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Abstract

This paper examines the differences between analyzing data

from the National Educational Longitudinal Study:88 with two

different types of methods; multilevel modeling and weighted

ordinary least squares regression. Results from this analysis

yield no astounding statistical criterion by which a researcher

should choose one method over another, but do illustrate some

theoretical situations when multilevel models are preferred.
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The Pitfalls of Ignoring Multilevel Design in National Datasets

Introduction

One of the reasons why research has not been overabundant

in the investigation of national archived datasets involves the

complexity of variables associated with educational issues.

Within the last few years, however, the rise of the use of the

microcomputer has given software packages the ability to

accomplish bigger and more complex tasks with just the click of

a mouse. For example, what previously took architects months to

draw on blueprints can now be designed in just a day with the

aid of AutoCAD. Searches through volumes of literature can now

be accomplished in a matter of minutes on the World Wide Web.

Statistical procedures that could conceivably take one person

years to perform can now be computed in a matter of seconds.

With the aid of computers and complex statistical packages,

researchers now have the ability to explore larger and more

complex data sets and, in effect, learn more about their fields

of study. However, even with the aid of microcomputers, the

methods available to researchers may still somewhat limit the

scope of questions that they can investigate. For example, even

though Spearman conceptualized factor analytic techniques in

1904, it was a technique that was not even attempted until the

1930's and not readily performed until the 1970's with the rise

4
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of the use of the microcomputer and complex statistical

packages. Now, researchers with the aid of SPSS, SAS, and other

statistical software use factor analysis routinely.

The same limitations have emerged with the development of

multilevel design, a promising approach for the study of the

complex relationships we encounter in education. Almost half a

century ago, Robinson (1950) discovered the need for multilevel

techniques while performing regression analyses at different

levels of variables (i.e., regressions with students and

regressions with schools). Later termed the Robinson effect,

these different level regressions "[showed] that analyses

executed at different levels of the hierarchy do not necessarily

produce the same results" (Kreft & de Leeuw, 1998, p. 3).

Although these regressions often gave opposite results when

measured at different levels, no statistical method existed that

could overcome this problem.

The problem that Robinson was facing was the ability to

describe data that have group regressions with both random

slopes (differences among schools) and random intercepts

(differences among students). This problem occurs in many

large-scale data sets (Seltzer, 1994). The challenge is two-

fold; it is necessary to not only recognize the need for

multilevel techniques, but to also utilize the potential value
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of multilevel techniques in broadening the types of questions

that can be addressed (Seltzer, 1991).

Despite the apparent promise of multilevel design, few

researchers have used these techniques to study complex problems

such as science performance in urban schools. Just as Robinson

(1950) first noted, companions of more commonly used

methodologies invoking multilevel methods might reveal

differences in findings across units of analysis that have

implications for both policy and practice.

In the present field of study, there is a distinct need for

multilevel techniques. Because the focus of the present study

is to examine differences between results obtained from

multilevel analyses and ordinary least squares (OLS) analyses,

it seems reasonable that any data that might be analyzed within

the study should be treated as level-1 variables (students)

nested within level-2 variables (urban schools). Treating the

data this way will allow researchers to both identify schools

that have students performing at different levels

(mean/intercept differences) and have greater rates of learning

(slope differences).

The use of multilevel techniques, instead of OLS methods,

will help in the interpretation of results. Instead of fitting

just one regression line to the data, multilevel techniques

recognize that the data are nested into groups and give

L). 6
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researchers an understanding of where and how effects are

occurring (Goldstein, Rasbash, Plewis, Draper, Browne, Yang,

Woodhouse, & Healy, 1998). Using multilevel techniques allows

the researcher to estimate the pattern of variation of the

schools. This is of great benefit because it helps to identify

variables that have a great amount of variation; that is,

variables in which there are large differences between students

within schools. Ignoring this clustering effect may cause the

standard errors of the regression (OLS) to be underestimated.

Specific to the field of science education in urban schools,

multilevel techniques provide greater ability to identify

variables in which urban schools differ greatly (complex level-2

variation) when regressed on the student science achievement

scores.

The present study will attempt to examine differences

between these two types of analyses (OLS and multilevel) by

investigating an archived dataset, the National Educational

Longitudinal Study of 1988.

NELS:88 Overview

While techniques used for affecting student achievement

have flourished under recent research, methods for uncovering

the identifying characteristics of successful students in

successful schools has also improved. One of the main reasons

7
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for this improved identification of predictor variables is the

improvement in the quality of data collection techniques. One

such result of successful data collection is the National

Educational Longitudinal Study (NELS:88). What follows is a

brief description of the content of the NELS:88 dataset, an

overview of the instrument development, validity and reliability

reports, and methods for dealing with the complexity of the

data.

Background of the NELS:88

The NELS:88 project was headed by the National Center for

Educational Statistics of the U.S. Department of Education. The

study was begun in February of 1986 as part of an extension of

the information gathered from other Department of Education

tests such as the National Longitudinal Study (NLS-72) and High

School and Beyond (HS&B). Unlike NLS-72 and HS&B which focused

on high school seniors and their post-secondary education, the

NELS:88 was designed to follow eighth graders from 1988 through

1994, measuring their academic progress at two year intervals.

