG) Charitable Trust is the 501(c)(3) sister organization of CALPIRG, a non-profit, non-partisan research and advocacy organization working on behalf of consumers and the environment. With over 50,000 members and 14 offices statewide, CALPIRG is the largest consumer advocacy group in California. For more information, contact CALPIRG Charitable Trust: 450 Geary Street, Suite 500 San Francisco, CA 94102 tel: (415) 292-1487 fax: (415) 292-1497 email: pirg@pirg.org website: www.pirg.org/calpirg #### **Other Reports in the CPR Series** Rising Toxic Tide: Pesticide Use in California, 1991–1995, Pesticide Action Network, 1997 Failing Health: Pesticide Use in California Schools, California Public Interest Research Group Charitable Trust, 1998 Toxic Secrets: "Inert" Ingredients in Pesticides, 1987–1997, Northwest Coalition for Alternatives to Pesticides, 1998 Poisoning the Air: Airborne Pesticides in California, California Public Interest Research Group Charitable Trust, 1998 Toxic Fraud: Deceptive Advertising by Pest Control Companies in California, California Public Interest Research Group Charitable Trust, 1998 Disrupting the Balance: Ecological Impacts of Pesticides in California, Pesticide Action Network, 1999 Fields of Poison: California Farmworkers and Pesticides, Pesticide Action Network, United Farm Workers of America, AFL-CIO, California Rural Legal Assistance Foundation, 1999 Toxics on Tap: Pesticides in California Drinking Water Sources, California Public Interest Research Group Charitable Trust, 1999 Hooked on Poison: Pesticide Use in California, 1991–1998, Pesticide Action Network, 2000 #### **Acknowledgements** Many individuals contributed time, thoughtful suggestions and expertise to this report. Steve Orme and Wiley Osborn (Pesticide Action Network) provided tremendous assistance with the pesticide database and data management. Others include Joan Clayburgh, David Chatfield, Kelly Campbell and Michele Wright (CPR); Gregg Small and Kelly Jerkins (Pesticide Watch Education Fund); Susan Kegley, Steve Scholl-Buckwald and Brenda J. Willoughby (Pesticide Action Network); and Matthew Shaffer, Steve Brown and Peta Gordon (CALPIRG). Californians for Pesticide Reform (CPR) is a joint project of its member organizations. It is funded by these groups and through grants and donations to these groups. This report was supported by The California Wellness Foundation, Clarence E. Heller Charitable Foundation, Columbia Foundation, David L. Klein Jr. Foundation, Charles Stewart Mott Foundation, Foundation for Deep Ecology, Morris Family Foundation, and Richard and Rhoda Goldman Fund. The author alone bears responsibility for any factual errors. Recommendations are those of CALPIRG and CPR, while views are the author's and do not necessarily reflect those of funders. We gratefully acknowledge those who provided technical review of the draft manuscript, noting that review does not necessarily constitute endorsement of policy recommendations or final findings: Jonathan Kaplan BayKeeper and Program Director, WaterKeepers Northern California Harvey Karp, M.D. Assistant Professor of Pediatrics, UCLA School of Medicine American Academy of Pediatrics Zev Ross Analyst, Environmental Working Group © 2000 by California Public Interest Research Group Charitable Trust. Permission is granted to reproduce portions of this report, provided the title and publishing organizations, California Public Interest Research Group Charitable Trust and Californians for Pesticide Reform, are acknowledged. Printed on recycled paper. 3 ### **Table of Contents** | Executive Summary | 5 | |--|----| | 1. Introduction: The Problem with Children and Pesticides | 8 | | 2. Highly Toxic Pesticides Continue To Be Used in California Schools | 10 | | 3. Least-Toxic Integrated Pest Management: Words and Deeds | 16 | | 4. Current California Laws Are Inadequate To Inform Parents, Teachers and Students about Pesticide Use | 18 | | 5. Recommendations | 20 | | Endnotes | 21 | | Appendix A: Survey Response Information by School District | 22 | | Appendix B: Pesticide Active Ingredients Used in Surveyed California School Districts . | 26 | | Appendix C: Biographies of Surveyed Schools | 28 | | Appendix D: Resources for Further Information | 29 | | Appendix E: Model IPM Policy | 31 | | Appendix F: Methodology | 32 | #### "P" is for Poison #### **Update on Pesticide Use in California Schools** #### **Author** Teresa M. Olle, Toxics Policy Advocate, Staff Attorney California Public Interest Research Group Charitable Trust ### **Executive Summary** A new California Public Interest Research Group (CALPIRG) Charitable Trust survey of school pesticide use finds that California school children face possible exposure to pesticides that have been linked to cancer, reproductive and developmental effects, endocrine (hormone) disruption, acute systemic and nervous system damage. This is the second CALPIRG Charitable Trust analysis of school pesticide use. A 1998 survey also found widespread use of these toxic chemicals. The survey results are particularly alarming in light of the heightened national awareness of children's special vulnerability to pesticides. In June 2000, the U.S. Environmental Protection Agency (U.S. EPA) announced that chlorpyrifos, one of the most
widely used insecticides for the past 30 years, poses unacceptable health risks to children. Given U.S. EPA's reassessment of the chemical, chlorpyrifos will be eliminated from use in homes, schools, day care centers, and other places where children may be exposed. Although chlorpyrifos use will continue on many agricultural crops, it will be sharply curtailed on apples, grapes and tomatoes, in order to reduce children's exposure through fruit juices and staple foods such as tomato sauce. ¹ For years, children's health advocates, medical professionals and scientists have advocated restricted use of pesticides like chlorpyrifos, citing the same risks U.S. EPA now refers to for its restrictions. With few exceptions, those years saw little action taken to reduce children's exposure. In the aftermath of U.S. EPA's belated action on chlorpyrifos, we must ask how much longer we will permit children's health to be put on hold pending incontrovertible evidence of harm. Rather, we should adopt the precautionary principle, which in this case would dictate that in the face of uncertain, but suspected, harm, we protect children from exposure to potentially dangerous pesticides until exposure is proven safe. Chlorpyrifos brings home the lesson, much as DDT did with birds and fish, that by inverting the age-old adage "look before you leap," we have unnecessarily exposed our children, our most valued resource, to poisons. Chlorpyrifos is one of many toxic pesticides used in California schools. To determine the extent of school pesticide use, CALPIRG Charitable Trust surveyed the 15 most populous school districts in California, accounting for over 1.5 million students, or 26.4% of all children in California public schools. The data, collected throughout the months of March and April 2000, reveal the following information about Of the 13 most populous school districts responding to our request, all 13 used one or more of 42 particularly hazardous pesticides that can cause cancer, reproductive or developmental effects, endocrine (hormone) disruption, acute systemic or nervous system damage in 1999. Eight of the 13 responding districts used chlorpyrifos. school pesticide use, pest management decision-making, notification and record keeping in California schools.³ ### Highly toxic pesticides are still being used in California schools Of the 13 most populous school districts responding to our information request, all 13 used one or more of 42 particularly hazardous pesticides that can cause cancer, reproductive or developmental effects, endocrine (hormone) disruption, acute systemic or nervous system damage in 1999. Eight of the 13 responding districts used chlorpyrifos. The number of surveyed schools districts using each of these types of pesticides is summarized in Table A on the next page. # Toxic pest control practices predominate, with few exceptions; the majority of California schools have failed to adopt and implement less-toxic means for pest control All 13 responding districts reported using toxic pesticides. Combined, the districts used over 70 pesticide active ingredients in over 180 product formulations. Our latest survey confirms that the handful of districts using least-toxic pest control methods is the exception that proves the rule: school pesticide use is as rampant as ever. #### **Alternatives work** Many school districts, including San Francisco Unified, Ventura Unified and Los Angeles Unified, have adopted policies and are implementing programs to use alternative methods of pest control. These school districts are not sitting idly by, and should be commended for their forward-thinking policies. Unfortunately, they remain the exception to the rule. #### School districts are often unable or unwilling to produce basic information about pesticide use in schools; parents, teachers and policymakers are left in the dark Although pesticide use records are technically public information that should be available for teachers, parents and the public to review, in practice, school districts are often unwilling or unable to share even the most basic information. We believe these records are crucial to ensuring the health and safety of our children's learning entirely.4 In many cases, even the districts that did respond provided inadequate or incomplete records, further inhibiting the compilation of full information. As we learned in researching our earlier report, Failing *Health*, ⁵ lack of uniformity among districts' responses does not permit us to determine the amount of pesticides used in all reporting districts or at any particular school. The most comprehensive information this report can present is simply the types of pesticides used in the 13 responding districts during the year beginning January 1, 1999, and ending January 1, 2000. This report does not begin to address where the pesticides were used, how often, or whether children were present during applications. The foregoing deficiencies highlight a fundamental problem with the issue of pesticide use in California schools: lack of easy access to full information. If a school district needs an entire month to respond to a simple request about pesticide use, how can parents, teachers and staff become and stay informed about the pesticides to which students and staff are exposed on a daily basis? environment. Unfortunately, many districts delayed their response to our request, and two failed to respond Despite numerous rights California grants parents with respect to their children's schools, no law requires notification of parents or teachers before pesticides are applied in schools. Similarly, schools need not report overall pesticide use to a central repository of information, making **Background** it next to impossible to find comprehensive information. Without notification or record keeping, parents, school officials, state regulators and the public are denied a tool essential to ensuring protection of our children's health. Two years ago, CALPIRG Charitable Trust California Schools. Failing Health examined released Failing Health: Pesticide Use in pesticide use in 46 California school districts, accounting for approximately 25% of California public school children. The startling fact emerged that 87% of report- ing districts used toxic pesticides in the schools or on school grounds. Results for the most toxic pesticides were particularly or "known" carcinogens, 70% "possible" human carcinogens, 52% developmental and reproductive toxins, 26% pesticides listed by U.S. EPA as Category I Acute Sys- disturbing: 20% of schools used "probable" #### Reporting Pesticide Use (Number) **Responding School Districts** (11) Capistrano Unified. Elk Grove Unified, Fresno Unified, Garden Grove Unified, Long Beach Unified, Los Angeles Unified, Riverside Unified, Sacramento City Unified, San Diego Unified, Santa Ana Unified, Stockton Unified - (13) See Category A districts, plus San Francisco Unified and San Juan Unified - (11) See Category A districts, plus San Juan Unified, and less Capistrano Unified - (13) See Category A districts, plus San Francisco Unified and San Juan Unified - (11) See Category A districts, plus San Francisco Unified and San Juan Unified, less Capistrano Unified and Riverside Unified - (11) See Category A. plus San Juan Unified. less Stockton Unified #### **Table A: School District Toxic Pesticide Use** #### **Health Effect Category** A. "Known" or "probable" carcinogens - B. "Possible" human carcinogens - C. Reproductive and developmental toxins - D. Hormone mimicking pesticides (endocrine disruptors) - E. U.S. EPA Category I Extremely High Acute Toxicity/Systemic Pesticides Labeled "Danger/Poison" - F. Cholinesterase inhibitors (organophosphate or carbamate nerve toxins) temic Toxins, and 41% pesticides listed by U.S. EPA as Category II Systemic Toxins, most of which are cholinesterase-inhibiting nerve toxins. The intervening years since Failing Health have witnessed the issue of school pesticide use gain increasing prominence in California and across the country. In November 1999 the U.S. General Accounting Office (GAO) released Pesticides: Use, Effects, and Alternatives to Pesticides in Schools. Despite evidence that schools use a wide range of carcinogens, reproductive and developmental toxins, endocrine disruptors and nerve toxins, GAO concluded that comprehensive information on the amount of pesticides used in the nation's public schools is not available. Further, GAO found only limited data on short-term illnesses linked to school pesticide exposure, and virtually none on long-term effects. Although these poisons can have long-term health consequences, school districts do not provide information to parents, and often fail to keep proper records. As this report details, school pesticide use is of significant concern for children: their behavior increases risk of exposure while their physiology heightens susceptibility to toxins' effects. Unlike adults, children face exposure to hormone-mimicking and nervous system-altering pesticides during the critical period of growth and organ development. Distressing trends in children's health continue to mount: with about 8,000 children diagnosed each year, cancer remains the leading cause of disease-related death of non-infants under age 19, often in the forms of leukemia and brain cancer. Asthma, the leading chronic childhood illness and number one cause for student absenteeism, annually strikes an estimated 4.8 million children under age 18—one in 15.9 Moreover, asthma rates for children under five have increased 160% in the last 15 years. In 1990, the cost of asthma was estimated at \$6.2 billion. Pesticide exposure has been linked to all of these ailments and more. #### Recommendations Unfortunately, the more things change, the more they stay the same when it comes to pesticide use in California schools. Despite many available non-toxic and less-toxic alternatives to control pests, our children
