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An Investigation of the Likelihood Ratio Test,
the Mantel Test, and the Generalized Mantel-

Haenszel Test of DIF

Abstract

This paper is concerned with statistical issues in differential item functioning (DIF). Four

subsets of large scale performance assessment data (N = 105, 731, N = 10, 000, N = 1, 000,

and N = 100) were analyzed using three DIF detection methods for polytomous items

to examine the congruence among the DIF detection methods. Results indicated some

agreement among the DIF detection methods within each sample and across the samples

except for N = 100. Because statistical power is a function of the sample size, however, the

DIF detection results from extremely large samples are not useful. As alternatives to the

DIF detection methods, four model-based indices of standardized impact and four observed-

score indices of standardized impact for polytomous items were obtained and compared for

N = 105, 731.

Key words: differential item functioning, generalized Mantel-Haenszel test; graded response

model, item response theory, indices of impact, likelihood ratio test; Mantel test.
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Introduction

For many years, topics related to item bias, test bias, and unfairness in testing have been the

source of many perplexing debates in the educational measurement and educational policy

communities (e.g., Berk, 1982; Holland & Wainer, 1993; Wainer & Braun, 1988). In the past

differential item function (DIF) has been referred to as 'item bias' in the literature. DIF is a

generic term which indicates that some effort has been made to condition on proficiency or

total test scores before examining differences in item performance of subgroups of examinees.

For dichotomously scored items an item is said to be functioning differentially when the

probability of a correct response to the item is different for examinees at the same ability

level but from different groups (cf. Pine, 1977).

The presence of DIF items on a test poses a serious threat to fairness in test use and

validity of the interpretation of test scores. In this regard, Standard 7.3 in the Standards

for Educational and Psychological Testing (AERA, APA, & NCME, 1999) describes the

following:

When credible research reports that differential item functioning exists across

age, gender, racial/ethnic, cultural, disability, and/or linguistic groups in the

population of test takers in the content domain measured by the test, test

developers should conduct appropriate studies when feasible. Such research

should seek to detect and eliminate aspects of test design, content, and format

that might bias test scores for particular groups (p. 81).

Likewise, one of the guidelines in the Code of Fair Testing Practices in Education (APA,

1988) specifies that:

Test developers should strive to make tests that are as fair as possible for test

takers of different races, gender, ethnic backgrounds, or handcapping conditions.

In order to make a fair test, test developers should investigate empirically the performance

of examinees from different sociocultural backgrounds, and give test users an opportunity to

evaluate the extent of the inappropriate characteristics of the test and the differences in test

performance. A DIF analysis for a test, hence, can be seen as an essential step to protect the

rights of test takers and the general public and as a indispensable tool for test developers to

demonstrate the fairness of the test.
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Although DIF research for the last several decades has focused primarily on dichoto-

mously scored items and tests, recent efforts to develop alternative measurement meth-

ods, such as performance assessment, authentic assessment, and portfolio assessment, have

sparked interest in looking at other types of DIF especially in polytomously scored items.

It is important to note that there is some emerging evidence that greater discrepancy can

be found in performance of ethnic groups under performance assessment (Dunbar, Koretz,

& Hoover, 1991; Zwick, Donoghue, & Grima, 1993a), even though there exists a belief that

performance assessment is intrinsically more fair than the usual tests with objective (e.g.,

multiple-choice) formats.

During the 1990's a number of procedures were proposed for detection of DIE in

polytomously scored items (e.g., Chang, Mazzeo, & Roussos, 1996; Cohen, Kim, & Baker,

1993; Miller & Spray, 1993; Raju, van der Linden, & Fleer, 1995; Welch & Hoover, 1993;

Zwick et al., 1993a). A recent survey of many of these methods was provided by Potenza

and Dorans (1995). The focus of this study was on the three DIF detection methods for

polytomous items; the likelihood ratio test (Wainer, Sireci, & Thissen, 1991), the Mantel

(1963) test, and the generalized Mantel-Haenszel (GMH) test (Mantel & Haenszel, 1959).

The likelihood ratio test can be seen as an item response theory, (IRT) model based method,

whereas the Mantel test and the GMH test are extensions of the Mantel-Haenszel (1959)

procedure and can be classified as the observed score methods.

The likelihood ratio test was chosen because the invariance principle of IRT provides an

ideal framework for DIF detection. In previous studies the likelihood ratio test has been

found to yield a good Type I error control for polytomous items (Kim & Cohen, 1998) and

good power for tests which combine both dichotomous and polytomous items (Ankenmann,

Witt, & Dunbar, 1999). The Mantel test and the GMH test were chosen because these

have been found to yield good Type I error control and power for tests which combine both

dichotomous and polytomous items, especially when the ability distributions of the groups

compared were similar (Ankenmann et al., 1999; Chang et al., 1996; Welch & Hoover,

1993; Zwick et al., 1993a). Zwick et al. (1993a) reported, however, that the Mantel test

and the GMH test were sensitive to different types of DIF. The Mantel test seems to be

an effective DIF detection method when the between group difference in item means is of

primary interest; and the GMH test might be more useful when the interest is on the entire

response distributions of the groups (Zwick et al., 1993a).
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The present paper investigated the applicability of the three DIF detection methods to

large scale performance assessment data when different sample sizes were employed in the

analyses. The next section presents the three DIF detection methods used in this study.

Because the graded response model was used in the likelihood ratio test, a formal definition

of DIF under the graded response model and the null hypothesis tested in the Mantel test

and the GMH test were included. The following section presents the comparisons of the

three DIF detection methods based on the DIF analyses of four subsets of the performance

assessment test data from the Georgia Kindergarten Assessment Program-Revised. Problems

with applying DIF detection methods to large data were illustrated. Next, as alternatives to

DIF statistics, descriptive indices that characterize the amount of DIF were presented (see

Dorans & Ku lick, 1986; Wainer, 1993; Zwick et al., 1993a). The four model-based indices of

standardized impact as well as the four observed score indices of standardized impact were

presented. The final section contains discussion and suggestions for DIF detection using

large test data.