The NELS:88 was originally designed to produce a general

purpose data set that could be used to inform policy makers on

current trends and needs for reform (Ingels, Scott, Lindmark,

Frankel, & Myers, 1992). Some of the policy issues that the

NELS:88 attempted to answer were the "identification of school

attributes associated with achievement, the transition of

8
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different types of students from eighth grade to secondary

school, the influence of ability grouping on future educational

experiences and achievements, determinants of dropping out of

the educational system, and changes in educational practices

over time" (Ingels et al. 1992, pp. 5-6). Through the use of an

extensive parent questionnaire, the NELS:88 also provided

insights into the role of parent(s) in the student's education,

something that other national data sets had not included.

Large national databases, such as the NELS:88, are able to

provide researchers with an added strength over independently

commissioned studies because the databases incorporate a larger

and more accurate population sample. As a result, these

national data sets produce comprehensive data that are more

effective in gauging the effectiveness of existing school-based

programs and reform efforts. Due to the longitudinal design of

these data sets, researchers are also able to analyze trend

data, which can aid in pointing to the most critical experiences

of high school students (Haggerty et al., 1996).

Undertakings such as the NELS:88 are simply not feasible

for a single researcher or even team of researchers. National

data set collections often have several commodities that

independent researchers do not possess: money, time, and

access. Because of constraints of budget, independent

researchers are rarely able to collect a sample population as

9
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large, as long (duration), or as geographically widespread as

the NELS:88. As a result, smaller research initiatives tend to

produce samples that are less representative of the population.

Although national data sets allow many research

opportunities, they also have disadvantages. First, and most

importantly, is the mismatch between researcher intent and the

instrument's contents. Many of the questions that are addressed

by external researchers utilizing these datasets are not

questions that were of primary interest to the developers of the

instrument(s). The difficulty with using the NELS:88 and other

national data sets is that researchers are trying to answer

their own questions (primary investigation) with someone else's

data (secondary analysis).

Instrument Development

The base year of the NELS:88 instrument covered content

categories including constitutional factors (sex and age),

ethnicity, home characteristics, socioeconomic status, work

status, attitudes and values, school characteristics, school

atmosphere, school work, school performance, guidance, special

programs and after-school programs, involvement with community,

life goals, and financial assistance (Ingels et al., 1992).

The NELS:88 was not just concerned with collecting data

only from the student's perspective. In an effort to provide

contextual sources for student outcomes, parents, teachers, and

10
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administrators were also surveyed. The school administrator

questionnaire was designed to collect information on school

characteristics, policies and practices, grading and testing

structure, parent involvement, and school climate (Ingels et

al., 1992).

The primary purpose of the teacher questionnaire was to

provide teacher information that could be used to analyze both

behaviors and outcomes of the student sample. These surveys

were administered to two of each sample student's teachers in

two of the four cognitive areas covered by the student

questionnaire (i.e., mathematics, science, reading, and social

studies) .

The NELS:88 instrument was developed not only to provide

current insight into the state of education, but also to allow

for cross-cohort research with other longitudinal data sets such

as HS&B and NLS-72. This aspect of the NELS:88 allows

researchers to conduct trend analysis between high school

sophomores (NELS:88 and HS&B) and high school seniors (NELS:88,

HS&B, and NLS-72).

Sampling Design and Issues

The NELS:88 sampled approximately 1,000 schools from the

over 40,000 public and private schools in the United States.

Within each of these schools, 24 eighth-grade students were

randomly selected to represent the nearly 3,000,000 students in

11
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schools in 1988. Among these 24 students for each school, an

additional 2-3 Asian and Hispanic students were added in over-

sampling to allow for generalization concerning policy relevant

groups.

Types of Data/Questions Available

Although the NELS:88 was designed to investigate a wide

range of research questions, researchers must ensure that their

questions using the NELS:88 are adequately represented in the

data. Some of the research issues that can be addressed by the

NELS:88 include, but are not limited to:

1. Students' academic growth over time.

2. Transition from eighth grade to high school.

3. The process of dropping out of school, as it occurs from

eighth grade on.

4. The role of the school in helping the disadvantaged.

5. The school experiences and academic performance of

minority students.

6. Students' pursuit of the study of mathematics and science.

7. The features of effective schools.

8. Access to and choice of postsecondary schools.

9. Transitions to postsecondary education and the world of

work.

10. Trend analyses with previous longitudinal studies (NCES,

1999a).

12
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Psychometric Properties/Issues of the NELS:88: Validity and

Reliability

As with any type of self-report survey, issues of score

validity and reliability are always a concern. In an article in

American Educational Research Journal, Nussbaum, Hamilton, and

Snow (1997) examined issues related to the validity of

assessment scores like the NELS:88, specifically in relation to

science assessment. They stated that part of the difficulty of

interpreting results from these broad surveys is that data are

often "limited to fairly superficial description" (p. 168).

Among their findings on the NELS:88, they discovered the

following:

1. The eighth-grade science achievement scores seem to be

ambiguous and unstable.

2. This instability in the eighth grade seems to consolidate

and stabilize as students progress through high school.