continue to confront highly toxic chemicals while parents remain unaware—and therefore unable—to act. CALPIRG Charitable Trust and the statewide coalition of Californians for Pesticide Reform urge parents, schools and policymakers to combine efforts to protect our children's health from exposure to dangerous pesticides. - Policymakers should eliminate school use of pesticides that cause cancer, adverse reproductive and developmental effects, hormone disruption or nervous system damage; require prior notification of parents and school staff before pesticide application; provide training, incentives, materials and quantifiable reduction goals to promote pesticide reduction in schools; and ensure that school pesticide use is identifiably reported under the state pesticide use reporting system. - School districts should implement policies that eliminate use of pesticides that cause cancer, adverse reproductive and developmental effects, hormone disruption or nervous system damage; provide prior notification of parents and school staff before pesticide application; and maintain complete records of all pesticide use in a manner easily accessible to the public. - Parents, teachers and students should request information about pesticides used in and around schools and participate in school pest management decision-making; and advocate strong policies that ban use of pesticides that cause cancer, adverse reproductive and developmental effects, hormone disruption or nervous system damage. #### Notes - "E.P.A., Citing Risks to Children, Sharply Limits a Chief Insecticide," New York Times, 9 June 2000; see also U.S. Environmental Protection Agency (U.S. EPA), Office of Pesticide Programs, "Administrator's Announcement on Chlorpyrifos," http://www.epa.gov/pesticides/. - 2 See Enrollment in California Public School Districts Ranked by Highest Enrollment, 1998-99, http://www.cde.ca.gov/demographics/reports/district/rank/mk98100.htm. - 3 See Appendix F for survey methodology. - 4 Oakland Unified, San Bernardino Unified. - 5 CALPIRG Charitable Trust wrote Failing Health: Pesticide Use in California Schools in 1998. This study presented the first comprehensive data on school pesticide use in California, profiling 46 California school districts, which accounted for approximately one quarter of all California public school children. Failing Health is one in a series of reports on pesticide use by CPR. - 6 U.S. General Accounting Office (GAO), Resources, Community, and Economic Development Division, Pesticides: Use, Effects and Alternatives in Schools, GAO/RCED-00-17, November 1999. - 7 Pesticides: Use, Effects and Alternatives in Schools, GAO/RCED-00-17, 2 - 8 U.S. EPA, Office of Children's Health Protection, Childhood Cancer, http://www.epa.gov/children/cancer.htm; American Cancer Society, "Childhood Cancer," Facts and Figures 2000, http://www.cancer.org/statistics/cff2000/special.html. - U.S. EPA, Office of Children's Health Protection, Asthma and Upper Respiratory Illnesses, http://www.epa.gov/children/asthma.htm. - 10 U.S. EPA, Asthma, http://www.epa.gov/children/asthma.htm. - 11 U.S. EPA, Asthma, http://www.epa.gov/children/asthma.htm. Many school districts, including San Francisco Unified, Ventura Unified, and Los Angeles Unified, have adopted policies and are implementing programs to use alternative methods of pest control. Unfortunately, they remain the exception to the rule. # 1 Introduction: The Problem with Children and Pesticides A growing consensus has developed over the last several years among health professionals, school professionals, public health advocates and even many legislators, that school pesticide use can grievously affect children's health. Since its pioneering resolution in 1972, the California State Parent Teacher Association has been joined by the National Parent Teacher Association, the National Education Association and many other organizations in its call for reduced school pesticide use. The California Medical Association and the American Academy of Pediatrics. District IX, passed resolutions in 1999 recommending school pest control programs that preclude use of highly toxic pesticides, reduce overall pesticide use and involve parents in pest management decision-making.1 Unfortunately, no matter how credible the advocate's voice, policy changes have been few and inadequate, as policymakers prove Those in the best position to evaluate children's health effects, such as scientists and health professionals, agree on the hazards of exposing children to pesticides. #### Children are uniquely susceptible to pesticide exposure recalcitrant. Children are not simply "little adults." Early developmental stages of their organs, nervous systems and immune systems; greater rates of cell division; and lower body weight increase their susceptibility to pesticide exposure. Pesticide concentrations in their fatty tissues may be greater because their fat as a percentage of total body weight is lower than for adults. A 1993 report by the National Research Council of the National Academy of Sciences shows that children are more susceptible than adults to the health effects from low-level exposures to some pesticides over the longterm. Animal studies also suggest that the young are more vulnerable to the effects of some toxic chemicals. A review of 269 drugs and toxic substances, including a number of pesticides, reveals lower lethal doses in newborn rodents than in adult rodents in 86% of cases.⁵ # Children are likely to receive relatively greater pesticide exposure than adults In addition to being more vulnerable to pesticide toxicity, children's behavior and physiology make them more likely than adults to encounter pesticides. For example, most pesticide exposure is through the skin—the largest organ—and children have much more skin surface area for their size than adults. Similarly, their higher respiratory rate means they inhale airborne pesticides at a faster rate. Children's characteristic contact with floors, lawns and playgrounds also increases exposure. Very young children who put fingers and other objects in their mouths risk even greater exposure. The breathing zone for children is usually closer to the floor, where pesticides re-enter the air after floor surfaces are disturbed. Finally, children may be bringing home more than their homework—children can track pesticides used in their schools into their homes, presenting an additional opportunity for exposure. ### Pesticide residues in dust and carpets Although pesticides contaminate air, soil, food, water and surfaces, studies that examine children's pesticide exposure indicate that the largest number of chemicals and highest concentrations often accumulate in household dust.⁸ Carpets are long-term reservoirs for pesticides sprayed indoors. A study assessing pesticide exposure from home carpet dust found an average of 12 pesticides in carpet dust samples, compared to 7.5 in air samples from Children are not simply "little adults." Early developmental stages of their organs, nervous systems and immune systems; greater rates of cell division; and lower body weight increase their susceptibility to pesticide exposure. the same residences. Moreover, 13 pesticides found in the carpet dust were not detected in the air. Diazinon—a neurotoxic insecticide used in eight of our surveyed school districts—appeared in nine of 11 carpets tested. ¹⁰ Carpet cleaning may send pesticides airborne again, once more available for inhalation. ¹¹ ### Pesticide residues are highly persistent indoors School districts frequently attempt to reduce exposure risk by applying pesticides after hours while students are not present. 12 However, numerous studies indicate that pesticides may remain potent indoors for days, weeks or even months after application. Sunlight, rain, and soil microbes are not present to break down or carry away indoor pesticides, which thus persist much longer than in the outdoor environment. 13 Some pesticides can linger indoors for months, even years; indoor air concentrations of several kinds of pesticides may be more than 10 to 100 times higher than outdoor concentrations. 14 Even non-persistent pesticides last much longer indoors where they are not susceptible to environmental degradation. 15 For example, one study detected air levels of diazinon 21 days after application at 20% of levels found immediately after application.¹⁶ Not all indoor dust residues stem from indoor use. One study showed residues of 2,4-D and dicamba, herbicides used by one of our surveyed California districts, could be tracked inside on shoes. Untreated areas, including lawn area and carpets, showed levels of 2,4-D, most likely due to spray-drift from nearby applications. Researchers estimated that residues of 2,4-D can persist in household carpet dust as long as one year. 17 Another study showed that after a single spray application in an apartment, chlorpyrifosused in eight responding districts—continued to accumulate on children's toys, both plush and hard plastic, as well as on surfaces, for two weeks.18 #### **Ventilation systems** Finally, because ventilation systems may send pesticides airborne, heat and air conditioning systems potentially serve as sources of repeated pesticide exposure. # Pesticide poisoning incidents: The tip of the iceberg In November 1999, the U.S. General Accounting Office (GAO) researched pesticide use in the nation's schools. Its report, Pesticides: Use, Effects, and Alternatives to Pesticides in Schools, found information on short-term pesticide exposure incidents extremely limited, and information on long-term exposure virtually non-existent. 19 U.S. EPA analysis of Poison Control Center data documents 2,300 reported cases of pesticide exposure involving individuals at schools between 1993 and 1996:²⁰ 329 persons were seen at health care facilities, 15 hospitalized, and four treated in intensive care units.²¹ In addition, pesticide registrants
reported 80 incidents between 1992 and 1997 involving one or more individuals at schools.²² The California Pesticide Illness Surveillance Program, which requires doctors to report any illnesses that may be caused by pesticide exposure, reported 998 potential or confirmed poisonings of workers, teachers and students in 1998, the latest year for which information is available.23 What little data we do have indicate that nearly every incident is wholly unnecessary and avoidable. However, these numbers likely misrepresent the actual incidence of adverse health effects from pesticide exposure.²⁴ Symptoms of pesticide illness frequently mimic symptoms associated with the flu or other common childhood ailments. In the event parents seek medical attention, inadequate doctor training in identifying pesticide illnesses makes correct diagnosis unlikely. In addition, because under the California reporting program, it is through workers' compensation programs that most physicians are reimbursed for preparing reports, doctors lack incentive to report non-worker pesticide illnesses (such as those children suffer).25 Government reporting programs do not even attempt to capture pesticide-related illnesses with immeasurable effects, such as learning disorders, or that may Some pesticides can linger indoors for months, even years; indoor air concentrations of several kinds of pesticides may be more than 10 to 100 times higher than outdoor concentrations. Linking pesticide exposure to deleterious health effects is difficult, even when effects are dramatic and grave. Often, by the time pesticides are identified as causal, long-lasting and profound damage has already occurred. not be manifested until years after exposure, such as cancer and reproductive and developmental effects. Linking pesticide exposure to deleterious health effects is thus difficult, even when effects are dramatic and grave. Often, by the time pesticides are identified as causal, longlasting and profound damage has already occurred. A recent Northwest Coalition for Alternatives to Pesticides report highlights the problem. Unthinkable Risk: How Children Are Exposed and Harmed When Pesticides Are Used at School profiles nearly 100 pesticide poisoning incidents from across the country, 35 from California.²⁶ In one incident, numerous students suffered unusual symptoms after they began attending Jurupa Hills Elementary School.