Three DIF Detection Methods

Likelihood Ratio Test

Samejima's graded response model was employed in the likelihood ratio test. Samejima

(1969, 1972) proposed a graded response model under IRT in which the category response

function, Pik(0), describes the probability of response k to item j as a function of 0. For an

item with Ki categories, Pik(0) is defined as

where k = 1,

Pjk(e) =

. , K1. In Equation

{
1 P;1(0) when k =1
P;(k-1)(9) PA(e) when k = 2, ... , (Ki 1)

13'3(Ki-i) (0) when k = Ki,

1, P3k(9) is the boundary response function given by

Pk(9) = {1 + expE a; (0 gik)}}

(1)

(2)

where cy; is the discrimination parameter for item j, gik is the location parameter of response

category k for item j, and 9 is the trait level parameter. The logistic model in Equation 2

is a homogeneous case of the general graded response model (Samejima, 1972, 1997). With

.P (0) = 1 and PEA. (0) = 0, the category response function can be succinctly written as

P3k(o) = P.,*(k-1)(0) Pl*k(0) (3)

4
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DIF under the model based methods is defined in terms of item true score functions. For

a polytomously scored item such as a graded response item, the item true score function

describes the relationship between the expected value of the item score and examinee trait

level. Baker (1992) defined the true score function for the graded response model as
K,

TS(9) = E E y3kP3k(0), (4)
3=1 k=1

where J is the number of items in the test and yik is the weight for response category k

of item j. Weights are typically, but not necessarily, taken to be the same as the category

values. For example, the weight for category 1 would be 1, and for category 3 it would be 3.

The item true score function for a single item j can be defined as
K3

Ti(0) = E yjkpjk(o) (5)
k=1

For a dichotomous item under IRT, the IRF for the correct response is the item true score

function.

In the typical DIF study, there are two groups of examinees, the reference group and the

focal group. For both dichotomous and graded response items, an item is considered to be

functioning differentially when the item true score functions in the reference and focal groups

are not equal (Cohen, Kim, & Baker, 1993). That is, item j is identified as a DIF item, when

T3R(0) T3F(0). Further, the item true score functions from the reference and focal groups

are identical if the boundary response functions for the reference and focal groups are equal,

or the sets of item parameters from the reference and focal groups are equal. These two

conditions are essentially equivalent.

The equality of sets of item parameters for graded response items can be tested using

several different approaches. The likelihood ratio test for DIF described by Thissen,

Steinberg, and Gerrard (1986) and Thissen, Steinberg, and Wainer (1988, 1993) compares

two different models; a compact model, in which the parameters for the same item are

constrained to be identical in the two groups, and an augmented model, in which at least

one item is not constrained to have equal parameters in the two groups. The likelihood

ratio test statistic, G2, is the difference between the values of 2 times the log likelihood for

the compact model (-2 log Lc) and 2 times the log likelihood for the augmented model

(-2 log LA). The values of the quantity 2 log L can be obtained from the output of the

calibration runs from the computer program MULTILOG (Thissen, 1991), and are based on

the results over the entire dataset following marginal maximum likelihood estimation.
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Let yi be the polytomous score for item j (e.g., y3 = 1, , K;) and let

Ujk
{ 1 if y3 = k

0 otherwise
(6)

be the indicator variable for item j. Without loss of generality, it can be assumed that all

items in the test have the same number of categories K. The category response function

describes the probability that yi = k at ability level 9, and is defined as

Prob {y3 = k10, = Pik(0) = H Pik(0)uik ,
k=1

(7)

where represents the vector of item parameters. Under the assumption of local

independence, the conditional probability, given 0, of a particular response vector or lth

response pattern, yj = (yi, y2, , yj), can be written as

J K

P(3,110) = fl H p,k(e)uik, (8)
3=1 k=1

where J is the total number of items in the test. The marginalized probability of response

pattern yj = (Y1, Y2, YJ) can be written as

P(Y1) = f P(3r110)g(01.7-)c10 = f P(Yile)dG(01T), (9)

where g(017-) is the ability distribution and T are the population ability parameters (see Bock

Aitkin, 1981; Thissen et al., 1986). The distribution of ability in the usual IRT model is

Gaussian, and, hence, r contains p, and a2.

To obtain the marginal likelihood, the item response data are summarized to yield raw

counts of the number of examinees giving each particular response pattern across all items.

The counts for group g are denoted by rg(y/), and fill the cell of a K3 contingency table of

all possible response patterns for each group. The marginalized probability of observing an

examinee in group g with response pattern yj is

P9(Y1) = f P(3,110)g(01-rg)d0 = f P(y110)dG(017-9). (10)

The likelihood for the complete set of KJ tables for all the groups is proportional to

G KJ

II IT P9(Y1)Tg(Y1),
g=1 /=1

where .G is the number of groups. The marginal maximum likelihood estimates of the

parameters of interest can be obtained using the algorithm described in Bock and Aitkin
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(1981). Using default options, MULTILOG calibration yields the location and scale of 0,

arbitrarily set by fixing pR = 0 and cr2R = 1 for the reference group. In addition, a default

in MULTILOG imposes the constraint 4 = 4, while iLF for the focal group is estimated

from data. Then,
G KJ

2 log L = 2 E E
g=1 /=1

(n ) log
1V9P9(yoi

(12)
[

rg(Y/)

with Ng = rg(n) (i.e., the number of examinees in group g) and Pg(n) computed from

the marginal maximum likelihood estimates of the parameters. [See Bishop, Fienberg, and

Holland (1975) for an extensive discussion of the use of the likelihood ratio statistic in the

context of model-fitting for contingency tables.]

