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Abstract: The authors of this paper propose an Internet facility that will authenticallyprovide laboratory experiments remotely. Such a facility is brought to the doors of thedistance learner to help provide learning that is comparable to that offered for conventionalstudents. This paper describes the development of a prototype remote laboratory system
including software, hardware, procedures, and instructional systems. This includes surveysof existing alternatives (mainly software simulation environments), a description of theprototype remote lab environment developed by the authors, and a discussion ofdevelopment issues, such as the reasons behind JAVA and RMI as the system's
development tools over other popular alternatives.

Introduction

Distance learning (DL) has become a powerful educational tool to reach students at times and placesthat are not strictly dictated by the educational institution. New technologyhas made it possible to overcomemany of the obstacles of distance in the educational process. Electronic mail, chat rooms, and live interactivevideo conferencing, for example, help to bring together the people involved in the educational process. TheWorld Wide Web has made available many of the resources that used to be reserved for use on an educationalcampus (Alhalabi, Hamza, & Sudeep, 1998; Harasim, Hiltz, Teles, & Turoff, 1995; Turoff, 1994).The success of DL, 'however, has been problematic for courses that require extensive use of laboratoryfacilities. In such courses, learning processes (i.e., problem solving and exploration) via laboratoryexperiments are indispensable. Thus, the distance learner has experienced a void, as no amount of theoreticalexplanation can be a quality surrogate for real laboratory experimentation. The challenge is to find ways toovercome the obstacle of distance and allow all students to fully participate in laboratory experiments.In a study that investigated currently available Internet-based educational modalities (Alhalabi, Hamza,& Sudeep, 1998), the authors surveyed a large number of online courses, distance education and virtualuniversities, and electronic online universities that are involved and actively taking part in DL programs.None of the researched universities and publications discussed or investigated the idea or the concept of reallabs via the Internet. Instead, they used primarily simulation software; i.e. virtual labs. Virtual labs, bydesign, place limitations on students' and teachers' abilities to experiment in real lab environments (Alhalabi,
Hamza, & Sudeep, 1998; Hsu, Oge, Hamza, Alhalabi, 1999).

In contrast to the simulated laboratories, this paper provides a conceptual proposal for theimplementation of an unrestricted environment where authentic laboratory experiments can take place via theInternet through remote access. Students have unrestricted freedom to apply any inputs and acquire resultingoutputs as though they attend the experiment in person. Such a method can liberate students from physically
attending the laboratory, and hence, engineering or science experiments can take place through distancelearning facilitation software.
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Thus, the authors of this paper, propose an Internet facility that will authentically provide laboratory
experiments remotely. Such a facility is brought to the doors of the distance learner to help provide learning
that is comparable to that offered for conventional students. This paper describes the development of a
prototype remote laboratory system including software, hardware, procedures, and instructional systems. This
includes a description of the prototype remote lab environment developed by the authors and a discussion of
development issues, such as the reasons behind JAVA and RMI as the system's development tools over other

popular alternatives.

Distributed Interface and Protocols

Java Language

Java was chosen for several reasons for the implementation of remote labs. Java allows for programs
that can be embedded in Internet web pages. Currently many applications, which are written in a wide variety
of languages, including C++, C, and Pascal, have fairly low level facilities like protocol handlers. As remote
laboratories rely on the Internet, Java was chosen due to its Internet readiness (Ince & Freeman, 1997).

Java is a machine-independent language, which creates programs that run on a wide variety of
computers using a range of operating systems. Since students will log on from a variety of computers to
attend the labs, it is more efficient to choose Java, which inherently solves the problem of portability

(Flanagan, 1998).
Java programs do not execute directly on the computer and hence will not interfere with the operating

system or user data Instead, they run on the Java virtual machine, solving the problems of security and
unauthorized access.

Java is a language well suited for interactive web applications. Most of the applications which are built
in other languages, such as CGI and HTML, give the impression of being interactive. But in reality they
usually move through a series of text and visual images following pointers to other sections of text and visual

images.
Java language offers the feature of multithreading. This means that there are multiple concurrent

executions of code, providing a high-level implementation of concurrent processing. This allows many
students to work on the same laboratory setup simultaneously (Geary & McCleallan, 1998).

Java is an Object Oriented programming language. It offers facilities to define and manipulate objects,
which are self-contained entities that have states and accept messages. Therefore, Java programs can be easily

modified, as reusability of code is possible (Cornell & Horstmann, 1997).