3. The NELS:88 science tests are actually multidimensional,

measuring three factors: quantitative science; spatial-

mechanical reasoning; and basic knowledge and reasoning.

Analyses based on total scores often misses important

effects.

4. Part of the reason for unreliable scores from eighth-grade

students can be explained by the fact that "middle school

science courses are general and heterogeneous, with diverse

13
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and nonstandardized content, relative to the more

specialized high school courses" (p. 169).

These results were consistent with the findings of Rock,

Pollack, and Quinn (1995) who conducted tests of the reliability

of the IRT Theta "T" score. Overall, they discovered that the

theta for the science measures was consistently lower than those

of the math and reading measures. They also discovered that the

reliability of theta for the base year science measure (.73) was

lower than both the first and second-year follow-ups (.81 and

.82, respectively).

With respect to the NELS:88, it should be noted, that

results from the achievement tests tend to produce more reliable

data as the students move further through their educational

experience. Therefore, if analyses are to be conducted using

achievement scores as outcome variables, a researcher would do

better to use the tenth- and twelfth-grade scores rather than

the eighth-grade scores.

Although it may seem that, when looking at science

achievement in the NELS:88, a researcher should use the eighth

grade science scores as a last resort, several objections must

be raised to the argument posed by Nussbaum et al. (1997). The

first objection is the issue of sample size. With complicated

data analysis techniques, larger sample sizes often afford a

more accurate interpretation of interactions within the data.

14
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This is especially true with multilevel modeling. When a

researcher decides to use either the tenth- or twelfth-grade

sample from the NELS:88, the student within-school count drops.

Part of the reason for this is that students have either moved

out of a district or have been funneled into a different high

school than their peers. For example, in the base year of the

NELS:88, one school may have had 10 students who were sampled

out of that school class of 100 students. Although it would be

expected that all of these students would attend the same high

school, two may have moved in the two years before the first

follow-up was collected. The student mobility then effectively

cuts the within school sample from 1:10 (10:100) to 2:25

(8:100). And because most urban schools have a high mobility

rate among their students, researchers must consider the

research design and ask whether or not the increased alpha in

science scores is worth the decreased student within-school

count.

A second issue to consider is the structure of science

courses in high school versus in eighth grade. Nussbaum et al.

(1997) noted "the relationship between course taking and ability

is probably reciprocal" (p. 169). This means that although

students who take more science courses will have higher science

achievement, the composition of students within those classes

are often students who already excel at science, and

15
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consequentially enjoy taking more science courses. As a result,

at the high school level, student achievement in science is

probably more of a byproduct of initial student ability rather

than school-level factors. The eighth-grade sample can provide

some help in overcoming this problem because middle-school

science curriculum is often more homogeneous across schools,

especially within states.

Third, the objections posed by showing that the science

tests actually measure three different constructs do not apply

as readily to the eighth-grade sample. Nussbaum et al. (1997)

noted "a reliable factor structure [arguing for three

independent factors] emerges in tenth grade and twelfth grade"

(p. 171). The factor structure is not nearly as strong for the

eighth-grade sample. Therefore, if a researcher were to use a

single factor from the science IRT theta T-scores, an argument

could be made that the eighth grade sample best represents a

test measuring'the single construct of science achievement.

Weights, SE, and Design Effects

In an effort to compensate for the student nonresponse and

unequal sampling probabilities, NELS:88 has a series of weights

built into the data set. Haggerty et al. (1996) described the

weighting process as involving two stages.

In the first step, unadjusted weights are

calculated as the inverse of the probabilities of

16
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selection, taking into account all stages of the

sample selection process. In the second step, these

initial weights are adjusted to compensate for unit

nonresponse; such nonresponse adjustments are

typically carried out separately within multiple

weighting cells. (p. 5-1)

Failure to use weighted samples with the NELS:88 could

result in two fallacies: under-representation and over-

representation. As was mentioned earlier, the NELS:88 over-

sampled some students (Hispanics, Asians, and private school

students) in an effort to provide better data for some sub-

population analyses. Failure to use weights with these students

will result in over-representation in the data. At the same

time, other students, because of nonresponse and under-sampling,

are under-represented in the data. For example, because of

under-representation in the second follow-up, some students have

a weight of 6,670 (NCES, 1999). This means that, because of

either nonresponse or under-sampling, that one student

represents 6,670 other students versus an original weight of

120.

When the NELS:88 was collected, the data were not just a

random sample from a population of students. Instead, the

sample design involved the disproportionate sampling of certain

groups/strata and clustered (multi-stage) probability sampling.

17
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The consequence of this data collection method is that the

resulting statistics are more variable than if they had been

drawn from a random sample of the population. As a result,

analyses cannot simply be performed on the data set assuming

that the variability of this data would be the same as that in a

random sample. Because of the data collection design, the data

in the NELS:88 is more variable than data collected from a

simple random sample (Haggerty et al., 1996). Therefore,

correct standard errors must be computed before analyses are

run. Procedures for calculating correct standard errors include

Taylor Series Approximations, Balanced Repeated Replication, and

Jackknife Repeated Replication.