The likelihood ratio test statistic can be written as

G2 = 2 log Lc (-2 log LA) (13)

and is distributed as a x2 under the null hypothesis with degrees of freedom equal to the

difference in the number of parameters estimated in the compact and augmented models

(Rao, 1973). When a graded response item with three categories is tested, G2 is distributed

as a x2 with 3 degrees of freedom.

Mantal Test

Two extensions of the Mantel-Haenszel test of DIF for dichotomous items (see Holland &

Thayer, 1988) have been used in Zwick et al. (1993a) for polytomously scored items; the

Mantel test (1963) and the GMH test (Mantel & Haenszel, 1959). The Mantel test assumes

that item responses are ordered, whereas the GMH test assumes that item responses are

nominal. The assumption underlying the Mantel test would appear to be theoretically more

consistent with the ordered nature of scores used in the graded response items.

The Mantel test is a test of conditional independence for the case of K ordered categories

(see Agresti, 1990, pp. 283-284). Application of the method in the DIF context involves

assigning ordered index numbers to the response categories and then comparing the item

means for examinees of the reference and focal groups who have been matched on a measure

of proficiency. It is customary to use the total or summed scores that include the studied

item as the matching variable (Zwick et al., 1993a).

In a DIF study of an item with K ordered response categories, there will be a separate

2 x K contingency table for each level of the matching variable. The data can be arranged

7
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into a full 2xKxL contingency table, where L is the number of levels of the matching

variable. For the lth level of the matching variable, for example, a 2 x K contingency table

can be constructed to contain the data as shown in Table 1. The values, Y1, , YK, represent

the scores that can be obtained on the item. The values of Aki and Bki denote the number

of focal and reference group examinees, respectively, who are at the lth level of the matching

variable and received an item score of Yk. The marginal total of the focal group of the lth

level is denoted as NFL, and that of the reference group as NRI. The total number of focal

and reference group members with item score Yk at the lth level of the matching variable is

denoted by Mki. The total number of examinees at the lth level of the matching variable is

denoted by /I.

Insert Table 1 about here

Given the marginal totals in each level of the matching variable, under the assumption of

conditional independence of the item score variable Y and the group membership variable,

the observed sum of the weighted scores for the focal group,

K

E AkLYk
k=1

has its expectation and variance defined as

and

K

NFL E 11/1klYk

E
(E AktYk) = k=1

k= 1 71

2K
NFINRI

Var (E AktYk) = E mkt Yk (E mkin) .

k=1 T 2(711 1) k=1 k=1

(14)

(15)

(16)

When a dichotomous variable, say Z, is used for the group membership variable (e.g., ZF = 1

and ZR = 0), then the value from the single contingency table is
2

AkiYk E (E Akin)]Li k=1

Var
(E AkiYk)

k=1

and is the same as the squared point biserial correlation between Y and Z, multiplied by

the sample size minus one (T1 1) for the lth level of the matching variable. Under the

(17)

8
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null hypothesis of conditional independence, either the point biserial correlation or the value

from Equation 17 should be close to zero for each level of the matching variable.

To summarize the association from all L levels of the matching variable, Mantel (1963)

proposed the statistic

L K L

EE Ak137k E AklYk)12
M2 1=1 k=1 1=1 k=1

L

E Var RE- Akin)
1=1 k=1

(18)

The expected value and the variance are obtained under the assumption of the conditional

independence between the item score variable and the group membership variable in each

level of the matching variable. Under the null hypothesis of no association, Ho, the test

statistic, M2, is distributed as a chi-square with one degree of freedom provided that the

total sample size is large. For dichotomous items, this test statistic is identical to the Mantel-

Haenszel (1959) statistic without the continuity correction. In DIF applications, rejection

of H0 indicates that examinees in the focal and reference groups, who are similar in overall

proficiency with respect to the matching variable, tend to differ in their average performance

on the studied item.

Generalized Mantel-Haenszel Test

Mantel and Haenszel (1959) described a generalized extension of the ordinary Mantel-

Haenszel statistic to the case of K > 2 response categories (see also Agresti, 1990, pp.

234-235; Somes, 1986). The GMH statistic tests the conditional independence for a group

variable and an item with K unordered response categories. Application of the method in

the DIF context involves assigning nominal numbers to the response categories and then

comparing the vectors of the item responses for examinees of the reference and focal groups

who have been matched on a measure of proficiency.

Using the notation in Table 1, assuming fixed marginal totals in each level of the matching

variable, the observed vector of the number of examinees for , YK_i of the focal group

is

which has expectation

a1 = (A116 Akl, 7 A(K-1)1)1

E(ai) =

(19)

(20)



and variance

where

Vi =
NFINR1 [Tidiag(mi) nainid ,(Ti 1)

= (M11) kJ) (K-10.

(21)

(22)

The expected value and the variance are based on the conditional independence of the item

score variable and the group membership variable. As noted in Agresti (1990), the value

[al E(ai)J Vi' [al E(ai)} (23)

is the Pearson (1900, 1922) chi-square statistic for testing independence, multiplied by a

factor (T1 1) /T1.

The generalized Mantel-Haenszel statistic summarizes the association from all L levels

of the matching variable and is defined as

L, L

Q2=
[1.1a1 1,1E(a1)1[1\Til (24)

L L L

If we let a = e = EE(ai), and V = EV1, then Q2 can be written in quadratic form
1=1 1=1 1=1

as

Q2 = (a e)'V-1(a e). (25)

Under the assumption of conditional independence, the test statistic, Q2, has a large-sample

chi-square distribution with K 1 degrees of freedom, when two groups are used. In case of

dichotomous items, this statistic is identical to the Mantel-Haenszel (1959) statistic without

the continuity correction. In DIF applications, rejection of Ho indicates that examinees in

the focal and reference groups, who are similar in overall proficiency, tend to differ in their

performance on the studied item.

