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Abstract

This paper focuses upon three recently revised preservice, content-specific methods
courses: "Teaching of Middle School Mathematics,"” "Computing Technology in
Secondary School Mathematics," and "Teaching of Secondary School Mathematics."
Changes in these methods courses better address and build upon preservice teacher
beliefs about, and knowledge of, school mathematics, the teaching of mathematics, the
assessment of learned mathematics, and the student as learner of mathematics. The
authors believe these modifications increase the likelihood of graduates successfully
implementing mathematics reform curricula in middle and secondary school classrooms.

Materials described in this paper were written and compiled for the Secondary School
Mathematics Teacher Preparation Improvement Project co-funded by the Dwight D.
Eisenhower Higher Education Professional Development Grant Program through the
Michigan Department of Education and by Western Michigan University. Opinions
expressed are those of the authors and not necessarily those of the funding agencies.
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Preparing School Mathematics Teachers To Meet the Challenges of Reform

The movement to reform school mathematics, as called for in several documents including
the National Council of Teacher of Mathematics Curriculum and Evaluation Standards for
School Mathematics (1989), the Mathematical Sciences Education Board documents
Everybody Counts: A Report to the Nation on the Future of Mathematics Education
(National Research Council, 1989) and Reshaping School Mathematics: A Philosophy and
Framework for Curriculum (National Research Council, 1990), and the Michigan State
Board of Education’s Academic Core Curriculum Content Standards (1994), is well
underway. One major vision of this reform movement is that each student gain
mathematical power:

"[Mathematical power] denotes an individual's ability to explore, conjecture, and
reason logically, as well as the ability to use a variety of mathematical methods
effectively to solve nonroutine problems. This notion is based on the recognition
of mathematics as more than a collection of concepts and skills to be mastered; it
includes methods of investigating and reasoning, means of communication, and
notions of context. In addition, for each individual, mathematical power involves
the development of personal self-confidence." (NCTM, 1989, p. 5)

As acceptance of this broadened view of mathematics grows, traditional instructional patterns
and roles of both students and teachers are changing. In reform-minded classrooms,
emphasis is shifting from a curriculum dominated by memorization and paper-and-pencil
skills to one that emphasizes conceptual understanding, multiple representations,
mathematical modeling, and problem solving. Instructional emphasis is shifting away from
teacher-dominated lecture and demonstration techniques toward small-group work,
individual exploration, and discussions in which the role of the teacher is that of moderator,
facilitator, and assessor rather than that of dispenser of knowledge. Assessment techniques
are shifting from the dominant use of objective measures to include alternative means such as
open-ended questioning, oral and written reporting, projects, interviews, and portfolios.
The National Science Foundation has funded several projects to develop and publish
curriculum materials to support these changes in mathematics content, classroom instruction,
and assessment. These project materials are being designed to help teachers address the
needs of all learners and to provide those learners with experiences that take advantage of
pedagogical tactics that fit their learning styles.

Successful implementation of these changes requires that classroom teachers adopt reform-
minded beliefs both toward the nature of school mathematics and toward the nature of the
learner of mathematics. Since most teachers have had little to no direct experience with
reform-oriented instruction, carefully planned and implemented programs for both inservice
and preservice mathematics teachers are required. The Michigan Statewide Systemic
Initiative (MSSI), with the overall goal to ... transform the way that science and
mathematics are learned, taught, assessed and perceived in our state for the expressed
purpose of enabling all students to achieve scientific literacy and mathematical power” (MSSI
Mid-Point Review), has provided a leadership role in supporting such programs. In
particular, the MSSI component on Teacher Education and Reform (MSSI-TER) has focused
resources and efforts on the reform of mathematics and science teacher preparation in the
State. This paper focuses upon the efforts of a project to plan and implement reform-minded
changes to the mathematics methods content in the secondary mathematics teacher
preparation program at Western Michigan University (WMU). The WMU project, initially
formulated through work with the MSSI-TER, is co-funded by the Dwight D. Eisenhower
Higher Education Professional Development Grant Program through the Michigan
Department of Education and by Western Michigan University. Before discussing this
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project in more detail, we provide a brief overview of the mathematics teacher preparation
program at WMU.

The WMU Secondary School Mathematics Teacher Preservice Program.

Western Michigan University offers both a Secondary School Mathematics Teaching
major and minor for college students who elect to prepare themselves for careers in
middle school or high school mathematics teaching. The faculty who design and teach
courses in these programs are committed to the realization of the standards for the
professional development of teachers of mathematics as stated in the Professional
Standards for Teaching Mathematics (NCTM, 1991). In brief, our goal is to offer a
mathematics teacher preparation program where students experience good mathematics
teaching, acquire a strong and varied mathematics background and an understanding of
school mathematics, gain an understanding of the precollege learner, and acquire a
knowledge of a variety of pedagogical techniques appropriate for facilitating
mathematical learning at the middle and secondary school levels. The program is
designed around the assumption that students need varied experiences over a long
period of time in order to mature both as a student of mathematics and as a student of
the teaching of mathematics

The Secondary School Mathematics Teaching major is offered through the Department of
Mathematics & Statistics in the College of Arts & Sciences in cooperation with the College of
Education. The major program has components in mathematics content, general
methodologies for teaching and learning, and special methodologies for teaching and
learning mathematics. Mathematics courses have been selected to provide the major with a
broad range of experiences that include exposure to calculus, discrete mathematics, statistics,
geometry, modern algebra, and computing technologies. Students who have completed the
mathematics requirements of this major have a mathematics background equivalent to that
taken by non-teaching majors. As such, our students gain important understandings of the
concepts, skills, procedures, and methods of inquiry in the discipline of mathematics.

Three mathematics methods courses are also required in the major and focus upon both
middle school and high school teaching. The second course in the sequence focuses
exclusively upon the uses of computing technologies in the teaching and learning of middle
and secondary school mathematics. These courses force students to confront their existing
beliefs about mathematics teaching and learning, to question traditional roles of the teacher
and student in the mathematics classroom, to reflect upon alternatives for organizing
classroom instruction, and to consider alternative assessments of student understanding. All
of the content and specialty methods courses in this 40-semester hour major are currently
taught by faculty in the Department of Mathematics & Statistics. By sequencing coursework
in these areas over the entire four-year program, students have multiple experiences that both
enhance their understanding of mathematics and allow them to develop into competent and
reflective teacher practitioners. Other general pedagogical and field experience coursework
in support of this program, totaling a minimum of 31 semester hours, are currently offered
through the College of Education. This mathematics teaching major option enrolls
approximately 190 college students with 40 to 50 studeiis compieiinig the program each

year.
Redesign of the WMU Mathematics Teacher Preparation Program.

During 1996, and continuing into the first half of 1997, the authors have collaborated in an
Eisenhower Higher Education Professional Development funded project to study and
redesign the methods coursework required in the WMU preservice program. Although the
project, as a whole had a wider emphasis, this paper focuses upon the work to redesign and
coordinate the content and assessments in the three required methods courses. (Note: all
three courses are required of program majors; minors in the program are required to take
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only the first two courses.) An abbreviated catalog description of each of the three courses is
given as follows:

Math 350 Teaching of Middle School Mathematics (3 hours)

This course considers curriculum issues and trends in middle school
mathematics focusing on methods and materials for teaching mathematics
effectively to middle school students. Activity and laboratory approaches for
teaching mathematics are emphasized.

