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Abstract

The purposes of the present paper were to identify common errors made by

researchers when dealing with reliability coefficients and to outline best practices for

reporting and interpreting reliability coefficients. Common errors that researchers make

include (a) stating that instruments are reliable, (b) incorrectly interpreting correlation

coefficients, (c) not reporting reliability coefficients for their own sample, (d) conducting

tests of statistical significance on reliability coefficients, and (e) failing to report reliability

of difference scores when examining gain scores. It is recommended that researchers

report reliability coefficients for their own data and that they interpret confidence intervals

around reliability coefficients, considering that reliability coefficients represent only point

estimates. Further, it is contended that reliability coefficients should be reported not only

for the full sample at hand, but also for each subgroup. A heuristic example is utilized for

the two-sample case (i.e., f-test) to illustrate how comparing subgroups with different

reliability coefficients can affect statistical power.
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Reliability Generalization: The Importance of Considering Sample Specificity, Confidence

Intervals, and Subgroup Differences

Measurement is the most important component of the research process. For

example, even if an extremely large sample is selected utilizing random sampling

techniques, and even if sophisticated data-analytical procedures are employed, the

underlying research question(s), however important, cannot be adequately addressed if

the data collected are not trustworthy. This is true for both quantitative and qualitative

research. With respect to the former (i.e., quantitative or "empirical" research), there are

two important characteristics that scores from any measuring instrument should possess:

validity and reliability.

VALIDITY

Validity is to the extent to which scores generated by an instrument measure the

trait or variable they are intended to measure for a given population. In other words,

validity refers to the appropriateness of the interpretations made from instrument scores

with respect to a particular use. The concept of validity is very straightforward when

measuring physical constructs or attributes. For example, if one is attempting to measure

the time taken by athletes in an Olympic meeting to cross the 100-meter line, then it

follows that the times recorded will be valid if the measuring device used (e.g., a

stopwatch) is correctly calibrated and used correctly. However, in the field of education,

the concept of validity is not as clear. For instance, if a researcher attempts to measure

students' level of statistics anxiety by administering a self-report measure, it is

considerably more difficult to establish whether scores generated by this instrument truly
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represent students' level of anxiety. Within the cognitive domain, in which important

educational decisions often are made, establishing evidence for validity of test data is

especially important.

Establishing Evidence of Validity

As previously noted, validation refers to the process of systematically collecting

evidence to justify the array of inferences that are intended to be drawn from scores

generated by an instrument (American Educational Research Association, American

Psychological Association, & National Council on Measurement and Evaluation [AERA,

APA, & NCME], 1985). In validation studies, researchers attempt to obtain one or more

of three types of evidences: content-related validity, criterion-related validity, and

construct-related validity. Although validity is most appropriately thought of as a unitary

concept, the aforementioned types of validity evidence are sometimes erroneously

referred to as "validity types" or "categories of validity" (AERA, APA, & NCME, 1985):

the various means of accumulating validity evidence have been grouped into

categories called content-related, criterion-related and construct-related

evidence of validity. These categories are convenient, as are other more

refined categorizations. . ., but the use of the category labels does not imply

that there are distinct types of validity or that a specific validation strategy is

best for each specific inference or test use. (p. 9)

Content-related validity evidence addresses the extent to which the items on an

instrument represent the content to be measured. Establishment of content-related

validity evidence includes attention to face validity (the extent to which the items appear
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relevant, important, and interesting to the subject), item validity (the extent to which the

specific items represent measurement in the intended content area), and sampling

validity (the extent to which the full set of items samples the total content area). Face

validity is often regarded as extremely weak validity evidence as it is based strictly on

face value of the items in a test after the test has already been constructed (Nunnally &

Bernstein, 1994). Even though item and sampling validity are typically considerations

one uses during the development of a test, these approaches to validity evidence are

also limited as they rely heavily upon expert judgement, not empirical analysis. Content-

related validation studies typically involve several experts who examine an instrument's

content systematically and evaluate the extent to which the items represent the content

domain adequately. Alternately, a test developer may present content-related validity

evidence based on showing similarities between item content and a codified

representation of the content domain (e.g., a textbook, a curriculum manual, a body of

literature articulating the nature of an educational construct).

Criterion-related validity evidence pertains to the extent to which scores on a

measuring instrument are related to an independent external variable (i.e., criterion)

believed to measure directly the underlying attribute or behavior. Once the external

criterion has been operationalized, empirical data are obtained in order to assess the

relationship between scores on the measuring instrument and scores on the criterion.