²⁷ One five-year-old developed rashes and blisters where his body contacted classroom surfaces, a smoker-like cough, diarrhea, stomach pains and shortness of breath. Another kindergarten student suffered head blisters and hair loss after starting school. One fifth-grader suffered fatigue and stomach pains requiring hospitalization; she missed months of school. Concerned parents investigated and to their horror discovered that the school was automatically dispensing pyrethrins-containing pesticides every 15 minutes in a mist over their children's heads. Though the applications were legal and despite school district assurances that pesticide exposure could not cause the children's illnesses, the school stopped use. In 1997, a Fontana eighth-grader stopped breathing and collapsed while playing baseball at a local park.²⁸ She died six days later, having never regained consciousness. In addition to numerous visits to the school nurse complaining of dizziness, nausea and headaches, twice before the girl had inexplicably stopped breathing and collapsed at school. An abnormal heart rhythm was detected by electrocardiogram (EKG) tests taken after one of the episodes and during her coma. Exposure to nerve-poisoning pesticides, such as organophosphates and pyrethrins, can disrupt proper nervous system functioning, causing heart rhythm abnormalities such as rapid heartbeat and heart palpitations. In addition to RoundUp, several nerve-poisoning pesticides, including chlorpyrifos, cyfluthrin, cypermethrin and diazinon, were applied regularly at the school. Other pesticides and herbicides were used at the park where the girl collapsed. After much research, expert consultation, and even genetic testing, the family and their cardiologist now believe that exposure to nerve-poisoning pesticides sprayed at school and in the park is the only likely cause of the arrhythmia that caused the young girl's death. # 2 Highly Toxic Pesticides Continue To Be Used in California Schools CALPIRG Charitable Trust surveyed the 15 most populous school districts, which together account for over 1.5 million students, or roughly one quarter (26.4%) of all children in California public schools. All 13 responding districts reported using one or more highly toxic pesticides—chemicals that health authorities suspect can cause cancer, reproductive or developmental harm, endocrine system (hormone) disruption, acute systemic or nervous system damage.²⁹ The survey data reveal that 11 of 13 responding school districts used one or more "known" or "probable" carcinogens; all 13 districts used one or more "possible" human carcinogens; 11 used one or more reproductive or developmental toxins; all 13 used one or more pesticides able to mimic hormones and affect the endocrine system; 11 used one or more acutely toxic pesticides classified as EPA Category I and for which "DANGER/POISON" labeling is required; 30 and 11 used one or more cholinesterase inhibitors, pesticides that affect nerve impulse transmission. Table 1 presents pesticides found in each category and the number of school districts us- ### Table 1: Toxic Pesticides Used in Responding California Districts | Resp | onding Californ | ia Districts | • . | \$ S | |---|---|---|--|--| | Health Effect Category | Pesticide (active in (number) | gredients)* | Responding School Districts Reporting Pesticide Use (number) | | | A. "Known" or "probable" carcinogens* | diuron fenoxycarb propoxur pyrethrins silica aerogel sodium cacodylate | | (11) Capistrano Unified Elk Grove Unified Fresno Unified Garden Grove Unified Long Beach Unified Los Angeles Unified Riverside Unified | * Some listed chemicals are used in either spray, bait or gel form. We commend school districts that reduce children's pesticide exposure by utilizing baits or gels as opposed to broadcast spray applications. However, baits and gels still create risk of exposure, either by inadvertent ingestion or volatilization. Therefore, further steps are required to move toward a non-toxic | | Tell and | | | Sacramento City Unified
San Diego Unified
Santa Ana Unified
Stockton City Unified | approach to pest management. Sources: a. List of Chemicals Evaluated for Carcinogenic Potential (Category A, B1 and B2) (U.S. EPA Office of Pesticide Programs, 26 August 1999); Proposition 65 List of Chemicals Known to the State of California | | B. "Possible" human carcinogens ^b | (13) acephate bifenthrin carbaryl cypermethrin fipronil hydramethylnon | n-octyl
bicycloheptene
dicarboximideoryza
oryzalin
oxadiazon
pendimethalin
permethrin
piperonyl butoxide | (13) See Category A districts, plus San Francisco Unified and lin San Juan Unified | to Cause Cancer (Sacramento: California Office of Environmental Health Hazard Assessment, 29 December 1999). b. List of Chemicals Evaluated for Carcinogenic Potential (Category C) (U.S. EPA Office of Pesticide Programs, 26 August 1999). c. Proposition 65 Chemicals Known to the State to Cause Reproductive and Developmental Taxicity (Sacra- mento: California Office of Envi- | | C. Reproductive and developmental toxins ^c | (5) fluazifop-butyl hydramethylnon methyl bromide oxadiazon resmethrin | trifluralin | (11) See Category A districts, plus San Juan Unified, less Capistrano Unified | ronmental Health Hazard Assessment, 29 December 1999), http://www.oehha.ca.gov/prop65.html. d. Report on Endocrine Disrupting Chemicals (Illinois EPA, 1997); L. H. Keith, Environmental Endocrine Disruptors: A Handbook of Property Data (New York: Wiley Interscience, 1997); T. Colburn et | | D. Hormone mimicking pesticides (endocrine disruptors) ^d | (17) 2,4D bifenthrin carbaryl chlorpyrifos cyfluthrin cypermethrin d-trans allethrin deltamethrin esfenvalerate | lambda cyhalothrin
malathion
permethrin
phenothrin
pyrethrins
resmethrin
sodium cacodylate
trifluralin | (13)
See Category A districts, plus
San Francisco and San Juan
Unified | al Our Staten Future (New York: Penguin Books, 1996), 253; C. M. Benbrook, Growing Doubt: A Primer on Pesticides Identified as Endocrine Disruptors and/or Reproductive Taxicants (Washington, DC: National Campaign for Pesticide Policy Reform. September 1996). e. U.S. EPA categorizes pesticide products according to acute (Immediate) toxicity. Categories range from I to IV. Category I being the most toxic. Only Category I pesticides bearing the label "Danger/Poison," the clesignation reserved for highly toxic systemic (toxic through ingestion, absorption, or | | E. U.S. EPA
Category I Extremely High Acute Toxicity/Systemic Pesticides Labeled "Danger/Poison"e | (10) 4-aminopyridine aluminum phosphide brodifacoum bromadiolone chlorophacinone | chloropicrin
diphacinone
methyl bromide
propoxur
sulfuryl fluoride | (11) See Category A districts, plus San Francisco Unified and San Juan Unified, less Capistrano Unified and Riverside Unified | inhalation) toxins, are included. The same active ingredient may have several different classifications, depending on its concentration in the product formulation. f. Summary of Pesticide Use Reporting Data, 1998 (Sacramento: California Department of Pesticide Regulation, November 1999). | | F. Cholinesterase inhibitors (organophosphate or carbamate nerve toxins) ^f | (8) acephate carbaryl chlorpyrifos diazinon | ethephon
malathion
propetamphos
propoxur | (11)
See Category A, plus San Juan
Unified, less Stockton Unified | | 12 #### What Is a Pesticide? The U.S. Environmental Protection Association defines a pesticide as any substance or mixture of substances intended to prevent, destroy, repel or mitigate any pest. The term includes not only all insecticides, but also all herbicides, fungicides and various other substances used to control pests. Under U.S. law, a pesticide is also any substance or mixture of substances intended for use as a plant regulator, defoliant, or desiccant. By their very nature, most pesticides create some risk of harm to humans, animals or the environment because they are designed to kill or otherwise adversely affect living organisms. Biologically based pesticides, such as pheromones and microbial pesticides, are becoming increasingly popular and often are safer than traditional chemical pesticides. Adapted from U.S. EPA, Office of Pesticide Programs, "What Is a Pesticide?" ing them. Complete information for each school district appears in Appendix A: Survey Response Information by School District. #### **Nervous system toxins** Of the 13 responding school districts, 11 used pesticides identified as cholinesterase inhibitors. Cholinesterase inhibitors, which include organophosphates and many carbamates, are pesticides designed to disrupt the cholinesterase enzymes that control insect nervous systems. Because humans have these same enzymes, they interfere with human nerve impulse functions, posing a priority health concern.³¹ Ironically, school use of these toxins may impair the learning process itself. Low levels of neurotoxic pesticide exposure to the developing brain may adversely affect memory, intelligence, judgment and even personality and behavior.³² Scientists who studied 56 men exposed to organophosphates found disturbed memory and difficulty in maintaining alertness and focus.33 Low doses of chlorpyrifos—used by eight responding districts-given to newborn rats and rat embryos have been shown to cause brain death and dysfunction.³⁴ Few pesticides have been evaluated for their ability to cause permanent damage to children's developing central nervous systems, but several researchers suggest that harmful effects are likely. 35 This lack of research gives special importance to a current study— by the School of Public Health at the University of California at Berkeley, in conjunction with the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS)—to assess in utero and postnatal organophosphate exposure and its health effects on neurodevelopment, growth, and symptoms of respiratory illness in children.³⁶ An estimated 3–5% of school-age children suffer symptoms of hyperactivity and attention deficit disorder, making it difficult for them to pay attention and learn. Researchers who studied two "sister" communities in Mexico whose primary difference was high pesticide use in one and low use in the other demonstrated that children who lived in the high pesticide use area suffered greater impairment of memory, fine motor skills and visual perception.³⁷ ### Carcinogens in California schools As noted in Table 1, 6 pesticides identified as "known" and "probable" carcinogens were used in 11 of the 13 responding California school districts. All 13 districts reported using "possible" carcinogens. U.S. EPA evaluates pesticide ingredients for carcinogenicity. Those with tumor-causing effects are classified into three categories, those known to cause cancer in humans ("known" human carcinogens), those known to cause cancer in animals but not yet definitely shown to cause cancer in humans ("probable" human carcinogens), and those that may be human carcinogens ("possible" human carcinogens). The California Office of Environmental Health Hazard Assessment also maintains a list of chemicals known to the state to cause cancer.38 The prevalence of carcinogenic chemicals is of particular concern as cancer remains the leading cause of disease-related death among children in the U.S. under the age of 19.³⁹ An estimated 12,400 children under the age of 19 will develop cancer in the year 2000, and about 2,300 children will die from cancer this year alone.⁴⁰ Between 1974 and 1991, overall incidence of childhood cancer in- Low levels of neurotoxic pesticide exposure to the developing brain may adversely affect memory, intelligence, judgment and even personality and behavior. creased ten percent. 41 Accounting for one-third of all cancers in children, leukemia is the most common form of cancer in children under age 15. 42 Scientific studies suggest a connection between pesticide exposure and childhood cancer. For example, several link use of home and garden pesticides to increased risk of leukemia.43 The most recent of these investigated household pesticide use by 224 Los Angeles mothers of children with brain tumors. The risk of brain cancer was found to be 10.8 times greater for children who had prenatal exposure to spray and fogger pesticides. A 1995 study shows a strong positive correlation between pest strip use and leukemia.⁴⁴ Home pesticide use also increases risk of brain cancer. One research study implicates use of sprays or foggers to dispense flea and/or tick treatments in an increased incidence of brain tumors. 45 Yard pesticide treatments have been linked to an increase in softtissue sarcomas. 46 ### Reproductive and developmental toxins Of the 13 responding surveyed school districts, 11 reported using one or more pesticides identified as a reproductive or developmental toxin by the State of California under Proposition 65.⁴⁷ Exposure to these chemicals may jeopardize a child's physical and mental development, increasing risk of behavioral and neurological disorders, immune system suppression and an impaired reproductive system. Unborn children carried by pregnant teachers may also face heightened risk of a variety of physical and mental birth defects.⁴⁸ Low birth weight, spontaneous abortion or miscarriage, and sterility or infertility also may result.