Math 351 Computing Technology in Secondary School Mathematics (3 hours)

This course introduces uses of computing technology to enhance and extend
the learning of mathematical topics in grades 7-12. Emphasis is placed on the
use of technology in problem solving and concept development.

Math 450 Teaching of Secondary School Mathematics (3 hours)

This course considers curriculum issues and trends in secondary school
mathematics focusing on methods and materials for teaching mathematics
effectively to secondary school students.

To describe the three courses in more detail, we focus upon four goal areas of importance in
the preparation of mathematics teachers. These areas, adapted from the Professional
Standards for Teaching Mathematics, are the preservice teacher’s knowledge of school
mathematics, knowledge of the teaching of mathematics, knowledge of the assessment of
learned mathematics, and knowledge of the student as learner of mathematics. A brief
overview of the attention paid to each of the four goal areas is provided for each course along
with appendices that provide samples of the activities, assignments, assessments, etc. used
in these courses.

Math 350: Teaching of Middle School Mathematics.

This course focuses upon the teaching and learning of mathematics at the middle school
level. Class time is spent in whole class or small group discussions, viewing video tapes of
peer presentations and/or elementary/middle school classrooms, group or individual
presentations, group work on activities, etc.. For the majority of students, this is the first
time they have seen manipulatives used for the presentation and understanding of
mathematical concepts, thought about using calculators as tools for learning vs. checking
computational answers, or developed lessons focusing on student activities vs. teacher
monologues. An intent of the variety in class structure/methodology, vis a vis the traditional
mathematics class structure of lecture and listen, is to provide opportunities for the preservice
teachers to confront their beliefs on the teaching and learning of mathematics. What follows
below is a brief description of a sampling of activities/opportunities, sorted into the
“Knowledge of...” categories.

Knowledge of School Mathematics

“To me, mathematics at the middle school level looks like a lot of repetition, which is
essential.” “Personally, I hate calculators.”

“It is difficult to describe what a middle school mathematics looks like (sic). I believe
it similar (sic) to giving a speech on a subject you know about to a bunch of people who
have a little bit of knowledge of that subject.” '

These are student quotes provided at the onset of the course relative to middle school
mathematics. To confront the implicit and explicit beliefs expressed in these quotes, we
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examine reform-minded curriculum projects and supplements such as The Connected Math
Project, Mathematics in the Mind’s Eye, NCTM’s Addenda Series, and Seeing and
Thinking Mathematically. These materials provide students little drill of computational
procedures. Concepts and procedures are reviewed in new contexts that make the revisiting
of ideas more interesting. Examples of more meaningful use of calculators in the reform
materials supplement the brief in-class examples using ideas from a variety of resources such
as Calculators and Mathematics Project - Los Angeles (CAMP-LA), Explorations with
Calculators from the University of Houston and the Alief Independent School District, and
Teachers Teaching with Technology Middle School Workshop.

Students are required to complete a group project that involves role playing teaching a middle
school mathematics lesson. The content standards are divided among the class for the lesson
focus and the reform curriculum materials are available for their examination. After the
lesson, the group summarizes key ideas of the curriculum materials for the class (see
Checklist for Assessing Group Presentations for details of task, Appendix A).

To allow for connections between problem-solving, rational number concepts, and the
middle school curriculum, the students create problems to submit to the Menu Problem
Department of NCTM’s Mathematics Teaching in the Middle School (see Menu of
Problems Protorubric, Appendix A). A first hurdle for most students as they create the
problems is to hone their definitions of what is an exercise vs. what is a problem. Several
class sessions have been devoted to solving non-routine problems, discussing what is a
problem, using a variety of problem-solving strategies but the creation of problems requires
a different level of thought. Generally a first draft of the problems provides a series of
exercises. Although students find this task difficult, many commented that it was a good
learning experience for them to develop interesting problems for middle school students.

“After sitting through three years of what has essentially been lecture-based, “high-
level” material, it’s difficult to think about guiding students who are still in what is
very much a mathematical discovery stage. Just divorcing myself from that type of
thinking has been, and will continue to be a huge challenge.” (Student quote at end of
course.)

Knowledge of the Teaching of Mathematics

“I need to remind myself that what I think is fairly easy to comprehend, the students
may not, therefore I'll need to go slow. I plan to lecture with notes, then examples on
the board, some problems for their notes and an occasional activity.”

Throughout the semester, students are exposed to alternative approaches to presenting
mathematical ideas other than lecture. Many lessons are started with activities to introduce
new manipulatives to the students, e.g. pattern blocks, tangrams, attribute blocks,
Cuisenaire rods, base-10 blocks, geoboards, Miras, etc. Small group discussions begin
centered on questions from the previous reading assignments or problem-solving tasks.
Students either record comments on sheets of notehook paper or a larger sheet ig distributed
to collect all the groups comments. These larger sheets are posted in the room and are edited
as the semester progresses to accommodate new thoughts. Individual presentations are
given on material that not everyone in the class had read, thus the preservice teacher is
contributing new information and insights to her peers, not just the instructor (see
Presentation of Info from Math 350 Readings Protorubric, Appendix A). Case studies are
read and reacted to, providing glimpses into many diverse classrooms and a variety of
teachers thoughts on teaching mathematics. Middle-school classroom visitations also take
place during the semester in a local city school district, providing for more experience with
diverse student audiences. Examples and nonexamples of reform-minded teaching of
mathematics are provided and allow for further discussion of how one can effectively teach
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mathematics. As mentioned previously, group presentations are given that simulate a
middle-school classroom lesson. Here is where the preservice teacher has some practice in
planning, leading, guiding, encouraging, questioning, etc. if only for a brief time.

“In order to break the chain of mediocrity, teachers need to push their students to reach
higher and farther by challenging their minds and providing them with informational
building blocks with which they can construct further knowledge, rather than simply
showing them a finished house and asking them to describe it again later. Teachers
need to create wonder in their students and show them that math is more than just
magical formulas and correctly calculated answers. That’s what a teacher has to do:
facilitate wonder, learning, and inquiry.”

Knowledge of the Assessment of Learned Mathematics

Throughout the course, students have been exposed to a variety of assessment tasks along
with corresponding rubrics. Students also evaluate peer problem-solving work using rubrics
designed by the Oregon Department of Education. Additionally, they are asked to design
their own rubric for evaluating class work that is submitted to the instructor. There is mixed
reaction about the use of rubrics, especially when applied to their own work. Some feel
constrained by the use of the guidelines, minimizing their creativity, while others feel that the
guidelines provide structure and expectations for the task thus minimizing guess work on
what they should do.

When students develop lesson plans, an assessment component is required that includes
questions and anticipated responses, in- and/or out-of-class tasks, or intended observations
(see Math 350 Lesson Plan Evaluation, Appendix A).

Knowledge of the Student as Learner of Mathematics

“I think they will only learn new math methods by practice.”

