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Graphics Calculator Usage in the West Australian Tertiary Entrance
Examination of Calculus

Patricia Ann Forster, Curtin University of Technology, Western Australia
Ute Mueller, Edith Cowan University, Western Australia

In this paper we present a comparative analysis of the Western Australian Calculus Tertiary
Entrance Examination papers for 1996-1999, two years before and two years after the
introduction of graphics calculators on the examination. Then we take a closer look at
changes in the questions that asked students to graph rational functions and finish with
considering students' answers to the corresponding question from the 1999 paper. The
inquiry highlights implications for teaching and assessment of calculus in the presence of
graphics calculators at upper-secondary level.

Introduction

Since 1998 the availability of graphics calculators has been assumed for the West
Australian public examinations of Mathematics, Physics and Chemistry at tertiary entrance
(Year 12) level. This paper is part of a longitudinal study evaluating the impact of the
introduction of the technology on the Calculus examination. Here we consider the
characteristics of questions in the 1996-1999 Calculus papers, basing our analysis on a scheme
that we developed from one by Senk, Beckmann and Thompson (1997). Then we look in
detail at the changes in the style of questions that asked students to graph rational functions
and finish by discussing the extent and nature of students' graphics calculator usage in the
rational function question for 1999. Thus, we take a macro view of Calculus Tertiary Entrance
Examination (TEE) papers for the two years before and the two years after the introduction of
graphics calculators, then consider in particular the questions concerned with rational
functions, to include a micro-analysis of students' answers to the 1999 question.

The analysis for the 1999 question on rational functions is based on written answers in
examination scripts and on students' interview responses after the examination, describing how
they used their graphics calculators. The epistemic referent for this part of inquiry was
sociocultural theory, where descriptions of learning and assessment "are accounts of changing
patterns of engagement in collective activities and social practices" (Renshaw, 1998, p. 84).

This paper provides a critical account of developments that have occurred in the
assessment of calculus at high-school level, and adds to the research debate on the impacts of
technology on mathematics education. Upon the introduction of graphics calculators into the
Calculus TEE the role of diagram has increased, graphing questions have become less
structured and the calculators have simplified the solution of some types of questions.
However, testing in some curriculum components, for example complex numbers, has become
higher level. Student use of graphics calculators in the rational function question under
consideration here, from the 1999 Calculus TEE, varied from insightful through to unthinking
acceptance of the outputs of the technology. Errors with graphing included students not
noticing features that were displayed on calculator graphs and naive interpretation of the
graphs, which did not take into account available algebraic and numeric information. The
findings have implications for teaching and assessment.

Paper presented at the Annual Conference of the American Education Research Association, 1

New Orleans, April 2000.

3



Background

The one-year course that prepares students for the Calculus TEE follows one-year of
Introductory Calculus. The syllabus for Calculus assigns 6 hours to the 'Calculus of
trigonometric functions'; 20 hours to 'Functions and limits'; 20 hours to 'Theory and techniques
of calculus', 28 hours to 'Applications of calculus'; 10 hours to 'Vector calculus; and 21 hours
to 'Complex numbers'. The emphases in the TEE papers on the various curriculum
components reflect the time assigned to them in the syllabus. Each year approximately 1900
candidates from 140 schools participate in the examination, which is of three hours duration.
The examination paper comprises about 20 questions worth a total of 180 marks and
contributes equally with school assessment to students' tertiary entrance scores in Calculus.

Calculators without symbolic processing and the Hewlett Packard 1+1338G with limited
symbolic capabilities are approved for examination purposes. This contrasts with the policy for
the similar standard US Advanced Placement (AP) Calculus examination where the minimum
level of capabilities assumed in setting questions is stated, but full symbolic capabilities are
allowed (College Board, 1998). However, while the approach in AP Calculus is to require
mathematical steps that lead to an answer, except that the setup only is required for definite
integrals, equations and derivatives, a non-prescriptive approach has been taken to setting out
required in the Calculus TEE. In addition, for the Calculus TEE, specific instructions to use
graphics calculators are not generally given: students are expected to choose to use the
technology when it is appropriate to do so. Because the text storage capacities differ between
various brands of calculator, four A4 pages (two sheets) of notes are allowed.

Test and Examination Questions with Graphics Calculators

Characteristics of Examination Questions

Examination questions can be graphics calculator active where use of the technology is
necessary or greatly simplifies a solution, graphics calculator neutral where graphics calculator
usage and traditional methods are equally viable, or graphics calculator inactive where use of
the technology is not possible (Harvey, 1992). A similar typology is suggested by Kemp,
Kissane and Bradley (1996) where graphics calculators are expected to be used, expected to be
used by some students and not by others and not expected to be used. When the graphics
calculators were introduced for the Calculus TEE, the policy from the start was to include
questions in all the above categories--there was no transition period where graphics calculators
were optional equipment.

The presence of graphics calculators affects the selection of questions for examinations.
Graphics calculators can impact on questions by enabling alternative methods, have no impact
because they contribute no more than scientific calculators to a solution, or trivialise questions
by allowing solutions that require little or no mathematical input from the user (Jones &
McCrae, 1996). A solution can also be significantly reduced in complexity without the
question being trivialised (see an example with complex numbers in Forster & Mueller, 1999).
Questions can also be specially designed for technology usage, taking a different form to
traditional questions and may include functions that students would not be expected to be able
to manipulate by hand (Anderson, Bloom, Mueller & Pedler, 1997).
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Graphics Calculator Usage

In an examination, graphics calculators can be used as the first option to generate answers
or used to check non-graphics calculator methods (Jones & McCrae, 1996). Checking might
involve replication of a hand method, or use of different representations, such as using a graph
to verify algebraic working. Where a non-calculator approach is needed for the written
answer, students might use the tool to get started (Lauten, Graham, & Ferrini-Mundy, 1994),
to help with working and with the final answer. It is expected that procedural work is off-
loaded to the technology, for example, for the evaluation of definite integrals (Jones, 1996).

Upon the inclusion of technology, the complexity and effectiveness of examination
questions must be re-evaluated and changes must be made to modes of testing students'
understanding of some concepts. Senk et al. (1997) developed a classification scheme to
evaluate the nature of questions assuming the presence of technology and applied it in an
analysis of the characteristics of test items used in 19 high-school classrooms. The inquiry
included consideration of precalculus courses but did not extend to calculus. In general, test
questions were found to be low level and either neutral or inactive with respect to the use of
graphics calculators. Senk et al. concluded: "Clearly, classroom teachers, researchers, and test
developers could all benefit from further discussion of how to recognise and write worth-while
technology-active test items or other tasks" (p. 211). This paper contributes to that debate.