⁴⁹ ### Hormone-mimicking pesticides Thirteen responding school districts reported using pesticides whose active ingredient has been shown to disrupt the proper functioning of human hormones by blocking, mimicking or otherwise interfering with the endocrine system. ⁵⁰ Hormones—chemical messengers that trigger a wide array of highly complex and sensitive biological processes—are responsible for a range of important functions, including determination of height and weight, gender differentiation, development of reproductive organs, energy levels, skin health and other biological processes. Because they can "switch" on and off biological processes at extremely low levels, hormone-mimicking pesticides may be harmful at very low levels of exposure. ⁵¹ ### U.S. EPA Category I acute systemic toxins Eleven of the 13 responding districts used one or more pesticide products containing Category I acute toxins. U.S. EPA categorizes pesticide products according to their acute (immediate) toxicity. Categories range from I to IV, with Category I being the most toxic. The California Department of Pesticide Regulation breaks down Category I materials further into two groups: those that cause acute systemic (i.e., whole body) toxicity, which carry the warning "DANGER/POI-SON" and show a skull and crossbones on the product label and were considered by this report; and those that cause acute toxicity to skin and eyes, which carry the warning "DANGER" on the label and were not considered. Materials⁵² bearing the "DANGER/ POISON" label are lethal to laboratory animals when they eat less than 50 mg per kg of body weight, inhale air containing a concentration of the substance less than 50 mg per liter of air, or are exposed through the skin to levels less than 200 mg per kg of body weight. In other words, for a 150-pound person, consumption of as little as 0.1 ounce can be fatal. Given that most school children weigh substantially less than 150 pounds, Category I acute systemic toxins pose a significant threat to children's health at very low doses. continued on page 16 The risk of brain cancer was found to be 10.8 times greater for children who had prenatal exposure to spray and fogger pesticides. #### Top Five Most Commonly Used Pesticides in Responding School Districts: Biographies Active Ingredient: pyrethrins Products: Drione, Pro-Control, CB-40, CB-80, Kicker, PT 175, PT 230 Tri-die, PT 565, PT 505, ULD BP 100, ULD BP 300, Knockdown, Safer, Ortho Wasp, Holiday Fogger Number of School Districts Using: 10 Use: insecticide Toxicity Information: Pyrethrins are derived from dried chrysanthemum flowers and are designed to paralyze pests quickly. Pyrethrins contain allergens that cross-react with ragweed and other pollens. They are absorbed most easily through ingestion or inhalation. Pyrethrins can cause male reproductive effects by binding with androgen (a male sex hormone) receptors, disrupting normal function. Because pyrethrins degrade quickly, they are often used with other ingredients that may be more toxic. Active Ingredient: chlorpyrifos Products:
Dursban, Strikeforce, PT 270, others Number of School Districts Using: 8 Use: insecticide Toxicity Information. This organophosphate nerve toxin inhibits cholinesterase, an enzyme critical to nervous system function. Organophosphates are the most widely used insecticides,3 and among them, chlorpyrifos is the toxin of choice. More than 800 products contain chlorpyrifos, including pet collars, pest control products, and lawn and garden insecticides.4 Chlorpyrifos can cause headaches, dizziness, mental confusion and inability to concentrate, blurred vision, vomiting, stomach cramps, uncontrolled urination, diarrhea, seizures, 5 birth defects and multiple chemical sensitivity. 6 This insecticide has been linked to organophosphate-induced delayed neuropathy, a nervous system disorder resulting in weakness or paralysis of the extremities. In children, acute exposure most often generates seizures and mental changes such as lethargy and coma.8 Chlorovrifos is easily absorbed through inhalation, ingestion or the skin. 9 Symptoms may not be evident for up to one to four weeks after exposure. 10 Chlorpyrifos is frequently detected in indoor air, and levels have actually been found to increase over time.11 The estimated half-life (the period by which half of the product is expected to have broken down) of chlorpyrifos is 30 days, 12 but studies find that it can persist up to eight years after application. 13 In June 2000, U.S. EPA recognized the danger of children's exposure to chlorpyrifos and announced severe restrictions on its use in settings where children face exposure, such as homes, schools and day care centers, and on crops commonly eaten by children, such as apples, grapes and tomatoes. Active Ingredient: diazinon Products: KnoxOut, TKO, Diazinon, others Number of School Districts Using: 8 Use: insecticide Toxicity Information: This organophosphate nerve toxin inhibits cholinesterase, an enzyme critical to nervous system function. Acute symptoms include headache, muscle twitching, hypersecretion (increased sweating and/or salivation), muscle weakness, tremor and incoordination, abdominal cramps, nausea, vomiting, loss of consciousness, blurred vision, wheezing, coughing and pulmonary edema (swelling in the lungs). 14 Symptoms develop within minutes or hours of acute exposure, most quickly when inhalation is the means. 15 Diazinon also has long-term effects. Tests show reproductive effects in laboratory animals¹⁶ and use by farmers in Iowa, Minnesota and Nebraska has been linked to increased risk of non-Hodgkin's lymphoma. 17 An epidemiological study of workers at a diazinon production facility found that chromosome aberrations (genetic damage) were more common among exposed than non-exposed workers. 18 Two U.S. EPA surveys found diazinon to be the sixth most frequent cause of both accidental death due to pesticides and pesticide-related illnesses. 19 One study detected residues of diazinon in the urine of pest control operators who had sprayed diazinon, despite use of protective clothing.²⁰ Another study, monitoring a crack and crevice treatment in a school dormitory, showed that diazinon can persist indoors for as long as 42 days after application.²¹ Active Ingredient: glyphosate Product: Roundup Number of School Districts Using: 9 Use: herbicide Toxicity Information: Exposure to glyphosate can irritate the eyes, skin and upper respiratory tract.²² Acute symptoms include the foregoing, as well as cardiac depression, gastrointestinal pain, vomiting and accumulation of excess lung fluid.²³ Glyphosate can drift off-site during ground applications, potentially exposing children in classrooms far removed. Studies show that 14-78% of glyphosate can drift off-site²⁴ as far as 1.300 feet downwind.²⁵ Glyphosate can persist in soil from three days to a year. 26 Misleading advertising has led many applicators to consider glyphosate nearly non-toxic. Although the New York State attorney general won an injunction in 1996 against the chemical's manufacturer, Monsanto, for falsely claiming that the pesticide is as safe as table salt, 27 its undeserved reputation as non-toxic is tenacious. Active Ingredient: hydramethylnon Products: Siege, Maxforce products Number of School Districts Using: 8 Use: insecticide Toxicity Information: Hydramethylnon is typically used in bait or gel formulations, which, although preferable to sprays, still pose exposure risk through inadvertent ingestion or volatilization. A possible human carcinogen, this insecticide has been shown to create adverse reproductive or developmental effects.²⁸ #### Notes - M. Moses, Designer Poisons: How to Protect Your Health and Home from Taxic Pesticides (San Francisco: Pesticide Education Center, 1995). - 2 C. Cox, "Clyfluthrin." in *Designer Poisons: How to Protect Your Health and Home from Taxic Pesticides*, by M. Moses (San Francisco: Pesticide Education Center. 1995). citing C. Eli et al., "The Binding Properties of Pyrethroids to Human Skin Fibroplast Androgen Receptors and to Sex Hormone Binding Globulin." *J. Ster. Biochem.* 35 ([1990]3/4): 409–14 - U.S. Environmental Protection Agency (U.S. EPA), Recognition and Management of Pesticide Poisonings. 5th ed., EPA 735-R-98-003, 1999, 34. - 4 Environmental News Service, Scientists Call for Ban on Dursban, 13 April 2000, Washington, D.C. - 5 Ibid., reference 3, p. 34. - A. Donnay, Researchers Link Common Household Insecticide with Serious Birth Defects and Multiple Chemical Sensitivity, Press Release, 20 November 1996, Baltimore, MD. - 7 U.S. EPA, Recognition, 34. - U.S. EPA, Recognition, 38. - 9 U.S. EPA, Recognition, 36. - J. Blondell, "Review of chlorpyrifos-associated cases of delayed neuropathy" (Memorandum), 19 January 1995. 3. - 11 C. Cox, "Chlorpyrifos, Part 2: Human Exposure," *J. Pesticide Reform* 15 ([1996]1), citing C. Wright et al., "Chlorpyrifos in the air and soil of houses four years after its application for termite control." *Bull. Env. Contam. Toxicol.* 46 (1991): 686–89. - 12 Cox, "Chlorpyrifos," citing California Department of Health Services, "Hazards of Indoor-use pesticides under investigation." Tox. Epidemiol. Review (Berkeley, CA: Cali- - fornia Department of Health Services, 1987). - 13 Cox, "Chlorpyrifos," citing C. Wright et al., "Chlorpyrifos in the air and soil of houses eight years after its application for termite control," *Bull. Env. Contam. Taxicol.* 52 (1994): 131–34. - 14 U.S. EPA, Recognition, 34, 38. - 15 U.S. EPA, Recognition, 38. - 16 U.S. EPA, Federal Register 59 ([30 November 1994]229), 61435. - 17 C. Cox, "Diazinon," J. Pesticide Reform 12 ([1992]3). 31, clting K. Cantor et al., "Pesticides and other risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota." Cancer Research 52 (1992): 2447–55; and S. Zahm, "A case control study of non-Hodgkin's lymphoma and agricultural factors in Eastern Nebraska (Abstract)," Am. J. Epidemiol. 128 (1988): 90. - 18 Cox, "Diazinon," 31. citing J. Kiraly et al., "Chromosome studies in workers producing organophosphate insecticides." Arch. Env. Contam. Toxicol. 8 (1979): 309–19. - 19 Cox, "Diazinon," 31, citing U.S. EPA, Guidance for the reregistration of pesticide products containing diazinon as an active ingredient, 1988. - Cox, "Diazinon," 31, citing A. Hayes et al., "Assessment of occupational exposure to organophosphates in pest control operations," Am. Hygiene Assoc. 41 (1980): 568-75. - 21 Cox, "Diazinon." 31, citing G. Wright et al., "Chlorpyrifos and diazinon detections on surfaces of dormitory rooms," Bull. Env. Contam. Toxical. 32 (1984): 259-64. - 22 U.S. EPA, Recognition. 120. - C. Cox, "Glyphosate," Part 2: Human Exposure and Ecological Effects, J. Pesticide Reform (Winter 1995). - 24 Cox, "Glyphosate," citing B. Freedman, "Controversy over the use of herbicides in forestry, with particular reference to glyphosate usage." J. Env. Sci. Health C8 ([1990–1991]2): 277–86. - 25 Cox, "Glyphosate," citing W. Yates et al., "Drift of glyphosate sprays applied with aerial and ground equipment," Weed Science 26 ([1978]6): 597–604. - 26 Cox, "Glyphosate," citing U.S. EPA, "Reregistration eligibility decision (RED): Glyphosate, Washington DC (1993). - 27 Press release from NY Attorney General's Office, presiding Attorney General Dennis C. Vacco, The Capitol, Albany. 25 November 1996. - 28 Beyond Pesticides/National Coalition Against the Misuse of Pesticides, Health Effects of 48 Commanly Used Pesticides in Schools. http://www.beyondpesticides.org; see also Proposition 65 Chemicals Known to the State to Cause Reproductive and Developmental Toxicity (Sacramento: California Office of Environmental Health Hazard Assessment, 29 December 1999), http://www.oehha.ca.gov/prop65.html. #### "Inert" Ingredients: Packaging Poison with Poison Pesticide products actually comprise a mixture of "active ingredients"—chemicals intended to kill the pest—and "inert" ingredients—chemicals to enhance potency or ease-of-use. "Inert" ingredients often make up the bulk of an applied pesticide, commonly 99%. However, "inert" ingredients are often toxic as well—in a few cases more so than active ingredients. Moreover, many inert ingredients are themselves used as pesticides. At least 382 chemicals on the U.S. EPA list of pesticide inert ingredients are currently or were once registered as pesticide active ingredients. Eight inert ingredients are considered by U.S. EPA to be "Of Toxicological Concern" and another 64 are "Potentially Toxic." ² Obscuring matters still more, the precise formulation of many pesticides is "proprietary" business information that manufacturers are not required to disclose on the pesticide label. Concerned consumers thus cannot identify the ingredients that constitute the bulk of a product to determine total toxicity. 1 H. Knight, "Hidden Toxic 'Inerts': A Tragicomedy of Errors," J. Pesticide Reform 17 ([1997]2): 10-11. 2 U.S. EPA. Office of Pesticide Programs. List of Other (Inert) Ingredients,