The two chapters, “Students’ Thinking: Middle Grades Mathematics” from NCTM ’s
Research Ideas for the Classroom (1993) and “Developing Understanding in Mathematics”
from Van de Walle’s Elementary School Mathematics: Teaching Developmentally
(1994) provide a theoretical backdrop for how students learn mathematics. In class,
discussions focus on summarizing their thoughts on the learning theories with an emphasis
on how to help children construct their own mathematics. These readings and discussions
are then followed up by 6 classroom visitations where the preservice teachers observe and
listen to students as they learn mathematics. The preservice teachers are to work with the
students during the class whenever possible, asking questions about what the students are
thinking and doing. All Math 350 students have commented that this is a valuable
component of the course. It provides a brief glimpse into what is happening in the middle
school classrooms and provides a means of making sense of theory. “However, I would
have liked to have seen this strategy (constructivism) in motion in a real .. classroom.’
What most of cur preservice teachers observed is traditional practice. A workshop is
planned for June 1997 for the participating middle school teachers, providing them an
opportunity to reflect on their practice based on the preservice teachers’ comments of what
they observed.

Math 351: Computing Technology in Secondary School Mathematics.

This course can best be described as a laboratory/discussion course in which students are
either working in pairs on mathematical situations that have applicability to middle and
secondary school mathematics curricula or conducting whole class discussions on the
teaching issues raised by such situations. All class meetings take place in a Macintosh
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computer lab and each student is loaned a programmable/graphing calculator (currently a TI-
82) for the term. Although this course places a greater emphasis on mathematical content
than on teaching methodologies, attention is given to each of the four identified areas of
concern. A general description of how each of the four areas are addressed is given
followed by a sampling from the unit assignments, projects, assessment items, and
evaluation forms used in the course.

Knowledge of School Mathematics

An important goal of this course, and a difficult one to reach, is to have preservice teachers
seriously reflect upon their beliefs about what mathematics is and what topics belong in the
school curriculum given the availability of advanced computing technologies for classroom
use. The course provides a “review” of school mathematics from a computing technology
perspective with an emphasis on multiple representations, applications, and alternative
solution methods. Topics are currently selected from five mathematical content areas:
discrete processes and algorithms, interpreting graphs of functions and relations, statistical
modeling, models of randomness, and topics in geometry. Expectations are to expand the
set of content areas to include symbolic manipulation and graph theory applications.
Problems taken or adapted from recent middle school and high school mathematics reform
curricula are used throughout the course. Students are asked to reflect upon the affect that
technology has on the mathematics curriculum by considering what content is made less
important than before, what content is made more important than before, and what content
becomes newly available for study at the school level.

Knowledge of the Teaching of Mathematics

A strong emphasis is placed on questioning & discussion, small group and pair
investigations, use of manipulatives and technology to development of key concepts and
problem solving strategies, interpretation of the approximate nature of results from the use of
technology, and other pedagogical issues related to the use of technology. A common
approach in this class is to present students with some mathematical situation or problem to
solve on their own or with a partner, follow this with a discussion of the vartous approaches
used and any difficulties encountered, and then finish with a discussion of the implications
of their experiences for the teaching of school mathematics. The opportunity to share with
peers always proves to be a valuable mechanism for our students to reflect upon and test
their own beliefs about teaching. In addition, our preservice teachers gain confidence in the
use of technological tools including graphing calculators, calculator-computer links,
Calculator Based Laboratory equipment and data collection probes, various software
(including a function grapher, a statistical analyzer, and a dynamic geometry package), and
the use of the World Wide Web as a resource for teaching mathematics.

Knowledge of the Assessment of [earned Mathematics

Instruction for the course models the expectations of a reform classroom with specific
emphasis given to ongoing assessment. Observation, questioning, written and oral

‘vyurt‘né, and tha \'l'rAn‘ur\g of whole clace/emall group i interaction charactarize tha learning

environment. Although many projects and reports are done by groups of 2 or 3 students,
individual accountability is maintained through the use of in-class midterm and final
examinations. Although this course does not focus on requiring students to create
assessment forms and rubrics, the reasons for using multiple and varied assessments are
discussed and their use reinforces the more formal study of assessment techniques provided
in the other two classes. Since many of the course projects are done in small groups,
students evaluate the contributions of their peers and these evaluations are used in
determining individual grades for the group projects.

Knowledge of the Student as Learner of Mathematics
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Given the heavy mathematical content, less attention is given in this course to a discussion of
the mathematical learner than in the other two courses. However, case studies from the
Harvard Mathematics Case Development Project focusing on the use of computing
technologies in mathematics instruction are woven into course discussions as time permits.
One of these case studies, “How High Can You Go?”, involves participants in a discussion
on the use of manipulatives and scientific calculators in a high school geometry class to solve
a problem involving exponential growth, on strategies for using small groups, and on
dealing with unmotivated students. Such case studies bring an element of realism to the
class and help our preservice teachers reflect upon the roles of the teacher and the learner
when using technology in instruction. In addition, the studies help to highlight some of the
difficulties students may experience in their learning of mathematics as well as in their use of
technology.

Sample Print Materials Used in Math 351

Appendix B provides a sampling of the materials that have been developed for use in Math
351 and an abstract page describing a National Science Foundation, Division of
Undergraduate Education funded project to formally develop, field test, and disseminate
materials for a combined methods and content course for preservice teachers focusing on the
use of computer and calculator technology in secondary school mathematics.

Math 450: Teaching of Secondary School Mathematics.

Math 450 serves as a capstone to the work begun in Math 350 and continued in Math 351.
The emphasis in the course is on the active participation of students in developing their own
understanding of the teaching of secondary school mathematics. Approaches taken in the
course include discussion of articles relating to the teaching and learning of mathematics,
doing mathematics, reading and analyzing cases of mathematics instruction, and interacting
with high school students and teachers. Students become familiar with current curriculum
problems and trends in secondary school mathematics, investigate ways to assess student
understanding of important mathematical concepts and processes, and construct unit and
lesson plans for selected mathematical topics. As is true of the entire sequence, the focus is
on teaching as a profession.

Reflection on class activities and field experiences (done concurrently through College of
Education coursework) is a crucial component of the course. A unifying theme of the course
is the importance of dialogue. Throughout the course, students are provided with
opportunities for engaging in informed conversation about mathematics teaching and learning
with colleagues. These opportunities range from weekly participation in an electronic
conference to making curricular decisions with a team of peers.

Within the course we address knowledges mentioned earlier: school mathematics, the
teaching of mathematics, the assessment of learned mathematics, and the learner of
mathematlcs Keepmg in mmd that a smgle act1v1ty, such as a case dlscussmn often

of the four areas is prov1ded below.

Knowledge of School Mathematics

The 7-12 section of the Curriculum and Evaluation Standards for School Mathematics is
addressed both directly and implicitly. One of the first assignments of the course is to read
carefully the first 35 pages of this section (introduction through the process standards) and
become familiar with the content standards. In class we revisit the four process standards (a
review from Math 350) and focus on the lists of topics/teaching methods that are to be
increased and decreased at the secondary level. One activity that we use to do this is a card
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sort. Each item in the increase and decrease list is placed on an index card. Groups of four
or five students are each given a stack with the instructions to correctly sort them into the
categories of increasing and decreasing attention. Groups that finish early are challenged to
further sort their stacks into the correct content standard categories. This provides a review
of the reading as well as a springboard for discussion. After the groups have finished their
sorting they are asked if there were any items on the increased/decreased list that surprised or
confused them. One pair of items that typically puzzles some students is the increase in
“functions that are constructed as models of real-world problems” and the decrease in
“formulas given as models of real-world problems.” They often include both items in the
increase stack. As a class, we discuss the differences between these two statements and the
reasons for increasing the first while the second is decreased. The students are encouraged
to think about what the proposed changes mean in the context of a high school mathematics
classroom. We make to point to discuss how “decreased attention” is not the same as “no
attention” and other ways that the Standards have been misinterpreted.