The resulting correlation coefficient that indexes this relationship represents one form of

a validity coefficient. This coefficient indicates how accurately the scores on the

measure can predict the criterion. The general term "criterion-related validity" may be
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used to refer to both concurrent validity and predictive validity. Concurrent validity

measures the degree to which scores on an instrument are related to scores on another,

already-established instrument administered (approximately) simultaneously, or to a

measurement of some other criterion that is available at the same point in time as the

scores on the instrument of interest. Predictive validity refers to the relationship between

instrument scores and criterion scores that are measured at a future time.

Construct-related validity evidence is based on the accumulation of a number of

independent validation studies. The objective in seeking evidence for construct-related

validity is to operationalize the underlying construct by means of a theoretical framework,

as well as to determine how well it is being measured. Methods used in construct-related

validation include (a) defining the domain to be measured and comparing scores of

known groups (i.e., contrasted groups approach); (b) comparing scores before and after

some particular intervention; (c) correlating scores yielded from the instrument of interest

with scores from other instruments that measure the same construct (i.e., convergent

validity); (d) correlating scores generated from the instrument of interest with scores from

instruments that measure concepts theoretically and empirically related to but not the

same as the construct of interest (i.e., discriminant validity); (e) correlating scores yielded

from the instrument of interest with measures of constructs antithetical to the construct of

interest (i.e., divergent validity); (f) collating the results of various independent studies

that use the instrument (i.e., successive verification); (g) manipulating a relevant

independent variable and observing whether the instrument scores change (i.e.,

experimental studies); (h) studying the intercorrelations among a set of items or
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instrument scores in order to determine the number of factors (constructs) needed to

account for the intercorrelations (i.e., factor analysis); and (i) examining the instrument

itself and collecting information about the content of the instrument, the processes used

in responding to items on the instrument, and relationships among the items (i.e., infra-

measure analysis). According to Messick (1981), construct-related evidence is the most

comprehensive because it subsumes and extends content-related and criterion-related

evidence.

RELIABILITY

A second major characteristic of test scores, reliability, will be the focus the

remainder of this paper. Reliability refers to the extent to which scores yielded by an

instrument administered to specific individuals, at a specific point in time, and under

certain conditions, are reproducible. For scores to be reproducible, they must be

consistent. Thus, the most popular definition of reliability is that it pertains to the extent

that scores are consistent, regardless of whether the scores are measuring what they

have been designed to measure (i.e., whether the scores are valid). As stated by

Crocker and Algina (1986, p. 105), "In practical terms reliability is the degree to which

individuals' deviation scores, or z-scores, remain relatively consistent over repeated

administration of the same test or alternate test forms."

In the physical sciences, many properties of objects can be measured with near-

perfect reliability. However, this is not the case for the social sciences in general and for

the field of education in particular. Constructs of interest in the social sciences are

typically abstractions (e.g., personality, achievement, intelligence, motivation, locus of

8
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control) that must be measured indirectly; hence, the vast majority of measures in the

social sciences generate scores that are, to some degree, unreliable. For example, if

two parallel achievement measures were administered to the same group of students, it

would be virtually impossible for each student to obtain identical scores on both

measures.

Unreliability occurs as a result of errors of measurement, which can be random or

systematic. Random errors of measurement are the result of chance occurrences that

stem from factors such as fluctuations in the administration of the instrument, variations

in the respondent's mental or psychological state (e.g., levels of alertness and anxiety),

guessing, and scoring errors. Systematic errors reflect errors that consistently affect

individuals' scores because of a particular characteristic of an individual respondent, the

group of respondents, or the instrument that is independent of the underlying construct.

Whereas random errors reduce both the consistency and utility of scores, by either

inflating or depressing any respondent's score in an unpredictable manner, systematic

errors adversely influence the practical usefulness of the scores (Crocker & Algina,

1986).

The concept of reliability stems from the classical true score model, the basis for

which was laid by Charles Spearman (1907, 1913). The true score model contains the

following three components: observed score (0), true score (T), and random error (E).

These components are related in the following manner:

0 = T + E

As the formula illustrates, the smaller the error term, the closer the observed score

9
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approximates the true score. In fact, the true score would be obtained if there were no

error in measurement. Thus, the true score component pertains to scores that an

individual would obtain if the instrument yielded perfect measurements of the construct.

In the above model, a positive error results in true score overestimation, whereas

a negative error culminates in true score underestimation. Because underestimation and

overestimation are equally likely to occur, the average (mean) error is expected to be

zero if the same instrument is administered an infinite number of times. Consequently, a

true score is the individual's mean score on an infinite number of measurements.