Analyses of GKAP-R Data

Data

To compare the three DIF detection methods (i.e., the likelihood ratio test, the Mantel test,

and the GMH test), the 1998 Fall data of the Baseline version of the Georgia Kindergarten

Assessment Program-Revised (GKAP-R) were analyzed. The Baseline version of the GKAP-

R is a performance assessment rating instrument that consists of ten polytomously scored

10

12



items with three ordered categories. The scores used in the study were 0, 1, and 2. The full

description of the GKAP-R can be found in the Georgia Department of Education web site

(http://www.doe.k12.ga.us/sla/ret/gkap.htm4

A total of 105,731 students who did not have any omitted or unreached responses were

used. There were 55,017 male students and 50,714 female students in this sample. Three

other samples with equal numbers of male and female students were randomly formed

from the 105,731 students to investigate the effect of the sample size on DIF detection;

N = 10,000, N --
1, 000, and N = 100. The purpose of DIF analyses was to compare the

item responses of male and female students. Female students were treated as the reference

group and male students were treated as the focal group in DIF analyses. The summary

statistics from the male students, the female students, and the total group are presented in

Table 2 for the four samples. The average scores were higher for the female students than

for the male students except for N = 100.

Insert Table 2 about here

Preliminary Analyses

Before beginning the DIF analyses, classical item statistics were obtained for each item from

the N = 105, 731 sample. The results are presented in Table 3. For the total group the

range of item means was from .80 (item 3) to 1.78 (item 6). The same items also determined

the ranges of item means for the male students and the female students. All of the item

means from the female students were higher than the respective item means form the male

students. For the total group the item and corrected total score correlations were very high,

ranging from .42 (item 5) to .66 (item 7). Similar patterns were observed for the male and

female students.

Insert Table 3 about here

The likelihood ratio test was performed under the graded response model. Because the

graded response model is a unidimensional IRT model, dimensionality of data was examined.

A rough procedure is to computer the latent roots of the polychoric item intercorrelation

matrix (cf. Lord, 1980). When the first root is large compared to the second and the

11
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second root is not much larger than any of the others, then the items can be seen as

approximately unidimensional. The latent roots of the polychoric item correlation matrix

from each sample, obtained from the exploratory factor analysis using the computer program

LISCOMP (Muthen, 1988), are presented in Table 4. Figure 1 also shows the ten latent roots

for the samples of N = 105, 731, N = 10, 000, N = 1,000, and N = 100. The plots suggest

that the items are reasonably unidimensional.

Insert Table 4 and Figure 1 about here

For the likelihood ratio test, the compact model was obtained by calibration over the

combined reference and focal groups using MULTILOG (Thissen, 1991). MULTILOG

permits constraints to be placed on the item parameters for estimation of the compact

model. The item parameters for all internal anchor items in the augmented model were

similarly constrained, and only the item parameters for the studied item were estimated

independently in the reference and focal groups. For the Mantel test and the GMH test, the

summed scores that included the studied item were used as the matching variable.

Results

Results for the analysis of the compact and the augmented models for studying item 1 for

N = 105, 731 are given in Table 5. The item parameter estimates and the standard errors

for the compact model are given in the three columns to the right of the item numbers.

Note that the estimated standard errors were extremely small due to the large sample size.

The value of 2 log L for the compact model was 73622.1 (see footnote at the bottom of

Table 5). The item parameter estimates and the standard errors for the augmented model

are given to the right of those of the compact model. There are two sets of item parameter

estimates for the studied item. The item parameter estimates for item 1 for the reference

group and the focal group, respectively, are given in Table 5 to illustrate that there were

two sets of estimates for each studied item. When item 1 was the studied item, items 2 to

10 were used as the internal anchor set. The estimated focal group mean ability parameter

was .14 from the augmented model. The value of 2 log L for the augmented model with

item 1 as the studied item was 73505.2. For item 1, the likelihood ratio test statistic was

= 73622.1 73505.2 = 116.9. This value was statistically significant at a = .01.



Insert Table 5 about here

Summary results from the likelihood ratio test for all 10 items for N = 105, 731 are

presented in Table 6. The same 21og L = 73622.1 for, the compact model was used to

obtain the likelihood ratio test statistics G2 for all items. Table 6 contains item parameter

estimates from the reference and focal groups as well as the estimated focal group mean

ability parameters.

Insert Table 6 about here

Results of the likelihood ratio test, the Mantel test and the GMH test are presented in

Table 7 for N = 105, 731, N -= 10, 000, N = 1,000, and N = 100. The sample size seems

to determine the number of significant statistics for all three DIF detection methods. When

N = 105, 731, all DIF statistics except item 1 for M2 were statistically significant, and all

but item 1 were identified as DIF items at a nominal alpha level .01. When N = 10, 000, five

items (items 5, 7, 8, 9, and 10) for G2 and the same six items (items 3, 5, 7, 8, 9, and 10)

for M2 and for Q2 were identified as DIF items at a = .01. When N = 1,000, item 10 was

the only item detected as a DIF item by all three methods at a = .01. None of the items,

however, were identified as DIF items when N = 100.

Insert Table 7 about here

Similarities between DIF detection statistics can be determined by comparing the ranks

of the values of one index with the ranks for a second using Spearman's correlation (see Table

8). Correlations within the same sample were very high except for N = 100. Correlations

between two observed score methods, the Mantel test and the GMH test, were higher than

other correlations. There were positive relationships among the three DIF detection statistics

across different sample sizes except for N = 100. Note that the agreement among the three

DIF detection methods can also be obtained using correlation coefficients of the binary

variables based on DIF identification results at a = .01.

