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Abstract

The purpose of the present paper is to provide a tutorial summary of

some of the many effect size choices, so that SERA members will be better able

to follow the recommendations of the APA publication manual, the APA Task

Force on Statistical Inference, and the publication requirements of some

journals. Effect size can be classified into two general families; standard

differences and variance-accounted-for measures of strength of association.

Within both families, several different choices of effect sizes are available

(Snyder & Lawson, 1993).
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An Introductory Summary of Various Effect Size Choices

Over the years, statistical significance has been the prominent feature of

data analyses in the field of education and other social sciences. However,

statistical significance tests do not always (if ever) aid the researcher in

determining whether results are of practical significance. Thus, the

frequencies of publications of criticisms of statistical testing have grown

exponentially decade by decade across diverse disciplines (Anderson, Burnham

& Thompson, 2000).

Kirk (1996) pointed out three main areas of criticism concerning classical

null hypothesis significance testing. First, statistical significance tests do not

tell the researcher what they want to know. The researcher wants to know the

probability of the null hypothesis being true in the population, but testing the

significance of the null hypothesis tells the researcher the probability of

obtaining sample data that supports the null hypothesis if the null hypothesis

is assumed true in the population. The second criticism is that statistical

significance testing is a trivial exercise because there will always be some

degree of difference between the two variables; therefore, statistical significance

can always be met depending on the power of the research study (Thompson 86

Keiffer, 2000). The important part that is often overlooked is whether or not

the effect is useful or large enough to make a practical difference, regardless of

the level of statistical significance. This led to researchers following the rules of

null hypothesis statistical testing to such a narrow degree that researchers

focused on controlling the Type I error that cannot occur, because essentially
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all null hypotheses are false, while causing the Type II errors that can occur to

exceed acceptable levels. Third, by setting a predetermined level of statistical

significance, researchers can obtain statistical significance simply by

manipulating the sample size. The higher the sample size, the more likely the

researcher will find statistical significance. This dynamic can create a

tautology.

Due to major criticisms such as stated above, methodologists suggested

researchers use magnitude-of-effect estimates in result interpretation to

highlight the distinction between statistical and practical significance.

Practical significance is an alternative to statistical significance when

interpreting the outcome of research or studying theory development. With

statistical significance when the null hypothesis is false, the researcher is

simply unable to specify the direction of the difference between A and B. Now,

with a rejection of the null hypothesis, the researcher can be almost certain of

the direction of the difference. However, being almost certain can be

considered unscientific, and it seems more like a gamble on where the

difference may occur. And we also care (very much) about how big the effect is.

Take smoking for example. Taking a gamble on whether smoking causes

cancer seems unethical, yet it is what happens when the only focus is on

statistical significance because ignoring the size of difference is exactly where

the importance lies. What can give more insightful results, and aid in possible

applications of research through a more scientific and ethical manner?

Practical significance, which involves finding the size of the difference and the

5



Effect Size Choices 5

error associated with the estimated difference (cf. Kirk, 1996). This can be

accomplished by using a magnitude-of-effect estimate. A magnitude-of-effect

estimate (i.e., effect size) tells to what degree the dependent variable can be

controlled, predicted, or explained by the independent variables(s) (Olejnik &

Algina, 2000; Snyder & Lawson, 1993). Thompson (in press) provides a

comprehensive review of modern effect size choices.

Various types of effect size exist, and there are two reasons learning

about this statistical area is so vital. One, the researcher needs to be informed

of alternative statistical measures that more accurately interprets and reports

differences within the results, other than null hypothesis statistical testing

characterize results. Also, an understanding must be obtained about the

difference between the terms statistical significance and importance.

Unfortunately, these words are often used synonymously. Effect size statistics

assist the researcher in the clarification of whether statistically significant

findings may be practical, or important, when compared to the actual research

topic (Snyder & Lawson, 1993). Second, it is vital to researchers to be better

prepared to follow the new guidelines concerning effect size set by APA.

Examples include the recommendations of the APA publication manual (Kirk,

2001; Shibley Hyde, 2001; Vacha-Haase, 2001), the APA Task Force on

Statistical Inference (Wilkinson & APA Task Force on Statistical Inference,

1999), and the publication requirements of some journals (Kieffer, Reese &

Thompson, in press).
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Classifications of the Various Effect Sizes

Various researchers characterize the magnitude-of-effect estimates in

several different ways: estimates of the magnitude of the effect, estimates of

the magnitude of the experimental effect, estimates of explained variance, effect

size estimates, estimates of the strength of relation, or estimates of the strength

of association, effect size estimates will be the term used here (Snyder 86

Lawson, 1993). However, it is important to realize that these terms are used

interchangeably within the literature. The phrase "effect size" can be used to

mean "the degree to which the phenomenon is present in the population," or

"the degree to which the null hypothesis is false" (Cohen, 1988). Effect size

includes mean difference indices, estimated effect parameter indices, and

standardized differences between means; therefore, this category consists of

those measures that involve directly examining differences between means

(Snyder 86 Lawson, 1993).