Obviously, because it is not possible to administer an instrument an infinite number of

times, true score is a theoretical concept. When an instrument is administered, only the

observed scores are known although it is the true scores that are really of interest. Thus,

it is important that observed scores closely approximate their true scores--or, stated

differently, that the observed scores and true scores are highly related. This relationship

is measured via the reliability index, which can be expressed as the ratio of the standard

deviation of true scores to the standard deviation of the observed scores. Similarly, the

reliability coefficient, which represents the correlation between scores on parallel

instruments, is the ratio of the true-score variance to the observed-score variance in a

set of scores. Thus, the reliability coefficient is the square of the reliability index (Nunnally

& Bernstein, 1994).

Estimating Score Reliability

Because the true score is a theoretical rather than observed measure,

researchers, clinicians, and practitioners who collect test data can, at best, derive

10
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estimates of reliability based on the set of scores generated by their data. The four most

common methods of estimating a reliability coefficient are (a) administering an instrument

to the same group of individuals on two or more occasions and correlating the paired

scores (i.e., test-retest reliability, or stability reliability); (b) administering two different

measures of a construct at essentially the same time to the same group of individuals

and then correlating the paired scores (i.e., equivalence reliability, or alternate forms

reliability), (c) administering two different measures of a construct at two separate

occasions to the same group of individuals and then correlating the paired scores (i.e.,

coefficient of stability and equivalence), and (d) estimating the reliability of scores based

on alternate configurations of the items across one administration of the instrument (i.e.,

coefficient of internal consistency). Although, theoretically, the coefficient of reliability

ranges from 0 (measurement is all error) to 1 (no error in measurement), the four

methods of estimating the reliability coefficient presented above make it possible for the

reliability estimate to be negative (although this is rare). Thus, technically, reliability

coefficients may range from -1 to 1 even though negative values are intuitively

meaningless. (A dataset cannot contain less than 0% true score variance!)

Whereas there are many occasions in which it is either inappropriate or impossible

to determine the coefficient of stability (e.g., when the instrument is a developmental

measure) or the coefficient of equivalence (e.g., when only one version of the instrument

is required), as noted by Crocker and Algina (1986), it is always appropriate to estimate

the internal consistency coefficient for scores on an instrument because this coefficient

represents an index of both "item content homogeneity and item quality" (p. 135). In any
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case, the coefficient of stability, coefficient of equivalence, and coefficient of stability and

equivalence typically represent underestimates of the theoretical reliability coefficient that

would be obtained from truly parallel measures and/or varied administration conditions.

Consequently, the remainder of this essay will deal specifically with the most popular

method of estimating score reliability, namely, the coefficient of internal consistency.

Issues Pertaining to Coefficients of Internal Consistency

The "internal consistency" of scores on an instrument can be estimated in several

ways. These methods include split-half methods and procedures based on item

covariances. Split half methods involve first dividing the instrument into two artificial

subscales (e.g., at random, contrasting odd-numbered items and even-numbered items),

with each subscale representing half the length of the original measure. Second, these

two subscales are then scored separately for each respondent, and the correlation (r1.2)

is computed between the two sets of scores. Finally, the Spearman-Brown prophecy

(i.e., [2 x r1.2] / [1 + r1.2]) can be applied to the correlation between the two subscales in

order to obtain a corrected estimate of the reliability coefficient for scores on the full-

length instrument. Unfortunately, split-half techniques do not yield a unique estimate of

score reliability because there are many possible ways of dividing an instrument into two

subscales of equal length, with each configuration of items potentially yielding a different

reliability estimate. Thus, split-half techniques are not as widely utilized for estimating

internal consistency are methods based on item covariances.

The most commonly-used methods of estimating the internal consistency of items

are Cronbach's (1951) coefficient alpha and Kuder and Richardson's (1937) KR-20

11)6.
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formula. The former (i.e., coefficient alpha) is computed by the following formula:

fx
k E8?

k 1
11

Eci2
x

where k is the number of items on the instrument, Fat is the sum of the individual item

variances, and ax2 is the variance of the total instrument scores across all respondents.

This formula is appropriate when all items underlying the instrument are dichotomously

scored or when items have a specific number of fixed responses (e.g., Likert-format

scales). Alternatively, the KR-20 formula can be utilized as a measure of internal

consistency, as follows:

KR20
k Epiq

k 1 2
E eYx

where k is the number of items on the instrument, pp; is the sum of the individual item

variances, and ax2 is the variance of the total instrument scores across all respondents.

This formula is equivalent to coefficient alpha when a2 can be substituted by pp,.

However, KR-20 can be used only for dichotomously-scored items. As such, KR-20 is a

special case of coefficient alpha or, alternately stated, coefficient alpha is a more general

form of KR-20.