Distributed Interface Protocols

Since the virtual online laboratory will be a distributed environment, the implementation had to be in
CGI, JDBC, Sockets, IDL, or RMI methodologies. RMI was chosen to build the distributed computing
environment, written purely in Java. Other distributed computing environments are compared to RMI below.

The Common Gateway Interface (CGI) is a standard interface that allows web developers to execute
programs on an H'IT'P server. This is a very crude form of client-server computing whereby an HTTP client
invokes a program running on the server (usually passing it some data), and the program sends some results
back to the client for display on a browser. CGI programs operate in a stateless mode, which means that there
is no persistent connection maintained between the client and the server programs. Each time the CGI
program gets invoked its runtime environment (memory and system variables) also gets re-established. The
program being executed sends the information back to the client and the process shuts down. These recurring
starts and shutdowns generate an extra overhead in the server's load and cause delay in the performance. In
contrast to CGI, RMI operates in a persistent mode. In other words the network session between the client and
the remote objects remains active until the client or the server closes the connection. RM1's garbage
collection process automatically closes the TCP stream when the remote object is no longer referenced.
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Because of its persistence, RMI is far more effective than CGI in cases where the client is running within the
Java virtual machine. The extra overhead is eliminated and the performance is improved.

In some environments, JDBC calls are managed directly by the clients (Reese, 1997). A few JDBC
drivers require direct interaction with native database drivers such as the Microsoft ODBC, Oracle SQL Net,
etc. The security contained within most commercial browsers prohibits the execution of native code by the
Java applets (Cornell & Horstmann, 1997). Other JDBC drivers remove the native calls by introducing an
application server. The application server operates as a form of middleware, performing all database
interactions and session management on the server. When JDBC calls are incorporated in large-scale
applications, such as maintaining student records, it is extremely difficult to maintain the up-to-date database
drivers on every client. Also, if either the database engines or the middleware were replaced by another
product, every client application that accessed it would require modifications. The JDBC client is responsible
for managing the database session and processing the Information. This might cause the network to be
burdened with additional traffic as the client repeatedly communicates with the database. In contrast, RMI
allows partitioning of data access and workload from the client by encapsulating the JDBC code within a
remote object. This approach eliminates added maintenance of the client-side drivers. This also reduces the
network utilization by placing the RMI server physically closer to the Database server on the network. In this
case a single server was used both as a database and for RMI.

The actual exchange of information between the client and server is performed through the TCP
sockets. Architecturally the RMI process operates in a very similar way to those written with Socket objects.
Both support persistent network connections between the client and the server (Horton, 1997). In RMI
information between the client and server objects is performed through object serialization. However in
Sockets one must create the program logic to marshal and unmarshal the objects that are serialized. The RMI
is a higher level architecture than sockets. Although the two perform similar functions, the RMI allows you to
concentrate on value-added program logic and not network or object transports.

The IDL or Interface Definition Language (Baker, 1997) is a standard defined by the Object
Management Group for defining object interfaces. This is intended to establish the object's interface
definition regardless of the programming language and environment within which it is implemented. The IDL
operates in a model that is similar to the RMI, making use of stubs and skeletons to marshal parameters
between objects. RMI is useful in brokering object requests when the objects are written purely in Java.

Although there are many alternatives for building distributed applications like ours, RMI shows its
strength in several areas. Since we will be writing the code in Java it is completely portable. It also facilitates
application partitioning as the communication takes place across virtual machines. The JDBC package was
used as an interface for executing SQL statement (Reese, 1997). We implemented it in this way because: it
helps large-scale applications like ours to be written to the JDBC interface without worrying much about
which database will be deployed with the application; it keeps the main application insulated from vendor
specific issues, so the application can run equally well on Oracle or Microsoft-Access (see Figure 1); the
JDBC is built on drivers based on other databases API's, and they are very closely and deliberately mapped to
the ODBC counterparts, sharing conceptual components like Driver Manager, Connection, Result Set etc.



quint I., qruJeur:tdeat

Jan Appanage. Re Server Pew=

XS.= 71,4:7

...7147:itr:41.Z7.=.0;07747;77:457.414n7.7

s saver
Aire
9lees

lamer Br I Farr

JDIC
War wish ODDC Berke Dawn

Sybor Oath glaSQL

Fianna 1 !, 'RAM Wnririncr Privirnnment Tylineig4 fnr the RPmnte T SvetPni

System Hardware and Software Model

Hardware Model

For a prototype, we have built a remote laboratory for experimentation with electronic circuits. The 6B

Series product family from Analog Devices was used to build the required hardware as it provides a direct

interface between the host computer and a variety of analog input, analog output and digital I/O applications.