The major project for the course (and also a major assessment) is the development of a unit
plan. In small groups, the students select a topic from the 7-12 Curriculum Standards.
Their task is to put together a unified group of lessons around this topic that reflects the ideas
presented in the Standards. They are to include enough detail (in the form of teacher notes)
so that a competent teacher would be able to use the materials in the way intended by the
developers. Students are encouraged to research available activities and assessments and to
create their own when appropriate materials are not available. The unit is to include both
formative and summative assessment that is also reflective of current reforms.

Knowledge of the Teaching of Mathematics

The students gain knowledge in this area from, among other things, class discussions of
relevant readings, case discussions, and interacting with experienced mathematics teachers.
Perhaps most importantly, every attempt is made to model good teaching practices within the
course. Although the focus is not always explicit, our belief is that these experiences will
provide the basis for our students to provide similar experiences to their students. We also
feel that it is important to ground the discussions of teaching within a context to which our
students can make connections. To that end we have made a point of layering instructional
episodes. Typically, the first layer involves students completing a mathematical task, the
second involves them reflecting upon their work and the thinking processes they used, and
the third focuses on discussing issues involved with teaching and learning the content and
processes imbedded within the task.

One example that has provided successful opportunities for these layering episodes is the
Raven Experiment. The central focus of this series of lessons is a case study developed by
the Harvard Case Development Project, “Marble Line, Why Can’t You be True?” In this
case, an algebra teacher uses a laboratory experiment to illustrate linear functions. To better
understand her students’ learning as a result of the activity, the teacher reflects upon a
videotape of the lesson. Two pedagogical issues that come up in the case are the use of
hands-on experiments and effective questioning techniques. Mathematical issues raised
revoive around ihe praciical inierpreiaiion of i€ siope and veriical iniercepi in ihe equaiion of
aline. The case includes examples of student work.

We begin by doing the Raven Experiment, a laboratory activity based on the legend about the
thirsty raven who added stones to a well until the water was at a level he could reach with his
beak. Students are provided with a beaker, measuring tools, water, and marbles. They
measure the change in the height of water in the beaker as additional marbles are added. The
Math 450 students are put in the same situation as the students in the case and asked to
complete the same tasks. They record their results on the same information forms as the
students. Afterwards, they discuss their learning and we reflect upon the mathematics that is
involved in the experiment. Then the students are given the case to prepare for the next class
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period. Preparing for the case discussion involves reading the case at least twice, examining
and reflecting upon the high school student work in relation to what is described in the case,
and responding to the questions listed at the end of the case.

The case discussion focuses attention on the teaching and learning of the mathematics. The
case, combined with the experiences the preservice teachers have had with completing the
identical experiment involved in the case study, provides a rich context for the discussion of
teaching and learning. The conversation is able to focus on the theoretical in the context of
the practical. The Math 450 students walk away from the class with experiences to which
they may attach their new knowledge and vocabulary. They are better able to follow the
conversation and actions of the students in the case because they had experienced the same
context. Sometimes the discussions and actions were very similar and other times the Math
450 students were surprised by the differences. This surprise took on multiple forms -
surprise because the students in the case didn’t understand something that the Math 450
students took for granted as well as surprise because the students in the case took a simple
and elegant approach to solving a problem that the Math 450 students thought required
advanced mathematics.

Knowledge of the Assessment of Learned Mathematics

Along with classroom activities and discussion that focuses on assessment, the course itself
contains a variety of assessments. The semester begins with the students developing a rubric
to be used for assessing their class contribution. In this context, we discuss the purpose of
rubrics and ways in which they can be developed. The students are asked to reflect upon
what it would look like if a person was making a positive contribution to the class and how
that should be documented. With whole-class input, the instructor then pulls together the
class ideas to develop a useable instrument.

The majority of the assessments, including those covering the reading, are performance-
based. For example, after reading an initial series of articles discussing current reforms in
mathematics education, the students are given the following question:

You are in a job interview for a high school mathematics position. Sitting around
the table with you are the principal, two math teachers, and an English teacher. The
principal looks at his watch and says: “For the next fifteen minutes tell us what you
know about the current calls for reform in mathematics education.” You have with
you a notebook with some of your notes from Math 450 class and can refer to them
during the discussion. You say:

Another assessment, given after we have studied innovative curricular materials, asks them
to respond to this question:

On the way to a curriculum meeting with your mentor teacher you casually mention
that you studied innovative curricular materials in your math methods class. She
says, “Great! The committee really hasn’t had time to investigate the different
options so you can tell us what’s being developed and point out their differences
and similarities.” Always being prepared, you have your notes from Math 450 with
you. In the following space, write out what you would say to the committee:

Using this type of question helps the students put what they are learning in a context and
models the nature of the assessments they are being asked to use with their students. It has
been very rewarding to have students return from intern teaching and interviewing and say
that these types of things actually do happen to them and they are grateful that they had
practice organizing their thoughts and applying what they learned outside of the college
classroom.

Browning, Channell, & Van Zoest AMTE Ist Annual Conference



Another form of assessment in this course is a take-home midterm. As many of the students
in our program have friends and roommates slightly ahead or behind them we’ve been
working on developing a rotating collection of problems on which to base the midterm. The
key commonalties among the problems are that they involve significant mathematics and they
can be solved a number of equally successful ways. The first step is to solve the problem
and provide a complete but concise write-up of the solution. If applicable, a scale model is
to be provided as well. The second step is to identify and briefly explain as many
approaches to solving the problem as possible (without having to actually carry out the
complete solution). The third and final step is to critique the problem in relation to the
NCTM Standards - the process standards and any relevant content standards. After the
midterms have been collected and graded the students share their solutions with their
classmates. Often they are amazed at the variety of solutions and the depth and breadth of
mathematics that can be involved in a single problem.

Knowledge of the Learner of Mathematics

One of the ways that Math 450 increases the students’ understanding of the learner of
mathematics is incorporated into a lesson focused around Core-Plus Mathematics, one of the
NSF-sponsored reform curriculums. Consistent with the multi-layered approach we have
taken through out the course, the lesson begins by involving the Math 450 students in a
mathematics lesson from the Core-Plus textbook. The instruction models what would be
done with high school students. Next, we watch a videotape of a high school classroom
where the same lesson is being taught. This allows the Math 450 students to observe what
high school students do with the mathematics tasks that the Math 450 students have just
completed.

The Math 450 students also have the opportunity to view and discuss samples of high school
students’ work. This, in combination with the video, provides them with an understanding
of how high school students approach mathematics and what they are capable of doing.
Having realistic expectations for high school students is something that the prospective
teachers find difficult. They often base their expectations on their memories of what they did
in high school. This generalizes to the feeling that “if I did it, all high school students must
be able to” and “if I didn’t do it, it must be too hard.” Given that not many of our students
have yet been through a reform curriculum, topics such as discrete mathematics and activities
such as writing and presenting mathematical arguments are perceived as difficult, while a
high level of computational skill is expected. Seeing high school students and their work
helps our students to gain a more realistic perspective.