Missing Data

One thing not addressed by the weighting of variables or

the correction of standard errors and design effects is the

issue of student drop off and student mortality in the

subsequent follow-up administrations of the NELS:88. In order

to address this issue, the three follow-up surveys included

"freshened" students, "base-year ineligible" students, and

subsampling. The freshened students were additional tenth

graders and seniors who were not part of the original sample,

but were added so that in subsequent years follow-ups would be

representative samples.
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The base-year ineligible students were individuals who were

deleted from the original sample (1988) by the school principal

for reasons of disability. In the first and second follow-ups,

these students were added back into the sample if it was felt

that their condition no longer presented a hindrance to data

collection or to the sample.

Another difficulty that the developers of the NELS:88 had

to overcome in the first and second follow-up was tracking the

almost 25,000 eighth grade students in 1000 middle schools to

almost 5000 high schools. Because some of these high schools

enrolled few NELS:88 students, a decision was made to subsample

these students. Students included in the subsample fall into

one of two categories: (1) students who transferred out of

their original school; and (2) nonrespondents who were

originally classified as potential dropouts. From the transfer

and "potential dropout" students, a 20% subsample and 50%

subsample, respectively, was drawn in the first follow-up.

However, when using multilevel techniques over non-

multilevel (OLS) techniques, missing data becomes less of an

issue. Multilevel analyses do not require nor assume that data

are completely crossed/balanced. Instead, the estimation

procedures are based on the assumption that "the probability of

being missing is independent of any of the random variables in



Multilevel vs. OLS 19

the model" (Goldstein et al., 1998, p. 61). Goldstein et al.

(1998) go on to explain this procedure:

[All available] data can be incorporated into the

analysis. . . [The condition of being missing], known

as completely random dropout may be relaxed to that of

random dropout where the missing mechanism depends on

the observed measurements. In this latter case, so

long as a full information estimation procedure is

used, such as that of maximum likelihood . . ., then

the actual missingness mechanism can be ignored. (p.

61)

For the researcher, this means that when repeated measures

analyses are preformed in multilevel modeling, there is no need

to drop students who do not have multiple measurements. Further

discussion of multilevel technique's ability to handle missing

data is presented by Diggle and Kenward (1994).

Multilevel Modeling

The history of multilevel modeling can be linked back to

the seminal work of Robinson (1950) in recognizing contextual

effects. Robinson's discovery was not unlike the differences

noted while neglecting structure (or context) in ANOVA designs

when using a crossed/balanced design over a nested design

(Roberts, 2000). Neglecting the fact that individuals or

20



Multilevel vs. OLS 20

measurement occasions may be nested inside other larger clusters

will often lead researchers to erroneous conclusions about their

data.

For illustrative purposes, let us suppose that a researcher

is interested in English proficiency among students within

schools across Texas. Simply performing an ANOVA to test for

differences between mean English proficiency scores within the

schools would neglect the fact that some of the schools closer

to the border of Mexico have a larger number of non-English

speaking students. Neglecting this structure might lead a

researcher to assume that a school is doing a poor job of

educating its students in English, when in fact they are doing a

superb job of teaching English, with respect to the population

of students in their school.

If percentage of non-English speaking students was then

considered as a covariate and an ANCOVA design was used, a

researcher would then be able to discover whether or not schools

differed. Although the ANCOVA method begins to correct some of

the problems associated with neglecting group structure, it

still can only provide answers to the question of if schools

differ and not why schools differ (Kreft & de Leeuw, 1998). In

a sense, multilevel analysis combines the strengths of

regression and ANCOVA designs by allowing researchers to predict

outcome scores with other continuous or non-continuous variables

21
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while taking into account the fact that the scores may be nested

within groups. Hence, we are able to not only determine which

schools differ, but examine why they differ.

What are Multilevel Models?

Although the popularity and awareness of multilevel and

hierarchical linear models has increased dramatically in the

last few years, it would be helpful here to provide a definition

and primer of these techniques. Multilevel statistical models

(MLM) may be regarded as an extension of the General Linear

Model (GLM). The GLM subsumes most statistical techniques like

ANOVA, ANCOVA, MANOVA, regression, and canonical correlation

(Fan, 1996). The advantage of multilevel modeling over simple

regression or ANOVA is that it allows the researcher to look at

hierarchically structured data and interpret results without

ignoring these structures. This is accomplished in MLM by

including a complex random part which can appropriately account

for correlations among the data.

Among the statistical packages currently developed for

running multilevel procedures, three are most commonly used:

(1) MLwiN, developed by Harvey Goldstein and the staff at the

Multilevel Models Project, Institute of Education, University of

London (Goldstein, Rasbash, Plewis, Draper, Browne, Yang,

Woodhouse, & Healy, 1998); (2) HLM, developed by Bryk,

Raudenbush, and Congdon (1996); and (3) PROC MIXED, a routine of

22
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the SAS statistical package (Singer, 1999). For the purposes of

this paper, multilevel analyses will be illustrated by MLwiN.

While each package has differing strengths, MLwiN was chosen

because of its notation and graphing capabilities. For a more

detailed discussion of the software packages available for

multilevel analysis, see Kreft and de Leeuw (1998) and Kreft, de

Leeuw, and van der Leeden (1994).