Insert Table 8 about here



Indices of Standardized Impact

Descriptive DIF Measure

All three methods used in the previous section are primarily aimed at detection of DIF.

As for the case of the null hypothesis testing in practice, it is not expected that any two

populations (e.g., male students and female students) in DIF analyses have literally the

same sets of item parameters or item means. Because statistical power is a function of the

sample size (Cohen, 1988, p. 14), a small difference in population parameters would result in

a statistically significant difference when we have a large sample. In other words, we would

always expect to reject the null hypothesis when the sample size is huge and statistical power

is sufficiently great. When N = 105,731, all GKAP-R items except item 1 for the Mantel

test were identified as DIF items by the three DIF detection methods. This might not be an

acceptable conclusion.

When the sample size is large, we may use a descriptive measure of DIF called

standardized impact as a viable alternative to the DIF detection methods. The standardized

impact can be obtained for both model-based procedures (Wainer, 1993) and for empirically

based (i.e., observed score) procedures (Dorans & Ku lick, 1986; Dorans & Schmitt, 1991;

Zwick et al., 1993a). These two types of indices of standardized impact are presented below.

At the outset it should be emphasized that in the context of standardized impact we are

not, in general, interested in testing the hypothesis of the difference in true score functions

or of independence of item performance by gender.

Model-Based Indices

Wainer (1993) provided four indices of standardized impact for dichotomous IRT models.

For polytomously scored items, the four indices of standardized impact can be defined as

00

T(1) = f [TR(9) T F (e)1 dG F (e) (26)

and

T(2) = NFT(1), (27)

T(3) = r ,,{TR(0)_,(0),2,GF(0), (28)
00

T(4) = NFT(3), (29)



where TR(9) and TF(9), without subscript j, are the true score functions from the reference

group and the focal group, respectively, GF(0) is the proficiency distribution for the focal

group, and NF is the total number of examinees in the focal group.

These indices were related to the earlier descriptive measures that assess the amount of

DIF by the area between the two item response functions of dichotomous IRT models (e.g.,

Linn, Levine, Hasting, & Wardrop, 1980; Raju, 1088; Rudner, 1977). According to Wainer

(1993), the index of standardized impact, T(1), can be seen as the average impact for each

person in the focal group.; T(2) is a measure of total impact that may be useful when the

measures of impact are obtained for various focal groups; T(3) is the squared standardized

impact where the non-uniform type DIF can be captured by the measure; and T(4) is the

total squared impact.

Before presenting values of the indices for the GKAP-R items, let us illustrate the

calculation or steps of obtaining T(1) using item 10. All plots needed for the calculation of

T(1) are presented in Figure 2. The item parameter estimates were from Table 5.

Insert Figure 2 about here

In Figure 2, .the top two plots are the category response functions of item 10 for male and

for female, respectively. The second row contains the two boundary response functions of

item 10 for male and female. The third row contains the respective item true score functions

of item 10 for male and female. The fourth row presents two item true score functions

and two ability distributions for male (the focal group) and female (the reference group).

Note that the proficiency distribution for the focal group was Gaussian with estimated mean

.14 and variance 1, that is, gF(0) = N ( .14,1). The fifth row shows the difference in

the two item true score functions and the focal group ability distribution. The final plot is

the standardized impact obtained from the multiplication of the difference in the item true

score functions and the focal group ability distribution, [TR(0) TF(0)] gF(9). Actually the

9 was not yet integrated in the final plot. The contribution of different proficiency levels can

be seen in the impact plot. When integration is performed with regard to 0, then T(1) is

obtained. The values of the model-based indices of standardized impact for GKAP-R items

are presented in Table 9

Insert Table 9 about here

15

17



then the value of T(1) is between +2. When we have several items with different scoring,

we may use an index such as

T(1)/R, (30)

where R is the range of item scores. The possible values of the index will be limited within

+1. Tentatively, if IT(1)1 is greater than .1 (i.e., 1T(1) 1/R is greater than .05 when item scores

are 0, 1, and 2), then we may conclude the item is deemed to require close examination.

Justification of these cutoff values are presented below in the context of the observed score

indices of standardized impact.

Wainer (1993) presented ways of measuring the variability of the indices of standardized

impact. One method was based on multiple imputation (Rubin, 1987) utilizing the duality

diagram concept (Ramsay, 1982) that involved the standard errors of the item parameter

estimates. Note that the size of the estimated standard errors is certainly dependent upon

the number of examinees used in calibration. As the sample size increases, the variability of

the indices of standardized impact decreases. Hence, it may be better to use these indices

of standardized impact in a descriptive manner when we have a large sample.

Observed Score Indices

There are two empirical indices that can be considered as descriptive DIF measures (see

Zwick et al., 1993a, 1993b); one stemming from the Mantel test (i.e., the standardized mean

difference, SMD) and the other supplements the GMH test (i.e., the Yanagawa and Fujii

statistic). Only the SMD is related to the model-based index of standardized impact. The

SMD was an extension of the descriptive DIF measure for dichotomous items (Dorans

Ku lick, 1986) and first presented in Dorans and Schmitt (1991).