The lesson ends with a guest visit by a classroom teacher who has recently taught the Core-
Plus lesson we’ve been studying. This allows the Math 450 students to engage in dialogue
with someone who is currently experiencing high school students and can address how the
students respond to innovative materials, what is reasonable to expect of a high school
student, and other related issues.

Ac m-p-narahnn for their unit nlqn we are now alen ncl(mo our stndents to develon a nre-

assessment instrument and palr up with a high school student to pilot the instrument. As the
unit plan groups usually contain four students, this should provide a range of results. The
Math 450 students will be asked to look for commonalties among the student responses, as
well as differences, and to keep these factors in mind when developing their unit plan. Our
intend is for this to provide the Math 450 students with a context as they develop their unit
plan and to help them develop a deeper understanding of the learner of mathematics.

Browning, Channell, & Van Zoest AMTE 1st Annual Conference
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Appendix B
Sample Materials Used in

Math 351: Computing Technology in Secondary School Mathematics
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Math 351
Project 1: The World Wide Web

Most of you have had some experience navigating the World Wide Web (aka The Web). The Web
contains an enormous amount of information and it is often difficult to separate useful information from
that which is not so useful without spending inordinate amounts of time “surfing” different sites. There
are a number of websites focusing on mathematics and mathematics teaching and you should have some
familiarity with such sites as a resource for your teaching. The objective of this project is for you to
develop such a familiarity.

Attached is a short article from The Mathematics Teacher describing the Web and listing some
mathematics related sites along with their web addresses. Unfortunately, changes occur so quickly that
some of these sites may no longer exist and other, more useful, sites may have been developed.
Following the article is a list of several other websites and their addresses. Some of these sites have
connections to huge databases of information; others are more specific and focus on a smaller area of
emphasis. One particularly useful site, the Forum, maintains many databases. A Forum Quick Reference
page, listing all of the areas available at the Forum, is also attached.

For this project, you are to complete the following activities:
e Read the MT article Navigating the Web.

» T will assign you a specific website from the list A Sampling of Web Sites Related to
Mathematics & Mathematics Teaching to investigate using Netscape (software available on
many of the computers across campus including most of those in our Macintosh lab). You are
to-search through the information provided on your assigned site with the intention of
determining what that site has to offer a teacher of mathematics. If you so desire, you may
work with a partner in preparing and giving your reports. In such arrangements, the pair will
be responsible for searching and reporting on two different websites.

¢ Prepare a short 2-4 page word-processed report detailing your findings and submit that report to
me. Copies of your report will be distributed to the class and you will give a short 5-7 minute
oral presentation overviewing your findings to the class. Your reports should provide general
information concerning the types of information available at the site, some specific examples to
elaborate and clarify the general information, and your evaluation of the usefulness of the site
for a middle school or secondary school mathematics teacher (that is, where and how could it be
used). Your goal is to convince others of the usefulness (or lack of usefulness) of the site for
them as a mathematics teacher. Your article can include printed copies of website pages but
these should be supported with your interpretive and evaluative comments. It is possible to set
up a projection device so that you can connect to the Web during your oral presentation and
display pages from your selected website. If you desire to do this, please tell me well in
advance of your scheduled presentation.

All written reports will be due on Monday. February 10 and oral reports will be scheduled during class

sessions the following two weeks (prior to mid-semester break) with approximately 4 presentations per
session.
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Math 351
Project 2: Calculator Linking/Recursion

These activities are designed to acquaint you with the linking‘féatures of TI calculators and the computer
software “TI-Graph Link (82).” Although you will use a TI-82 for all of these activities, similar software
and procedures can be used to link TI-83, TI-85, and TI-92 calculator models.

1. Task: Send and receive a program from one calculator to another.
Connect the cable: The TI-82 LINK port is located at the center of the bottom edge of the calculator.

Insert either end of the black link cable into the port very firmly (this cable comes with every
calculator). Repeat with the other TI-82.

Prepare the receiving unit: Press [ LINK ] and highlight RECEIVE (use the arrow keys).

Press [ENTER| . (The message “Waiting ...” is displayed.) The receiving calculator must be
“waiting” when the sending calculator is given the command to transmit.

Prepare the sending unit: Press [LINK ] to display the SEND menu. Press 2 to select :
SelectAll- and to display the SELECT screen. Press the down arrow key until the cursor is on the
line with any stored information you wish to transmit. Press and a square dot will appear to

the left of the item indicating selection for transmission. (Multiple items can be selected and deselected
in this way for transmission.)

Transmit: Highlight the word TRANSMIT at the top of the display (use the arrow keys) on the
sending unit. Press [ENTER| to begin transmission. Information on the item(s) transmitted will be
displayed on both units.

(If procedure is unsuccessful, check that cable connections are tight on both units and repeat the above
process.)

2. Task: Send/Receive files between calculator memory and computer disk via the Graph Link.

Procedure: Make certain a gray Graph Link cable is attached to the Macintosh you are using. (This
cable and its associated software are purchased separately from the calculator.) Attached the calculator
end to the link port in the TI-82. On the Macintosh, find the TI-82 Graph Link program and open it
(double click on the icon). Set the Graph Link to receive individual files by pulling down the
“Receive” menu and highlighting “to Individual Files.” Select the file(s) to be transmitted just as you
did in the first activity. Transmit the files from the calculator to the computer. You will be asked to
specify where you wish the file stored. Save the file on the computer disk provided you. The
program will be given an 82p extension, for example, “FACTOR.82p” for a program called FACTOR
in the TI-82 memory.

Once transfer is completed, delete the program from your calculator’s memory. Transmit the program
file back to the calculator from the computer via the Graph Link. (Any program with the .82p
extension can be downloaded to a TI-82. Just select the “program” option from the “Send” menu and
select the file(s) you wish to transmit.)
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. Task: Print a copy of a TI-82 program file on the laser printer.

Procedure: Pull down the “File” menu and highlight “Print Info’” and “Program” in the submenus.
You can then select files for printing.

. Task: Obtain an LCD (liquid crystal display) screen from the calculator and print it on the laser printer.

Procedure: Graph a function on your TI-82. Pull down the “Receive” menu and select the “Get LCD
from TI-82” option. Print the LCD screen.

. Task: Copy and paste TI-82 screen images into a word processing document and print that document.

Procedure: Open any word processing software available on the Macintosh you are using. Type your
name and any descriptive information at the top of a new document. Move to the Graph Link
software. Graph a function and send a screen image of the graph to the computer. Copy this screen
image and paste it into your document. Change the TI-82 screen to show the window dimensions
(range) for the graph. Send this window image to the computer and copy and paste it into your
document. Print the document from the word processing software. You can also save screen images
to your 3.5” disk and then retrieve them at a later time.

. The Graph Link can also be used to create, edit, and save program files. This is sometimes more
convenient than trying to edit a program on the calculator itself. Note, however, you can not graph
functions or run programs using the Graph Link.