http://www.epa.gov/opprd001/inerts/lists.html. # 3 Least-Toxic Integrated Pest Management: Words and Deeds Least-toxic Integrated Pest Management (IPM) is a decision-making process for managing pests that focuses on prevention of pest problems before they occur. Integral is the idea that in the vast majority of circumstances, pests can be managed without toxic chemicals, and that only after all other methods have been tried and failed should toxic pesticides be considered. Least-toxic IPM involves a progression of steps: - Prevention is the first line of defense. Improved sanitation (removal of the attractant) and mechanical exclusion (caulking, screens) can accomplish significant pest control. Modification of pest habitats (vegetation-free buffer zones against buildings) can deter pests and minimize infestations. IPM involves extensive knowledge about pests, such as infestation thresholds, pest life cycles, environmental considerations and natural enemies. - Monitoring is critical to identifying initial pest problems and areas of potential concern, as well as determining decisions and practices that may affect future pest populations. It must be ongoing to prevent a small pest problem—easily controlled with least-toxic means—from becoming an infestation. - Threshold tolerance levels of pest populations are established to determine the point at which pests become a problem requiring treatment. - Treatment, finally, prioritizes non-chemical means, and if necessary, those chemicals that pose the least possible risk of toxicity to humans and the environment. Traps and enclosed baits, beneficial organisms, freezing and flame or heat treatments, among others, are all examples of least-toxic pest control strategies. A good IPM program prohibits use of known and probable car- cinogens, reproductive or developmental toxins, endocrine disruptors, cholinest-erase-inhibiting nerve toxins, and the most acutely toxic pesticides. In other words, IPM establishes a hierarchy of appropriate responses to a pest problem, with monitoring and prevention at the top and toxic pesticides at the very bottom. IPM *does not* mean that in the event of a pest problem, all available pest control methods receive equal consideration.⁵³ Some California school districts have adopted written IPM policies, others have written pest control policies but also claim to adhere to IPM principles, and still others lack written policies, but follow mandatory internal IPM protocols. Several districts, among them Los Angeles Unified and San Francisco Unified, have dramatically reduced toxic pesticide use after implementing IPM programs.⁵⁴ Unfortunately, our research also shows that many districts that report adherence to IPM policies and procedures have not reduced reliance on toxic pesticides. For example, Fresno Unified pesticide use appears to have held constant despite adoption of an IPM policy. Its policy does not mandate consideration of least-toxic before toxic means. Lacking a uniform definition of IPM among districts, it is not surprising that we found varying outcomes. As stated above, the principle of IPM includes commitment to leasttoxic pest control. In practice, least-toxic IPM means that carcinogens, acute nerve toxins and reproductive and developmental toxins are never used and other synthetic chemicals only as a last resort and under predefined conditions. Also, a written policy is critical to ensure that standards are maintained from one administration to another and that parents, school staff, and policymakers can make informed, standardized decisions. Thorough records aid program evaluation against an established benchmark. Least-toxic Integrated Pest Management is a decision-making process for managing pests that focuses on prevention of pest problems before they occur. #### IPM in other states Because IPM means many things to many people, it is difficult to determine which states have enacted laws mandating policies incorporating least-toxic IPM principles. Several states, including Minnesota, Connecticut, Maryland, Oregon, Texas, West Virginia, and most recently, Massachusetts, require schools to adopt IPM programs. ⁵⁵ Still other states have laws that encourage IPM adop- tion. For example, Illinois law requires school districts to adopt an IPM program if economically feasible. If such adoption would be more expensive than current policy, the district must submit a report outlining the programs' relative costs to the Department of Health for review. Several other states have laws defining IPM, some in ways that do not prioritize non-toxic or low-toxic methods over toxic methods. #### **Least-Toxic IPM Policies in California** A number of California schools or school districts have implemented effective least-toxic IPM programs, including the following: #### San Francisco Unified - Bans U.S. EPA Category I and II pesticides; California Proposition 65 pesticides; and U.S. EPA known, probable and possible carcinogens. - If pesticides are used, posting is required three days before and after with written parental notification before all non-bait applications. - Distributes fact sheets for parents at beginning of the year. #### **Ventura Unified** - Bans U.S. EPA Category I and II pesticides; California Proposition 65 pesticides; U.S. EPA known, probable and possible carcinogens; neurotoxins; and endocrine disruptors. Establishes a list of approved least-toxic products. - If products not on the approved list are used, posting is required three days before and after with written parental notification 72 hours prior. - District to maintain a registry of chemically sensitive students and staff for personal notification two weeks before any planned pesticide use. #### **Los Angeles Unified** - Policy establishes a list of approved least-toxic products, to be posted year-round in the main office of each site. Approved products are not associated with the following health effects: cancer, nervous system disruption, birth defects, genetic alteration, reproductive harm, immune system dysfunction, endocrine disruption, and acute poisoning. - District provides annual parental notification in the "Registration Packet," which includes the IPM Policy Statement. list of approved products, and method for parents to request notification of all pesticide applications. - If products not on the approved list are used, posting is required three days before and five half-lives after application, with written parental notification 72 hours before application. Other districts with policies adhering to IPM principles: Fresno Unified, Mendocino Unified, San Jose Unified and Sulphur Springs School District. School districts that operate without a formal policy, but with strict internal IPM guidelines: Fremont School District, Novato School District. Placer Hills School District, and San Diego Unified. # **4** Current California Laws and Regulations Are Inadequate To Inform Parents, Teachers and Students about Pesticide Use ### Prior written notification and posting If pesticides are used on school grounds, those who risk exposure should at the very least be made aware. The best method to inform parents, school staff and students about school pesticide use is prior written notification. Notification should describe what pesticide is to be used, and how and why it is to be applied. Prior written notification is best used in conjunction with on-site posting of the same information, thereby enabling students, staff or parents to avoid treated areas. ### Prior notification is not required, and therefore, rare Current California law does not require school districts to notify parents, teachers or the public prior to pesticide application. Not surprisingly, as Table 2 illustrates, very few districts bother to notify. Ten responding school districts reported that they provide no written notification to parents or teachers before applying pesticides in their schools or on school grounds. Because some survey responses were unclear on this question, the number may be much higher. Even more startling, at least eight responding districts do not even post warnings on treated areas. Rather, four districts reported "site notification," such as verbal (including telephone) contact, sometimes with the site administrator. Elk Grove Unified claimed that notice is provided "as necessary," while Stockton City Unified and Sacramento Unified both stated vaguely that "verbal" notification was employed, but did not specify of whom or when. Notification, in writing and in advance, provides key information that concerned persons have a right to know in order to make in- formed decisions and take precautionary measures to protect themselves and their children from exposure to toxic chemicals. Equally important, prior notification enables parents and teachers to participate in pest management decision-making in their schools. # Posting regulations typically do not cover school applications Current posting regulations are inadequate to inform parents and teachers of school pesticide use. Commercial applicators must post warning signs after applying pesticides only when using highly toxic pesticides for which the state has established a 24-hour re-entry interval. ⁵⁸ This exempts the vast majority of pesticides used in schools and on school grounds. ### California has no system for statewide monitoring California does not require school districts to track pesticide use or report such use to the state. Without a comprehensive system of tracking, it is virtually impossible to determine the overall prevalence of pesticide use in California schools. ⁵⁹ Concerned parties must instead attempt to obtain information one district at a time. As discussed previously, such a process is time-consuming, laborious, and ultimately often yields incomplete and inconsistent results. Inadequate monitoring and reporting of school pesticide use stands in stark contrast to monitoring and reporting of agricultural
applications. Whereas agricultural use must be reported by crop and location, down to the square mile, other commercial applicators are required only to report whether the applica- Current California law does not require school districts to notify parents, teachers or the public prior to pesticide application. **Table 2: School District Notification and Posting Practices** | School District | Written Notification to Parents & Teachers | Posting | | |-----------------------|---|-----------------------------------|--| | Los Angeles Unified | Yes | Yes | | | San Diego Unified | No; only site administrator notified | Yes, for indoor applications only | | | Long Beach Unified | No; only site administrator notified | Yes | | | Fresno Unified | No; only verbal notification to principal or office manager | No | | | San Francisco Unified | Yes | Yes | | | Santa Ana Unified | No; only sites are notified of spraying | No | | | Sacramento Unified | No; "verbal notification" —not specified of whom | No | | | San Juan Unified | No | No | | | Garden Grove Unified | No | No | | | Elk Grove Unified | No; advance notice provided "as necessary" | No | | | Capistrano Unified | No; site administrator notified via telephone | No | | | Riverside Unified | No | Yes, displayed for five days | | | Stockton City Unified | No; "verbal notification" —not specified of whom | No | | tion fell within a broad category, such as "structural pest control" or "landscape maintenance." Such reporting obscures whether applications occur in a school, a home or an office building. As *Failing Health* noted, under existing law, we know more about which pesticides are sprayed on an acre of cabbage than are used in our classrooms. ⁶⁰ In addition, nine of the 13 responding school districts reported that at least part of their pest management is conducted by district staff, not commercial contractors. Thus, even were commercial contractors required to identify school applications, arguably a large percentage of pesticide use would remain unreported. The only sensible method of monitoring and reporting must begin at the school district level. ### Addressing the problem: Some policymakers take note Some state legislatures around the country and in Washington, DC, have taken up the challenge to protect our children's health. On May 18, 2000, Massachusetts passed landmark legislation banning use of spray pesticides indoors at schools and day care centers, banning all use of carcinogenic pesticides, establishing parental and staff notification of pesticide applications, and requiring school districts to adopt least-toxic IPM programs.⁶¹ Pending legislation in California encourages adoption of IPM programs, requires parental and staff notification prior to pesticide applications, and requires tracking of school pesticide use.⁶² In addition, U.S. Senator Barbara Boxer recently introduced an amendment to legislation on the Senate floor that would require parental notification before pesticides are applied in schools. 63 Senators Robert Torricelli and Patty Murray have introduced the School Environmental Protection Act, which addresses pesticide use as one of many environmental safety hazards in our children's schools. Across the border, a Canadian parliamentary committee recently called for tighter regulations on pesticides and a ban on their use on lawns and in parks.64 ### 5 Recommendations The best approach to protect children from dangerous pesticides is a precautionary approach. We commend the handful of California school districts that have adopted least-toxic IPM programs, as they provide working models for safer pest control. To ensure that least-risk pest control is adopted in all schools, concerned persons should do the following. #### **Parents** - Advocate district-wide least-toxic IPM programs that eliminate use of highly toxic pesticides. - Request information about pesticide use and toxicity in your children's schools. - Learn about policies that may already be in place to govern pest control, and monitor school pest management decision-making. - Insist on notification before pesticides are sprayed in your children's school. - For more information, contact Pesticide Watch Education Fund (see Appendix D), which assists parents and community groups working with school districts to reform pest control programs. Pesticide Watch can provide information, expert resources, and strategy assistance for organizing in your school district. #### **School managers** - Adopt a least-toxic IPM policy that - Prohibits use of pesticides that cause cancer, adverse reproductive and devel- - opmental effects, hormone disruption and nervous system effects; - Prioritizes pest prevention and nontoxic pest control over toxic pesticide use; - 3. Provides parental and staff notification prior to pesticide application; and - 4. Mandates maintenance of pesticide use records, easily understandable and readily accessible to the public (see Appendix E for a model policy). - Halt routine "calendar" pesticide applications. - Ensure that only trained personnel apply pesticides on school grounds. #### State policymakers - Eliminate school use of pesticides that cause cancer, adverse reproductive and developmental effects, hormone disruption and nervous system damage. - Develop and provide training, incentives and materials to promote pest prevention and least-toxic pest management. - Require school districts to develop a program for notifying parents, teachers and the public before and after applying pesticides. - Ensure that school pesticide use is identifiably reported under the state pesticide use reporting system. - Earmark funds to implement these programs effectively. #### **Endnotes** - See Resolution to the CMA House of Delegates, passed by CMA 29 March 1999: Resolution for Healthy Schools and Day Care Facilities, adopted by California District IX, American Academy of Pedlatrics, February 1999. - 2 National Research Council, Paticides in the Diets of Infants and Children (Washington, DC: National Research Council, National Academy Press, 1993); Watanabe et al., "Placental and blood-brain barrier transfer following prenatal and postnatal exposures to neuroactive drugs: relationship with partition coefficient and behavioral teratogenesis, Taxical, Appl. Pharmacal. 