Sociocultural Theory and the Use of Technology

From a sociocultural perspective, mathematics is seen as an interactive activity, which is
socially and culturally mediated. When tool-assisted, use of tools "is viewed as integral to
mathematical activity rather than an external aid to internal cognitive processes located in the
head" (Cobb & Bowers, 1999, p. 11). Cognitive activity is not considered as separate from
calculator usage, but instead students are said to reason with the technology and there may
also be residual cognitive effects (Salomon, Perkins & Globerson, 1991). Literature on
interactive relationships between students and technology, on effects of technology and on
multiple representations guided our inquiry into students' reasoning with graphics calculators
and is briefly reviewed below.

Role of the Calculator

Galbraith, Renshaw, Goos and Geiger (1999) distinguish between four different interactive
roles of graphics calculators. They might be like servants, obediently carrying out graphing
and calculation. However, with student acceptance of information on a screen display,
irrespective of its accuracy, the role of the technology changes to master (Galbraith et al.).
Here students' involvement might be classified as mindless, "characterised by blind reliance on
marked structural features of a situation without attention to its unique and novel features"
(Salomon et al., 1991, p. 4). This contrasts with mindful engagement. A student might also
work in partnership with technology (Galbraith et al.; Jones, 1996; Salomon et al.): here the
calculator "becomes a friend to go exploring with . . . where the output needs to be checked
against known mathematical properties" (Galbraith et al., p. 225). Technology can also be an
extension of self, where "the partnership between student and technology merges into a single
identity . . . [resulting in] an extension of the user's mathematical prowess" (Galbraith et al., p.
225).

These interactive relationships vary in the degree of control exerted by students in their
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technology usage, from high levels, for example in a partnership, to low levels, where
information is accepted as though from a master. Another aspect of control is that the design
of technology to some extent determines or controls how problems are solved (Salomon &
Perkins, 1998). For graphics calculators, this is evidenced in the way they allow direct entry
and manipulation of algebraic and numeric forms but not of graphical forms (Kaput, 1998). A
graph has to be converted to its algebraic or numeric equivalent before the calculator can be
used.

Effects of Technology Usage

Working with technology may lead to the ability to solve problems becoming distributed
between the user and the tool (Pea, cited in Salomon et al., 1991), and this might result in de-
skilling in some areas but enhancement of students' performance in others. Salomon et al.,
again drawing on the work of Pea, describe two benefits of technology: effects on ability when
working with technology and cognitive residue effects of technology. Berger (1998), also
referring to Pea, elaborates on these benefits, using the terms amplification and cognitive re-
organisation. The graphics calculator amplifies the zone of proximinal development by
carrying out processing tasks so that the child can achieve more with the technology than
he/she could achieve without it (Renshaw, 1998). The cognitive re-organisation effect is a
systemic change in the consciousness of the learner as a result of using technology (Berger,
1998). However, evidence of the cognitive reorganisation effect can be elusive: in a study of
first-year university calculus students Berger found that students with graphics calculators did
not, except for one instance, approach diagnostic problems in qualitatively different ways to
students without the technology. She attributed this to the calculator being an add-on tool, and
to the privileging of traditional methods. Kaput (1998) describes privileging in terms of a deep
cultural bias so that "what counts as significant mathematics is typically taken to be
mathematics expressed in terms of character strings" (p. 275).

Inscriptions Versus Representations

Kaput (1998) distinguishes between representations - -marks (signs and symbols) in a
structured system standing for something else, and inscriptions - -marks "in a physical medium
apart from any reference to how they might be used, understood, or perceived, and, apart from
any structure they might embody, from the third-party point of view" (p. 270). From this
viewpoint, a graphical display on a calculator has no meaning in itself, but its significance
arises from the social and cultural context in which it is produced and used: Roth and Bowen
(1998) describe how experts interpret graphs by "[c]ycling back and forth between actual
situations they are familiar with (the referent) and the graph (the sign)" (p. 5). Kaput suggests
that mathematical symbolism as representation fits a cognitivist perspective and as inscription
fits a sociocultural view.

Roth and McGinn (1998) cite graphs, tables and equations as examples of inscriptions and,
as such, properties that are highly relevant to graphics calculator usage include that:
"Inscriptions are easily rescaled to produce larger or smaller images without changing their
internal relations . . . are easily combined and superimposed . . . can be reproduced . . . are
often translated to other inscriptions" (pp. 37-38). The reproduction of the graphical display
on a calculator on paper is documented as a source of error for students. Errors might be
attributable to misreading the actual display so that, for instance, asymptotic behavior is not
recognised (Boers & Jones, 1994; Mueller & Forster, 1999; Ward, 1997). A curve might
copied without its curvature being made apparent because it resembles a straight line on the
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calculator due to the scale chosen (Mueller & Forster, 1999)--a scaling error (Roth &
McGinn, 1998). A display might be interpreted literally so, for instance, the maximum absolute
value might be read from the maximum turning point even though the minimum turning point
value has greater magnitude (Forster & Mueller, 2000)--an iconic error (Roth & McGinn,
1998).

Research Method

Comparative Analysis of the 1996-1999 Calculus TEE papers

We decided to restrict our analysis of the Calculus TEE to the 1996-1999 papers on the
basis that in 1996 the format of the papers changed to having questions ordered according to
their degree of difficulty. Previously, the papers contained two sections. One with routine
questions without interdependent parts and the other with longer questions, typically more
demanding with interdependent parts. Of the four papers we consider, the 1996 and 1997
papers were set before and 1998 and 1999 papers after the introduction of graphics
calculators.

For the analysis we used a coding scheme that we modified from one by Senk et al.
(1997). First, we independently coded question characteristics according to the original
scheme of Senk et al., then modified the scheme to suit the Calculus TEE (see Table 1 next
page). Finally, we independently recoded the questions and, where we varied, we negotiated
agreement guided by the official worked solutions.