. Submit your work on the following:

You are to use calculator technology to determine a solution to the aluminum can pyramid problem as
shown below. Explain your plan of attack in solving the problem, describe your method(s) of
solution, include a statement of the recursive function you create to model this situation, and provide a
statement of the problem solution. In formulating your explanations, provide screen images (via the
TI-Graph Link (82)) of each of the following calculator windows as appropriate: Y=, WINDOWS,
TbiSet, TABLE, and GRAPH (with a trace at or near the solution).

Type up your solutions using any available word processing package in the lab. Your screen images
should be pasted into the document (not attached as a separate sheet).

Aluminum Can Pyramid Problem: . During a city-wide cleanup activity one weekend, some students
collected litter from city parks and playgrounds and accumulated 3000 aluminum beverage cans. To
call attention to their efforts, they decided to use the cans to build a pyramid-shaped tower in the
community center lobby (figure below). To build the pyramid they needed to know the number of
levels in the largest triangular pyramid they could construct with 3000 cans, and the number of cans in
the bottom level. (Note that a 3-level pyramid uses 10 cans: 1 can in the top level, 3 cans in the
second level, and 6 cans on the bottom level.) Determine this information.

A 3-level pyramid.
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Math 351
Project 4: Developing Mathematical Models

In this project you will collect data for two separate experiments and use curve fitting techniques to
develop mathematical models (functions) relating the variables under study. Your write up is to include a
brief description of the procedures used, a tabular listing of the data collected, a description of the various
mathematical functions you considered as fitting the data, a rationale for your selected “best fit” function,
and an interpretation of the reasonableness of the function for modeling the given physical situation.

Experiment 1: All Boxed In
Consider a 20-by-40 inch piece of material. If this material is folded in half and congruent squares are cut

from each corner, the resulting shape can be opened and refolded to form a “suitcase”. (Refer to the
diagram below.)

L S SIS
7

=1

‘ = x X

fix W 1
Begin by constructing a table of ordered pairs for x and V for several of the possible values of x. Use

curve fitting techniques to determine a polynomial function that describes the volume V of the suitcase in
terms of the length of the cut x used to form the congruent square cutouts.

X
\4

Once you have determined a polynomial fit for the (x, V) data, use an algebraic analysis of the problem to
determine a polynomial relating x and V. How does the “best-fit” polynomial compare with the one found
through algebraic analysis?

Experiment 2: EliM&Mination

Count out at least 150 M&M’s and place them into a container. (Make certain each of your M&M’s has
one face with the m printed on it. You may eat any “defects.”)

Toss (gently pour) the M&M’s onto a clean surface and remove the ones that land m side up. Count how
many remain. Record the number of the toss ¢ and the number of remaining M&M’s N in a table.

Repeat the tossing, removing, counting, and recording routine until all of the M&M’s are removed or until
8 tosses have been attempted, whichever occurs first.

t 1 2 3 4 5 6 7 8
N

Enter your data into your calculator and determine a function of “best-fit” describing the relationship
between t and N.

BESTCOPY AVAILABLE
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1.

2.

Math 351
Project 7: Monte Carlo Simulations

When a Monte Carlo simulation is run to estimate the answer to a problem, a random sample from the
population of possible outcomes is generated. [For example, assume 10 trials of a simulation for the
six-pens collection problem are run and an average of 17 purchased boxes (rounded up) is found. The
17 is one outcome selected from a population that could range from as small as 6 to as large as possible
(even though extreme values are very unlikely to occur).] In general, the population of possible
outcomes has some distribution that we may not know but would like to approximate. One way to
approximate this information is to obtain several sample values and to examine their distribution. The
descriptive statistics for the population are approximated by those of the samples collected and, in
general, the more samples studied, the closer the approximation will be. (For those with some
statistics background, this is an application of the Law of Large Numbers.) An examination of the
distribution of sample statistics provides a means to place reliability statements on our estimates. The
following problem focuses on this process.

During the regular 1990-91 NBA season, Jon Paxson of the Chicago Bulls had a field goal shooting
average of 0.548 (i.e., if he had attempted 1000 shots, he would have made 548 of them). During the
five championship games with the LA Lakers, Paxson made 32 of 49 attempted shots for a

32
championship shooting average of " or 0.653. Was Paxson’s championship game performance

phenomenal, or could one reasonably expect a 0.548 shooter to make 32 of 49 attempted shots?

Analysis: Define a trial for this situation as one 49 shot “game” in which we count a field goal as made
(a basket) if a randomly generated number is less than or equal to 0.548. Take a sample of 99 (the
capacity of the TI-82 lists) such games storing the number of baskets made for each game in a list.

[Note: Begin the program by clearing out the list used to store results from each trial. A program
simulating 99 trials will take around 4 minutes to run so debug with a fewer number of trials before
attempting to run all 99.]

Examine the summary statistics of the list and a distribution of the results to complete the following
statements:

a. A 0.548 field goal shooter can be expected to make 32 or more shots out of 49 attempts
% of the time.

b. 50% of the time, a 0.548 field goal shooter can be expected to make between and
shots out of 49 attempts. (Center this around the median.)

c. 90% of the time, a 0.548 field goal shooter can be expected to make between and
shots out of 49 attempts. (Center this around the median.)

Provide a listing of your program, the summary statistics for your data, a box-plot of the data (along
with the viewing window), and a histograph of the data (along with the viewing window). Answer
the three questions and manually mark your histograph to show the “regions of solution” for each.

The Monte Carlo procedures you have used to approximate areas of regions bounded by curves can be
generalized to approximate volumes of regions enclosed by surfaces. In this 3-dimensional dart
tossing experiment, a “dart board” is actually a right rectangular prism surrounding the space whose
volume is to be approximated. Develop and carryout a Monte Carlo simulation to approximate the

volume of the region bounded by the surface defined by x2 + y2 +z2 + 8x — 8y — 2z = 16. (Note:
modifying this equation by “completing the square” would be a good first step.) Provide a copy of
your program listing, a brief analysis of the program statements, and the results from a sample run.
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Sample Exam Questions used in Math 351

These sample items have been selected from more than one exam and are representative of the types of
questions ask on midterm and final exams in this course. The actual exams have a fewer number of items.
and workspace is provided for students to record their thoughts and problem solving strategies.

General directions to the students: Your responses to items on this exam will be evaluated on the basis of
your demonstrating an understanding of key concepts, the details and facts you use to support statements,
and the clarity and organization of your written comments.

1. Kenny Pay needs to borrow $5000. He reads that his local credit union is offering 3-year loans at 9%
annual interest (payable on the unpaid balance at the beginning of every month). Kenny has sufficient
income to make monthly payments of no more than $150? Is the $150/month payment sufficient for
repayment of the loan over 36 months? (Note: interest is charged at the 1st of each month beginning
one month after the initial loan is made and Kenny would make his monthly payment immediately after
this interest was added to the loan balance.)

You are to solve this problem using the sequence generating (recursion) capabilities of the TI-82. In
the space below, provide critical information regarding your entries for the following: the Y= menu,
the WINDOW dimensions, the TblSet window, at least two lines from the TABLE window showing
the information needed for determining a solution, and a rough sketch of the sequence graph of the
loan balance each month over the 3-years of the loan.

Un=
Un=

¥scl=_ =
Explain your reasoning for the selection of the window parameters.

