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Analyzing Faculty Workload Data Using Multilevel Modeling

Abstract

Research on faculty productivity fails to account for the hierarchical nature of the

data. Faculty within an academic discipline more closely resemble one another than

faculty in other disciplines, resulting in dependent observations and thus inaccurate

statistical results. Unlike ordinary least squares, multilevel modeling takes into account

this grouping effect. The paper analyzes the research productivity of 1,104

tenured/tenure-track faculty from the 1993 NSOPF survey to compare traditional

regression models with a random coefficients model. The results indicate a large

grouping effect on research productivity, and the statistical as well as the substantive

results of the random coefficients model differ significantly from the regression

approach.
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Analyzing Faculty Workload Data Using Multilevel Modeling

Introduction

Because institutional researchers often advise high level administrators on policies that

may significantly impact their campuses, accurate analyses of institutional data are essential. Yet

in their analyses institutional researchers routinely overlook the effects caused by group

membership in academic disciplines. Generally one of two approaches are taken. Either

researchers build statistical models that examine data at the group level or organizational level

and neglect differences in individuals, or they examine data at the individual level and ignore the

impact of group membership. Both approaches can result in inaccurate parameter estimates, and

thus lead to poor or even misleading policy analyses. Multi-level modeling techniques allow

researchers to appropriately handle the complex organizational effects of colleges and

universities and provide the tools necessary to arrive at more accurate results.

One example of policy that must be analyzed using multi-level modeling techniques is

faculty productivity. In the last decade, one of the most salient policy issues in higher education

has been the regulation of faculty work. As the demands on state revenues have grown, state

legislators have begun focussing attention on increasing the productivity of faculty at state-

supported universities as an alternative to increasing state spending (Layzell, 1996). Some

legislators believe that significant cost savings would result if faculty, especially faculty at

research universities, were required to do more teaching. In fact, one study by the (Maryland

Higher Education System, 1994) argued that the University of Maryland, College Park, could

save $20 million annually if all full-time, tenured and tenure-track faculty were required to teach

five courses per year

Analyzing Faculty Workload Data Using Multilevel Modeling
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While many researchers have examined the processes by which faculty workload is

measured, few have studied the effects these mandates have on overall faculty research output

(Middaugh, 1998). Such an analysis is vital given the substantial revenues generated by faculty

research. A mandated increase in faculty teaching could decrease instructional costs, but these

savings might by offset by a concomitant loss in research revenues. Because grant dollars are an

important part of an institution's budget, efforts to save money by forcing faculty to teach more

could paradoxically cause a loss in revenue.

While an understanding of faculty productivity is critical, little research has been done on

the contextual effect of academic discipline on outputs. Faculty productivity across disciplines is

a very complex empirical issue and previous researchers have ignored one of the most important

effects, clustering. Understanding the effect of discipline is essential in analyses of faculty

productivity. Using the 1993 National Study of Postsecondary Faculty, we compare the statistical

and substantive results of multilevel or hierarchical linear modeling to the traditional regression

approach. Our results indicate large differences between the two statistical techniques.

Previous research

While faculty productivity has been the focus of numerous analyses, previous researchers

have largely ignored the multilevel nature of their data, not only in their choice of statistical

methodology, but also in their samples and variable construction. Because the factors affecting

faculty research productivity vary so much between institution types, academic fields and even

modes of research productivity, only an approach that takes this variation into account can hope

to accurately shed light on this important facet of higher education. We believe research in this

area must meet four criteria:

J
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Use of the appropriate unit of analysis: the individual.

Analysis is based on a sample of homogenous institutions.

Use of a dependent variable(s) that distinguish between heterogeneous modes of

research.

Use of a statistical technique that takes into account the clustered nature of the data.

We address each of these criteria in turn.

Some researchers have analyzed faculty productivity with data collected at the

institutional, departmental or discipline level rather than the individual level (Baird, 1991;

Bentley & Blackburn, 1990; Dundar & Lewis, 1998; Gander, 1999; Olson, 1994; Perry, Clifton,

Menec, Struthers, & Menges, 2000). In essence this approach takes individual data and uses unit

means as explanatory variables, usually combined with unit-level data such as budgetary

allocations. Such an approach allows an analysis of numerous departments or disciplines in

institutions across the country, resulting in very generalizable results. Unfortunately analyses of

this type are prone to what is known as an "ecological fallacy" (Robinson, 1950; King, 1999;

Kreft & De Leeuw, 1998), in which aggregate-level results may substantially differ or even be

the reverse of individual-level results. For example, an analysis based on departments might

reveal that departments with higher proportions of female faculty are less productive, while an

analysis of the same departments at the individual level might reveal that female faculty are more

productive than male faculty. While aggregate department or discipline-level data about faculty

research productivity for the nation is more readily available than individual-level data, the

severe biases introduced by aggregation renders the use of these data for multivariate analyses

almost impossible (but see the solution proposed by King, 1999). To understand individual-level

behavior, we must use individual-level data.