A multilevel or hierarchically structured dataset can take

many forms. All that is required is that level-1 units of some

type (e.g., students or measurement occasions) be nested inside

level-2 units (e.g., schools or years). Although the two-level

structure is the most common, multilevel models are not

restricted to just two levels, they simply must have at least

two levels.

Consider the following examples of multilevel data sets:

students nested within classrooms, students nested within

schools, students nested within classrooms nested within

schools, people nested within districts, measurement occasions

nested within subjects (repeated measures), students cross-

classified by school and neighborhood, and students having

multiple membership within schools across time (longitudinal

data). Each of these examples illustrate data that are

considered hierarchical in structure. Data derived from such

23
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hierarchical designs may be correlated, and the analysis must

take this into account.

Failure to recognize hierarchical data structures and

implement multilevel techniques could also result in

misinterpretation in the analysis. First, statistical models

that are not hierarchical sometimes ignore the structure of the

data and as a result report underestimated standard errors (no

between-unit variation), thus resulting in increased Type I

errors. Goldstein et al. (1998) illustrate that when using OLS

methods, one course of action may be chosen over others when in

fact that course may be due solely to chance.

Second, multilevel techniques are much more statistically

efficient than other techniques. Suppose that a researcher

wanted to explore the difference between math scores and SES

among 10,000 students in 300 schools. In order to look at the

different school effects, the researcher would be forced to plot

300 regressions (one for each school) and then attempt to

interpret results based on these regressions. Multilevel

techniques are more efficient because they do not require the

researcher to estimate all of these effects. Goldstein et al.

(1998) also note that "because [the OLS equation] does not treat

schools as a random sample it provides no useful quantification

of the variation among schools in the population more generally"

(p. 12) .

L 24
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Third, multilevel techniques assume a general linear model,

and as such, can perform multiple types of analyses that provide

more conservative estimates by allowing for correlated responses

within clusters.

As was alluded to earlier, multilevel modeling can perform

an array of analyses including ANCOVA, regression (OLS and GLS),

maximum likelihood estimation, repeated measures, meta-analysis,

multivariate response, Bayesian modeling, binary response,

bootstrap estimation, and multiple membership models. Although

all of these methods are available options to the researcher

using multilevel modeling, this paper will primarily deal with

the random effects model that can be used to analyze data

obtained from students nested within schools.

Intraclass correlation

Intraclass correlation (ICC) is the proportion of total

variance that is between the groups of the regression equation.

Put more succinctly, it "is the degree to which individuals

share common experiences due to closeness in space and/or time"

(Kreft & de Leeuw, 1998, p. 9). Hox (1995) explains the ICC as

a "population estimate of the variance explained by the grouping

structure" (p. 14). This concept is important to the researcher

because if intraclass correlation exists, then the traditional

linear model must be abandoned because the assumption of
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independent observations has been violated (Kreft & de Leeuw,

1998) .

In a two-level model, the ICC is found by dividing the

variance at the highest level (in this case the level-2) by the

sum of the variances at the lowest level and the highest level.

In other words, as Equation 1 explains, ICC (p) for a two-level

model is the proportion of group level variance from the total

variance, where 6u0 represents the level-2 variance and o

represents the level-1 variance.

2

Cru 0
2

+u0 e0

(1)

It is helpful here to illustrate the importance of ICC.

Let us suppose that a researcher has collected data on science

achievement from four schools where one is urban, one is

suburban, one is private, and one is rural. The traditional OLS

model would assume that each of these observations was

independent of the context/school in which the data were

collected, therefore neglecting intraclass correlation. Thus,

the prediction of student scores in science achievement would be

estimated irrespective of the type of school that the student

attended.

The multilevel model allows the possibility that the

students' scores on a given outcome variable may be partly a

function of the school that they are in. Students within the
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same school may tend to be more alike than students in different

schools, thus causing a greater dependency of observations, or

high intraclass correlation. Thus the presence of a high

intraclass correlation would mean that the highest level of the

predictor variable should be modeled as random to reflect the

fact that students tend to be more like students in their own

school rather than students in other schools.

Power of the ICC and the Design Effect

In the school effects model, intraclass correlation is

often the first statistic consulted when determining the amount

of total variance attributable to the differences between

schools. However, it is also important to consider the design

effect. For a two-level model, the design effect is computed

with the following formula:

Deff = 1 + (B-1) *p (2)

where p is an estimate of the intraclass correlation and B is the

cluster size (or average cluster size) (Snijders & Bosker,

1999) .

Once the design effect has been computed, it can be used to

approximate the effective sample size given the actual sample

size. This is somewhat similar to performing a "what if"

analysis in regression and ANOVA. The purpose in computing the

design effect is to determine the statistical power of the

design given the actual sample size, cluster size and ICC. Once

27
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the design effect has been computed, the effective sample size

(Ne) can be computed with the following equation:

Ne = N/Deff (3)

Therefore, the statistical power of the ICC would depend on

the cluster size. For example, if either B = 1 or the ICC = 0,

then Deff = 1 and Ne = N. In this case, the ICC has low

statistical power.