Explain your solution to the problem using information from the table or graph to support your

conclusions.

2. A scatterplot and regression equation are found for the data at the right Women’s 800 m run
(you are not required to find either of these). Determine the Xmin and Year Time
Xmax for a “friendly window™ that wiil aiiow the TRACE cursor 0 i925 1440
move on the regression equation at one year intervals. Recall that the 1945 1320
TI-82 has 95 columns and 63 rows of pixels. 1965 118.0

1985 1133
Xmin = Xmax =
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3. Give a set of 10 data values that would produce the given box-and-whisker plot on the selected
window:

n FORMAT P1
Mmin=38
Xmax=46
Ymin=-58
Ymax=1688
Yscl=0

Med=36

4. The data in the table below shows position of an object from a reference point with respect to time.

time (sec) 0.3 05 08 1.0 1.2 1.3 1.5 1.7 1.9
position (cm) 43.1 406 272 206 95 143 81 53 06

A scatterplot of the data as produced by the computer software StatExplorer is shown below.

50.00
45,00
40.00 .
35.00
30.00
25.00
20.00 .
15.00 .
10,00+ .

5.00 .

0.00- T T T T . 1
0.25 0.735 1.25 1.75 2.25

Assume that time serves as the independent variable and that position serves as the dependent variable.
List the coordinates of the three points used in determining a median-median line of fit for this data by
hand (that is, without the use of the TI-82).

( ) — ) — )

Qlzatrh tha madianomadiaon lina Af fit An tha cnnttaralat me~srndad WA amn svmé on
~r [E S VR P W S STV S U R S e S S LV T PV VS TV VS S R U VTR ¥ 91 W) ovuu,\uyl\ll PLUVAUUU- \ AVU alv 11UL 1

the equation of this line nor to use the TI-82 for this task.)

k4
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5. The following data set shows the reaction times of a group of eight people administered various
amounts of a drug.
person dosage (mg) react time (sec)

CO~ION N P WHN) =
00 ~J
N O\
OO0 O000
OCO— OO 00w

a. Enter the data into your calculator and run a linear regression. Write the regression equation below
using D for dosage in milligrams and R for reaction time in seconds.

b. Is the linear model calculated above a good fit for the data presented or would some other model be
more appropriate? Explain your reasons for either acceptance or rejection.

6. If a set of data points (X, y) are related by the exponential function y = a-b* , a logarithmic
transformation of the data can be performed to linearize the data (that is, the 'transformed data will lie
on a line).

Apply a logarithmic transformation to the function y = a-b* and derive the equation of the line fitting
the transformed data (show your work). Express the slope of the line and its y-intercept in terms of
the parameters a and b found in the original function.

7. Abiologist treated several colonies of bacteria with a slow-acting poison designed to kill the bacteria.
Over a period of 16 hours, she counted the number of live bacteria at various times. She then used her
data to derive the following model for approximating the number of bacteria B(t), measured in

thousands, living in the colony t hours after treatment: B(t) = 2t3 — 7712 + 642t + 1968.

a. One of your students is trying to obtain a view of the graph of this function that shows the size of
the colony over the day following treatment with the poison. He knows that the interval for time
should span from 0 to 24 hours but is having difficulty with the appropriate interval to use for
representing the colony size. How would you suggest he determine an appropriate Ymin and
Ymax for the initial viewing window? Be specific.

b. One pair of your students produces the view of the

function shown at right. The students are arguing FORMAT

whether the bacteria colony dies out or not. One xmnfz'}‘

says yes because the graph touches the t-axes after Gecl=5

several hours. Another says no because the right 3““153-388

end of the graph is increasing. Which student, if Veci=50 Y,
either, is reasoning correctly? Explain. a

c. Reproduce the graph shown above on a TI-82. Using TRACE only, what can be said about the
minimum size of the bacteria colony as a result of information collected?

BEST COPY AVAILABLE
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8. The Trace feature of an automatic grapher has been used on a view of the graph of a function
y = f(x) to obtain the following coordinates read from consecutive pixels (standard forms of the
y-coordinates have been provided for ease in interpretation of this information):

x=92.931915 y =5.2804E-8  ( 0.000000052804)
x =92.965957 y = 1.02027E-6 ( 0.00000102027)
x=93 y = 1.3899E-6  ( 0.0000013899)

x =93.034043 y=6.1401E-7  ( 0.00000061401)

What information do these pixel coordinates convey about the theoretical value of the x-coordinate of a
relative extrema of this function? State your response using as much precision as is justified.

What information do these pixel coordinates convey about the theoretical value of the y-coordinate of a
relative extrema of this function? State your response using as much precision as is justified.

9. Two students studying the graphs of trig functions use separate TI-82’s to get a view of the graph of
y =-5cos 60x. Each correctly enters the function and sets the window dimensions to the default
viewing screen. (See below).

Y1B-Scos 68X FORMAT
Y= min=-1a

Y= rmax=1@

VYy= ¥scl=1

Ye= Ymin=-16

Ys= Ymax=1@

Yr= Yscl=1

Yg=

The two students get the following graphs and are concerned about the slight differences in their
results. Both graphs seem to indicate a period between 6 and 7 (and 2m is between 6 and 7) and both
show an amplitude of 5 (which each student agrees they should).

Student A Student B

AAN YA
W \{/ W

What reasons could account for the different graphs? Are both views “accurate” representations of the
function? Comment on their reasoning concerning the period.
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10.Consider the function y= 5V1 + x3

a

Assume that you plan to use the Monte Carlo technique of "dart throwing" to approximate the area
of the region bounded by this function, the x-axis, and the vertical lines x =~1 and x = 2. Use

your graphing calculator to obtain a graph of the curve y= 5V 1 + x3 containing the

x-interval [71, 2]. Draw a sketch of the defined region along with the rectangle you would use as
the "dartboard” for the Monte Carlo simulation. Label your sketch so that the dimensions of the
dartboard are obvious.

Complete the following program so that it can be used to conduct n trials (n input by the program

user) of the dart throwing simulation for the function y= 5V 1 + x3 over the
x-interval {1, 2]. The program should output the approximate area of the region based upon all

trials. (You are not expected to enter and run the program.)
ClrHome
OIH
Prompt N
For ( )
Ix

Iy

If

H+11H
End
ia

Disp "APPROX AREA",A
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11.The following situation is to be simulated using a Monte Carlo model:

Pat is playing basketball and has just been fouled. She gets two free-throw shots at the foul line.
Her past performance indicates that she makes 65% of her free-throw attempts and that consecutive
shots are independent of each other. What is the probability that she will make at least one of her
shots? '

a. Write a program for your calculator to simulate 250 trials of this situation. Have the program
output an approximation to the desired probability after every 50 trials of the simulation. Recall
that the value of T is a multiple of 50 whenever T/50=int (T/50) is a true statement. Write down
the lines of your program in the space provided.

b. Enter and run your program. Enter .5frand prior to running your program or place this
command as the first line of your program.) Record the information output from your program in
the following table.