The observed score index of standard impact is

NF
Ti (1) = E [ER(ylx = 1) EF(YPC = 1)] , (31)

i=o NF

where
BklER(Y31X = 1) = E
NR1

ifk (32)

and
Akik

EF(Y3 ix = 1) =
E

NF1

l
(33)



are the expected item scores given the summed score X = 1 (l = 0(1)4 for the reference

group and the focal group, respectively, and

NFL NFL

L NFE NFL
1=0

is the relative frequency of the focal group examinees for level 1. The above index is defined as

(34)

T' (1) because it is a counterpart, which is obtained from the observed scores, to the model-

based index of standardized impact T(1). This statistic is in fact the same as 1 times

Dorans and Schmitt's (1991) standardized p-difference and Zwick et al.'s (1993a) SMD due

to the reversal of the reference group and the focal group. The other observed indices of

standard impact are

11 (2) = NFT1(1) = >2 [ER(YIX = 1) EF(YIX = 1)] NF17
1=0

AFi
T' (3) = >2 [ER(ylx = 1) EF(YIX = 2

,

1=0 INF

and

(35)

(36)

T'(4) = NFT' (3) = E [ER(y pc = 1) EF(YIX = 012 NFL.. (37)
t =o

Let us illustrate the calculation of the observed score index of standardized impact using

item 10 from the GKAP-R data. When the summed score was used as a criterion variable

instead of 0, we may obtain empirical trace lines of the three categories of item 10 for male

and for female, respectively (see Figure 3, the first row). The summary frequencies for item

10 are presented in Table 10. The second row of Figure 3 contains empirical boundary lines

for male and female. The expected item scores for male and female are presented in the third

row of Figure 3. Two expected item scores and the relative frequency of summed scores are

presented in the fourth row of Figure 3. The fifth row of Figure 3 contains the difference in

expected item scores and the relative frequency of the focal group. The observed score index

of standard impact is presented at the bottom of Figure 3 without having Ei performed.

We are not interested in the statistical significance testing of the SMD, nevertheless the two

different variances of the SMD have been presented by Zwick and Thayer (1996). The two

variances are presented in the Appendix.

Insert Figure 3 and Table 10 about here
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The four observed score indices of standard impact for the GKAP-R items are presented

in Table 9. Note that in order to remove the effect due to the range of the item scores, T' (1)

can be divided by the range. If we use Ti (1)/R instead of Ti (1), then the possible values of

the index will be limited within ±1. Since the item scores were 0, 1, and 2, Ti(1) can range

from 2 to 2. Positive values of T' (1) indicate that the item favors the reference group,

while negative values of T' (1) indicate the opposite. Following Dorans and Holland (1993)

(see also Dorans & Kulick, 1986; Dorans & Schmitt, 1991), we may consider T'(1) values

between .10 and .10 (i.e., (1)I/R = IT' (1)1/2 < .05) negligible. T1(1) values between

.20 and .10 and between .10 to .20 (i.e., .05 < IT' (1)/21 < .10) should be inspected to

ensure that no possible effect is overlooked. According to Dorans and Kulick (1986), this

might include some items that would be deemed acceptable after close examination. r (1)

values outside the .20 to .20 range (i.e., .10 < IT' (1)/2D are unusual and require very

careful examination.

According to the above flagging cutoffs, item 10 seems to require a closer examination.

The positive value of T' (1) indicates that the item favors the reference group, female students.

Item 10 is the teacher's rating (0, 1, 2, where 2 indicates positive approval) of whether a

student follows the teacher's directions. Although conditioned upon the summed scores, the

female students seem more likely to follow teachers's directions than the male students. This

difference in compliance between female and male preschool students was not unexpected.

It is known that girls are more compliant than boys to the requests and demands of parents,

teachers, and other authority figures (Shaffer, 2000). Note that 71' (3) might be useful when

we have items that exhibit non-uniform DIF, and T' (2) and T' (4) might be helpful when we

analyze multiple groups.

Because the observed score indices are counterparts to the model-based indices where the

model-based latent 0 values were replaced by observed summed scores X, we may apply the

same flagging cutoffs to the model-based indices. Hence, we should examine the item with

care when we find more than five percent difference (based on the range of item scores) in

the indices of standardized impact (i.e., T(1) and Ti (1)) .

Discussion

Detection and removal of DIF items on tests with polytomously scored items has become an

important concern for both test developers and measurement specialists. Selection of a DIF
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detection method, however, is often a difficult and even confusing task. This is especially

so when DIF detection methods do not all identify the same items because each method is

sensitive to different conditions. In the present paper, a model-based DIF detection method

for polytomous items and two observed score DIF detection methods were compared using

four samples with varying numbers of examinees from large scale performance rating data.

The DIF detection results revealed that there was a moderate to high similarity in the

magnitudes of the three DIF statistics, G2, M2, and Q2, within each sample and across

samples except N = 100. The results also indicated that almost the same sets of items were

identified as DIF items within each sample. One point that became clear when analyzing

these samples was that statistical testing of DIF might not be a good idea when a large

sample, say N > 10, 000, was used. When N = 105, 731, the three DIF detection methods

identified nearly all items as statistically significant DIF items. When N = 10, 000, more

than half of the items were identified as DIF items. This sensitivity of statistical testing of

DIF toward the large sample size gives a test developer a pain in the neck.

There seem to be two ways to relieve the sensitivity to the sample size in a DIF analysis.

One obvious way is not to use a large sample size in a DIF analysis. Instead we may use

portions of randomly sampled reference and focal groups of examinees (as we did in this

study). Based on Type I error and power studies (e.g., Ankenmann et al., 1999; Zwick

et al., 1993a) and parameter recovery studies for the model-based case (e.g., Reise & Yu,

1990), we may choose an appropriate sample size for the DIF analysis. This study does not

offer any specific number for this, but N = 1, 000 seems to be a good starting place. The

second and more gratifying solution is to use descriptive DIF measures because we then can

use all information contained in the data. Both model-based and observed score indices of

standardized impact seem to be a potentially useful means of measuring and describing the

amount of DIF. Note that the area between two item true score functions (or two empirical

expected score functions) provides sample-independent measure of impact. When the same

area is weighted by the proficiency distribution (or the relative frequency) of the focal group,

the standardized impact is obtained. As Wainer (1993) indicated, this amount of DIF is

sample dependent.