The role of a diagram depends to a large extent on the ease with which a diagram may be
obtained. Graphs can be quickly generated on graphics calculators, whereas without them
drawing a graph might be impractical. When coding for 'Role of diagram', we took into
account the absence of graphics calculators for 1996 and 1997 and their presence for 1998 and
1999. For interest, we coded 'Active', 'Neutral' and 'Inactive' for 'Graphics Calculator', whether
the technology was available to be used (1998 and 1999) or not (1996 and 1997). Some
questions belonged to more than one curriculum component and were recorded as belonging
to each group.

Questions on Rational Functions and their Graphs

Coding the papers drew our attention to distinct changes over the four years for questions
concerned with graphing, rectilinear motion, simple harmonic motion and complex numbers.
Analysis of the quantitative data indicated a high level of calculator usage in 1998 and 1999
for questions which asked students to graph rational functions and this was further reflected in
students' interview responses. Together, these factors influenced us to focus on the rational
function items in this paper.

Four types of data were collected for the larger inquiry of which this paper is part. First,
three students from each of two schools and four students from another were interviewed
about calculator processes they used in the examination. Students were selected by their
teachers on the basis of being communicative. Their school assessment grades ranged from A
to C (D is the lowest pass grade). The examination paper was used as a heuristic in the
interviews. The second type of data was results for all candidates (marks per question),
obtained from the Curriculum Council of Western Australia who administer the TEE
examinations. Third, examination markers recorded data on a proforma, for a sample of their
allocated scripts. Data were generated for seven questions, including parts (b) and (c) of the
Paper presented at the Annual Conference of the American Education Research Association, 5
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Table 1
Categories for Analysing Examination Questions

Category Description

Curriculum Functions and Limits
component Theory and Techniques of Calculus

Applications of Calculus
Vector Calculus
Complex Numbers

Skill
Yes. Solution requires a well-known algorithm such as solving equations

or inequalities or bisecting an angle. Item does not require
translation between representations

No. No algorithm is generally taught for answering such questions, or
item requires translation across representations

Level
Low A typical student in that course would use no more than three steps

to solve.
Other A typical student in that course would use four or more steps to

solve.

Reasoning
Yes Item requires justification, explanation or proof or it is necessary to

interpret the question before being able to start the answer.
No No justification, explanation or proof is required. (By itself, 'Show

your work is not considered reasoning.)

Realistic context
Yes The item is set in a context outside of mathematics (e.g. art,

fantasy, science, sports).
No There is no context outside mathematics.

Role of diagram
Interpret A graph or diagram is given and must be interpreted to answer the

question.
Make From some non-graphical representation (data, equation, verbal

description) the student must make a graph or diagram.
Assist The use of a diagram or sketch would simplify a solution, but is not

essential for obtaining the answer.
None No graphical representation is given or needed or a graph or

diagram is given but is superfluous to answering the question.

'Graphics Calculator
Active Use of the tool is necessary to obtain a solution or it greatly

simplifies the work needed to get a solution.
Neutral It is possible to use the tool to obtain part or all the solution, but

the question could be answered reasonably without the tool
Inactive Use of the tool is not possible or is inappropriate.

a over and above scientific calculator capabilities
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three-part question asking students to graph a rational function. We decided not to consider
part (a) as it would have been difficult to deduce whether the calculators had been used or not
to answer it. Part marks were recorded and columns ticked to indicate if students' methods
were traditional or graphics calculator based; and ticked to indicate specific graphical features
in students' answers. Nine out of 24 markers volunteered to be involved. All were experienced
teachers and this resulted in data for 195 scripts. The fourth type of data consists of our own
observations, in our role as examiners and markers. We recorded data while marking 240
scripts (from the total 1957 scripts--scripts are marked twice) to obtain a total sample of size
435.

The sample statistics are only a guide and not a definitive statement of graphics calculator
usage--discerning graphics calculator usage from examination scripts is necessarily
interpretative and the sample was not randomly selected. However, scripts from a school are
distributed between the bundles for marking, and bundles are allocated to markers without
preference. In order to assess the quality of our sample we compared the population marks
distribution for part (c) of the 1999 question on rational functions with the mark distribution
of our sample. This was the only part for which we had both sample and population data. A
chi-squared goodness of fit test on students' scores shows that the sample distribution is
representative of the population distribution. The x2 value is 3.76 and there are 6 degrees of
freedom.

Results

Characteristics of Questions for the 1996-1999 Calculus TEE

A summary of our comparative analysis for all questions on the 1996-1999 papers is given
in Table 2. Changes in the nature of examinations can be attributed to a variety of factors but
possible influences include the following.

Skills. For all four examination papers the majority of the questions were skills-based (see
Tables 2 and 3). This pattern has not changed to any large extent upon the introduction of
graphics calculators, but scrutiny of the questions showed that the skills that are tested have

changed. For example, the question, 'Evaluate ( + i)7 + i)7 using de Moivre's rule, from
the 1996 examination has been made redundant by the presence of graphics calculators. The
use of de Moivre's rule used to be essential for obtaining the answer to expressions of this
type quickly--the other alternative of using the binomial theorem would have been much more
time-consuming. Thus the ability to apply de Moivre's rule correctly was an essential skill.
With a graphics calculator the simplification requires only a single line entry of the character
string. Here, requiring students to use de Moivre's rule is inappropriate, just like asking
students to use a calculator to find logarithms in order to solve an exponential problem (Jones,
1996).

A further change in the papers is that in 1996 and 1997 testing of integration techniques
was based on the evaluation of definite integrals while now indefinite integrals are used
exclusively because of the numerical integration capabilities of graphics calculators. Definite
integrals have been incorporated to a greater extent in application questions. Similarly,
questions that require factorisation of polynomials as the sole task are now absent in view of
them being trivialised.
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Real-life Contexts. Questions set in real-life contexts doubled from 1996-1997 to 1998-
1999 (see Table 2). This is partly attributable to preferences of examiners but also reflects a
move away from procedural towards more interpretative, applied questions where graphics
calculator usage is an option.

Role of Diagram. Diagrams now play a greater role in problem solutions (see Tables 2 and
3). There are more part-questions that require interpretation of a diagram or where students
are required to make a diagram, and more part-questions where a diagram would assist the
solution. This enhanced role for diagram may be attributed in part by the relative ease with
which students can obtain graphs of functions, parametric and polar curves and in part by the
ease with which markers can generate graphs to 'follow through' students' solutions. In 1999 a
question asked students to derive and graph the velocity function from the position
s(t) = (t2 +1)/(t4 +1) . The derivation is potentially problematic, as is graphing the velocity
function with traditional methods. The task of marking the question would have been arduous
without having the technology available to check answers that followed-on from the velocity
functions students obtained--without the technology available the above position function
would not have been used in a question of this type.