Both coefficient alpha and KR-20 are bounded by ±1. As noted by Roberts and

Onwuegbuzie (2000), both internal consistency estimates will be large when scores that

yield a small sum of individual item variances are associated with a large total score

13
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variance. Similarly, scores that yield large individual item variances but a small total

score variance will produce small alpha coefficients. Although rare, it is possible to obtain

a negative alpha reliability, which occurs when the sum of the individual item variances is

larger than the total instrument variance (Roberts & Onwuegbuzie, 2000).

Errors Made By Researchers Pertaining to Reliability Coefficients

Incorrect interpretation of reliability coefficients. As noted by Vacha-Haase,

Kogan, and Thompson (in press), many writers use phrases such as "the instrument is

reliable." However, it is the scores yielded that are reliable, not the instrument.

Additionally, some researchers interpret an instrument that generates a reliability

coefficient of, say, .70 for a set of scores, as being 70% reliable. A more correct

interpretation of a reliability coefficient of .70 would note that (a) 70% of the observed

score variance is attributable to true score variance and (b) the correlation between the

true scores and observed scores is .837 (i.e., 1.7) for the underlying sample (Crocker &

Algina, 1986).

Non-reporting of reliability coefficients. Unfortunately, relatively few researchers

report reliability coefficients for data from their samples (Onwuegbuzie, 1999; Vacha-

Haase, Ness, Nilsson, & Reetz, 1999). For example, Vacha-Haase et al. (1999), who

reviewed practices regarding the reporting of reliability coefficients in three journals from

1990 to 1997, found that 64.4% of articles did not provide reliability coefficients for the

data being analyzed. Similarly, Vacha-Haase (1998), who identified 628 articles in which

the Bem Sex Role Inventory (Bem, 1981) was utilized, found that 86.9% of the articles

did not present any score reliability information for the underlying data. Similarly,

1
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Simmelink and Vacha-Haase (1999) reported that 75.9% fell into this category with

respect to the use of the Rosenberg Self-Esteem Instrument (Rosenberg, 1965). Finally,

in a review of 36 research articles published in the 1998 volume of the British Journal of

Educational Psychology, Onwuegbuzie (1999) found that 72.2% of studies did not report

reliability indices for their own sample.

The trend of not reporting current-sample reliability coefficients stems, in part,

from a failure to realize that reliability is a function of scores, not of instruments

(Thompson & Vacha-Haase, 2000). The dearth in the reporting of reliability estimates led

the American Psychological Association (APA) Task Force on Statistical Inference

recently to recommend that authors "provide reliability coefficients of the scores for the

data being analyzed even when the focus of their research is not psychometric"

(Wilkinson & Task Force on Statistical Inference, 1999, p. 21).

Without information about score reliability, it is impossible to assess accurately the

extent to which statistical power is affected. Thus, reliability coefficients always should be

reported for the underlying data. Moreover, the use of confidence intervals around

reliability coefficients is advocated, considering that reliability coefficients represent only

point estimates. The coefficient alpha and KR-20 estimates outlined above both stem

from the assumption that each item on an instrument represents a perfectly parallel

subscale. Unfortunately, this assumption is extremely tenuous in most situations. As

such, both measures of internal consistency yield estimates that represent a lower bound

of the theoretical reliability estimate (Crocker & Algina, 1986). Thus, in addition to

reporting reliability coefficients for their own sample, researchers should report one-sided

15
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(i.e., upper-tailed) confidence intervals for these estimates.

Because internal consistency estimates are essentially a type of correlation

coefficient, as are all other estimates of reliability, the sampling distribution of the sample

reliability coefficient for all values of the theoretical reliability coefficient other than 0 is

skewed. Therefore, the reliability coefficient (G.) must be transformed in such a way that

it has a sampling distribution that is approximately normal. An appropriate transformation

is Fisher's Z transformation. This transformation statistic is defined as

1 + I r I
I Z I = 0.5 log.

where loge is the natural logarithm and the "I I" indicates that the number contained in it

can be either positive or negative. Alternatively, one can obtain Fisher Z-values from

tables that are provided in many standard statistics textbooks. Such tables give the value

of Z for values of r from 0 to 1.00. (If rx. is negative, the Z value obtained becomes

negative). If the exact value of rx, is not listed, interpolation is used to obtain the

corresponding Z-value. Conveniently, the distribution of Z is approximately normal

regardless of the size of n, with a mean zp, which corresponds to p... (the theoretical

reliability), and a standard deviation given by

Gz
1

11/- 3

A (1 - a)% upper-tailed confidence limit for Z,, is

1
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Z + (Za) .

Thus, the procedure for constructing an upper 95% confidence limit for a reliability

coefficient is as follows:

1. Transform the reliability coefficient to Fisher Z using the equation above

or the Fisher's Z transformation table.

2. Compute the standard error of Z.

3. Find a (1 a)% upper confidence limit for Zp

4. Use the Fisher's Z table to transform the upper confidence limits for Z,

back to the reliability coefficient value.