When we would like to perform classifications using derived scores or summed scores

under the criterion-reference testing framework, the plots of not-yet-integrated model-based
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index of standardized impact,

[T R(0) TF (0)] g F (0) ,

and of the un-summed observed score index of standardized impact,

[ER(Y1X = 1) EF(Y1X =I)] N Fl

(38)

(39)

will be useful because these will demonstrate the amount of differential impact for the specific

proficiency levels or summed scores that are used as cutoff scores. In addition, visual displays

of item true score functions, proficiency distributions, and indices of standardized impact can

facilitate data interpretation. The visual inspection of the item true score functions seems

to be especially important as it will enhance the interpretability of T(3) and (3). When

the amount of cancellation due to nonuniform DIF is of interest, instead of Equations 28

and 36, we may use

and

T(3) = I 7,01T R(0) F G F(9)

\ N Fl
T' (3) = E 1ER(Yix = 1) EF(Y IX = 1)1 N

1=o

Comparisons of these with T(1) and T'(1) will provide the information with regard to the

cancellation effect.

The observed score indices of standardized impact might be less suspect to the potential

side effects of model misfit than the model-based indices of standardized impact. This is

because there may be a confounding effect of model misfit and DIF in a model-based DIF

detection method (Ankenmann et al., 1999: Dorans & Schmitt, 1991). It can be noted that

if both model-based and observed score indices were obtained, then we may separate model

misfit from DIF by comparing T(1) and 7-'(1) or T(3) and T'(3). This separation may be

more obvious when the partial credit model is used in calibration because the same summed

scores yield the same proficiency estimates under the partial credit model.

Due to a lack of understanding and experience using the model-based and observed score

indices of standardized impact, studies are needed to investigate various applications of these

indices to real data with an eye toward examining what is in fact measured by each index.

It also would be useful to explore the role of these indices in the context of studies that deal

with sample size and statistical power in DIF detection.

Finally, and perhaps most importantly; the justification of the tentative five percent or

.05 cutoff value of the indices of the standardized impact was mainly based on the statements

(40)

(41)
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of the original contributors of the SMD (Dorans & Holland, 1993; Dorans & Ku lick, 1986;

Dorans & Schmitt, 1991). There still remain important issues to be examined. One might

state, as Rosnow and Rosenthal (1989) did in the context of the Type I error assignment

in hypothesis testing, "Surely, God loves the .06 nearly as much as the .05," which elicited

"Amen" from Cohen (1990). Hence, we still need to establish firmly from the accumulation

of experience a bad-enough value (which is a counterpart of the good-enough value in Serlin

& Laps ley, 1993), As, where s indicates the smallest difference that would constitute a

nontrivial DIF effect. Here, I am just uttering/paraphrasing:

I do not know whether God loves .06 as much as .05; but to myself I and many

others seem to have been fond of .05 or 1/20, because we have been told hither

and thither that the size of a just noticeable difference interval, called LAS, is

proportional to the size of the stimulus, S, (i.e., Weber's law, for example, AS/S

is roughly .05 for lifted weights; Calfee, 1975), whilst the real meaning of this in

DIF lay all undiscovered before us.
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Table 1
Data for the lth Level of the Matching Variable

Item Score
Group Yi. Yk YK Total

Focal
Reference

A11

B11

Ak1

Bk1

AK1

BK1

NFl
NRi

Total M11 Mkt MK1 T1
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Table 2
Summary Statistics for Male (Focal), Female (Reference), and Total Group

Statistic
N = 105,731 N = 10,000 N = 1,000 N= 100

Male Female Total Male Female Total Male Female Total Male Female Total
No. of Examinees 55,017 50,714 105,731 5,000 5,000 10,000 500 500 1,000 50 50 100

Mean 11.41 12.43 11.90 11.52 12.40 12.48 11.60 12.12 11.86 11.76 11.72 11.74

SD 4.21 4.06 4.17 4.12 4.06 4.12 4.07 4.07 4.07 4.47 4.30 4.36
Range 0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20 0-20 1-19 1-20 1-20
Alpha .83 .83 .83 .82 .83 .83 .82 .83 .82 .86 .86 .86



Table 3
Item Mean, Standard Deviation (SD), and Correlation (r) with

Corrected Total Score for N = 105, 731

Item
Male Female Tot al

Mean SD r Mean SD r Mean SD r
1 0.96 .64 .54 1.06 .61 .52 1.21 .63 .53

2 1.11 .72 .54 1.25 .71 .54 1.18 .72 .54

3 0.74 .50 .47 0.85 .47 .45 0.80 .49 .47

4 0.79 .61 .64 0.89 .60 .65 0.84 .61 .64

5 1.16 .75 .41 1.22 .72 .42 1.19 .73 .42

6 1.76 .58 .49 1.81 .52 .46 1.78 .55 .48

7 1.22 .81 .66 1.29 .78 .66 1.25 .80 .66

8 1.13 .72 .57 1.20 .71 .57 1.16 .72 .57

9 1.58 .62 .46 1.64 .59 .47 1.61 .60 .47

10 0.96 .71 .43 1.22 .69 .46 1.08 .71 .45
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Table 4
Latent Roots of the Correlation Matrix

Sample Size
Order N = 105, 731 N =-10,000 N =1,000 N = 100

1 4.05 3.98 3.92 4.47

2 .94 .95 .97 .98

3 .85 .87 .94 .89

4 .73 .74 .76 .74

5 .71 .71 .72 .68

6 .64 .65 .66 .59

7 .63 .64 .61 .55

8 .58 .58 .57 .44

9 .51 .52 .48 .35

10 .36 .36 .37 .31
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Table 5
/tem Parameter Estimates and Standard Errors (s.e.) from the Compact and Augmented Model., and the Likelihood Ratio Statistic G2 for Item 1