Role of graphics calculators. Overall, opportunities to use graphics calculators, had they
always been available, have not increased with the introduction of the technology for the TEE:
see Table 2, which gives the breakdown in usage according to part-questions. On the basis of
part-marks, in 1996 and 1997 approximately 53% of all marks could have been obtained
through graphics calculator active or neutral part-questions, this percentage was 26% in 1998
and 39% in 1999. The lower mark allocation is largely caused by omission of skills-based
questions of the type included in 1996 and 1997 that would be trivial in the presence of
graphics calculators.

Effects on Curriculum Components. The effects described above have impacted on the
various curriculum components in differing ways. The summary in Tables 2 suggests that
diagrams, usually graphics calculator generated graphs, could have assisted in answering
questions from the component 'Functions and limits' more in 1999 than previously. This
enhanced role of diagram went hand-in hand with a reduction of the amount of guidance given
for graphing, and we explore this in more detail in the next section in regard to rational
functions. Another aspect of students being able to graph readily was the use of more
complicated functions. For example, in the 1999 examination the function

cos(2t)) / t for t # 0
I (t) =

0 for t = 0
was used to test understanding of limits, continuity and other

properties of functions. Without access to a graphics calculator, either the graph would have
been supplied or graphing would have dominated the question. Otherwise the requirement for
a graph would have been omitted in favour of algebraic methods, thereby making the question
too abstract to be a suitable examination question at this level. In its present form, the question
allowed students the opportunity to demonstrate their mathematical insight with an unfamiliar
function.

Another change that became evident through the comparative analysis was that questions
for 'Theory and techniques of calculus' (integration and differentiation techniques) now largely
preclude graphics calculator usage (see Table 2). For 'Applications of calculus', there is no
pattern of increased opportunity for calculator usage (see Table 2), but in 1998 and 1999 it is
the component for which there were opportunities for flexible problem solving (Gray & Tall,
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1991) with both traditional and technology-assisted methods equally viable. For example,
graphical or trigonometric methods could have been used in a 1999 question where tidal
fluctuations were modeled as simple harmonic motion (Forster & Mueller, 2000).

The component most affected by the introduction of the calculators (see Table 2) is
'Complex numbers'. Questions have become less skills-based, need a greater number of steps
to reach an answer, and call on more reasoning. That is, in general in 1998 and 1999 the
questions were harder than those for 1996 and 1997 in all the dimensions that measure
difficulty. Diagrams played a greater role, but usually these were not graphics-calculator
generated--there was actually reduced opportunity to use graphics calculators in questions on
the topic.

Section Summary. With the inclusion of graphics calculators in the Calculus TEE, skills
tested for some syllabus items have changed and, consistent with recommendations in current
reform documents (e.g., Curriculum Council, 1998, NCTM, 1995), there are increased
numbers of questions set in real-life contexts. There is an increased role for diagram in general,
but particularly in the 'Function and limits', 'Applications of calculus' and 'Complex number'
components of the curriculum.

Questions on Rational Functions

Here we discuss in more detail the changes in style of questions on graphs of rational
functions. We focus on the 1996 question that was answered without the technology and the
1999 question where technology was available and used for the graph by a large majority
(85%) of students, judging from the sample of 435 scripts (based on little working being
shown). The codings for the 1996 and 1999 questions are provided in Table 3.

4x +5
1996. Question 10. Let f be the function defined by f (x)

(x + 2)(5 x)

(a) State the poles of the function.
(b) Evaluate lira f (x) .

(c) Evaluate lim f (x) .

(d) Evaluate lira f (x) .

x-44

State the x and y intercepts.
Show that there are no turning points and sketch the graph of y = f(x),
clearly labeling all the important features.

(e)

2x2 x
1997. Question 17. If

x3 1
(a) State the pole of the function.
(b) Evaluate lim f (x) .

(c) Evaluate lim f (x) .

(d) State the x and y intercepts.
2x4 +2x3 4x+1

(e) The derivative is given by f (x) = . The numerator off(x)
(x3)2

has exactly two roots. One of these roots is located at approximately 0.26, the
other is near -1. Use the Newton-Raphson method to refine the root near -1 to
two decimal places.
Classify the critical points as a local maximum, minimum or points of
inflection.

(f)
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1998. Question 14.

1999. Question 13.

(g) Sketch the graph off. Clearly label all the important features.

If f (x) =1
(x 1)2

(a) Sketch the graph off(x), indicating all asymptotes and turning points.
(b) For each of the following initial values decide whether the Newton-

Raphson method would lead to the left root, the right root or neither.
(i) x0 = 2 (ii) x0 = -2 (iii) x0 = 1/4

x

If f (x) =
x2 +3x -10

x2 +x -6
(a) state the domain off
(b) evaluate lim f (x) ,

x-+2

(c) sketch the graph off showing the intercepts, asymptotes and any other
distinguishing features.

Table 3
Coding for the 1996 and 1999 Calculus TEE Questions on Graphing Rational Functions

Reasoning 'Role of bGraphics
Skills-based Level required diagram Calculator

1996
a Yes Low No None Inactive
b Yes Low No None Neutral
c Yes Low No None Neutral
d Yes Low No None Neutral
e Yes Low No None Neutral
f No Other Yes Make Active

1999
a Yes Low No None Neutral
b Yes Low No Assist Neutral
c No Other Yes Make Active

a no technology available for 1996
answered as though technology was available for 1996

The 1996 question (see above) set prior to the introduction of graphics calculators is very
highly structured. Part questions, which relied on recognition of properties pertaining to the
function and involved algebraic manipulation, led students item by item through features of the
graph, attracted part marks and the tasks were low-level and solutions were skills-based (see
Table 1 and 3). The final step of drawing the graph was higher level (see Table 1 and 3) and
required students to link together a number of mathematical properties in order to draw the
graph. However, once the graph was drawn no further interpretation was required. The
process was essentially linear: interpretation of the question > algebraic manipulation -+ hand
draw the graph.