Analyzing Faculty Workload Data Using Multilevel Modeling 3



In addition to using samples of disciplines rather than samples of individuals, some

researchers have analyzed samples combining a wide variety of post-secondary institutions

(Bellas & Toutkoushian, 1999; Fox, 1992; Gander, 1999; Wanner et al., 1981). Bellas and

Toutkoushian (1999), for example, combine two-year institutions with four-year institutions

from several different Carnegie classifications (Carnegie Foundation for the Advancement of

Teaching, 1994). Given that the strengths of the relationships between factors affecting research

productivity and the dependent variable are likely to vary in strength between institutions,

lumping heterogeneous institutions into one sample can obscure these relationships. While such

an approach again assures generalizability to all major institutions in the country, such

generalization comes at a price. A more profitable approach would focus on a smaller sample of

more homogenous institutions, or the use of a methodology that takes this structure of the data

into account.

Besides sample selection, the construction of the dependent variable has also been

problematic in some studies, with researchers combining various types of research outputs into a

single measure or index (Bellas & Toutkoushian, 1999; Buchmueller et al., 1999; Olson, 1994;

Olsen & Simmons, 1996; Sullivan, 1996; Wanner et al., 1981). The concept of research

productivity embraces many different modes of research, from presentations to journal

publications and books to amount of grant dollars generated. Some require more effort to achieve

than others, and the amount of effort within a category can also vary; for example, in general an

article appearing in a non-refereed journal probably took less time and effort to produce than an

article appearing in a refereed journal. Combining research modes that vary in the amount of

effort required to produce an outcome can only obscure the substantive results. Again, the trade-

off is one between generalizability and clear results. Combining multiple modes into one index

7
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allows one to address the majority of faculty research output while simplifying the results, but at

the cost of possibly obscuring interesting substantive results. A second drawback to such indices

is that concrete policy recommendations can be difficult to make, because the substantive impact

of a change in an independent variable is not always clear.

Our final criterion involves the appropriate statistical technique to be used when

analyzing faculty productivity. All previous researchers have used simple cross-tabulations,

correlations or regression analysis. Such techniques ignore the clustered nature of the data,

because faculty members in an academic field often more closely resemble one another than

faculty in other fields (Austin, 1996). Clustering of the data can radically affect the substantive

results of any analysis, as will be explained below.

Our review of the literature has focused on one theme: data on faculty research

productivity can be quite heterogeneous, and this heterogeneity must be taken into account in

any analysis. Only by constructing samples and variables as homogenous as possible, and

explicitly modeling (at least partially) the remaining heterogeneous structure of the data can we

begin to truly understand why some faculty produce more than others.

Methodology and data

Clustering and estimation strategies

The impact of clustering on ordinary least squares (OLS) regression analysis can be seen

in Figure 1, which graphs faculty in two hypothetical academic departments. Faculty members in

the first department, in the upper left-hand corner of the figure, tend to teach few courses while

generating substantial grant dollars, while faculty in the second department tend to teach more

courses while bringing in fewer grant dollars. The first department can be considered a stylized

Analyzing Faculty Workload Data Using Multilevel Modeling 5
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hard sciences department, while the second can be viewed as a department in the humanities.

The lines through each group of faculty, labeled Bs and BH, represent the relationship between

courses taught and grant dollars generated for the faculty in that department.

If we estimated a simple OLS equation of the following form

y, = a +bx,+ e (1)

where yi represents grant dollars generated by faculty member i, a represents the intercept, b the

coefficient describing the relationship between courses taught and grant dollars, x; the number of

courses taught by the faculty member i, and e, a random error N(0, cr2), the result would be the

long dotted line with the slope coefficient B1= -.27. Ignoring the clustered nature of the data,

OLS fits a line that best describes the data, with the result that the relationship between courses

taught and grant dollars (either -.67 or -1.50, depending on the department) is underestimated to

be -.27.

One solution to this problem would be to include a dummy variable for one of the two

departments. This allows the intercepts to differ for each department, while constraining the

slope coefficient for courses taught (shown in the figure by the short dotted line B1= -1.08) to be

the same for each department. This estimate is much closer to the individual slopes for the two

departments, Bs and BH. The full solution under OLS would be to include an interaction term

between the department dummy variable and courses taught variable to allow Bi to vary between

the two departments, so that the correct estimates of Bs and BH are derived.