Therefore, a large intraclass correlation would be one

that, given the cluster sizes, would reduce the effective sample

size (Ne) below some acceptable threshold. Although not an

estimate of power, the design effect of an ICC is helpful in

determining whether or not the researcher needs to model random

level-2 variables in the regression equation. Snijders and

Bosker (1999) report that most educational research reports ICC

values between 0.05 and 0.20. Values greater than 0.20 for the

ICC should be considered large. For a discussion of the

relativeness of power and sampling sizes, see also Snijders &

Bosker (1993) and the discussion of the PINT (Power IN Two-level

designs) statistical package.

Statistical Significance

Although statistical significance is often one of the first

things determined and reported in univariate and multivariate

analyses, it has come under a considerable amount of fire

recently (Thompson, 1998). While obtaining a p-value below 0.05

28
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is often considered the mark of "significant" findings in the

linear equation, multilevel modeling is rarely concerned with

obtaining p-value estimates, but instead concerned with the

power of the multilevel analysis.

Using statistical significance techniques is sometimes

helpful, however, when determining the relative strength of the

influence of predictors. When trying to decide whether or not

to free or fix parameters for a multilevel model, sometimes chi-

square-versus-degrees-of-freedom tests are used to examine the

difference between two models. Using chi-square-versus-degrees-

of-freedom tests not only helps determine which models differ

significantly, but also helps the researcher produce a

parsimonious model.

For example, suppose a researcher decides to free an

explanatory variable at level-2 and in doing so adds four

degrees of freedom to the model. After this new model is run,

the researcher discovers that the change in chi-square (or

2*log likelihood) is only 2.1. Thus, the chi-square-versus-

degrees-of-freedom for 2.1 on 4 degrees of freedom is not

statistically significant. These results indicate that the

given variable probably should not be freed at the school-level

(level-2).

Although this type of testing is frequently used in

multilevel modeling to determine model fit and make decisions
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about parsimony, it requires that the model be nested. For a

more detailed discussion of other tests that may be performed to

test for differences between models, see Bryk and Raudenbush

(1992, pp. 48-59).

Variance Explained

Often times in the OLS regression model and in other OVA

models, researchers are concerned not only with whether or not

their predictors are statistically significant, but also the

amount of variance explained (R2) by each predictor and by the

total model. Once again, however, this is often not the case in

multilevel modeling. As was mentioned previously, the purpose

of multilevel modeling is on estimating the pattern of responses

across schools.

Determining the amount of variance explained in a

multilevel model is a very difficult process. For the

multilevel model, the variance explained is divided into the

variance accounted for at each level of the hierarchy. When

computing the variance explained for the two-level model, the

level-1 R2 can be found by dividing the variance of the empty

model (a random effects ANOVA model with only the general mean,

random groups, and random variations within groups) by the

variance for the full model (all predictors included) and then

subtracting that from one.

3,0
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Level-2 variance explained is then computed by dividing the

level-1 variance by the cluster size, as is illustrated in

Equation 5.

2

6e°
auoemPlY

1 ,2

au20full
B

(4)

(5)

Researchers should be cautioned from interpreting the amount of

variance explained, however, because adding predictors can

sometimes lead to a negative R2 if the variable added increases

the amount of variance at one level or another (Snijders &

Bosker, 1999).

While Snijders and Bosker (1999) partition out the variance

explained at each level, the variance explained by the overall

multilevel model can also be computed as follows. The first

step in this procedure is fitting the multilevel model in the

usual way. The predictions, or .37, are calculated using the

empty model, e.g., using only the grand mean as predictor. The

predictions 5; are then calculated using the full model, e.g.,

adding all predictors. The sum of squares total is then (y-ji)2,

and the sum of squares error is (y-Si) . The sum of squares

explained can then be calculated by subtracting the SST from the

SSE. Finally, the R2 is calculated by (SSR/SST) * 100%.
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Although it is helpful to compute R2 for the purposes of

comparing OLS models in terms of variance explained, an R2 will

not be computed here since the underlying comparison is between

the OLS and multilevel models.

Analysis

Sample

As was mentioned previously, the sample was drawn from the

base year of the NELS:88, which contained 24599 students. Of

these students, 7620 were in urban schools, 10246 were in

suburban schools, and 6733 were in rural schools. Because the

present study was only concerned with differences between

performance of urban schools, the suburban and rural school

students were dropped from the analysis. Of these 7620

students, 307 did not have student tests available, thus

reducing the sample to 7313 students in 317 schools. Following

the guidelines set forth by Lawrence and McLean (1999), the

dataset was further reduced to include only schools that had at

least 10 students within the school. This was done in an effort

to maintain robustness of estimation in multilevel modeling.

The final sample consisted of 7178 students in 298 schools.

Of these students, 597 were Asian/Pacific Islanders, 1339 were

of Hispanic origin, 1432 were African American, 3624 were

Caucasian, and 84 were American Indian or Alaskan Native. When

3 2
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applying the sampling weights to these observations, a weighted

sample of 704786 was used for analyses.

Variables Extracted

For the purposes of the present study 18 variables were

extracted from the NELS:88 dataset and examined. Each of these

variables were chosen based on current research (Boyd & Shouse,

1997; Hoffer et al., 1996) and the applicability of these

variables in describing the differences between urban school

students' achievement on science outcome variables.

The outcome, or dependent, variable selected for the

present analysis was the science item response theory (IRT; Fan,

1998) estimated number right standardized t-score (BY2XSSTD).