In 1999, two part questions led students into the graph and students were warned to mark
`other distinguishing features'. Choosing to use a graphics calculator meant the process of
answering the question started similarly to above: interpretation of the question > algebraic
manipulation. But then, after using the calculator for graphing, students needed to interpret the
calculator graph in the light of properties previously established, rather than using the
properties to plot the graph. For the identification of all the graphical features, students needed
to integrate (Boers & Jones, 1994) their reading of the calculator graph with information in
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the question and with mathematical properties established in the previous two part-questions.
The 1997 question was similar to that from 1996 in that the initial parts (a) to (f) led

students into the graph, which they drew in the absence of technology. Part (f) which relied on
part (e) was relatively demanding (see the question on the previous page). The 1998 question
asked students to draw the graph, with no lead in parts. It attracted widespread calculator
usage (Mueller & Forster, 1999) where again, as for the calculator-assisted graphing in 1999,
a process of integration (of information in the question with the calculator graph) was
involved. A second, interpretative part followed. The mean scores for the rational function
questions from the four years given in Table 4.

Table 4
Results for the Population for the 1996-1999 Questions on Graphing Rational
Functions

1996 1997 1998 1999

Mean % mark for the question 82% 72% 74% 78%

Total marks available for the question 14 21 8 10

Overall the results in Table 4 do not indicate that students found the rational function
questions easier or harder upon the availability of graphics calculators, even with the different
processes involved. However the introduction of the technology has been accompanied by a
lower mark allocation to the questions, explained by fewer or no lead-in parts to the graph,
that is fewer marks allocated to algebraic manipulation that has traditionally been a dominant
feature of graphing questions.

Students' Use of Graphics Calculators in the 1999 Question

The question in the 1999 Calculus TEE asking students to graph a rational function was
the thirteenth of the twenty questions, of which all were to be answered. First we provide the
question again, for convenience of reading, then students' descriptions of methods that they
used for each part of it. Then we give summary tables of data generated from the sample of
scripts. Thus, initially the description is of the extent and nature of students' graphics
calculator usage, including errors made. This section is followed by a discussion on the roles
that graphics calculators played in students' answering of the question.

Question 13. If f (x) =
x2 + 3x 10

(a) state the domain off (b) evaluate lim f (x) , (c) sketch the
x2 + x 6

graph off showing the intercepts, asymptotes and any other distinguishing features.

Students adopted a variety of traditional and graphics calculator approaches to each part
of the question, and for part (a), which asked for the domain, these included:

[1] I looked at the denominator [and worked it out by inspection].
[2] I factorised it. If I'd graphed it and hadn't done this out, I wouldn't have got all values. . . the

zeroes in the denominator. [ (x2 + x - 6) = (x - 2)(x +3), domain: all reals # 2 or -3 ]

For part (b), which asked for the limit as x -3 2 , one strategy students adopted was to use
their graphics calculators for calculation:
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[3] I substituted values . . . in run mode.
[4] I put the whole function in 'Function'. Then I went into 'Num' (see Figure 1) and put in a

number less than 2 and a bit more than 2.

1.9>74 1.41;2414
1.401606

1 1.400802
UNDEF.

2.01 1.399202
2.02 1.398406

1.99
siaamIMILIE1111121E1M1111

Figure 1. Graphics calculator table of values for f(x) = (x2 + 3x - 10)1(x2 + x - 6)

Others use a graphical approach:

[5] I graphed it and found a break in it. I did the positive side and the negative side (Figure 2).

Figure 2. Graphics calculator graph of f(x) = (x2 + 3x -10) / (x2 + x - 6)

With a traditional (non-graphics calculator) method, students mainly used factorisation but
also L'Hopital's rule:

[6] I did the limit of the derivatives . . . L'Hopital's rule, then checked it in 'Num' (see Figure 1).
[7] I prefer doing it manually. That's why I didn't like the paper so much because the paper relied on

the calculator.

Table 5 summarises the incidence of graphics calculator and traditional methods for the limit.

Table 5
Methods Students Adopted for a Limit as Deduced from Written Answers

13(b)

traditional graphics calculator

allo. students choosing the method 223 (58%) 160 (42%)

Mean mark out of 2 1.8 (90%) 1.9 (93%)
a percentages are for students who are recorded as answering the question from the sample of n=435

For part (b), calculator usage was deduced from the provision of a table of values or a
graph, or from lack of working and 42% of those who answered the question appeared to use
their calculators (see Table 5). The results showed that there was no substantial difference in
the average scores for the two approaches.

Part (c) asked students to graph the function f Features of the graph included vertical and
horizontal asymptotes and a point discontinuity. Intercepts also had to be identified. Table 6 is
a summary of students' scores and the extent of calculator usage for generating the graph, as
indicated by minimal or no working in the sample of scripts. The majority of students (85%)
seemed to rely on the calculator option (see Table 6). Again the difference in marks for the
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two alternatives was not substantial.

Table 6
Methods Students Adopted for Generating a Graph as Deduced from Written Answers

13(c)

traditional graphics calculator

No. students choosing the method 63 (15%) 363 (85%)

Mean mark out of 6 4.4 (73%) 4.5 (74%)
a percentages are for students who are recorded as answering the question from the sample of n=435.

Strategies adopted on the calculators to identify the features of the graph included:

[8] I found the intercept [on the horizontal axis] using 'Root' (see Figure 3A, 3B), then went into
'Num' and put in zero to get they intercept (Figure 3 C).

Root
Slope
Area
Extremum

4=

. . L . . 1 ......
IMMINEMEME11121131111:130

A B

X F1.66811346

1.666667
1.664452

.02 1.662252

.03 1.650066

.04 1.657895

0
EI:11111=11311E11313131

C

Figure 3. Calculating the root (A and B) and y intercept (C) of f(x) = (x2 + 3x -10) / (x2 + x - 6)

For the horizontal asymptote:

[9] I could visually see it.
[10] It was at y =1. I just looked at the graph and saw it was going to '1' and put a really big number

into 'Numeric'.
[11] I went into 'Num' and put in big numbers . . . positive and negative numbers.
[12] I evaluated it in my head. I divided by the highest order and put in infinity. Then I checked on

the graph again. It looked as though it approached from one below on the left and one below
from the right. It was worth taking the extra time because it [the graph] was worth six marks.

The position of horizontal asymptote could be deduced from the graphical display if the scales
were set appropriately and this was potentially assisted by the selection of a grid for the
display (see Figure 2). In regard to the vertical asymptote x = 3 :

[13] There was a pole at x = -3... I could see it on the graph.
[14] It was the one [from part (a)] on the negative side.