For example, for a sample of 30 individuals, a reliability alpha reliability coefficient

of .80 would yield a 95% upper confidence limit of .89. This interval indicates that over

repeated administrations of the same instrument, we expect the true reliability coefficient

to lie between .80 (i.e., rx.) and .89 approximately 95% of the time. For a sample of size

50, the same reliability coefficient will yield a 95% upper confidence limit of .87; for a

sample of 100 individuals, the upper limit would be .86; and for a sample of size 1000,

the corresponding 95% upper confidence limit would be .82. Thus, as with all confidence

intervals, for a given reliability coefficient and confidence level, the upper confidence limit

decreases as the sample size increases.

Not only is an upper confidence limit likely to provide more accurate information

about the theoretical reliability coefficient than is the point estimate (i.e., I* alone, but

this limit could also be used to determine the extent to which a current-sample reliability
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coefficient differs from the inducted-sample reliability coefficient (i.e., the reliability

coefficient reported by the instrument developers). Specifically, if the inducted-sample

reliability coefficient is captured by the upper limit (i.e., lies between the current-sample

reliability coefficient and its upper limit), it can be inferred that the scores from the current

sample generate a reliability coefficient that is similar to that of the inducted sample.

Conversely, if the inducted-sample reliability coefficient is greater than the upper limit, the

researcher should conduct follow-up analyses to determine whether the lower reliability

generated by the present sample reflects any differences in sample composition (Vacha-

Haase et al., in press) or homogeneity of score variance (Roberts & Onwuegbuzie,

2000). Information obtained from this follow-up analysis should allow the investigator to

put findings into a more appropriate context.

When current-sample reliability coefficients are not available (as is the case when

archival data are utilized), researchers, at the very least, should compare the sample

composition and variability of scores of the present sample with those of the inducted

(i.e., norm) group (Vacha-Haase et al., in press). However, this is not a substitute for

obtaining a reliability estimate for the sample (had the researcher been able to do so).

Hence, assuming that previously-reported reliability coefficients generalize to a given

sample is only marginally justifiable even if the compositions and the score variabilities of

the two samples are similar.

In such cases, Magnusson's (1967) formula can be used to approximate the

reliability of the present sample, based on the reliability of the inducted sample and the

standard deviations of the inducted and current samples, as follows:

3 8
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Rc = 1

c
2

612 (1 Ri)

where Rc = the predicted reliability of the current sample, R; = the predicted reliability of

the inducted sample, ace = the variance of the total instrument scores for the current

sample, and 0;2 = the variance of the total instrument scores for the inducted sample.

However, it should be noted that these predicted reliabilities are purely theoretical. (For

an example of the use of this formula see Diamond and Onwuegbuzie, in press.)

Conducting tests of statistical significance for reliability coefficients. Of the

relatively few researchers who report reliability coefficients for their sample, some fall into

the unfortunate habit of testing these coefficients for statistical significance using the nil

null hypothesis (Huck, 2000). However, as Thompson (e.g., Thompson, 1994, 1996,

1998, 1999) and Daniel and his colleagues (Daniel, 1998; Onwuegbuzie & Daniel, in

press; Witta & Daniel, 1998) have argued, such tests are inappropriate, because large

reliability coefficients typically are statistically significant even when the sample sizes that

underlie them are small. In fact, small reliability coefficients will eventually become

statistically significant as the sample size increases (Huck, 2000), due to the influence of

sample size on statistical significance tests (see for example, Onwuegbuzie & Daniel,

2000). Additionally, because reliability coefficients are sample specific, statistically

significant coefficients are neither necessarily replicable not generalizable (Witta &

Daniel, 1998). Therefore, rather than utilizing statistical significance tests of reliability

coefficients, researchers should assess the (effect) size of reliability estimates to

determine the adequacy of instrument scores generated with specific samples.

19
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For example, Nunnally and Bernstein's (1994) criteria could be used for assessing

the reliability of scores on non-cognitive measures for a specific sample. According to

Nunnally and Bernstein, reliability coefficients of .70 and above should be considered

adequate. For scores on measures of cognitive performance, .80 could be utilized as the

"cut-off' criterion (e.g., Sattler, 1990), or the more stringent cut-off of .90 could be used

(e.g., Gay & Airasian, 2000). Reliability coefficients might be considered adequate even

if somewhat lower than any of these criteria depending on how much error the

researcher is willing to tolerate in a given study (Pedhazur & Schmelkin, 1991). Further,

rather than comparing the sample-specific reliability coefficient to these criteria, the one-

sided confidence interval could be used.