The hardware consists of analog input and output modules and the 6B50 digital I/O board. The following

input modules were used in the circuit: the 6B12 Module accepts millivolt inputs from 150mV to 500mV,

voltage inputs from 1V to 50V and process current inputs, returning data in engineering units; the 6B21

Module is an analog output module that provides digitally controlled, isolated current loop output to a

resolution of 12 bits with an output range from either0 to 20mA or 4 to 20mA.

System Software Model

The JDBC-ODBC bridge is included in the JDK 1.1 which enables Java applications to access data

through drivers written in the ODBC standard. The driver bridge is very useful for accessing data in data

sources for which no pure JDBC driver exists (see Figure 1). Through RMI a student can access any other

Java object running on a separate virtual machine where the serial communication and the database accesses

are performed. The Java applets, on which the students are working, invoke methods contained in remote

objects, which issue the calls for serial communication and database access.
The RMI architecture shows the student (client) process and the remote object (a particular experiment)

running on separate virtual machines These two are logically linked to each other through the registry. The

Java virtual laboratory application executes as a server process on Virtual Machine A. This application (the

remote object), identifies itself with the RMI registry, which is another Java application whose role is to

maintain active references to remote objects. A stub is a proxy for the remote object implementing its public

interface. When a student object references a remote object, it does so by referencing its stub. A skeleton is
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the stub's counterpart running on the remote server. Similar to the stub, it provides the mechanism for
accepting students' requests, forwarding them to the remote object and sending results back to the students.
Through the registry the remote objects offer their services to the students. When the student working on
Virtual Machine B wishes to invoke a method contained within the remote object, he/she first communicateswith the stub. The stub passes the information to the object reference, which requests the service from the
registry. The registry passes the request to the remote object through the skeleton. The student talks to theremote object by accessing the MI registry on the host where it resides, through a TCP socket connection
(i.e., the Internet). Once the registry accepts the student's requests, it delivers a reference in the form of a stubback to the client.

The student now invokes a method contained within the remote object's stub. This invocation may
involve exchange of additional objects as parameters to and return values from the function call. Making both
the server and the student's applet code serializable makes this communication possible.

At the server end, the parameters, such as the results of the experiment performed and the grade of the
student in an experiment, are forwarded to the remote object through a skeleton object. The skeleton
dispatches these parameters to the remote object and invokes the appropriate methods. When this function is
completed the return value is sent back through the skeleton and the stub objects and is received by the
student as shown in Figure 1. The remote object and the student lie at the same level of communication i.e.
any request by the student can be answered only by the remote object and vice versa. The same is true for the
stub-skeleton and the RMI registry object reference. The Security Manager in RMI (Horton, 1997) also makes
sure that the appropriate measures are implemented to make sure that the application is well behaved and
does not violate the laboratory rules. With the help of the security manager the students will be prevented
from accessing restricted information, such as grades, on the server machine.

Implementation Details

Once the student goes to the URL (http://jupiter.cse.fau.edu/directory.html) the ClientApplet gets
loaded (Geary & McCleallan, 1998). The browser now halts and the RMI procedures associated with the
browser start by establishing a one to one connection with the Virtual Laboratory server

When the applet runs, it automatically connects to the remote objects because the start method of the
applet contains the remote objects' EP address and the remote object registry name. Once the connection has
been established, RMI will get the Remote Object Proxy into the users' machine, and this proxy has the
reference of the remote object. RMI has server-side skeleton and client-side stub. Once the student invokes
any methods the stub interacts with the skeleton and retrieves the required remote object (see Figure 1).

The student can invoke all the methods of the server (remote objects) from the client program with the
use of the stub. The server contains the skeleton of the remote objects (stubs and skeletons are generated by
the RMIC compiler provided in the JDK kit). The skeleton knows the location of the remote objects in the
memory of the server. When the client invokes the method, the stub sends the message to the skeleton; the
skeleton calls the remote object; the remote object does the work requested by the client and replies to the
server skeleton. The skeleton then replies to the client stub and the stub sends the message back to the client.