105 ([1990]1): 66–77; Repetto and Baliga, Pesticides and the Immune System (Washington, DC: World Resources Institute, 1996). - J. Wargo, Our Children's Toxic Legacy: How Science and Law Fail to Protect Us from Pesticides (New Haven, CT: Yale University Press, 1996). - 4 National Research Council, Pesticides. - R. Wyatt, "Intolerable Risk: The Physiological Susceptibility of Children to Pesticides," J. Pesticide Reform (Fall 1989). - 6 Mott, Our Children at Risk: The Five Warst Environmental Threats to Their Health (Natural Resources) Deferse Council, November 1997). 5, citing Principles for Evaluating Health Risks from Chemicals during Infancy and Early Childhood (no author or date provided), 56; see also T. Schettler, Generations at Risk: How Environmental Taxins May Affect Reproductive Health in Massachusetts (Boston, MA: Greater Boston Physicians for Social Responsibility and MASSPIRG, 1996), 50. - 7 Mott, Our Children at Risk, 5. - 8 Schettler, Cenerations at Risk. 51, citing R. Whitmore et al., "Non-occupational exposures to pesticides for residents of two U.S. cities," Arch. of Env. Contam. and Taxical. 26: 1-13. See also, W.R. Roberts et al., "Development and field testing of a high volume sampler for pesticides and toxics in dust," J. Exposure Anal. and Env. Epidemiol. 1 (1199112). - N. Simcox et al., "Pesticides in household dust and soil exposure pathways for children of agricultural families," Env. Health Persp. 103 (1995): 1126–34. - R. W. Whitmore et al., "Non-occupational exposure to pesticides." Arch. of Env. Contam. and Taxical. 26 (1994): 47–59. - E. Esteban et al., "Association between indoor residential contamination with methyl parathion and urinary para-nitrophenol," *J. Exposure Anal. and Env. Epidem.* (1996): 384. - 12 Responses to CALPIRG survey and follow-up telephone conversations. - 13 Simcox, "Pesticides," 1126. - 14 C. Wilkinson and S. Baker, The Effects of Pesticides on Human Health (Princeton, NJ: Princeton Scientific Publishing Co., 1990), citing, R. Lewis and R. Lee, "Air pollution from pesticides: sources: occurrence and dispersion." Indoor Air Pallution from Pesticides and Agricultural Processes (Boca Raton, FL: CRC Press, 1976), 51–94. - 15 Wilkinson and Baker, Effects of Pesticides, 83. - 16 Leidy et al., "Concentration and movement of diazinon in air," J. Env. Sci. Health B17 (1982): 311– 19. - 17 M. Nishioka et al., "Measuring transport of lawn-applied herbicide acids from turf to home: correlation of dislodgeable 2,4-D turf residues with carpet dust and carpet surface residues," *Env. Sci. Technol.* 30 ([1996]11). - 18 Gurunathan et al., "Accumulation of chlorpyrifos on residential surfaces and toys accessible to children," Env. Health Persp. 106 (1998): 9-16. - 19 U.S. General Accounting Office (U.S. GAO), Resources, Community, and Economic Development Division, Psticides: Use Effects and Alternatives in Schools, GAO/RCED-00-17, November 1999, 6. - 20 U.S. GAO, 6. - 21 U.S. GAO, 6. - 22 U.S. GAO, 7. - 23 California Department of Pesticide Regulation, Pesticide Illness Surveillance Program, Summary of Results from the California Pesticide Illness Surveillance Program, February 2000. - 24 U.S. GAO, 6. - 25 Northwest Coalition for Alternatives to Pesticides (NCAP). Unthinkable Risk: How Children Are Exposed and Harmed When Pesticides Are Used at School, 16 (April 2000). - 26 NCAP, Unthinkable Risk, 16. - 27 NCAP, Unthinkable Risk, A3; see also NCAP, Unintended Casualties: Five Children Whose Lives Were Profoundly Affected by Pesticide Exposure at School (April 2000) - 28 NCAP, Unintended Casualties, see also NCAP,
Unthinkable Risk. - Note that although San Francisco Unified's survey response indicated no use of toxic pesticides in schools or on school grounds, subsequent telephone conversations with Director John Bitoff of Facilities Management of San Francisco Unified established that he must authorize pesticide use in spray form only: District contractor APM Pest Management has authority under the IPM program to apply certain pesticides in gel or balt form without authorization. What pesticide use information we were able to obtain from APM, covering use during the months of March through August 1999, is included in this report. - 60 U.S. EPA Category I toxins are those EPA considers lethal at very small closes. See Table 1, Highly Toxic Pesticides Used in Responding California Districts, note E, Infra. - J. Liebman et al., Rising Taxic Tide: Pesticide Use in California, 1991-1995 (San Francisco: Pesticide Action Network, 1997), 8. - M. Moses, Designer Poisons: How To Protect Your Health and Home from Toxic Pesticides (San Francisco: Pesticide Education Center, 1995), 167. - D. Sharp et al., "Delayed Health Hazards of Pesticide Exposure," Annual Review of Public Health 7 (1986): 461. - 34 T. Slotkin, "Developmental cholinotoxicants: nicotine and chlorpyrifos," *Env. Health Persp.* 107 ([1999] Supp. 1): 71–80. - 35 Mott, Our Children at Risk, 56; see also Schettler, Generations at Risk, 50. - 36 B. Eskenazi et al., Exposures of Children to Organophosphate Pesticides and Their Potential Adverse Health Effects (Berkeley: Center for Children's Environmental Health Research, School of Public Health, University of California). - 37 E. Guillette et al., "An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico," Env. Health Perg. 106 (1998): 347–53; see also T. Colburn et al., Our Stalen Future (New York: Penguin Group, 1996), 186. citing P. Hauser et al., "Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone," New Eng. J. Med. 328 (1993)14): 997–1001. - 38 Proposition 65 List of Chemicals Known to the State of California to Cause Caneer (Sacramento: California Office of Environmental Health Hazard Assessment, 29 December 1999), http://www.oehha.ca.gov/ prop65.html; see also Safe Drinking Water and Taxic Enforcement Act of 1986 (Prop. 65). - 39 American Cancer Society (ACS), "Childhood Cancer," Facts and Figures 2000. http://www.cancer.org/statistics/cff2000/special.html. - 40 ACS, "Childhood Cancer," Facts and Figures 2000, http://www.cancer.org/statistics/cff2000/special.html. - L. Ries, Cancer Rates and Risks, ed. A. Harras, National Institutes of Health Publication No. 96–691, May 1996. - 12 ACS, "Childhood Cancer," Facts and Figures 2000, http://www.cancer.org/statistics/cff2000/special.html. - 3 Y. M. Mulder et al., "Case-control study on the association between a cluster of childhood haematopietic malignancies and local environmental factors in Aalsmeer, The Netherlands," J Epidemial. Comm. Health 48 ([1994]2): 161–65; R. Meinert et al., "Childhood leukemia and exposure to pesticides: Results of a case-control study in Northern Germany." Eur. J. Cancer 32A ([1996]11): 1943–48; J. L. Daniels, A. F. Olshan, and D. A. Savitz, "Pesticides and childhood cancers," Env. Health Persp. 105 ([1997]10): 1068–77; R. Lowengart et al., "Childhood leukemia and parents' occupational and home exposures, "J. Natn. Cancer Inst. 79 ([1995]1): 39–45. - 44 J. K. Leiss and D. A. Savitz, "Home pesticide use and - childhood cancer: A case-control study," Am. J. Public Health 85 ([1995]2): 249–52. - 45 J. M. Pogoda and S. Preston-Martin, "Household pesticides and risk of pediatric brain tumors," Env. Health Persp. 105 ([1997]11): 1214–20. - 46 J. L. Daniels et al., "Pesticides and childhood cancers," Env. Health Persp. 105 ([1997]10): 1068-77. - 47 Proposition 65 Chemicals Known to the State to Cause Reproductive and Developmental Taxicity, http:// www.oehha.ca.gov/prop65.html. - 48 Schettler, Generations at Risk, 52-53. - 49 Moses, Designer Poisons - 50 Illinois Environmental Protection Agency, IEPA's Endocrine Disrupter Strategy: Preliminary List of Chemicals Associated with Endocrine System Effects in Animals and Humans or In Vitro, February 1997. - 51 C. Benbrook, Growing Doubt: A Primer on Pesticides Identified as Endocrine Disrupters and/or Reproductive Toxicants (Washington, DC: National Campaign for Pesticide Policy Reform. 1996). - 52 For this report we rely on the analysis provided in Hooked on Poison: Pesticide Use in California, 1991– 1998, which analyzes pesticide active ingredients according to the same guidelines of lethality. - 53 See Department of Pesticide Regulation, IPM Innovatars, www.cdpr.ca.gov/docs/ ipminov/guidelns.htm. - 54 Leck of complete and uniform information provided by school districts for this report impairs side-by-side comparison of use reported in Failing Health and in this report. However, Pesticide Watch Education Fund, which works with school districts to adopt and implement IPM programs, attests to overall reduced pesticide use, as well as reduced use of the most highly toxic pesticides and more dangerous spray formulations. - 55 "The Schooling of State Pesticide Laws: Review of State Pesticide Laws Regarding Schools," Pesticides and You, 18 ([1998]3): 20 and Addendum, http://www.beyondpesticides.org/School_report_addendum.pdf (Beyond Pesticides/National Coalition Against the Misuse of Pesticides, Washington DC 1998); see also The Masachusetts Children's and Families' Protection Act, S. 2134, signed into law 18 May 2000. - 56 "Schooling," 20 and Addendum. - 57 "Schooling. - 58 California Code of Food and Agriculture, § 12978. - 59 DPR requires pesticide tracking reports from school districts involved in its Alliance Program, but provides no public access. - 60 Failing Health: Pesticide Use in California Schools (San Francisco: CALPIRG Charitable Trust, 1998), 11. - The Massachusetts' Children's and Families' Protection Act, S. 2134. - 62 The Healthy Schools Act of 2000, AB 2260 (Shelley). - 63 D. Sandretti, Senate Approves Baser Amendment on Pesticide Use in Schools, Requires Schools to Give Parents 24-hour Notice before Spraying with Taxic Campounds, Press Release, 3 March 2000, Washington, DC. - 64 17 May 2000, http://www.planetark.org/ dailynewsstory.cfm?newsid=6699. ### **Appendix A** #### Survey Response Information by School District #### **Capistrano Unified** Active Ingredient Unknown 2,4-D Acephate Bifenthrin Chlorpyrifos Diazinon Dicamba Diquat dibromide Fenoxycarb Glyphosate, Monoammonium Salt **MCPP** Oryzalin #### **Product** Name Gopher Getter Turf Supreme w/ Trimec Orthene Talstar Lawn & Tree Dursban Diazinon Turf Supreme w/ Trimec Reward Aquatic and Noncrop Herbicide RoundUp Turf Supreme w/ Trimec Surflan #### **Elk Grove Unified** Active Ingredient Unknown Unknown Amorphous silica gel Avermectin Bifenthrin Boric acid Boric acid Boric acid Brodifacoum Bromethalin Chlorophacinone Chlorpyrifos Chlorpyrifos Crystalline silica as quartz Cyfluthrin Cypermethrin D-trans allethrin Deltamethrin Diazinon Diphacinone Diphacinone Diphacinone Esfenvalerate Fipronil Fipronil Glyphosate Hydramethylnon Hydramethylnon Hydroprene Kerosene Lambda cyhalothrin Linalool Malathion Methoprene Muscalure N-octyl bicycloheptene dicarboximide Oryzalin Oxadiazon Permethrin Phenothrin Piperonyl butoxide Piperonyl butoxide Propetamphos Propoxur Pyrethrins Pyrethrins Product Name Lontrel Herbicide Turf Fertilizer Dri-Die Avert Gel Talstar Lawn & Tree Borid Niban-FG Terro Final Blox Vengence Rozol Dursban Kilmaster II Ronstar (Chipco) Intruder HPX Tempo 20 WP Cynoff PT 515 Delta Dust Diazinon Products Knox Out 2FM Diphacin 110 Eaton's Bait Blocks Liqua-Tox II Conquer WP MaxForce Ant Station MaxForce Roach Station Round Up Pro MaxForce Ant Killer Granular Bait MaxForce Roach Gel Gentrol Kerosene Demand CS Demize EC Malathion 57E Precore Flytex PT 565 Surflan Ronstar (Chipco) Dragnet PT 515 Demize EC PT 565 Catalyst Baygon BP 300 CB-80 Pyrethrins Triclopyr, butoxyethyl ester PT 565 Turflan Fresno Unified Ingredient Benefin Boric acid Boric acid Bromadiolone Chlorophacinone Chlorophacinone Chlorpyrifos Crystalline silica as quartz Cyfluthrin Cypermethrin Cypermethrin Cytokinin Diazinon Diquat dibromide Fipronil Fluazifop-butyl Glyphosate Halosulfuron Imidacloprid Oryzalin Oryzalin Oxadiazon Pendimethalin Permethrin Petroleum distillates Piperonyl butoxide Pyrethrins Silica aerogel Sodium chlorate N-octyl bicycloheptene N-octyl bicycloheptene dicarboximide dicarboximide Oxadiazon Permethrin Pendimethalin Phosphoric acid **Product** Name XL 2G Borid PT 240 Perma Dust Contrac Rozol Ground Squirrel Bait Wilco Gopher Getter Ground Squirrel Bait PT 270 Ronstar (Chipco) Tempo 20 WF Cynoff Demon WP CytoGro Diazinon 4E Reward Aquatic and Noncrop Herbicide MaxForce FC Fusilade RoundUp Pro Manage Turf Herbicide Premise 75 WP Surflan XL 2G Ronstar (Chipco) Pendulum 2G Dragnet FT **Product** Name Whitmire PT 230 Tri-Die Whitmire PT 230 Tri-Die Whitmire PT 230 Tri-Die Whitmire PT 230 Tri-Die Oxy Monobor - Chlorate **Garden Grove Unified** Active Ingredient 0.5% Dragnet SFR Unknown Unknown Bait Stations for Pigeons Unknown Bug Off Cherry Roach and Ant Spray Unknown Unknown Pre Bait for Pigeons Unknown Rodent Control Unknown Suspend Unknown Turf Fertilizer Weed Killing Supply Stock Unknown 4-aminopyridine Avitrol Fumiphos 60% Aluminum phosphide Bromadiolone Contrac All-Weather Blox Crystalline silica as quartz Ronstar (Chipco) Delta Dust Deltamethrin Diazinon 50% Diazinon Glyphosate RoundUp Pro Maxforce Ant Hydramethylnon Maxforce Get Hydramethylnon Hydramethylnon Maxforce Roach Lambda cyhalothrin Demand CS Knockdown ULD BP 100 Insecticide Ronstar (Chipco) Pendulum (Wdg) Preemergence Dragnet Ft Demand Piperonyl butoxide Piperonyl butoxide Propetamphos Propoxur Pyrethrins Knockdown ULD BP 100 Insecticide Catalyst Knockdown Knockdown ULD BP 100