In students' written answers there were isolated instances of the branches of the curve
terminating on the vertical asymptote rather than the branches approaching it, which is
attributable to literal reading of the calculator display (see Figure 3B): an iconic error which
arises from discretisation of the co-ordinate plane on a calculator. As to the point discontinuity
at x = 2, it was visible on some calculator graphs (see Figure 2). In referring to it, students
commented:

[15] It was indeterminate at x = 2 so I put an empty circle joining the curve.
[16] I marked it with a break.
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However, the point discontinuity was often missed. The discontinuity is only visible on a
graphics calculator if it coincides with a pixel on the screen and this is dependent on choosing
appropriate scales and screen resolution (where this is an option). Even when the discontinuity
appears on the screen, it is usually minute and is easily missed if relying on visual methods.
Factorising the numerator and denominator of the rational function, then canceling the
common factor results in (x + 5) /(x +3) and entering it in the calculator results in a curve
without a discontinuity at x = 2 . Interview comments indicate the confusion some students
experienced in regard to the discontinuity:

[17] I wasn't really sure because it doesn't really exist at x = 2, so I put an open circle.
[18] It wasn't an asymptote, just a discontinuity so I just put an empty circle. It looked a bit funny, so

I checked my equation about three times [that it was correctly entered], then looked at 'Num'
which showed undefined at 2.

[19] I went into equation to find the zeroes on the bottom [-3 and 2] . . . -3 was the only asymptote
[the student didn't identify the point discontinuity].

There were isolated instances of students drawing a graph with two asymptotes, at x = 3
and 2. Here students could be seen to ignore the information from part (b) and to favor, over a
calculator graph, the values excluded from the domain that had been established in part (a).
The extent to which asymptotes and the point discontinuity were included in written answers,
for the sample of scripts is summarised in Table 7.

Table 7
Inclusion of Asymptotes and a Discontinuity on the Graph of the Rational Function

Horiz. Asympt. Vert. Asympt. Pt. Discontinuity

Traditional approach (n = 63)

Calculator approach (n = 363)

50(80%)

272(75%)

61(97%)

352(97%)

25(40%)

183(50%)

Roles of the Calculator

Student comments portray how they worked with their graphics calculators. First, students
could be said to have used their calculators as one might a robot or a servant (Galbraith et al.,
1999) to automate numerical calculation (e.g., line 3), to produce a graph (e.g., line 5), and to
carry out calculation associated with a graph (e.g., line 8). Here the technology was "a reliable
timesaving device for mental, or pen and paper computations . . . the output is regarded as
authoritative, although the discerning user will continue to monitor reasonableness" (Galbraith
et al., p. 255). In addition to monitoring the viability of calculator outputs, with calculator
graphs students need to check their interpretation of them. We saw this checking in a student
switching from a graph to a table of values (line 10). However, it seemed that for part (c)
some students accepted without question the calculator graph and their interpretation of it as
reliable (e.g., line 9). This lack of checking is one explanation for why one quarter of students
in the sample omitted the horizontal asymptote on their hand drawn graphs, and half the
students omitted the point discontinuity (see Table 7).

There was also evidence of higher-level usage of the technology. Some students, judging
by their interview responses, seemed to work in partnership with their graphics calculators, to
verify an algebraic method against a calculator table of values (line 6), check a mental
calculation against a calculator graph (line 12) and confirm the nature of a discontinuity in the
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table of values (line 18): "a feature of this [partnership] mode is the way in which the
respective 'authorities' of mathematics and technology are balanced" (Galbraith et al., 1999, p.
225). In two of these instances (lines 12 and 18) student endeavor resembled a cyclic process- -
where students integrated (Boers & Jones, 1994) their interpretation of the graph with
numeric outputs and algebraic information. Like experts in the field, they moved back and
forth between referents with which they were familiar and the graphs they were trying to
interpret (Roth & Bowen, 1998). However, here the referents were information available on
the calculator and in the question, rather than real phenomena to which that Roth and Bowen
refer. The students' efforts are indicative of mindful engagement (Salomon et al., 1991), where
they intelligently interacted with their calculators. However, among the population of
candidates (N = 1937) only 598 students, about one third of the cohort, achieved full marks
for the graph. This suggests that in the vicinity of two thirds of students failed in one or more
respects to move to high-level calculator use, characterised as working in partnership with the
technology. In some instances, students perhaps were aware that the calculator output was
inconsistent with properties they had already established but were not able to resolve their
confusion, and this is illustrated in lines 17 and 19. One student opted for what she expected
from early parts of the question (line 17) to successfully identify the point discontinuity; the
other copied the calculator graph which did not show the discontinuity so was acting in
subservience to the technology (line 19). The technology had mastery over him (Galbraith et
al., 1999).

As to the effects of technology discussed in the literature, we note that there was limited
opportunity in the question for students to benefit from the amplification effect: there were no
tasks further to the graphing where students could have been advantaged through having had
the calculator generate the graph. In the Calculus TEE, such further tasks are generally
reserved for applied questions. The second effect is cognitive reorganisation or thinking
differently as a result of technology usage. Traditionally, domains and limits of functions were
established algebraically. In the presence of technology, some students took a graphical
approach to finding the limit in part (b) of the question, as indicated by the student comment
(line 5) and by the lack of working in written solutions. This may be regarded as an instance of
cognitive reorganisation. However, other students privileged traditional methods, choosing
manual approaches almost exclusively (line 7) or using the technology as a backup rather than
the first option (line 6). This privileging was reflected in over half the sample of 435 students
using traditional methods for evaluating the limit in part (b) (see Table 1); and was desirable
for determination of the domain. As a student mentioned (line 2), undefined values in a domain
can be difficult to detect if relying solely on the calculator and consequently the point
discontinuity might be missed. As Dreyfus (1994) suggests, we should aim for a balance
between algebraic and visual methods, and more than that, we should aim for students to
integrate them.