Following is an example of student registration into the virtual laboratory. To register, the student types
in his/her login name and password and clicks on the register button, invoking the Register° function in the
applet, which gaps the login name and password. The OpenDirectoryO function will return the thread number
for that student (Horton, 1997). Using this thread number the remote object's method is called with the login
name and password as parameters. This calls another method for database connection using the JDBC
predefined command for SQL query, which checks if any other login name in the database matches the one
the user has entered. If it does, a message is sent to the ClientApplet code which asks the user to try another
login name. If no duplicate login exists the login name and password are inserted into the database and a
positive message will be sent to ClientApplet code which informs the user that registgration has been
successful. At the end, PerformLoginO calls the CloseDirectoryO function that closes the connection between
the client and the remote object (Horton, 1997; Bishop, 1998).

The registered student enters his login name and password and clicks on the Login button invoking
PerformLoginO in the applet. The OpenDirectory° function will return the thread number for this particular
client. Using this thread number the remote object methods are called and the login name and password are
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passed as parameters. This method calls another method for database connection using JDBC predefined
command for SQL query. This method checks if the student's login is present in the database. After the check

is made, it asks the student to perform Experiment Number I, if not already performed, or to click on the Get

Grade button to see his/her grade in the lab. Finally, Perform Login() calls the Close Directory() function,
which closes the connection between the client and the remoteobject.

If the student has not performed the experiment the student selects Experiment Number 1 from the

choice menu and clicks on the Get Experiment button. This will build a new panel, which consists of the new

experiment. The Get Experiment button will be enabled only if the student has not performed the experiment.

Once the experiment number 1 panel is built the student enters three different values for the current. The

student can now click on the Run button, which invokes Perform Hardware() in the client applet. This function

grabs the current values entered by the student in three different strings. Open Directory() will return the

thread number for that particular client. The data, which the student has entered needs to be passed to the

hardware connected to the serial port of the server. Since the Java Virtual Machine cannot interact with the

serial port of the server directly or the operating system, the Win32Port class is developed. The values, which

the student enters, are passed as parameters in the function calls to the Win32Port class. The output results are

received by the function provided by the Win32Port class methods and these are then passed on to the

students as outputs of the experiments. Fmally, PerformHardware°, calls Close Directory() which will close

the connection between the client and the remote object.
After the student has submitted the data to the hardware and gets back the results, the Submit For Grade

button is enabled, which will invoke the performSubmissiono function in the client applet. This function

grabs the values of the currents, entered by the student and the voltage values and calls another method for

database connection using JDBC predefined command for SQL query. This will insert all the values along

with the student's name in the database. A positive message will be sent to ClientApplet code informing the

user that the values have been successfully submitted. Finally, performSubmission() calls Close Directory°,

which closes the connection between the client and the remote object.

The Hard Part: Java Native Interface (Serial Port Communication)

The last part of completing the package was to write a native interface in Java that talks to the Serial

Ports. This consists of Java code (a class) that accesses data through native methods, which are typically
particular to a vendor library. Like the bridge driver this class is convenient when a C data access library

already exists, but it isn't always very portable.
The Win32Port class implements the access to the computer's communication ports through the Win32

API. The native methods are contained in the JWINPORT DLL, and the Win32Port class is the Java interface

to them. The DLL is built using the JNI, which comes with Sun's JDK 1.1.
The standard drivers for serial ports in Windows 95/NT are limited to the ports COM1 through COM4.

The compiled DLL adopts this limitation and provides space tohandle the four ports. However, the multi-port

interface card with a Windows driver makes additional ports visible for the operating system like the standard

ports. In this case the DLL has to be recompiled for the number of ports needed.
The port number is passed to each of the methods as parameter rather than having it as a field of the

Win32Port class. This is because to access an object field from the C code, a symbolic look up must be made.

The port number parameter on the other hand gets passed as aplain integer and works faster.

Conclusion

The authors are successfully progressing through the design and the implementation of the Virtual Lab

process over the Internet. Unlike time-shift instruction (experiencing instruction following the live lesson,

i.e., videotape, or a software simulation), real labs or real-time instruction (experiencing instruction at some

point during the live lesson or experiment) provides students the ability to receive instructions without the
teacher's direct presence. Students in Real Lab environments have the freedom to analyze their experiments

at a distance. By no means is the student thinking limited but instead his or her complex thinking processes
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(basic thinking, creative thinking, critical thinking) are stirred at a distance with out any technical limitation
of any kind. A student is still able to conduct an experiment, collect needed information, categorize the
information, synthesize the information, and create his or her own conclusions based on data collected, from
input and output, without physically attending a lab.
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