Incorrect reporting of reliability of difference scores. Researchers often are

interested in determining the effect of an intervention by comparing scores on the same

instrument administered both before and after the intervention phase. The few

investigators who report reliability coefficients for their sample tend to report only the pre-

intervention estimates or the post-intervention estimates. However, it is more appropriate

to estimate the reliability of difference scores (Allen & Yen, 1979). As noted by Crocker

and Algina (1986), the formula for the reliability of the difference between two scores on

the same instrument is given by the following:

r 2 + r CT
2 2 r axx CSx yr Y xy x y

2
Ox

2
+ 2 rxyaxay

2 0
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where rx.x is the pre-intervention reliability estimate, ry.y is the post-intervention reliability

estimate, rx.y is the correlation between the pre- and post-intervention scores, crx2 is the

variance of the pre-intervention scores, and Cry2 is the variance of the post-intervention

scores. Interestingly, this same formula can be used to determine the reliability of

difference scores when scores generated from two instruments measured on the same

sample are being compared.

Assuming Invariance of reliability estimates across sub-samples. As noted above,

although the APA Task Force has advocated that researchers report current-sample

reliability coefficients, these recommendations do not go far enough. We contend that

reliability coefficients should not only be reported for the full sample at hand, but also for

sample subgroups. By reporting only full-sample reliability coefficients, researchers

assume that the score reliability is invariant across sub-samples. Yet, closer examination

of the coefficient alpha (or KR-20) for most any given dataset will indicate that reliability

invariance should not be assumed. For instance, for the two-sample case, scores for

both samples would generate identical reliability coefficients if and only if the coefficient

alphas are identical, that is, if and only if

k
1

1
k

2

k
1

1 E k
2

1

2
Ee5 2i

E

1

where the equation on the left hand side represents the coefficient alpha for the first

sample, and the equation on the right hand side represents the coefficient alpha for the

second sample. Because both samples would have been administered the same
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instrument, kl = k2, the equation above reduces to the following:

1 1
E

= 1 ECY2i

E x ) Ety

which further implies that when the reliability estimates are equal,

Ee

E621.
E622.

Thus, for the reliability coefficients of two sub-samples to be equal, it is not

enough for the variance of the total instrument scores to be equal. The sum of the

individual item variances must also be equal for both sub-samples (or the ratio of the

sum of the individual item variances to the variance of the total instrument scores must

be equal for both sub-samples). Bearing in mind the fluctuations that occur in item

responses, it is tenuous to assume that the sum of the individual item variances would be

equivalent from one sub-sample to the next. Moreover, the interest of the researcher in

comparing subgroups usually stems from an expectation that these subgroups are

different with respect to the dependent variable(s). Thus, under this assumption, it seems

counter-intuitive to expect the variances of the total instrument scores across sub-

samples to be equal. It is for this reason that, when conducting an independent t-test, it is

typically recommended that equal variances not be assumed (Onwuegbuzie & Daniel,

2000). Further, it is even less plausible to expect the sum of the individual item variances

to be equal. Thus, even if the total instrument scores of both subgroups are identical, it
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should not be assumed that the reliability estimates also will be equal because, as noted

above, the sum of the individual item variances also must be equivalent.

Disturbingly, it is possible for a reliability coefficient from the full sample not only to

mask notable differences in sub-sample reliabilities, but also to conceal low score

reliabilities generated from scores of one or more of the subgroups. For example, in a

two-sample case, it is feasible to obtain a large reliability estimate for the full sample

even when the reliability coefficient of one group is relatively large but the coefficient for

the other group is relatively small. In fact, it is likely that such a case would produce a

different outcome in terms of statistical and practical significance than would a scenario

in which the ratio of reliability coefficients is much smaller. Simply put, comparing

subgroups with different reliability coefficients can affect Type I and Type II error rates,

as well as effect size estimates. The following examples using two small heuristic

datasets will serve to illustrate the adverse effects of differential reliability on statistical

power.

Heuristic Examples

For the purposes of the current discussion, two heuristic datasets were utilized

that were (hypothetically) generated from the same 6-item instrument. Both datasets

contained dichotomous (i.e., 0/1) scores from two groups, each containing 64 cases.

This sample size (n = 128) was selected via an a priori power analysis because it

provided acceptable statistical power (i.e., .80) for detecting a moderate difference in

means (i.e., Cohen's [1988] d = .5) at the (two-tailed) .05 level of statistical significance

(Erdfelder, Faul, & Buchner, 1996).
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The first dataset (Table 1), hereafter termed the invariant-reliability dataset, was

designed such that scores of both subgroups yielded adequate classical theory alpha

reliability coefficients; that is, both coefficients were greater than .7, using Nunnally and

Bernstein's (1994) criteria, as was the full-sample reliability estimate. On the other hand,

the second dataset (Table 2), hereafter termed the variant-reliability dataset, was

constructed such that although scores from the full sample yielded an adequate reliability

coefficient, only the first group generated an adequate reliability estimate (the same data

were used for Group 1 as in the invariant-reliability dataset), whereas scores from the

second subgroup yielded a low reliability coefficient.