Fitting multiple group-based dummy variables and interaction terms is only practical

when the number of groups or clusters is quite small. Such a strategy cannot be used with data on

a university with numerous departments, or a sample such as the one used here where faculty are

distributed among 100+ academic fields. Two problems occur. First, multicollinearity among the

Analyzing Faculty Workload Data Using Multilevel Modeling
11
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dummy variables and interaction terms yield traditional hypothesis tests useless, and may also

affect the standard errors of other variables in the model if they vary by group. Second, this

procedure can provide inaccurate estimates, create difficulty interpreting the results and

significantly reduce the degrees of freedom (Stapleton & Lissitz, 1999). These models assume

that data for each faculty member is independent from other observations; however, the nesting

effect of disciplines at a research university causes a significant grouping effect and therefore

results in dependent observations.

Multilevel or hierarchical linear statistical techniques were developed to estimate data

clustered by groups. While OLS only accounts for variance at the individual level, multilevel

techniques take into account variance at both the individual and group levels, thus allowing

intercepts and slope coefficients for selected variables to vary across groups. These models

permit the researcher to examine the contextual effect of belonging to a particular group without

compromising degrees of freedom and accuracy of estimates. They are most commonly used to

study group effects on individual-level behavior. The classic example from the literature is the

effect of a student's socioeconomic background on math achievement, while also taking into

account the socioeconomic status (SES) of other students in the school by including school-level

means of student SES. Multilevel models are estimated with a variety of maximum likelihood

techniques (see the discussion in (Kreft & De Leeuw, 1998) and (Bryk & Raudenbush, 1992))1.

One specific subset of multilevel models is termed random coefficient models (Kreft &

De Leeuw, 1998; Greene, 1997). These models do not contain any variables measured at the

group level such as mean SES. Instead, the intercept is allowed to vary by groups, and

sometimes the coefficients of select independent variable's. Using the grant dollars example

above, the intercepts for each academic discipline are allowed to vary, and the coefficients for

12
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courses taught are also allowed to vary by discipline, but no discipline specific means are

included as explanatory variables.

This can be seen more clearly using equations:

yii = a./ + b /xi/ + Eii

a = Too + 14,#

b./ = 710

(2)

(3)

(4)

Equation (2) is the same as (1), with one additional subscript j signifying academic discipline

membership. Thus (2) is the amount of grant dollars generated by individual i in discipline j,

with this amount the function of a discipline-specific grant dollar amount (ai) plus the amount of

courses taught by individual i in discipline j (x1) conditional on the relationship between courses

taught and grant dollars in discipline j (the coefficient bi), plus a random error term for every

individual i in each j disciplines.

Equations (3) and (4) show how both the intercept and regression coefficient for courses

taught varies. The intercept or level of grant dollars (aj) for discipline j is the function of Am, the

average amount of grant dollars for all disciplines, plus an amount or deviation uoj which varies

by discipline. Similarly, the coefficient b.; is a function of Au , the average effect of courses on

grant dollars generated, plus a deviation that varies by discipline.

Although the estimation techniques differ, in terms of substantive theory this model is the

same as a regression model with dummy variables and interaction terms with courses taught for

all j-1 disciplines. Unlike OLS, however, the degree of freedom and other problems do not occur.

In addition, the interpretation of the results is clearer. Under OLS with multiple dummy variables

and interaction terms, the interpretation of the courses taught variables is the impact of courses

We estimated the multilevel models using PROC MIXED in SAS. See (Singer, 1999) for details.

Analyzing Faculty Workload Data Using Multilevel Modeling 9
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taught for the excluded academic discipline, or reference group. (Recall that with j groups, only

j-1 dummy variables and interaction terms can be entered into the regression equation, with the

intercept and independent variable on which the interaction terms are based representing the

effects for the one group that was excluded from the equation.) In a random coefficients model

2,10 becomes the average impact of courses taught on discipline.

In many applications in institutional research we are less concerned with discipline-

specific results and more concerned with being able to make global policy conclusions; for

example, telling the President or Provost that increasing course loads by one course would cause

the average amount of grant dollars generated to drop by X dollars. Random coefficient models

allow us to draw such substantive conclusions from our results. While OLS cannot handle the

large number of academic disciplines that are present in most institutions of higher education,

random coefficient models provide better estimation of more theoretically relevant models.

Sample data

We use the 1993 National Study of Postsecondary Faculty data (NSOPF) (U.S.

Department of Education, 1998) collected by the National Center for Education Statistics to

obtain a "general model" for postsecondary institutions in the United States, avoiding the

generalization problem posed by using data from a single institution. The weighted sample is all

full-time tenured or tenure-track faculty in Fall 1992 (excluding chairs) holding the rank of

assistant, associate or full professor at public Research I and II institutions. By only using data

from Research I and II institutions we reduce the heterogeneity between institutions. We exclude

chairs from the analysis given their unique administrative burden and its likely impact on

research productivity. (One strategy would be to include a dummy variable for chairs in our

model. But such a solution cannot take into account the likely possibility that the slope

14
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coefficients for some variables differ for chairs. Given their small numbers exclusion seemed the

best approach.)