Conclusion

The comparative analysis of the 1996-1999 Calculus TEE papers has made explicit
changes in the examination questions that have accompanied the introduction of graphics
calculators. The inquiry has shown that the availability of technology has impacted on the way
concepts are tested and on what skills are tested. The use of de Moivre's rule to evaluate a
complex number raised to a given power has become redundant, and polynomial factorisation
questions have become trivialised. Definite integrals are no longer suitable for testing
integration techniques. Yet, the concepts associated with de Moivre's rule, polynomials and
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definite integrals remain important aspects of calculus. There is a need to rethink how to test
students' understanding of them, and in the Calculus TEE this involved a greater role for
diagrams for questions on complex numbers. An increased role for visual methods is a notable
change for the papers overall. The implications for teaching are that the introduction of
graphics calculators has reduced the importance of some skills but this does not apply to the
concepts to which they relate, and other skills associated with graphical interpretation seem to
warrant more emphasis.

Casting the calculator in the role of servant, partner or master drew our attention to ways
in which students worked with the technology for the question on graphing a rational function.
The inquiry highlighted what seemed to be relatively uninformed calculator usage by the
majority of students. This was reflected in written answers where students seemed to have
directed their calculator as one might a servant, but then merely copied the calculator graph
without exploring all or any finer details, resulting in widespread omission of asymptotes and a
point discontinuity, and other isolated errors. As Boers and Jones (1994) observe, critical
awareness of the limitations of calculator graphs and ability to integrate calculator outputs
with other information do not come automatically with ownership of the technology. The
implication for teaching is that these competencies need to be made explicit and nurtured.

The policy for the Calculus TEE is that graphics calculator usage is expected--it is part of
the culture, although would have been embraced more into the curriculum by some teachers
than others. Notwithstanding, we might expect more evidence as to its cognitive effects than
was noted by Berger (1998) in a study where the technology was an add-on tool. There was
evidence of cognitive reorganisation--students adopted graphical approaches instead of
traditional ones and this was both a benefit (for a limit to infinity) and a hindrance (to
identifying point discontinuities). Again, the implication for teaching is that these benefits and
difficulties need to be subjects of instruction.

An important aspect of the inquiry for us, which has implications for assessment in general,
was to gain a better understanding of how to test students' abilities to work with technology.
The question concerned with graphing for 1999 did not test conceptual reasoning, other than
requiring the interpretation of a graph. It did not have an interpretative part further to the
graphing where students could show that they could achieve more with the calculator than
without it. The inclusion of such part questions seems appropriate, contingent on them
meeting the overall purpose of the Calculus TEE (or other examinations like it) to test
students' understanding of calculus, keeping in mind that one criterion is to have a balance of
'easy' and 'difficult' questions.

References

Anderson, M., Bloom, L., Mueller, U., & Pedler, P. (1997). Graphics calculators: Some implications for course
content and examination. Paper presented at the thirs Asian Technology Conference in Mathematics.
Available : Available: http ://www. runet. edu/--atcm/atcm97. html

Berger, M. (1999). Graphics calculators: An interpretative framework. For the Learning of Mathematics 18(2),
13 -20.

Boers, M.A.M. & Jones, P.L. (1994). Students' use of graphics calculators under examination conditions.
International Journal of Mathematics Education in Science and Technology, 25(4), 491-516.

Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and practice.
Educational Researcher, 28(2), 4-15.

College Board (1998). AP Calculus. Available:
http://www. collegeboard. org/ap/math/html/new001. html

Curriculum Council (1998). Curriculum framework for Kindergarten to Year 12 education in Western
Australia. Perth, Western Australia: Curriculum Council

Paper presented at the Annual Conference of the American Education Research Association,
New Orleans, April 2000.

9(l

17



Dowsey, J., & Tynan, D. (1997). Making the most of the magic number. Australian Mathematics Teacher
53(2), 42-46.

Dreyfus, T. (1994). Imagery and reasoning in mathematics and mathematics education. In D. F. Roitaille, D.
H. Wheeler, & C. Kieran (Eds.), Selected lectures from the seventh International Congress on
Mathematical Education (pp. 107-122). Sainte-Foy: Les Presses de l'Universitie Laval.

Forster, P. A., & Mueller, U. (1999). Use of graphics calculators in the public examination of calculus: Reality
and rigor. Australian Senior Mathematics Journal 13(2), 4-20.

Forster, P. A. & Mueller, U. (2000). Difficulties and diversity in graphics calculator usage in the 1999
Calculus TEE in Western Australia. Submitted for publication.

Galbreith, P. Renshaw, P., Goos, M., & Geiger, V. (1999). Technology, mathematics, and people: Interactions
in a community of practice. In J. M. Truran & K. M. Truran Eds.), Making the difference,
Proceedings of the twenty-second annual conference of the Mathematics Education Research Group
of Australia (pp. 223-230). Sydney: MERGA.

Gray, E. M., & Tall, D. D. (1994). Duality, ambiguity, and flexibility: A "proceptual" view of simple
arithmetic. Journal for Research in Mathematics Education, 25, 116-146.

Harvey, J. G. (1992). Mathematics testing with calculators: Ransoming the hostages. In T. A. Romberg (Ed.),
Mathematics assessment and evaluation: Imperatives for mathematics educators (pp. 139-168).
Albany, NY: SUNY.

Kaput, J. J. (1998). Representations, inscriptions, descriptions and learning: A klaidescope of windows.
Journal of Mathematical Behavior, 17(2), 265-281. Available:
http : //www simcalc. umassd. edu/website/docs/SimCalcLibrary.html

Kemp, M., Kissane, B. & Bradley, J. (1996). Graphics calculators use in examinations: accident or design?
Australian Senior Mathematics Journal, 10(1), 33-50.

Jones, P. (1996). Handheld technology and mathematics: Towards the intelligent partnership. Paper presented
at the eight International Congress of Mathematics Education, Spain. Available:
http ://ued.uniandes . edu. co/servidor/em/recinf/tg18/Jones/Jones-1. html

Jones, P. & McCrae, B. (1996). Assessing the impact of graphics calculators on mathematics examinations. In
P. Clarkson (Ed.), Technology in mathematics education: Proceedings of the 19th annual conference
of the Mathematics Education Research Group of Australasia (MERGA) (pp. 306-313). Melbourne:
MERGA.

Lauten, A. D., Graham, K. & Ferrini-Mundy, J. (1994). Student understanding of basic calculus concepts:
Interaction with the graphics calculator. Journal of Mathematical Behavior 13, 225-237.

Mueller, U., & Forster, P. A. (1999). Graphics calculators in the public examination of calculus: Misuses and
misconceptions. In J. M. Truran & K. M. Truran (Eds.), Making the difference, Proceedings of the
twenty-second annual conference of the Mathematics Education Research Group of Australasia (pp.
396-403). Sydney: MERGA.