Insert Tables 1 and 2 about here

The summary statistics for the invariant-reliability dataset are presented in Table

3. It can be seen from this table that whether or not equal variances are assumed (we

strongly advocate that equal variances should not be assumed), the difference between

the group means is statistically significant. Conversely, even though the respective group

means in the variant-reliability dataset are identical to those in the invariant-reliability

dataset, the difference in means is no longer statistically significant. Thus, the lower

reliability pertaining to Group 2 in the variant-reliability dataset is associated with

relatively low statistical power. In fact, this dataset led to the opposite conclusion with

respect to statistical significance. This example, thus, provides empirical evidence that
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statistical power is affected by low subgroup reliability.

Interestingly, other variant-reliability datasets (not presented) were constructed

that also led to statistical nonsignificance. These findings suggested that (a) researchers

should not assume that subgroup reliabilities are equal, and (b) researchers should

report subgroup reliability coefficients whenever possible, alongside their confidence

intervals.

Insert Tables 3 and 4 about here

Discussion

The major purpose of the present paper was to identify errors made by

researchers when dealing with reliability coefficients and to outline best practices for

these indices. Common errors made by researchers include (a) incorrectly stating that

instruments are reliable, (b) incorrectly interpreting correlation coefficients, (c) not

reporting reliability coefficients for their own sample, (d) conducting tests of statistical

significance on reliability coefficients, and (e) failing to report reliability of difference

scores. Additionally, several recommendations were made. First and foremost,

consistent with the recommendations of the APA task force (Wilkinson & the Task Force

on Statistical Inference, 1999) and others (e.g., Onwuegbuzie, 1999; Thompson &

Vacha-Haase, 2000; Vacha-Haase et al., 1999), it is advocated that researchers report
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reliability coefficients for their underlying data.

Second, when sample-specific reliability coefficients are not available (as is the

case when archival data are utilized), it is recommended that researchers not rely solely

on reporting reliability indices provided by instrument developers (i.e., from the inducted

sample), but should compare the sample composition and variability of scores of the

present sample with those of the inducted (i.e., norm) group (Vacha-Haase et al., in

press). For situations when the current-sample reliability estimates are not obtainable, it

is recommended that researchers approximate the score reliability for their sample using

Magnusson's (1967) formula.

In addition to the above recommendations, we offer two additional

recommendations pertaining to (a) use of confidence intervals when reporting and

interpreting reliability coefficients and (b) routine reporting and interpretation of sub-

sample reliabilities in group comparison studies. With respect to the former, because

reliability coefficients represent point estimates that are subject to error, and because the

reliability estimates represent a lower bound for the theoretical reliability coefficient,

researchers should provide upper 2-transformed confidence limits alongside reliability

estimates. Surprisingly, our review of the literature did not yield any recommendations for

such confidence intervals to be presented, and no mention of confidence intervals for this

purpose was made in measurement textbooks we consulted (e.g., Allen & Yen, 1979;

Crocker & Algina, 1976; Magnusson, 1967; Mehrens & Lehmann, 1991). Nevertheless,

these confidence intervals around the reliability coefficient can be compared to

coefficients presented in instrument manuals to assess generalizability.
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Unfortunately, computing upper confidence limits for reliability coefficients will be

cumbersome for most researchers, clinicians, and practitioners. This is because

algorithms or statistical tables are needed to obtain Fisher Z-values. Thus, it is

recommended that creators of the major statistical packages consider providing upper

confidence limits for reliability estimates.

Finally, as previously noted, the excellent recommendations of the American

Psychological Association Task Force regarding the reporting of current-sample reliability

coefficients do not go far enough. Reliability coefficients should be reported not only for

the full sample at hand, but also for each subgroup. Our heuristic examples for a

two-sample case (i.e., f-test) have illustrated how comparing subgroups with different

reliability coefficients can affect statistical power. Obviously, simulation studies are

needed to examine further the extent to which variant-reliability sub-samples affect Type

I and Type II error rates, as well as effect size estimates. Nevertheless, the heuristic

examples presented herein, along with other sub-samples examined but not presented

herein, suggest that sub-samples with scores that generate markedly different reliability

estimates are problematic, even when the full-sample reliability coefficients are

adequate.