The NSOPF survey asked faculty to choose their principle fields of teaching and research

from a detailed list of academic disciplines and major fields of study (see Appendix A). Principal

field of teaching is the variable used to cluster faculty into 104 homogenous groups. We believe

principle field of teaching more closely corresponds with a faculty member's academic

background and department than field of research. If the faculty respondent did not list a

teaching field we used their principal research field instead. Respondents failing to list either a

teaching or research field, or whose field was in the academic discipline of vocational training or

health sciences were excluded from the analysis.

Model

Dependent variables

We use two dependent variables to measure faculty research productivity: publications

over a two-year period and the dollar amount of external research funding. The means and

standard deviations for the dependent (and independent) variables are displayed in Table 1.

Respondents to the NSOPF survey were asked about the number of publications in a variety of

categories in the two years previous to the survey. We summed the number of articles published

in refereed professional or trade journals, creative works published in juried media and chapters

in edited volumes into a single measure of refereed publications.

The second dependent variable is the total external grant dollars for the 1992-1993

academic year on which the faculty member was a principal or co-principal investigator. Note

that this formulation excludes funds from the faculty member's institution, as well as grants on

Analyzing Faculty Workload Data Using Multilevel Modeling 11
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which the faculty member worked as a staff member.

Because of the nonlinear relationship between our dependent and independent variables,

the dependent variables are logged to ensure normality (Olson, 1994); see also the discussion in

(Tufte, 1974), pp. 108-134). Comparisons of regression equations using the logged and unlogged

variables show much better model fit using the logged version.

Independent variables

We use five groups of variables to model faculty research productivity. In our model

research productivity is a function of human capital, personal tastes, career status, teaching

workload, demographics and academic discipline.

Table 1. Means and Standard Deviations of Variables

Mean SD
Grant dollars 154274.984 857215.465
Grant dollars (logged) 4.792 5.631
Publications 5.059 4.858
Publications (logged) 1.236 0.896
Research assistantship 0.489 0.500
Scholarship 0.584 0.493
Ph.D. 0.869 0.337
Professional 0.057 0.232
Opportunity-research 2.233 0.757
Opportunity-teach 1.710 0.750
Full professor 0.421 0.494
Associate professor 0.319 0.466
Years in rank 8.631 7.341
Courses-undergraduate 1.101 1.087
Courses-graduate 0.531 0.723
Age 48.061 9.576
Non-white 0.176 0.381
Married 0.818 0.386
Female 0.241 0.428
Female*Married 0.163 0.370
Female*Children 0.196 0.619
Children 1.565 1.366

16
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Human capital and tastes will certainly affect research productivity. Those most able and

those who like to perform research will, all things being equal, be more productive. Human

capital is proxied with four dummy variables. The first measures whether a faculty member had

received a fellowship, scholarship or grant in graduate school. Because these financial supports

are usually awarded based on merit, this variable proxies raw ability. In addition to ability,

research training will also affect productivity (Buchmueller et al., 1999; Wanner et al., 1981).

The second dummy variable measure whether the faculty member had a research assistantship in

graduate school, while two other variables indicate the highest degree earned, either a Ph.D. or a

professional degree.

Research productivity is also a matter of personal taste, so we include two variables

measuring attitudes towards doing research. Respondents were asked to rate the importance on a

scale of one to three (three being "very important") of several factors in a hypothetical decision

to leave their current position. Two of these factors are "greater opportunity to teach" and

"greater opportunity to do research." We hypothesize that faculty who rate opportunities to do

research as very important will be more productive, while faculty rating opportunities to teach

will be less productive. This is due to individual tastes: faculty who would prefer to spend their

time doing research are likely to place emphasis on research in their hypothetical decision to

leave, while faculty preferring teaching are likely to emphasize the opportunity to teach. One can

argue that these variables also measure institutional climate, in that faculty facing administrative

pressure to publish or teach may rate these factors as very important. But given the sample,

Research I and II institutions, the pressure to publish is present at all the institutions in our

sample and probably does not vary widely.

17
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Faculty career status should also affect research productivity. We expect productivity to

vary by faculty rank, but in the opposite direction that some might hypothesize. Because of the

need to achieve tenured status, one could argue that junior faculty should be producing more

research than senior faculty. Disregarding the controversy over this hypothesis, this formulation

ignores the cross-sectional nature of our data. There is a substantial selection effect that is not

capture by our sample, in that faculty who achieve tenured status have (in theory) proven

themselves able to perform substantial research, while those less able are filtered out by the

tenure and promotion process. Thus these variables may actually capture human capital effects

more than career effects, but in either case they should be included as controls.

Years in current rank is also an important variable when predicting faculty productivity

(Stapleton & Lissitz, 1999). Including only faculty rank does not provide the full picture of

faculty experience. The productivity of full and associate professors who have held that rank for

several years is quite different than those recently promoted. Accounting only for three faculty

ranks would overlook the differences of people within those ranks.