Insecticide **Long Beach Unified** Active Ingredient Unknown Brodifacoum Pyrethrins Product Name 15.5-0-0 Calcium Nitrate Hydro 3M Resp Pesticide 53p71 Unknown Unknown Invigorate Unknown Protecta Rat Bait Station Unknown Sticky Aphid Whitefly Glue Trap Terminator Unknown Orthene Turf, Tree Acephate Aluminum phosphide Fumiphos Bags Aluminum phosphide Fumiphos Pellets Aluminum phosphide Fumiphos Tablets Talon-G Rodenticide Bait Pack Contrac Bromadiolone Chlorophacinone Wilco Gopher Getter Bait Type II Wilco Gopher Getter Chlorophacinone Ground Squirrel Bait Chlorpyrifos Dursban TC Strikeforce 5% Dursban Chlorpyrifos Chlorpyrifos Whitmire Intern PT 278 Residual Injection Systems Ronstar (Chipco) Crystalline silica as quartz Cyfluthrin Tempo 20 WP Whitmire PT 515 Wasp-D-trans allethrin Freeze Agrevo Diazinon 5G Diazinon Diazinon Prentox Diazinon 4E Prentox Diazinon 5G Diazinon TKO Diazinon Dikegulac sodium Atrimmed Disodium octaborate tetrahydrate Mop-Up CB Total Release PCO Fogger Esfenvalerate Florel Fruit Eliminator Ethephon Florel Pistill Ethephon MaxForce FC Ant Bait Fipronil Station MaxForce FC Roach Bait Fipronil Station Fusilade Fluazifop-butyl RoundUp Pro Glyphosate No Mix Delete Herbicide Glyphosate, isopropylamine salt Halosulfuron-methyl Manage Turf Herbicide Merit 0.5 G Imidacloprid N-octyl bicycloheptene CB Total Release PCO Fogger dicarboximide N-octyl bicycloheptene dicarboximide ULD BP 100 Insecticide Oryzalin No Mix Delete Herbicide Surflan Oryzalin Ronstar (Chipco) Oxadiazon Petroleum distillates, Refined Sun Spray Ultra-Fine Spray Oil Whitmire PT 515 Phenothrin Wasp-Freeze CB Total Release PCO Fogger Piperonyl butoxide Piperonyl butoxide ULD BP 100 Insecticide M-Pede Potash soap CB Total Release PCO Fogger Pyrethrins Pyrethrins ULD BP 100 Insecticide Sodium cacodylate Montar Vikane Sulfuryl fluoride **Los Angeles Unified** Active Product Ingredient Name Unknown Epoleon Sulfur Gas Cartridge Unknown Unknown Suspend SC Avermectin Advance Bait Avermectin Avert Cel Boric acid Borid Boric acid Drax Ant Bait PT 240 Boric acid Chlorpyrifos PT 270 PT 515 D-trans allethrin Deltamethrin Delta Dust Diazinon Knox Out Disodium octaborate tetrahydrate Tim-Bor Conquer WP Esfenyalerate MaxForce Ant Killer Hydramethylnon Granular Bait MaxForce Roach Gel Hydramethylnon Hydroprene Gentrol IGR Point-Source Hydroprene Linalool Demize EC Metarhizium anisopliae, Var. anisopliae, Strain Esf1 Bio-Blast N-octyl bicycloheptene PT 505 dicarboximide N-octyl bicycloheptene dicarboximide PT 565 Nonanoic acid Scythe PT 515 Phenothrin Demize EC Piperonyl butoxide Piperonyl butoxide PT 505 PT 565 Piperonyl butoxide Polybutenes 4-The Birds Potash soap M-Pede Propoxur Baygon Pyrethrins PT 505 PT 565 Pyrethrins Pyriproxyfen Nylar **Oakland Unified** Did not respond **Riverside Unified** Active Product Ingredient Name Unknown Ant Bait Station Unknown Gopher Control Acephate PT 280 Avermectin Avert Gel Boric acid Borid Boric acid Drax Gel Boric acid Тегго Chlorpyrifos Dursban Tempo 20 WP Cyfluthrin Diazinon TKO RoundUp Glyphosate, monoammonium salt Hydramethylnon MaxForce Ant MaxForce Ant Killer Hydramethylnon Granular Bait Hydramethylnon Maxforce Roach Gel Demand CS Lambda cyhalothrin Phosphoric acid Demand Drione (Dust) Pyrethrins Pyrethrins Kicker Silica aerogel Drione (Dust) Sacramento Unified Active Product Ingredient Name Ortho Foggers Unknown #### Appendix A continued JT Eaton AC 90 Chlorophacinone Chlorpyrifos Dursban Chlorpyrifos Termi-Chlor Copper naphthenate Termin-8 Diazinon Diazinon Diazinon Ortho Wasp Disodium octaborate tetrahydrate Mop-Up MaxForce Ant Hydramethylnon MaxForce Ant Killer Hydramethylnon Granular Bait Hydramethylnon MaxForce Bait MaxForce Roach Hydramethylnon N-octyl bicycloheptene Holiday Fogger dicarboximide N-octyl bicycloheptene ULD BP 100 Insecticide dicarboximide Permethrin Holiday Fogger R&C Spray Phenothrin ULD BP 100 Insecticide Piperonyl butoxide Potash soap Safer Black Flag Holiday Fogger ULD BP 100 Insecticide Ortho Wasp Atrimmec Direx 80 DF Fusilade II Ornamec RoundUp Mecomec Precor 2000 ULD BP 300 Whitmire Microcare PT 175 Microencapsulated RoundUp Pro MaxForce Ant MaxForce Ant Killer Granular Bait MaxForce Roach PCQ Safer San Bernardino Unified Did not respond Propoxur Pyrethrins Pyrethrins Pyrethrins Pyrethrins **San Diego Unified** Active Product Ingredient Name Avert Gel Avermectin Bacillus thuringiensis (Berliner), Subsp. Kurstaki, Serotype 3a,3b Dipel 2X Benefin Team Boric acid Borid Boric acid Drax Gel PT 240 Boric acid Roach Killer Bait Gel Boric acid Wilco Gopher Getter Ground Chlorophacinone Squirrel Bait Tempo 20 WP Cyfluthrin Dikegulac sodium Diphacinone Diuron Fluazifop-butyl Fluazifop-butyl Glyphosate Glyphosate Hydramethylnon Hydramethylnon Hydramethylnon MCPP potassium salt Methoprene N-octyl bicycloheptene dicarboximide N-octyl bicycloheptene dicarboximide Pyrethrins Scythe Nonanoic acid Oryzalin Surflan Permethrin Dragnet Precor 2000 Permethrin ULD BP 300 Petroleum distillates ULD BP 300 Piperonyl butoxide Piperonyl butoxide Microencapsulated Pyrethrins Potash soap M-Pede Ргорохиг Baygon Pyrethrins Drione (Dust) Pyrethrins ULD BP 300 Pyrethrins Whitmire Microcare PT 175 Microencapsulated Pyrethrins Resmethrin PT 110 Silica aerogel Drione (Dust) Spike 80W Tebuthiuron Triclopyr, butoxyethyl ester Turflan Trifluralin Team **San Francisco Unified** **Product** Ingredient Name Unknown Advance Dual Choice Ant Bait Fluorgard Unknown Rodent Bait Stations Unknown Advance Bait Avermectin Avert Gel Avermectin CB Drax Ant Bait Stations Boric acid Boric acid Drax FF Boric acid Drax Gel Contrac Blox Bromadiolone Cyfluthrin Tempo WP MaxForce FC Bait Stations Fipronil San Juan Unified Active **Product** Ingredient Name Bifenthrin Brodifacoum Chloropicrin Chlorpyrifos Chlorpyrifos Deltamethrin Diphacinone Disodium octaborate tetrahydrate Glyphosate Imidacloprid Lambda cyhalothrin Methyl bromide Sulfuryl fluoride Triclopyr Fipronil Methyl Bromide Dursban PT 270 Strikeforce Residual Insecticide w/ Dursban Delta Dust Eaton's Bait Blocks Tim-Bor MaxForce FC Ant Bait Station MaxForce FC Roach Bait Station RoundUp Pro Premise 75 WP Demand CS Methyl Bromide Talstar Lawn & Tree Final Rodenticide Remedy Herbicide Santa Ana Unified Ingredient Acephate Avermectin Boric acid Boric acid Bromadiolone Carbaryl Chlorophacinone Deltamethrin Glyphosate Pyrethrins Silica aerogel Chlorophacinone Cyfluthrin Glyphosate Hydramethylnon Hydramethylnon Whitmire Microcare PT 175 Lambda cyhalothrin Pyrethrins **Product** Name Vikane PT 280 Avert Gel Borid Drax Gel Contrac Sevin 5 Bait Wilco Gopher Getter Bait Type II Wilco Gopher Getter Ground Squirrel Bait Tempo 20 WP Delta Dust RoundUp RoundUp Pro Maxforce Ant Maxforce Roach Gel Demand CS CB-80 Drione (Dust) Drione (Dust) #### **Stockton Unified** Active Ingredient Bromadiolone D-trans allethrin Fipronil Hydramethylnon Hydramethylnon Hydroprene N-octyl bicycloheptene dicarboximide N-octyl bicycloheptene dicarboximide Phenothrin Phenothrin Piperonyl butoxide Piperonyl butoxide Propane Pyrethrins Pyrethrins Product Name Contrac Whitmire PT 515 Wasp-Freeze MaxForce FC MaxForce Ant Killer Granular Bait Siege Gentrol CB-40 Pro-Control Prescription Treatment Wasp-Freeze Whitmire PT 515 Wasp-Freeze CR-40 CB-40 Pro-Control CB-40 CB-40 Pro-Control **BEST COPY AVAILABLE** # **Appendix B** Pesticide Active Ingredients Used in Surveyed California School Districts | | à | 36 | | · CMI | | | |---|------------|---------------------|----------------|--|-----------|-----------------| | | | 00.00 | ەندە ھە | 16, 91,00 | | 13 ^c | | | Sundry. | gen ide of | erilly archite | therite scripe |
D | aine de la | | Active
Ingredient | W.Carcinos | podije
Pozatirov | Section of | well to the life of o | ACUTE (E) | Cholife de le | | 2,4-D | | | | D | | | | 4-Aminopyridine | | _ | | | E | | | Acephate | _ |
В | | | | F | | Aluminum phosphide | | | | | E | | | Amorphous silica gel | | | | | | | | Avermectin | | | | | | | | Bacillus thuringiensis (Berliner),
Subsp. Kurstaki, Serotype 3a,3b | | | | | | | | Benefin | | | | | | | | Bifenthrin | _ | В | | D | | | | Boric acid | | | | | | | | Brodifacoum | | | | | E | | | Bromadiolone | | | | | E | | | Bromethalin | | | | | | | | Carbaryl | | В | | D | | F | | Chlorophacinone | | | | | E | | | Chloropicrin | | | | | Е | | | Chlorpyrifos | | | | D | | F | | Copper naphthenate | | | | | | | | Crystalline silica as quartz | | | | | | | | Cyfluthrin | | | | D | | | | Cypermethrin | | В | | D | | | | Cytokinin | | | | | | | | D-trans allethrin | | | | D | | | | Deltamethrin | | · | | D | | | | Diazinon | | | | | | F | | Dicamba | | | | | | | | Dikegulac sodium | | | | | | | | Diphacinone | | | | | Е | | | Diquat dibromide | | | | | | | | Disodium octaborate tetrahydrate | | | | | | | | Diuron | Α | | | _ | | | | Esfenvalerate | | | | D | | | | Ethephon | | | | | | F | | Fenoxycarb | Α | | | | | | | Fipronil | | В | | | | | | Fluazifop-butyl | | | С | | | | | Glyphosatea | | | | | | | | Halosulfuron | | | | | | | | Hydramethylnon | | В | С | | | | | Hydroprene | | | | | | | #### Reproductive na Tour (C) Active Ingredient Imidacloprid Kerosene D Lambda cyhalothrin Linalool D F Malathion МСРРь Metarhizium anisopliae, Var. Anisopliae, Strain Esf1 Methoprene С Ε Methyl bromide Muscalure N-octyl bicycloheptene dicarboximide В Nonanoic acid В Oryzalin В С Oxadiazon Pendimethalin В В D Permethrin Petroleum distillates D Phenothrin Phosphoric acid Piperonyl butoxide В Polybutenes Potash soap Propane Propetamphos F Ε Α Propoxur D Pyrethrins Α Pyriproxyfen С D Resmethrin Silica aerogel Α Α D Sodium cacodylate Sodium chlorate E Sulfuryl fluoride Tebuthiuron Triclopyrc В D Trifluralin BEST COPY AVAILABLE a = includes the isopropylamine and mono-ammonium salts b = includes the potassium salt c = includes the butoxyethyl ester ### **Appendix C** ### **Biographies of Surveyed Schools** | | | ***** | | |-----------------------|---|---------------------------|---| | Rank by
Enrollment | School T
District/County | otal Students
Enrolled | 5 | | 1 | Los Angeles Unified/Los Angeles | 695,885 | | | 2 | San Diego Unified/San Diego | 138,433 | | | 3 | Long Beach Unified/Los Angeles | 89,214 | | | 4 | Fresno Unified/Fresno | 78,942 | | | 5 | San Francisco Unified/San Francisco | 61,042 | | | 6 | Santa Ana Unified/Orange | 56,071 | | | 7 | Oakland Unified/Alameda | 54,256 | | | 8 | Sacramento City Unified/Sacramento | 51,378 | | | 9 | San Bernardino City Unified/San Bernardin | no 48,907 | | | 10 | San Juan Unified/Sacramento | 47,799 | | | 11 | Garden Grove Unified/Orange | 46,916 | | | 12 | Elk Grove Unified/Sacramento | 42,484 | | | 13 | Capistrano Unified/Orange | 42,196 | | | - 14 | Riverside Unified/Riverside | 36,713 | į | | 15 | Stockton City Unified/San Joaquin | 36,124 | 1 | | | Total | 1,526,360 | 1 | | | | • | ŧ | ### Appendix D #### **Resources for Further Information** #### To order this report or for other pesticide-related information, contact: California Public Interest Research Group (CALPIRG) Charitable Trust 450 Geary Street, Suite 500 San Francisco, CA 94102 tel: (415) 292-1487 fax: (415) 292-1497 email: t_olle@yahoo.com website: www.pirg.org/calpirg CALPIRG Charitable Trust is the 501(c)(3) sister organization of CALPIRG, a non-profit, non-partisan research and advocacy organization working on behalf of consumers and the environment. With over 50,000 members and 14 offices statewide, CALPIRG is the largest consumer and environment watchdog group in the state. Californians for Pesticide Reform (CPR) 49 Powell Street, Suite 530 San Francisco, CA 94102 tel: (415) 981-3939 or (888) CPR-4880 (in CA) fax: (415) 981-2727 email: pests@igc.org website: www.igc.org/cpr CPR is a coalition of public interest organizations committed to protecting public health and the environment from pesticide proliferation. It provides information on pesticides, reports on pesticide use in the state, and resources for individuals to work to eliminate pesticide use. CPR also publishes the quarterly newsletter CPResources. Pesticide Watch Education Fund (PWEF) 450 Geary Street, Suite 500 San Francisco, CA 94102 tel: (415) 292-1488 fax: (415) 292-1497 email: pestiwatch@igc.org website: www.pesticidewatch.org PWEF works with individuals and community groups to assist in local efforts to reduce pesticide use and promote safer methods of pest management. It provides educational materials, organizing skills training, strategy consultation, technical referrals and networking opportunities so that groups do not have to "reinvent the wheel." Its several organizing kits include Parks Are for People, Not Poisons, Reducing Pesticide Use in Schools, and A Pesticide Drift Kit. #### Other pesticide reform organizations to contact (listed in alphabetical order) Bio-Integral Resource Center (BIRC) P.O. Box 7414 Berkeley, CA 94707 tel: (510) 524-2567 fax: (510) 524-1758 email: birc@igc.org website: www.birc.org BIRC publishes two journals, The IPM Practicioner and Common Sense Pesticide Control Quarterly. It also publishes the Annual Directory of Least-Toxic Pest Control Products and IPM in Schools: A How-to Manual. BIRC provides IPM consultation and training. Children's Environmental Health Network (CEHN) 5900 Hollis Street, Suite R3 Emeryville, CA 94608 tel: (510) 597-1393 fax: (510) 597-1399 email: cehn@cehn.org website: www.cehn.org CEHN has a wide variety of information on the effects of toxic chemicals on children. The organization published the first national resource guide on children and environmental health. CEHN's website provides links to numerous other sites that concern children's health. Children's Health Environmental Coalition (CHEC) P.O. Box 1540 Princeton, NJ 08542 tel: (609) 252-1915 fax: (609) 252-1536 email: chec@checnet.org website: www.checnet.org CHEC has information on environmental issues related to children. Its website lists information