Effect size is a name given to a large number of indices that measure the

magnitude of a treatment effect. Effect size can be classified into two general

families, standard differences and variance-accounted-for measures of strength

of association. Within both families, several different choices of effect sizes are

available (Snyder 86 Lawson, 1993).

Standardized Differences

Standardized differences are defined as the standardized difference

between two groups. There are several types of measurements that compute

standard differences, such as Cohen's d, Glass' A, and Hedges' g. The
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computational definition of standard difference is the experimental group mean

minus the control group mean, divided by some estimated population standard

deviation. Kirk (1996) summarizes Cohen's d, Glass' A, and Hedges' g quite

thoroughly.

Cohen's d formula is as follows (la estimated population, a estimated

population standard deviation):

Cohen's d = µl -112/a

Cohen's d is the most popular of the three effect size measures

discussed. Cohen's d expresses the size of the population treatment effect in

units of the common population standard deviation, and Cohen provided

guidelines for interpreting the magnitude of d. A medium effect of .5 was

possible to see with the naked eye, and seen as the average size of observed

effects in various fields. A .2 and .8 are both equally distanced from .5 on

opposite sides and are considered low, but not trivial, and high effect,

respectively. This guideline of interpretation, or operational definition, turned

d into a much more usable statistic. Cohen's d was much more useful in the

fact it could estimate the sample size necessary to detect small, medium, and

large effects and to assess the power of a research design to detect various size

effects. Correlation coefficients, regression coefficients, differences between

correlation coefficients, proportions, differences between proportions,

contingency table data, and differences among means in analyses of variance

are also interpreted from Cohen's d (Kirk, 1996).
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Glass' A effect size formula is as follows (YE _ Experimental Group Mean,

Yc - Control Group Mean, Sc Sample Standard deviation of Control Group):

Glass' A = YE Yc/Sc

Glass' A used the effect size concept while working on meta-analysis

data. Glass used a similar formula as d; however, he replaced the pooled

standard deviation across groups with the sample standard deviation of only

the control group. Glass believed that if there were several experimental

groups, pairwise pooling of those standard deviations would result in a

different standard deviation for each experimental-control contrast. Different

effect size values due to the standard deviations of the contrasts differences

would be the direct result of size difference between experimental and control

means being the same size (Kirk, 1996).

Hedge's g effect size formula is as follows (YE _ Experimental Group Mean,

Yc Control Group Mean, Spooled Pooled standard deviations of experimental

mean and control mean):

Hedge's g = YE Yc /Spooled

Kirk (1996) describes Hedges g_as only slightly different from the other

two approaches of effect size. Hedges pooled the standard deviations of the

experimental groups with that for the control group to obtain one standard

deviation for all contrasts. His pooled population estimator is the same as the

within-groups mean square in analysis of variance
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Variance-accounted-for Measures of Strength of Association

Alternatively, variance-accounted-for effect size can be computed in all

studies due to all analyses being correlational (Thompson, 1991). Variance-

accounted-for measures of strength of association is defined as

the variance-accounted-for squared correlation between the independent and

dependent variables. Measurements in this category may be interpreted

directly, or corrected. Such measurements that compute strength of

association that are uncorrected effect size measurements are R2 and eta

squared, while uncorrected effect size measurements are omega squared and

epsilon squared (Rosnow & Rosenthal, 1996; Thompson, 1996). Thompson

(1996) explained that corrected effect size measurements may be used to

estimate and adjust for the positive bias associated with smaller sample sizes,

using more variables, and/or smaller population effects.

Sample size has been shown to influence statistical significance, which

shows statistical significance can be manipulated by changing the sample size

by one participant. Therefore, result interpretations should include explicit

analyses when statistically nonsignificant results can be turned into

statistically significant results simply by changing the sample size (Thompson,

1988). Variance-accounted-for statistics are the types of explicit analyses used

in this type of situation within research result interpretation.

The most simple of variance-accounted-for measures of strength of

association, also known as positively biased magnitudes of association
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estimates, are eta squared (ANOVA) and R2 (regression). The formula for eta

squared and R2 is as follows (SS Sum of Squares):

eta squared and R2 SSexplained SStotal

Eta squared and R2 can be expressed as the ratio of explained variance to total

variance. They are positively biased because they tend to overestimate

systematically the proportion of variability that might be explained in the

population or in future samples (Snyder & Lawson, 1993).

Snyder and Lawson (1993) reported Stephens (1992) explanation of

reasons for overestimations and biased estimates. The overestimates actually

result from the mathematical maximization principle ("least squares") operating

in all general linear model analyses. When sample results are analyzed, the

linear combination of Xs that is maximally correlated with some Y is sought,

and minimizing the sum of squared errors is equivalent to maximizing the

correlation between X and Y scores. Therefore, any sample-specific

idiosyncratic variation in the study samples that arise from the sampling error

will cause a positive bias, and even if there is not a systematic relationship

between X and Y in the population, R2 or eta squared is not likely to ever equal

zero.