National Council of Teachers of Mathematics (1995). Assessment standards for school mathematics. Reston,
VA: Author.

Renshaw, P. (1998). Sociocultural pedagogy for new times: Refraining key concepts. The Australian
Educational Researcher 25(3), 83-100.

Roth, W. -M., & Bowen, G. M. (1998, April). Cognitive complexities of graphical representations during
ecology lectures: A phenomenological hermeneutics approach. Paper presented at the annual meeting
of the American Educational Research Association, San Diego, CA.

Roth, W. -M., & McGinn M. G. (1998). Inscriptions: Towards a theory of representing as social practice.
Review of Educational Research 68(1), 35-59.

Ruthven, K. (1990). The influence of graphic calculator use on translation from graphic to symbolic form.
Educational Studies in Mathematics 21(5), 431-450.

Salomon, G., & Perkins, D. N. (1998). Individual and social aspects of learning. In P. D. Pearson, & A. Iran-
Nejad (Eds.), Review of research in education (Vol. 23, pp. 1-70). Washington, DC: American
Educational Research Association.

Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence
with intelligent technologies. Educational Researcher 20(3), 2-9.

Senk, S. L. Beckmann, C. E., Thompson, D. R. (1997). Assessment and grading in high school mathematics
classrooms. Journal for research in Mathematics Education, 28(2), 187-215.

Ward, R. A. (1997). An investigation of scaling issues and graphing-calculator associated
misconceptions among high school students. (Doctoral dissertation, University of
Virginia, 1997). Dissertations Abstracts International, 58/06, 1.

Paper presented at the Annual Conference of the American Education Research Association,
New Orleans, April 2000.

BEST COPY AVAILABLE

21

18



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

1. DOCUMENT IDENTIFICATION:

city '14 C S C.4 tce,f_tc.-10,/ t45 Azi e- 0,1 e oes* 4
a.se A 14-3 411),Th 1C-czle.-"/

Author(s): Pa n c 4er-

AERA

RIC

0111-1 a. it-'l t4 e (LQ c- .

Corporate Source:

CO-4-4'i 1,, [La. r 4. fitrnb (b q
a-oti-03 Caw 44-1 14-24e4e-J-i-rri

IL REPRODUCTION RELEASE:

Publication Date:

gpe-G(

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in themonthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy,and electronic media, and sold through the ERICDocument Reproduction Service (EDRS). Credit is given to the source of each document, and, ifreproduction release is granted, one of the following notices Is affixed to the document

If permission Is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottomof the page.

The sample Picker shown below MI be
affixed to al Level I documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 1

MOE here for Level 1 rebus, permitting
reproduction and diseeninellon in nauvIldie or other

ERIC archival media (e.g.. Mechanic) endpaper
air*

The ample edam shown below we be
sabred to ell Level 2A documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE, AND IN ELECTRONIC MEDIA
FOR ERIC COLLECTION SUBSCRIBERS ONLY,

HAS BEEN GRANTED BY

2A

\e

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2A

Check hens for Leval 2A release. premating
reproduction and dissamkaitlan in microfiche and in

eleciserac mune for ERIC archival collection
subscreiere may

The sample sticker shown below will be
affixed to all Level 28 documents

I

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE ONLY HAS BEEN GRANTED BY

2B

\e

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 28

Check here for Level 28 release, penollang
reproduction Ped dhacminalca b micrafiche only

Documents wit be pocessed as Indicated providedreproduction qudty peaks.
If permission to reproduce Is gametal, but no box Is ducked. docunients vAil be processed at Level 1.

I hereby grant to the EducationalResources Mformation Center (ERIC) nonexclusive permission to reproduce and disseminate this documentas Indicated above. Reproduction from the ERIC microfiche or elecbonic media by persons other than ERIC employees and its systemoorbactors requires pennissionfrom the copyrightholder. Exception is made fornon-profitmproduction by angles and other service agenciesto satisfy inkrnnation needs of educators Li response to discrete inquiries.

Sign
87"tre.A &e> U..--

please OrgentertunlAdemes:
047777-1-2 C req fd

£4 117icLet,
ev>e

, r, 1' 4 (A

Telephone

Um* Adana*

Lpf--

FAX

Dale. 11.441 7120-0

4.07`,( ,20`,



March 2000

Cllearinghouse on Assessment and Evalluatf[on

Dear AERA Presenter,

University of Maryland
1129 Shriver Laboratory

College Park, MD 20742-5701

Tel: (800) 464-3742
(301) 405-7449

FAX: (301) 405-8134
ericae@ericae.net

http://ericae.net

Congratulations on being a presenter at AERA. The ERIC Clearinghouse on Assessment and
Evaluation would like you to contribute to ERIC .by providing us with a written copy of your
presentation. Submitting your paper to ERIC ensures a wider audience by making it available to
members of the education community who could not attend your session or this year's conference.. _ . __, __
Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced to over
5,000 organizations. The inclusion of your work makes it readily available to other researchers, provides a
permanent archive, and enhances the quality of R/E. Abstracts of your contribution will be accessible
through the printed, electronic, and internet versions of R/E. The paper will be available full-text, on
demand through the ERIC Document Reproduction Service and through the microfiche collections
housed at libraries around the world.

We are gathering all the papers from the AERA Conference. We will route your paper to the
appropriate clearinghouse and you will be notified if your paper meets ERIC's criteria. Documents
are reviewed for contribution to education, timeliness, relevance, methodology, effectiveness of
presentation, and reproduction quality. You can track our processing of your paper at
http://ericae.net.

To disseminate your work through ERIC, you need to sign the reproduction release form on the
back of this letter and include it with two copies of your paper. You can drop of the copies of
your paper and reproduction release form at the ERIC booth (223) or mail to our attention at the
address below. If you have not submitted your 1999 Conference paper please send today or
drop it off at the booth with a Reproduction Release Form. Please feel free to copy the form
for future or additional submissions..:

Mail to:

Sincerely,

AERA 2000/ERIC Acquisitions
The University of Maryland
1129 Shriver Lab
College Park, MD 20742

Lawrence M. Rudner, Ph.D.
Director, ERIC/AE

ERIC/AE is a project of the Department of Measurement, Statistics and Evaluation
at the College of Education, University of Maryland.