Number of | Approximate
Trials Probability

50

100

150

200

250

12.A program designed to carry out the bisection algorithm to ROOT IN INTERUAL

approximate the zeroes of a function displays the information g ggg%gg?gg
shown at the right. What information does this convey about the MIDPOINT
theoretical value of the x-coordinate of a zero of this function? vy (Mml-:g?ﬁ%?%ls
State your response using as much precision as is justified 21.40278482€ -7
including place-value accuracy and correctness when rounded.

f(x)=3cos2x

gx) =(x-4H*’

one could use a program designed to carry out the bisection algorithm for approximating a zero of a
single function to solve this system. Use such a technique to actually solve the system with accuracy
on the x-coordinate of any solution to the nearest millionth. (You should have such a program in your
calculator. If not, have me transfer one to you.)

13.Consider the system { where x is assumed to be in radian measure. Describe how
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Learning to Teach School Mathematics with Technology (LTSMT)

NSF Proposal ID No.: DUE9652810

P.lL’s: Channell, Dwayne E.
Flanders, James R.

Institution: Western Michigan University
Department of Mathematics & Statistics
Kalamazoo, MI 49008

Email/phone: dwayne.channell@wmich.edu (616) 387-4524
flanders@csn.net (719) 481-9066

PROJECT ABSTRACT

Learning to Teach School Mathematics with Technology (LTSMT) is a project to
develop a combined methods and content course for preservice teachers focusing on the
use of computer and calculator technology in secondary school mathematics. Goals of
the LTSMT project for the preservice teacher are a) to develop confidence and ability
in the use of commonly available mathematics software; b) to build an understanding of
the importance of providing accessibility to software for students as a matter of equity,
of developing meaningful conceptual understanding, and of promoting mathematical
power in all; and c¢) to develop a reflective attitude that brings about a serious
examination, in light of available software, of beliefs about what mathematics is, what
topics belong in the curriculum, and what roles the teacher and learner should play in
classroom interaction. LTSMT materials will contain a rich mix of mathematics
content and methods consistent with the NCTM Standards and other reform
recommendations. Six modules organized by content area will involve students in
individual and cooperative-group investigations. Students will use a function grapher, a
data analysis package, a dynamic geometry program, a programming language, and a
symbolic manipulator. In order for LTSMT students to be exposed to the latest in
mathematics content and reform-oriented curriculum projects, problems and
investigations from recent NSF-funded middle and high school curriculum development
projects will be incorporated into the materials, coordinated with a systematic
examination of their pedagogical implications. The three-year project will create, pilot,
and evaluate these materials, with the goal of publishing the results for use in preservice
programs throughout the U.S. The flexible, modular design of the materials will allow
teacher educators to customize their use in a variety of course formats, hardware and
software configurations, and personal inclinations toward mathematics content.
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Appendix C
Sample Materials Used in

Math 450 - The Teaching of Secondary School Mathematics
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Professional Development Requirement

Two primary ways for continuing to develop as a professional mathematics teacher are belonging
to professional organizations and attending professional conferences. To introduce you to some of
the options available for professional development as a mathematics teacher, Math 450 requires the
following:

A.Student membership in the National Council of Teachers of Mathematics

For Math 450 the Mathematics Teacher is the most relevant journal but if you plan to teach in
a middle school or junior high Mathematics Teaching in the Middle School is an acceptable
alternative. Membership must be applied for no later than Friday, January 12, 1996.
Make sure that you write down your membership number as soon as you get it, the
membership cards can take awhile to arrive. The membership application form follows:

B. Attendance at a mathematics education conference

There are two conferences this semester that are in our geographical area: The University of
Michigan Mathematics Education Conference in Ann Arbor on Saturday, February 3, 1996
and the Michigan Council of Teachers of Mathematics regional conference Mathematics in
Action at Grand Valley State University on Friday, February 23, 1996. Both are small
conferences that will provide you with the opportunity to network with area teachers (i.e. get a
jump on the job search) as well as get some great ideas from sessions. Information and the
registration form for the University of Michigan conference follows. Information for the
Grand Valley conference should be available soon. It is a smaller conference than Michigan’s
but also includes lunch in a registration of $10 or less. After attending a conference, collect
your thoughts by writing a brief (1-2 page) summary of the sessions you attended. Turn
this summary in within one week of the conference you attend.

If for some reason (weather, emergency) you are unable to attend either of these conferences,
the following alternative assignment will satisfy the conference attendance requirement: Find
three teachers who are able to provide you with a Standards-based activity that they have
successfully used in their classrooms. Interview each teacher about their activity and the
impact it had on their students’ learning. Turn in a copy of each activity accompanied by a
brief (1-2 page) summary of the corresponding interview.
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Take~-Home Midterm
Math 450 Winter 1996

For the problem on the back of this page, do the following:

1. Solve the problem and provide a complete but concise write-up of the
solution and a scale-model of the dipstick. (45 pts.)

2. Identify and briefly explain as many approaches to solving the problem as
possible. (15 pts.)

3. Critique this problem in relation to the NCTM Standards. (40 pts.)
Total: 100 pts.

The midterm may be completed in pairs (2) or individually. If completed in
pairs, one paper will be turned in for the pair with both members receiving
the same grade.

Due at 2 p.m. on Friday, February 9, 1996.

~Rubrics~

Part 2: Approaches to Solving the Problem

Score Criteria

14-15 | A number of clearly cxplained approaches

12-13 | A few approaches clearly explained or a number of sketchy

approaches
10-11 | A few sketchy approaches or one strong approach
0-9 Inadequate response to no response at all

Part 3: NCTM Standards Critique of the Problem
Score Criteria

37-40 | All standards addressed in an exceptionally clear and relevant mannef
35-36 | All standards addressed 1in a clear and relevant manner

31-34 | Most standards addressed in a clear and relevant manner or all
standards addressed in a mostly clear and relevant manner
26-30 Solme standards addressed in a manner that is Iess than clear and
relevant

24-25 | Few standards addressed in a manner that 1s Iess than clear and
relevant

C-25 | lmadedquate response to no response at all
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Dipstick Problem

Johnie's aunt and uncle, Myrtle and Dipstick
Larry, live in the Upper Peninsula of -I
Michigan. They have a right §
cylindrical fuel tank buried on their g f”tI ‘ ’ i )
property. Standing upright, the tank i
has diameter 10 feet and height 30
K

feet. The tank, however, lays on its
side, and thus has length 30 feet and
height 10 feet, as shown here.

Last week, Johnie got this letter:

Dear Johnie

We need your help again! When you're here for Thanksgiving could
you make us a dipstick that we can use to measure the proportion of fuel
in that oil tank out back? We want the dipstick to be graduated to show
increments of 10% ranging from 0% full to 100% full.
We'd like the dipstick to be 18 feet long. We figured 10 feet for the tankj
5 feet for the ground depth on top of the tank, and an extra a feet sticking
up above ground. So maybe before you come up1 you could create a model
of the part of the dipstick that goes into the tank, and bring it with you.
Why don't you use a scale of 1 inch = 1 foot. So, Johnie, please bring a
model dipstick 10 inches long, with the graduations we described in the
first paragraph.

We know you can do it, Johnie, but to help us understand what you
did, on the model dipstick please include the height, to the nearest
thousandth of a foot, at which each graduation is marked. Something like
this: 40% = 2.073 feet. (No, this isn't right, just an example Larry

suggested!). Thanks - see you soon!

Love Aunt Myrtle
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