O'Grady (1982) showed how the bias within eta squared and R2 may vary

depending on factors such as reliability of scores on the measurement

instruments, research questions posed, sample size, number of predictor or

independent variables under investigation in a particular study, heterogeneity
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of the study sample, and type of design used to investigate a particular

research question.

Due to the many areas noted for influence of possible bias in these effect

size estimates, "corrected" measurements, also known as unbiased effect size

estimates, have been developed. Corrected effect size measurements, omega

squared and epsilon squared, differ from eta squared and R2 in that they adjust

for the sampling error present in both a given present study and future studies.

The formula for omega squared is as follows (SS Sum of Squares, v number

of levels in a factor, MSerror ):

Omega squared SSexplained 1) * MSerrori SStotal+MSerror

The formula for omega squared is as follows:

Epsilon squared SSexplained [(v- 1) * MSerror]/ SStotal

This adjustment in sampling error results in the "shrinkage" of the original

estimates for future samples. The types of generalizations the researcher

wishes to make plays a major role in whether the bias correction formulas

designed to estimate measure of association strength is to be used in the result

interpretations (Snyder & Lawson, 1993

Snyder and Lawson (1993) described in more depth the various formulas

to choose from when estimating the association strength, or effect size. The

different designs discussed by Snyder and Lawson are fixed- versus random-

effect design models, univariate versus multivariate magnitude-of-effect

estimates (for multivariate cases only), and equivalent estimates from varying

perspectives of the general linear model.
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Once researchers recognize the usefulness of effect size estimates,

results will involve more informed analyses of data, and a more applicable

flavor in the real world. Practical significance has made it possible to take

result interpretations and apply them to the real world, whether or not

statistical significance was found. Null hypothesis significance testing has

been seen as essential in the world of research for the past 70 years, but has

finally been recognized as somewhat limited in result interpretation. Due to

the controversy of resistance to accepting the limitations surrounding null

hypothesis significance testing supplemental procedures have been developed.

Now that there is a better understanding of the importance of reporting some

type of effect size, APA has been working on changing some of the guidelines,

and thirteen journals now require effect size reports, while some journals

strongly recommend effect size reports (Kirk, 1996; Snyder & Lawson, 1993).

New and Upcoming Guidelines for Effect Size in APA

Following decades of criticisms of statistical significance testing practices

(cf. Carver, 1978; Cohen, 1994; Meehl, 1978; Schmidt, 1996; Thompson,

1996), APA now "encourages" effect size reporting in journal articles. Carver

(1978) defined statistical testing as something more like fantasy than fact, and

argued that statistical significance testing should be given little space in the

results section. Carver said that if statistical significance testing was

eliminated, a way of collecting and analyzing data that provides convincing

evidence needed to replace it. Cohen (1994) said that statistical testing does

not tell us what we want to know, but we want to know so badly what we are
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looking for, that we accept it nevertheless. The alternative to the constant

controversy is to report both, if anything at all in the result interpretation.

Several journals began to see the importance, not statistical significance, of

reporting effect size. At least 13 journals now "require" such reports (e.g.,

Heldref Foundation, 1997; Murphy, 1997; Thompson, 1994): Career

Development Quarterly, Contemporary Educational Psychology, Educational

and Psychological Measurement, Journal of Agricultural Education, Journal of

Applied Psychology, Journal of consulting 86 Clinical Psychology, Journal of

Early Intervention, Journal of Experimental Education, Journal of Learning

Disabilities, Language Learning, Measurement and Evaluation in Counseling

and Development, The Professional Educator, and Research in the Schools.

Another important area of interest to those wanting to publish research

is the recently published report of the APA Task Force on Statistical Inference

(Wilkinson 86 APA Task Force on Statistical Inference, 1999), which will be

incorporated into the 2001 revision of the APA publication manual. Soon all

social science journals will be requiring effect size reports. The Task Force

emphasized, "Always provide some effect-size estimate when reporting a 2

value" (p. 599, emphasis added). Later the Task Force also wrote,

Always present effect sizes for primary outcomes....It

helps to add brief comments that place these effect

sizes in a practical and theoretical context....We must

stress again that reporting and interpreting effect sizes
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in the context of previously reported effects is essential

to good research (p. 599, emphasis added).

In summary, there are a number of ways one can compute an effect size

statistic as a part of data analysis. There is no concept of "one-size fits all"

(Thompson, 1999), so it is up to the discretion of the informed researcher to

choose the index best suited for a particular research endeavor. Cohen (1994)

closes his famous article The Earth is Round (p<05) by placing full

responsibility on the researcher by saying,

....we have a body of statistical techniques, that,

used intelligently, can facilitate our efforts. (p.

1002)

However, choosing a supplemental statistic such as effect size, along

with statistical testing has now become necessary that such a statistic always

be included to enable other researchers to carry out meta-analyses and to

inform judgment regarding the practical significance of results. This includes

the ability to replicate research, which also falls under the law of Cohen's The

Earth is Round (p < .05) in that "we must finally rely, as have the older

sciences, on replication. (p. 1002)."
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