Authors of statistics textbooks routinely report that statistical power is affected by

at least three components: (a) sample size, (b) level of statistical significance, and (c)

effect size. However, as shown in the heuristic examples provided above, a fourth

component should be added, namely, the reliability of scores. Disturbingly, in examining

other variant-reliability datasets, we found that it is possible for scores of one subgroup to
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yield a negative reliability coefficient and when the full-sample reliability coefficient is

positive and of adequate magnitude (i.e., greater than .70).
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Table 1

Invariant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 0 5

1 1 1 1 1 1. 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 0 0 4

1 1 1 1 0 0 0 3

1 1 1 1 0 0 0 3

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 0 .0 4

1 1 1 1 0 0 0 3

1 1 1 1 0 0 0 3

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 0 0 0 0 0 1
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Table 1 (Cont/d...)

Invariant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 o 0 0 0 0 0

1

.0
0 0 0 0 0 0 0

1 1 1 1 1 1 1 6
1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 0 0 4

1 1 1 1 0 0 0 3

1 1 1 1 0 0 0 3

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2
1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 1 1 1 1 1 1 6

2 1 1 1 1 1 1 6

2 1 1 1 1 1 1 6

2 1 1 1 1 1 0 5

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3
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Table 1 (Cont/d...)

Invariant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0. 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 0 0 0 0 0 0 0

2 1 1 0 0 0 0 2
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Table 1 (Cont /d...)

Invariant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 .1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 1 0 0 0 0 2

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0
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Table 2

Variant-Reliability Dataset

Group Item1 Item2 Item3 Item4 Item5 Item6 Total

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 0 0 .4
1 1 1 1 0 0 0 3

1 1 1 1 0 0 0 3

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 0 0 4

1 1 1 1 0 0 0 3

1 1 1 1 0 0 0 3

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 0 0 0 0 0 1
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Table 2 (Cont/d...)

Variant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6
1 1 1 1 1 1 1 6
1 1 1 1 1 1 1 6

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 1 0 5

1 1 1 1 1 0 0 4
1 1 1 1 0 0 0 3

1 1 1 1 0 0 0 3

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2

1 1 1 0 0 0 0 2
1 1 1 0 0 0 0 2

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 6

1 1 1 1 1 1 1 6

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 1

2 1 1 0 1 0 1 4
2 1 0 0 1 0 1 3

2 1 1 0 0 1 1 4

2 1 0 1 0 0 1 3

2 1 1 0 1 0 0 3
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Table 2 (Cont/d...)

Variant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

2 1 1 0 0 1 0 3

2 1 0 1 1 0 1 4

2 1 1 1 1 0 0 4

2 0 0 1 1 0 0 2

2 1 1 1 1 0 0 4

2 1 0 1 0 1 0 3

2 1 1 0 0 1 0 3

2 1 0 0 1 0 0 2

2 1 0 0 0 1 0 2

2 1 0 1 1 1 0 4

2 1 0 1 0 1 0 3

2 0 1 0 1 0 0 2

2 1 0 0 1 0 0 2

2 0 1 0 0 0 0 1

2 0 0 1 1 0 0 2

2 0 0 0 1 0 1 2

2 0 0 1 1 0 1 3

2 0 0 0 0 0 1 1

2 0 0 1 0 0 1 2

2 1 0 0 0 0 0 1

2 1 1 0 0 0 0 2

2 0 0 1 0 0 0 1

2 1 0 0 0 0 0 1

2 0 1 0 0 0 0 1

2 1 1 0 0 0 0 2

2 0 0 0 0 0 1 1

2 1 1 1 0 0 0 3

2 1 1 1 0 0 0 3

2 0 0 1 0 0 0 1

2 0 0 0 1 0 0 1

2 0 0 0 0 1 0 1

2 0 0 0 0 0 1 1

2 0 0 0 0 0 1 1

2 0 1 1 0 0 1 3

2 0 1 1 0 0 1 3
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Table 2 (Cont/d...)

Variant-Reliability Dataset

Group Iteml Item2 Item3 Item4 Item5 Item6 Total

2 0 1 0 1 0 0 2

2 0 1 0 0 1 0 2

2 0 0 0 0 0 1 1

2 1 1 0 0 0 0 2

2 0 1 1 0 0 0 2

2 0 0 0 0 0 0 0

2 0 0 1 1 0 0 2

2 0 1 0 1 1 0 3

2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

2 1 1 1 1 1 1 6

2 0 0 0 0 0 0 0

2 1 1 1 1 1 1 6

2 1 1 1 1 1 1 6

2 1 1 1 1 1 1 6

2 1 1 1 1 1 1 6

2 1 1 1 1 1 1 6

2 0 0 0 0 0 0 0

2 1 1 1 1 1 1 6

2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

2 1 1 1 1 1 1 6

2 0 0 0 0 0 0 0
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