on removing toxic materials from communities, schools, playgrounds and homes. It includes a parent's forum to share information. National Coalition Against the Misuse of Pesticides (NCAMP)/Beyond Pesticides 701 E Street SE Washington, DC 20003 tel: (202) 543-5450 fax: (202) 543-4791 email: info@beyondpesticides.org website: www.ncamp.org NCAMP provides information on individual pesticides, pesticide policy and alternative methods of pest management. It publishes the quarterly Pesticides and You journal and the monthly Technical Report newsletter, as well as hosts annual organizing conferences. NCAMP offers Pesticides and Schools: A Collection of Issues and Articles for \$15. Northwest Coalition for Alternatives to Pesticides (NCAP) P.O. Box 1393 Eugene, OR 97440 tel: (541) 344-5044 fax: (541) 344-6923 email: info@pesticide.org website: www.pesticide.org NCAP provides information on pesticides and pest management alternatives, including facts on risks of school pesticide use, and strategies for reducing use. Publications include Unthinkable Risk: How Children Are Exposed and Harmed When Pesticides Are Used at School, profiling nearly 100 pesticide poisoning incidents. Its website provides a model school pest management policy, the Safer School Pest Control Pledge, School Pesticide Use Questionnaire, Steps Parents and Teachers Can Take to Reduce School Pesticide Use and Interview Ouestions. NCAP also publishes the quarterly Journal of Pesticide Reform. Pesticide Action Network North America (PANNA) 49 Powell Street, Suite 500 San Francisco, CA 94102 tel: (415) 981-1771 fax: (415) 981-1991 email: panna@panna.org website: www.panna.org/panna PANNA publishes the quarterly journal Global Pesticide Campaigner, and PANUPS, a weekly online news service highlighting pesticides and sustainable agriculture. Its website offers over 100 links to other useful sites as well as up-to-date information on PANNA's campaigns and information resources. Pesticide Education Center Dr. Marion Moses P.O. Box 420870 San Francisco, CA 94142 tel: (415) 391-8511 fax: (415) 391-9159 email: pec@igc.apc.org website: www.igc.org/pesticides PEC offers the book Designer Poisons: How To Protect Your Health and Home from Toxic Pesticides. It also provides presentations and other services targeted to the needs of citizens and workers concerned about health risks through pesticide exposure. #### School organizations to contact California State Parent Teacher Association (PTA) 930 Georgia Street Los Angeles, CA 90015-1322 tel: (213) 620-1100 fax: (213) 620-1411 email: info@capta.org website: www.capta.org California State PTA announced support for reduced school pesticide use and notification prior to treatment National Parent Teacher Association (PTA) 330 W. Wabash Avenue, Suite 2100 Chicago, IL 60611 tel: (312) 670-6782, (800) 307-4782 fax: (312) 670-6783 email: info@pta.org website: www.pta.org In 1992 the National PTA announced support for IPM to lower children's exposure to pesticides in schools. In October 1999, it reaffirmed support for reducing school pesticide use by endorsing the School Environmental Protection Act of 1999. National Education Association (NEA)/Health Information Network (HIN) 1201 16th Street NW, Suite 521 Washington, DC 20036 tel: (800) 718-8387, (202) 822-7570 (automated resource line) fax: (202) 822-7775 email: info@neahin.org website: www.neahin.org\hin The HIN arm of NEA disseminates information on indoor air quality (IAQ) as well as other health issues. HIN has a packet, "IAQ and You," with information on various indoor air contaminants and pollutants, including pesticides. #### Government agencies to contact California Department of Pesticide Regulation (DPR) 830 K Street Sacramento, CA 95814-3510 tel: (916) 445-4300 fax: (916) 324-1452 website: www.cdpr.ca.gov DPR regulates pesticide use in California. It published
"Pesticides in Schools" in 1996 and annually grants "IPM Innovator" awards to institutions in both urban and agricultural settings. DPR's website provides access to information on all the formulations of pesticides registered for use in the U.S. U.S. Environmental Protection Agency (U.S. EPA) Office of Pesticide Programs (OPP) Ariel Rios Building 1200 Pennsylvania Avenue NW Washington, DC 20460 website: www.epa.gov/pesticides U.S. EPA provides information on individual pesti- cides. 25 years ago. # **Appendix E**Model IPM Policy #### (Adapted from San Francisco Unified School District's policy) #### **PREAMBLE** Maintenance of a safe, clean, healthy environment for students and staff is essential to learning and is a goal of the district Use of toxic chemicals to control pests and weeds may threaten staff and student health and ability to learn. The City and County have adopted a model Integrated Pest Management (IPM) policy that ended use of the most toxic pesticides on City and County property and greatly reduced County reliance on chemical pesticides. Similar programs in other school districts and institutions show that IPM is a viable, cost-effective approach to controlling pests. #### **POLICY** - I. That the District shall establish and follow an IPM policy based on the model policy established by the City and County of San Francisco, containing the following elements: - A. Monitoring to determine pest population levels. - B. Use of biological, cultural and physical tools to minimize health, environmental and financial risks from pests. - Use of chemical controls only as a last resort. - Use of chemical controls that pose the least possible hazard to people, property and the environment. - Careful monitoring of treatment to evaluate effectiveness. - II. That, effective immediately, the following categories of highly toxic pesticides shall not be used by District employees or on property the District owns or leases except as specifically exempted by this policy: - A. U.S. Environmental Protection Agency (U.S. EPA) Acute Toxicity Category I and II pesticides. - B. Pesticides identified by the State of California as known to cause cancer, developmental effects or reproductive effects pursuant to the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Prop. 65). - C. Pesticides found by U.S. EPA to show evidence of causing cancer (EPA carcinogenicity categories A, B, and C). - III. That effective January 1, 1999, only pesticides identified by the San Francisco Department of the Environment as "reduced risk pesticides" pursuant to San Francisco Administrative Code 39.8 (g) may be used by District employees or on property the District owns or leases, except as specifically exempted by this policy. - IV. The District and school sites shall, through various communication means, pre-notify students, parents and staff of non-bait pesticide applications. The District shall post all areas to be treated with non-bait pesticide applications three days before to three days after treatment. It shall provide publicly posted notification that identifies areas treated with pesticidal baits. The District shall distribute a fact sheet outlining its IPM program and pest control activities to parents, students and staff at the beginning of the school year. The District and each site shall maintain publicly available records of pesticide use on school grounds. - V. The District shall establish an IPM committee to develop and oversee policy implementation. The committee shall comprise parents, students, teachers, school administrators, district facilities and landscape staff, any pest control company or companies contracted by the District to manage pests, and community environmental and public health organizations. - VI. The District shall designate an IPM coordinator responsible for coordinating District efforts to adopt IPM techniques; communicating goals and guidelines of the IPM program to staff and students, including conducting training; tracking pesticide use; ensuring that related information is available to the public; and presenting an annual report to the school board evaluating progress. - VII. The IPM committee may allow District staff or any company contracted to provide pest control to the District to apply a pesticide otherwise banned under this resolution based upon a finding that public health protection requires use of that pesticide. Such exemptions shall be granted on a per-case basis and apply to a specific pest problem for a limited time. The IPM coordinator may grant emergency exemptions if action is required before the next IPM committee meeting. The IPM coordinator shall report all such emergency exemptions to the IPM committee. 31 ### **Appendix F: Methodology** ## Assessing Pesticide Use in the Face of Inadequate School Use Reporting In March 2000, CALPIRG Charitable Trust surveyed the 15 largest school districts in California, which together account for over one quarter of Califoria's public school children. Our survey comprised two parts, a Public Records Act request and a written survey. The Public Records Act request sought data relating to pesticide use in the district from 1 January 1999, to 1 January 2000. Specifically, we asked which pesticides were used, and if known, in what quantities and how often. Although by law the district must respond to a Public Records Act request within ten days, very few districts responded without a telephone reminder. Two districts failed to respond even after several calls. With few exceptions, responding districts submitted information only about types of pesticides used. Information formats varied by district. Several submitted Material Data Safety Sheets; others, invoices from sup- pliers or pest control companies; and some, simply a written list of pesticides used. For analysis purposes, we assumed that responding districts actually used the pesticides they listed. Clearly, these documents do not permit analysis of quantity, frequency or location of the pesticide used. The written survey that accompanied the Public Records Act request probed pest control practices, including questions about whether the district handles pest control internally or hires outside contractors, or both; whether it has a written pest control policy; whether and how it notifies parents, school staff or students about pesticide applications; and whether it employs least-toxic means for pest control. Most districts responding to the Records request also returned the written survey. We followed up by telephone to clarify unclear responses. Sign here,→ #### U.S. Department of Education Office of Educational Research and Improvement (OERI) National Library of Education (NLE) Educational Resources Information Center (ERIC) Ibyics Advocate (over) #### REPRODUCTION RELEASE | | (Specific Document) | | |---|--|--| | I. DOCUMENT IDENTIFICATION | N: | | | Title: "P" is for Poison | | | | Author(s): 011e, Teresa M. | | | | Corporate Source: | | Publication Date: | | CALPIRG Charitable Trust | ; | 2000 | | II. REPRODUCTION RELEASE | : | | | monthly abstract journal of the ERIC system, Re
and electronic media, and sold through the ER
reproduction release is granted, one of the follow | te timely and significant materials of interest to the educe sources in Education (RIE), are usually made availal RIC Document Reproduction Service (EDRS). Credit wing notices is affixed to the document. The identified document, please CHECK ONE | ole to users in microfiche, reproduced paper copy is given to the source of each document, and, i | | The sample sticker shown below will be affixed to all Level 1 documents | The sample sticker shown below will be affixed to all Level 2A documents | The sample sticker shown below will be affixed to all Level 2B documents | | PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED BY | PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY, HAS BEEN GRANTED BY | PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN
MICROFICHE ONLY HAS BEEN GRANTED BY | | sample | sample | sample | | TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) | TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) | TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) | | 1 | 2A | 28 | | Level 1 | Level 2A | Level 2B | | | | | | Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy. | Check here for Level 2A release, permitting
reproduction and dissemination in microfiche and in
electronic media for ERIC archival collection
subscribers only | Check here for Level 2B release, permitting reproduction and dissemination in microfiche only | | | nents will be processed as indicated provided reproduction quality seproduce is granted, but no box is checked, documents will be produce | | | as indicated above. Reproduction from to contractors requires permission from to | ources Information Center (ERIC) nonexclusive permis
om the ERIC microfiche or electronic media by perso
the copyright holder. Exception is made for non-profit re
tors in response to discrete inquiries. | ons other than ERIC employees and its system | #### III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE): If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the
availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.) | Publisher/Distributor: | | |--|------------------------------------| | Address: | | | | •
• | | Price: | | | IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIC | GHTS HOLDER: | | If the right to grant this reproduction release is held by someone other than the addressee, please address: | e provide the appropriate name and | | Name: | | | Address: | | | | | | | | | V. WHERE TO SEND THIS FORM: | | | Send this form to the following ERIC Clearinghouse: | | | ## · · · · · · · · · · · · · · · · · · | | | | | However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to: ERIC Processing and Reference Facility 4483-A Forbes Boulevard Lanham, Maryland 20706 > Telephone: 301-552-4200 Toll Free: 800-799-3742 FAX: 301-552-4700 e-mail: ericfac@inet.ed.gov WWW: http://ericfac.piccard.csc.com