Besides research, faculty are also expected to teach, often at both the undergraduate and

graduate levels. Given the time demands from teaching, faculty teaching numerous courses will,

all things being equal, be less productive than faculty with lighter teaching loads (Fox, 1992;

Neumann, 1996; but see also Braxton, 1996).

We include two variables to measure teaching load: the number of undergraduate courses

taught in the Fall 1992 semester and the number of graduate courses taught in the Fall 1992

semester. Given disparities between institutions as to what comprises a credit hour, and the fact

that courses involving internships and field research can generate large numbers of credit hours

18
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for one course, we believe that a simple count of courses provides a more accurate measure of

teaching load than the sum of course credit hours.

We separated teaching load into undergraduate and graduate courses because the course

demands for undergraduate courses can be quite different from graduate courses. While it is

difficult to control for the variability in the demands that each course has on a faculty member,

separating the undergraduate and graduate courses does provides some control.

We also include a set of demographic variables to control for differences between

faculty: age in years, a dummy variable if the faculty member is a minority, a dummy variable

indicating the faculty member was married, a dummy variable for gender, and number of

children. Because of the cross-sectional nature of the data, the interpretation of the age variable

is problematic because we cannot distinguish between aging and cohort effects (Lawrence &

Blackburn, 1988; Levin & Stephan, 1989); however, age still remains an important control

variable. We also include two interaction terms to control for the possible differential effect of

being married and having children on female faculty.

Finally, our models are organized around the 104 academic disciplines as designated by

NCES (See Appendix A). For the OLS models 103 dummy variables (with "Other Social

Sciences" as the excluded or reference discipline) were added to the model to control for

discipline. In the random coefficients models, academic discipline was made the intercept.

Results

We estimated two models for each dependent variable. The first model uses OLS with

103 dummy variables for academic discipline. The second was a random coefficients model

(RCM) in which the independent variables are fixed, similar to OLS, with two exceptions. First,

Analyzing Faculty Workload Data Using Multilevel Modeling 19 15



the intercept is allowed to vary by discipline. Second, the coefficients for undergraduate and

graduate courses taught are also allowed to vary by discipline.

While these choices are based on theory, they can also be tested like any hypothesis. In

the RCM approach both a fixed effect for the intercept and courses variables, and the variances

of the discipline-specific deviations from the intercept and deviations from the main course

effects, can be estimated and tested for statistical significance. If the intercept or the course

coefficients do not vary by discipline, the significance test for their variances will be negative.

Grant dollars

Before estimating the full models, we calculated the impact of academic discipline on

publications. The amount of variance that discipline explains in publications, or the inter-class

correlation (ICC), is .32. An ICC of this magnitude would indicate a grouping effect as a result

of academic discipline. This effect must be controlled for in the models. If such a grouping

effect was not present, a random coefficients approach would not yield dissimilar results from

OLS.

The results for the both the OLS and RCM models are presented in Table 2. The results

from both the OLS and RCM results reveal significant relationships between several of the

independent variables and publications.

Faculty members that were research assistants while in graduate school on average

generated more grant dollars. Education and rank have no significant impact on the ability to

earn grant money. Yet the number of years in rank has a negative relationship with grant dollars.

Those that have been in their current rank longer had less grant dollars on average than those

who have less years in their current appointment.

20
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Table 2. Grant Dollars and Publications Model Estimates

Grant Dollars Publications
OLSa RCM OLSa RCM

Slope coefficients
Intercept 4.914 * 5.652 ** 1.682 ** 1.693 **

(2.037) (1.405) (0.355) (0.234)
Research assistantship 1.922 ** 2.092 ** 0.135 * 0.195 **

(0.326) (0.311) (0.057) (0.052)
Scholarship 0.084 0.007 0.048 0.023

(0.303) (0.295) (0.053) (0.050)
Ph.D. -0.251 0.233 0.386 ** 0.499 **

(0.603) (0.559) (0.105) (0.091)
Professional 0.003 0.159 0.320 * 0.337 **

(0.821) (0.781) (0.143) (0.130)
Opportunity-research 0.404 * 0.398 * 0.129 ** 0.135 **

(0.200) (0.194) (0.035) (0.033)
Opportunity-teach -0.692 ** -0.749 ** -0.131 ** -0.144 **

(0.202) (0.197) (0.035) (0.034)
Full professor 0.922 + 0.837 0.469 ** 0.427 **

(0.526) (0.510) (0.092) (0.087)
Associate professor 0.315 0.212 0.237 ** 0.178 *

(0.444) (0.432) (0.077) (0.074)
Years in rank -0.087 ** -0.082 ** 0.004 0.002

(0.029) (0.028) (0.005) (0.005)
Courses-undergraduate -0.607 ** -0.729 ** -0.038 -0.077 *