Although the NELS:88 provides many science outcome variables to

examine (science IRT estimated number right, science

standardized score, science percentile, and overall science

proficiency), the IRT estimated scores were chosen for two

reasons. First, unlike some of the science proficiency

estimates, the IRT estimated score is a continuous variable and

adds variance which maintains outcome variable in the analyses.

Second, when dealing with students at extremes of the

distribution, IRT estimates are traditionally better predictions

of student success than standardized or raw scores (Fan, 1998;

Lawson, 1991). Instead of simply reporting the number correct,

or raw score, of a student on the science achievement test, the
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IRT estimates instead considers the pattern of scores for that

individual and assign a score based on the pattern of responses.

One problem that researchers face when choosing to use the

IRT estimated scores, however, is just which IRT estimate to

use. The NELS:88 reports three different IRT scores: IRT

estimated number right raw score metric, IRT estimated number

right standardized t-score, and the IRT theta t-score. When

examining cohorts at one point in time, Ingels, Dowd, Baldridge,

Stipe, Bartot, and Frankel (1994). recommended using the IRT

estimated number right standardized t-score, because it has been

standardized within years, as opposed to the IRT theta t-score,

which is standardized between years.

The necessary weight for this selection of students was the

base year student questionnaire, BYQWT. Because this weight was

being used, traditional software packages such as SPSS and SAS

had to be abandoned. For purposes of this paper, the SUDAAN

software package (Shah, Barnwell, and Bieler, 1997) was

selected. Using SUDAAN will also require the use of the

Superstratum ID variable (SSTRATID) so that SUDAAN could

correctly estimate the standard errors for the dataset. As was

previously mentioned, NELS:88 sampling techniques oversampled

certain subgroups of students. As a result, one Hispanic

student may represent only 600 students, while one Caucasian

student may represent over 2000 students.
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SUDAAN allows for the correct computation of standard

errors and variance estimation by using both replication methods

and Taylor series linearization for obtaining variance estimates

of both the descriptive statistics and regression parameters

(Shah, Barnwell, & Bieler, 1997). There is a slight problem in

the apples-to-apples comparison of the SUDAAN and multilevel

modeling procedures in that the dataset used for the multilevel

model will not be weighted. Although the method of using

weighted samples when computing estimates in MLwiN or HLM, these

software packages do not currently allow for the inclusion of

weights.

Results

Table 1 presents the results from the single predictor

regressions for both the multilevel and weighted samples. For

each of the analyses, Po represents the intercept and pi

represents the unstandardized slope. The ICC, or intraclass

correlation, is also presented in this table.

Insert Table 1 about here

Results from Table 1 were then analyzed in a linear

regression where the gain scores in slopes (absolute value) was

defined as a dependent variable and the ICC was defined as the

3 5
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independent variable. The results of this linear regression

yielded non-significant results (p = 0.760) with an R2 of 0.006

(F = 0.096).

As can be seen from Table 1, there seems to be no

discernable pattern for determining which absolute value of the

slope will be greater. In this sample, 11 of the slopes for the

OLS sample were greater (absolute value) and 7 of the slopes for

the multilevel sample were greater (absolute value).

Several of these variables were also included in a multiple

regression in both a weighted OLS and multilevel model to

determine if there are any discernable patterns when multiple

predictors are included in an equation. The results are

presented in Table 2.

Insert Table 2 about here

However, as was, noted from the results of Table 1, the

results of the multiple regressions yield no discernable

patterns either. Discussions of the implications of these

findings will be presented in the following section.

Discussion

Although no statistical considerations for the implications

of not using multilevel analyses with the NELS:88 seemed to come

a6
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to the surface, some practical considerations should be

discussed here.

Results from Tables 1 and 2 seem to provide some means of

insight into interpreting differences between OLS and multilevel

results. As was mentioned previously, OLS models sometimes

ignore the structure of the data and as a result report

underestimated standard errors (no between-unit variation), thus

resulting in increased Type I errors. Although the

underestimated standard errors will potentially affect the

estimation of the weights for the slope coefficients, there can

be no independent way of determining how much (or in what

direction) the slope will be affected.

By looking at the results of Table 2 with some qualitative

assessment, a small pattern seems to begin developing. The two

variables that have the greatest magnitude of difference in

slope coefficients (BYSC45B3 and WHITE) are both variables that

would seem to have strong contextual effects. In this case, the

variable BYSC45B3 (science taught in a non-English language) is

scored "1" = yes and "2" = no. The results from this multiple

regression would seem to show that this variable is measuring an

artifact of the number of students in the school who are non-

English speakers and probably recent immigrants to the US. The

OLS estimate, which would present an "average" slope coefficient

across all schools, shows that there is only a slight difference

- 37
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between these schools. The multilevel estimate instead shows

that given the context of the school, the difference between

students within schools is actually much larger. When further

investigation of this variable was carried out, it was also

discovered that the standard error for pi for the multilevel

estimate was twice as large as the estimate for the OLS equation

(0.86 and 0.42 respectively).

The variable WHITE (White students versus the rest of the

students) would also seem to be a variable that would have

strong contextual effects. This would seem even more contextual

given the fact that this sample includes only the urban schools.