(0.156) (0.179) (0.027) (0.031)
Courses-graduate -0.018 -0.138 -0.011 -0.025

(0.224) (0.232) (0.039) (0.045)
Age -0.017 -0.021 -0.028 ** -0.025 **

(0.028) (0.027) (0.005) (0.005)
Non-white -0.610 -0.439 0.123 0.094

(0.488) (0.472) (0.085) (0.080)
Married 0.449 0.576 0.123 0.095

(0.497) (0.488) (0.087) (0.083)
Female -1.071 -1.399 + -0.064 -0.145

(0.767) (0.742) (0.134) (0.126)
Female*Married 1.467 1.606 + -0.051 0.030

(0.894) (0.868) (0.156) (0.147)
Female*Children -0.268 -0.321 -0.015 -0.004

(0.356) (0.345) (0.062) (0.059)
Children -0.053 -0.004 -0.034 -0.025

(0.134) (0.131) (0.023) (0.022)

(continued)
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Slope variances
Intercepts 9.130 ** 0.114 *

(2.533) (0.051)
Courses-undergraduate 0.607 * 0.024 *

(0.363) (0.011)
Courses-graduate 0.391 0.041 +

(0.568) (0.027)
Residual 19.106 ** 0.557 **

(0.891) (0.027)
Model statistics

Adjusted R-square 0.398 0.267
SEE 4.447 0.775
F-test 6.97 ** 4.29 **
-2 Log likelihood 6785.1 2917.1
N 1,104 1,104 1,104 1,104

Note: ** p<.01, * p<.05, + p<.10.
coefficients and standard errors for 104 academic field dummy variables are not shown.

Preferences were also significantly related to grant dollars. On average, those that prefer

research over teaching secured more grant dollars than those that prefer teaching over research.

In both OLS and RCM, the more undergraduate faculty taught, the less grant dollars they

earned. Examining the slope variances in the RCM, it appears that the impact of the number of

undergraduate courses taught is different for different disciplines

Publications

As with grant dollars we first calculated an ICC. The amount of variance that discipline

explains in publications is .18, again a sizable ICC indicating a grouping effect as a result of

academic discipline.

Human capital appears to be strongly related to the number of publications by a faculty

member in the last two years. Faculty that had research assistantships while in graduate school

produced more publications. Faculty holding a Ph.D. or professional degree published more than
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those that did not, and full professors and associate professors had more publications than

associate professors.

Personal preferences also had a statistically significant relationship with publications in

both the OLS and RCF models. Faculty that prefer to teach rather than do research publish less;

and those faculty that prefer to do research publish more. The only demographic variable that

appears to relate to publications is age. On average, the older the faculty member the fewer

publications he or she produces, all else being equal.

In OLS, the number of undergraduate courses taught appears to have no significant

relationship with the number of publications. However, in the RCM, undergraduate courses is

statistically significant, and negatively related with publications. As the number of courses taught

increases, publication output decreases.

Of particular interest when examining results of RCM are the intercept and slope

variances and their significance. When academic discipline is set as the intercept, its relationship

with the dependent variable is significant. This would support the notion that discipline is an

important variable when examining publication productivity. Additionally, when the number of

undergraduate and graduate courses were allowed to vary across disciplines, their relationship

was significant with publications. In other words, the number of undergraduate and graduate

courses taught has a differential impact on publications across disciplines.

Assessing the impact of the independent variables

While RCM and OLS yield similar results when examining statistical significance, their

parameter coefficients are quite different. Examining the impact of one unit change in the

23
Analyzing Faculty Workload Data Using Multilevel Modeling 19



statistically significant independent variables has on publications and grant dollars illustrates

these differences (See Table 3).

When the dependent variable has been logged, the traditional interpretation of the

coefficient for an independent variables changes. In this situation a one-unit change in the

independent variable results in a percentage change in the dependent variable, at the mean level

of the dependent variable.

For example, in the OLS model, a one-unit increase in the number of courses taught

would on average yield a 45.5 percent decrease in grant dollars. With RCM, a one-unit increase

on average results in a 51.8 percent decrease in grant dollars. By using OLS, the estimation of

the impact of a one-unit change in courses would cause a 6.3 percentage point underestimation of

the amount of grant dollars earned on average. When universities are bringing in millions of

grant dollars a year, this underestimation is quite dramatic.

When estimating the impact of a one-unit increase in the number of courses taught on

publications, a similar, yet less dramatic difference exists. Using OLS, a one-unit increase in

Table 3. Impact of One-Unit Change on Publications and Grant Dollars'

Grant Dollars Publications
OLS RCM Difference OLS RCM Difference

Research assistantship 583.3% 710.1% -126.8% 14.5% 21.5% -7.1%
Ph.D. 47.1% 64.7% -17.6%
Professional degree 37.7% 40.1% -2.4%
Opportunity-research 49.8% 48.9% 0.9% 13.8% 14.5% -0.7%
Opportunity-teach -49.9% -52.7% 2.8% -12.3% -13.4% 1.1%
Full professor - - - 59.8% 53.3% 6.6%
Associate professor 26.7% 19.5% 7.3%

Years in rank -8.3% -7.9% -0.5% - - -
Courses - undergraduate -45.5% -51.8% 6.3% -3.7% -7.4% 3.7%

Age - - - -2.8% -2.5% -0.3%
'Because dependent variables are logged, impact is expressed as a percentage change in the dependent variable.
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courses would result in a 3.7 percent decrease in publications versus the 7.4 percent decrease

found in RCM. Relying only on OLS would result in recognizing only half of the actual impact

on publications caused by a one-unit change in the number of undergraduate courses.

In general, the impact of one unit change in the statistically significant independent

variables is quite dramatic. Examining the impact using RCM reveals that on average, a faculty

member that had a research assistantship earns approximately 710.1 percent more grant dollars

than a faculty member that did not. With the mean level of grant dollars equal to $154,275, this

means that all things being equal, a faculty member who had a research assistantship in graduate

school would bring in about $1,095,500 versus $154,275 for one who did not.

Preferences appear to have a large impact on productivity, as well. A faculty member

who has a one-unit increase in the preference to do research will on average produce 48.9

percent more grant dollars and 14.5 percent more publications. Note, however, that for these two

variables the differences between OLS and RCM are minimal.

Conclusion

Institutional research professionals are increasingly called upon to employ statistical

techniques to provide support institutional decision-making. Decisions about what modeling

technique is appropriate are extremely important. The manner in which universities are

organized (with faculty nested in departments, departments in nested colleges and colleges

nested within universities) would suggest that multi-level modeling techniques are most

appropriate. If these group effects are not accounted for in the type of modeling procedure

employed, inaccurate coefficients and subsequently poor analyses are likely to be the result.
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Our study of faculty workload shows the importance of using multi-level modeling when

studying faculty productivity. Previous research on faculty productivity is flawed for several

reasons: the use of inappropriate units of analysis, analysis based on heterogenous institutions,

the use of dependent variables that combine different modes of research productivity, and the use

of analytical techniques that overlook the clustered nature of faculty as a result of field of study.

We attempt to overcome the shortcomings of previous research through careful data selection

and variable construction while also employing multi-level modeling techniques.

Our study highlights several important aspects of the study of faculty work that cannot be

overlooked by institutional researchers. First, the group effect of academic field of study should

be accounted for when modeling faculty productivity. Simply controlling for discipline with a

series of dummy-coded variables can lead to inaccurate results. Employing a multi-level

modeling technique like RCM will yield the most accurate coefficients and standard errors

without compromising degrees of freedom. Only when a multi-level technique is employed can

the impact of other factors on individuals be adequately assessed.

Second, faculty work is extremely complex and cannot be explained using single

measures for research productivity. The ability to raise grant money and the ability to publish

require different sets of skills. Variables that have a large impact on grant dollars earned do not

have a similar impact on publications. Assuming that only one measure can assess research

productivity or combining several measures into one does not address differences among faculty.

Besides questions of appropriate estimation methods, our results also have important

implications for policy. Traditional OLS methods underestimate the impact of the several

important predictors of faculty productivity. The ransom coefficient models show that the

impact of having a research assistantship in graduate school, possessing a Ph.D., and
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undergraduate course loads are larger than the OLS models would lead us to believe. The

magnitude of the variable effects have significant policy implications.

Increasing the diversity of the upper ranks of faculty is an important goal for most

universities. But for minorities and women to achieve senior ranks they must produce research.

Given our results that indicate the large impact of research training in graduate school on

productivity, the role of graduate training and the pipeline for minority populations deserves

further analysis.

Policy makers that attempt to boost teaching loads by mandating course minimums

should be aware of the consequences. Adding only one course to faculty workloads will have

significant ramifications for the amount of grant dollars brought in by a university and the

number of publications produced. Further complicating policy decisions is the fact that an

increase in undergraduate teaching loads affects disciplines differently. A policy that requires all

faculty to teach a minimum number of courses will have a different impact on those teaching in

engineering than those teaching in the arts.

Multiple academic disciplines are ubiquitous in institutions of higher education.