What this strong difference in results could indicate is that

many white students attend higher achieving schools which are

simply placed in urban settings (e.g., private schools, urban

high income schools, etc.).

Given these qualitative inquiries, the only conclusion that

can be immediately drawn is that the larger the contextual

effects, the more multilevel models are needed over OLS models.

These findings are corroborated by Kreft and de Leeuw (1997),

Roberts (in press), and Snijders and Bosker (1999).

Conclusion

This is somewhat a frustrating paper to both write and read

(I imagine). It would seem that there are no real spikes of
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truth that could be concluded from this paper. While this could

be argued, it should be pointed out that the general purpose of

this paper was to compare and investigate the differences

between a weighted OLS strategy for analyzing the NELS:88 and a

multilevel strategy. Results do show differences, but no

discernable pattern about these differences.

The strength that I see in using multilevel strategies over

OLS are threefold. First, as contextual effects grow larger,

the multilevel analyses tend to produce more accurate results of

the data. This was illustrated with the data presented in the

multiple regressions in Table 2.

Second, multilevel techniques allow the researcher more

statistically savvy analyses which are able to mine more complex

data. An example of this would be the analyzing of complex

cross-classified data and trend data where students have

multiple membership in different schools. Being that some of

the questions that can be asked across years with the NELS:88

require the use of complex techniques, multilevel methods seem

preferable when working with this dataset.

Finally, multilevel techniques (and specifically the MLwiN

software package) will allow for the identification of high

achieving schools when the focus of the study is a continuous

outcome variable. Some of the extended graphing capabilities

allow researchers to plot residuals and then identify schools
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with greater rates of increase in learning than other schools.

This can be especially helpful when trying to identify models

for school reform. Other packages must deal with this as either

an ANOVA (non-continuous outcome variables) or as a single least

squares line prediction.

Although there has been a slight case made here for the

utility and use of multilevel modeling over OLS, it should be

pointed out that these procedures are difficult and have a steep

learning curve. Researchers should be cautioned from simply

applying multilevel techniques. Some datasets often call for

more complicated methods such as modeling variance and error at

different levels of the hierarchy. In cases where researchers

are unsure of the application of multilevel methods, OLS

techniques should be utilized.
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Table 1
Results from single predictor regressions for multilevel and
weighted samples.

Variable

Multilevel OLS Weighted
Sample Sample

pi se ICC pi se r
2

Parents attended a school meeting BYS37A
Parents attended a school event - BYS37D
Attend science lab at least once a week -
BYS67AA
Afraid to ask question in science class -
BYS72B
Science will be useful in my future - BYS72C
Percent minority in school - G8MINOR
Percent free lunch in school - G8LUNCH
Socio-economic status composite - BYSES
Yearly family income - BYFAMINC
Number of hours spent on homework per
week - BYHOMEWK
Number of Hispanic teachers BYSC20C
Number of Black teachers - BYSC2OD
Number of White teachers - BYSC20E
Science taught in non-English language -
BYSC45B3
Belong to a parent-teacher organization -
BYP59A
Dummy variable - Black students versus rest

BLACK
Dummy variable White students versus rest

WHITE
Dummy variable Hispanic students versus
rest - HISPANIC

-1.42
-1.79

-1.06

1.95

-1.44
-1.95
-1.77
4.05
0.86

0.93

-1.14
-1.55
0.92

5.68

-2.19

-4.88

4.45

-2.95

0.26
0.25

0.38

0.13

0.12
0.12
0.11
0.17
0.05

0.09

0.22
0.14
0.19

1.09

0.25

0.33

0.31

0.35

.311

.309

.313

.321

.333

.119

.193

.182

.234

.336

.318

.246

.314

.314

.304

.291

.258

.318

-2.59
-4.09

-1.70

2.46

-1.33
-1.75
-1.47
5.60
1.36

1.32

-0.74
-1.35
0.74

4.05

-4.35

-6.91

7.74

-3.91

0.28
0.27

0.34

0.17

0.15
0.06
0.05
0.14
0.04

0.10

0.09
0.05
0.07

0.38

0.30

0.25

0.25

0.28

.02

.05

.01

.03

.02

.15

.11

.20

.15

.04

.01

.10

.02

.02

.04

.09

.15

.02

Note. These are variable names embedded within the NELS:88 dataset.
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Table 2
Results comparing the ordinary least squares model and the
multilevel model.

Variable
OLS

Estimate

Multilevel

Estimate

Greater

Value

Intercept

Parents attended a school event BYS37D

Hours spent on homework per week -
BYHOMEWK

Science taught in non-English language
BYSC45B3

Belong to a parent-teacher organization BYP59A

Dummy variable White students versus rest
White

46.06

(1.24)

-2.00

(0.30)

1.06

(0.11)

0.68

(0.42)

-2.07

(0.31)

6.58

(0.29)

41.91

(1.81)

-1.25

(0.27)

0.94

(.083)

3.07

(.86)

-1.48

(.27)

4.16

(.30)

OLS

OLS

OLS

Mult

OLS

OLS

Note. These are variable names embedded within the NELS:88 dataset.
Multiple R2 for the OLS model is 0.194.
Standard error in parenthesis.
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