Institutional researchers must take this into account. In the past, researchers have overlooked the

effect of groups, which in turn has probably caused inaccurate empirical results. With the advent

of new multilevel modeling techniques, we can now provide more accurate information to policy

makers on college and university campuses.
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Appendix - Distribution of Faculty by Field of Study and Academic Discipline

Code Field of study and academic discipline N %
AGRICULTURE

101 Agribusiness & Agricultural Production 8 0.7
102 Agricultural, Animal, Food, & Plant Sciences 40 3.6
103 Renewable Natural Resources, including Conservation, Fishing, & Forestry 11 1.0
110 Other Agriculture 13 1.2

ARCHITECTURE & ENVIRONMENTAL DESIGN
121 Architecture & Environmental Design 10 0.9
122 City, Community, & Regional Planning 2 0.2
123 Interior Design 3 0.3
130 Other Arch. & Environmental Design 4 0.4

ART
141 Art History & Appreciation 5 0.5
143 Dance 2 0.2
144 Design (other than Arch. Or Interior) 4 0.4
145 Dramatic arts 11 1.0
146 Film Arts 2 0.2
147 Fine Arts 11 1.0
148 Music 26 2.4
149 Music History & Appreciation 2 0.2
150 Other Visual & Performing Arts 5 0.5

BUSINESS
161 Accounting 14 1.3
162 Banking & Finance 13 1.2
163 Business Administration & Management 4 0.4
164 Business administrative support (e.g. Bookkeeping, Office Management, Secretarial) 3 0.3
165 Human Resources Development 3 0.3
166 Organizational Behavior 3 0.3
167 Marketing & Distribution 6 0.5
170 Other Business 5 0.5

COMMUNICATIONS
182 Broadcasting & Journalism 15 1.4
183 Communications Research 7 0.6
190 Other Communications 8 0.7

COMPUTER SCIENCE
201 Computer & Information Sciences 19 1.7
204 Systems Analysis 1 0.1
210 Other Computer Science 2 0.2

EDUCATION
221 Education, General 1 0.1
223 Bilingual/Cross-cultural Education 3 0.3
224 Curriculum & Instruction 7 0.6
225 Education Administration 11 1.0
226 Education Evaluation & Research 4 0.4
227 Educational Psychology 3 0.3
228 Special Education 4 0.4
229 Student Counseling & Personnel Svcs. 3 0.3
230 Other Education 9 0.8

TEACHER EDUCATION
241 Pre-Elementary 4 0.4
242 Elementary 4 0.4
243 Secondary 4 0.4
244 Adult & Continuing 1 0.1
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245 Other Teacher Ed. Programs 1 0.1
250 Teacher Education in Specific Subjects 8 0.7

ENGINEERING
261 Engineering, General 2 0.2
262 Civil Engineering 21 1.9
263 Electrical, Electronics, & Communication Engineering 36 3.3
264 Mechanical Engineering 19 1.7
265 Chemical Engineering 15 1.4
270 Other Engineering 21 1.9
280 Engineering-Related Technologies 4 0.4

ENGLISH AND LITERATURE
291 English, General 7 0.6
292 Composition & Creative Writing 9 0.8
293 American Literature 9 0.8
294 English Literature 29 2.6
295 Linguistics 11 1.0
296 Speech, Debate & Forensics 3 0.3
300 English, Other 6 0.5

FOREIGN LANGUAGES
311 Chinese (Mandarin, Cantonese, or Other Chinese) 3 0.3
312 French 10 0.9
313 German 9 0.8
314 Italian 2 0.2
315 Latin 3 0.3
316 Japanese 2 0.2
318 Russian or Other Slavic 6 0.5
319 Spanish 16 1.5

320 Other Foreign Languages 5 0.5
350 HOME ECONOMICS 21 1.9
360 INDUSTRIAL ARTS 1 0.1
370 LAW 23 2.1
380 LIBRARY & ARCHIVAL SCIENCES 9 0.8

NATURAL SCIENCES: BIOLOGICAL SCIENCES
391 Biochemistry 18 1.6
392 Biology 14 1.3

393 Botany 8 0.7
394 Genetics 7 0.6
395 Immunology 2 0.2
396 Microbiology 11 1.0
397 Physiology 7 0.6
398 Zoology 8 0.7
400 Biological Sciences, Other 24 2.2

NATURAL SCIENCES: PHYSICAL SCIENCES
411 Astronomy 2 0.2
412 Chemistry 27 2.5
413 Physics 27 2.5
414 Earth, Atmosphere, and Oceanographic (Geological Sciences) 19 1.7

420 Physical Sciences, Other 3 0.3
430 MATHEMATICS 52 4.7
440 STATISTICS 7 0.6
470 PARKS & RECREATION 4 0.4
480 PHILOSOPHY AND RELIGION 20 1.8
510 PSYCHOLOGY 32 2.9
520 PUBLIC AFFAIRS (e.g. Community Services, Public Administration, Public 10 0.9

Works, Social Work)
530 SCIENCE TECHNOLOGIES 1 0.1
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SOCIAL SCIENCES AND HISTORY
541 Social Sciences, General 4 0.4
542 Anthropology 12 1.1
543 Archeology 4 0.4
544 Area & Ethnic Studies 1 0.1
546 Economics 21 1.9
547 Geography 7 0.6
548 History 55 5.0
549 International Relations 1 0.1
550 Political Science & Government 26 2.4
551 Sociology 30 2.7
560 Other Social Sciences 8 0.1

TOTAL 1,104 100.0
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