Item
Compact Model°

Augmented Model

2 log L C2
Reference/Anchor Item Focal

a(s.e.) bi(s.e.) b2(s.e.) aR(s.e.) biR(s.e.) b2R(s.e.) aR(s.e.) bi,F (s.e.) b2F (s.e.) 14F(s.e.)
1

2
3
4
5
6
7
8
9

10

1.51(.01) 1.33(.01)
1.42(.01) 1.45(.01)
1.36(.01) 1.16(.01)
2.75(.02) .71(.01)
.93(.01) 1.82(.02)

1.81(.02) 2.17(.01)
2.61(.02) .94(.01)
1.71(.01) 1.30(.01)
1.16(.01) 2.84(.02)
1.09(.01) 1.51(.01)

1.27(.01)
.52(.01)

2.92(.02)
1.39(.01)
.61(.01)

1.46(.01)
.08(.01)
.53(.01)

.77(.01)
.96(.01)

1.48(.02)
1.42(.01)
1.36(.01)
2.76(.02)

.93(.01)
1.81(.02)
2.62(.02)
1.71(.01)
1.16(.01)
1.09(.01)

1.43(.02)
1.44(.01)
1.16(.01)
.71(.01)

1.82(.02)
2.17(.01)
.94(.01)

1.30(.01)
2.84(.02)
1.51(.01)

1.29(.01)
.53(.01)

2.92(.02)
1.39(.01)

.61(.01)
1.46(.01)

.05(.00)

.54(.01)
.77(.01)

.96(.01)

1.54(.02) 1.26(.02) 1.25(.01) .14(.01) 73505.2 116.9

'The compact model yielded AF(s.e.) .14(.01) and 2 log L = 73622.1.

BEST COPY AVAILABLE

31

33



Table 6
Item Parameter Estimates and Standard Errors (s.e.) from the Augmented Models, 2 log L, and G2

Item

Augmented Model

2 log L G2
Reference Focal

aR(s.e.) biR(s.e.) b2R(s.e.) aF(s.e.) biF(s.e.) b2F(s.e.) /IF (s.e.)

1 1.48(.02) 1.43(.02) 1.29(.01) 1.54(.02) 1.26(.02) 1.25(.01) .14(.01) 73505.2 116.9

2 1.43(.02) 1.49(.02) .47(.01) 1.40(.01) 1.41(.01) .59(.01) .13(.01) 73544.8 77.3

3 1.37(.02) 1.31(.02) 2.85(.03) 1.33(.02) 1.04(.01) 3.06(.04) .13(.01) 73147.5 474.6

4 2.82(.03) 0.72(.01) 1.40(.01) 2.70(.03) .70(.01) 1.38(.01) .14(.01) 73602.4 19.7

5 0.96(.01) 1.81(.03) .65(.02) .91(.01) 1.82(.03) .57(.02) .14(.01) 73504.1 118.0

6 1.80(.03) 2.16(.02) 1.44(.02) 1.83(.02) 2.17(.02) 1.48(.01) .14(.01) 73595.8 26.3

7 2.70(.03) .90(.01) .17(.00) 2.65(.02) .99(.01) .03(.01) .17(.01) 72720.9 901.2

8 1.77(.02) 1.23(.01) .56(.01) 1.69(.01) 1.35(.01) .50(.01) .15(.01) 73476.0 146.1

9 1.23(.02) 2.71(.03) .75(.01) 1.11(.01) 2.95(.03) .78(.01) .14(.01) 73584.1 38.0
10 1.14(.01) 1.76(.02) .70(.01) 1.01(.01) 1.32(.02) 1.32(.02) .11(.01) 71521.1 2101.0



Table 7
Likelihood Ratio Statistics G2, Mantel Statistics M2, and Generalized Mantel Haenszel Statistics Q2

Item
N = 105, 731 N = 10, 000 N =1,000 N = 100

G2 M2 Q2 G2 M2 Q2 G2 M2 Q2 G2 M2 Q2

1 116.9 2.42 44.50 8.1 .00 2.61 1.1 .17 .35 1.7 1.44 2.32

2 77.3 12.88 14.36 8.0 1.28 1.29 .3 .49 .51 3.7 .06 .37

3 474.6 314.62 385.62 10.6 44.55 47.02 2.2 2.70 2.75 1.1 .11 .89

4 19.7 8.45 29.41 .7 .01 3.13 5.5 2.77 5.60 3.1 1.30 1.42

5 118.0 108.74 157.67 14.4 26.18 26.92 4.4 1.20 2.60 1.5 .34 .99

6 26.3 41.54 44.76 3.8 2.20 2.47 10.1 3.70 9.20 1.5 1.06 2.14

7 901.2 629.65 747.86 68.5 38.42 52.07 8.8 5.34 6.29 .5 .03 .41

8 146.1 243.45 243.86 16.6 22.17 22.26 1.7 .30 .60 3.6 1.01 2.06

9 38.0 29.28 69.47 17.2 11.49 18.22 1.0 1.21 1.21 6.0 .10 2.20

10 2101.0 1743.54 1744.32 205.7 181.25 181.25 20.4 16.97 17.91 5.7 2.96 3.22

The .01 level critical values are x2d1=3 11.34 for G2, X2df.i. = 6.63 for M2, and 4=2 =

33

35

9.21 for Q2.



Table 8
Spearman's Correlations Among DIF Indices

Sample
DIF

Index
N = 105, 731 N = 10, 000 N .1,000 N = 100

G2 M2 Q2 G2 M2 Q2 G2 M2 Q2 G2 M2 Q2

N =105,731 G2 1.00
m2 .83 1.00
Q2 .87 .94 1.00

N = 10, 000 G2 .78 .73 .83 1.00
M2 .82 .96 .93 .75 1.00
Q2 .83 .86 .94 .79 .89 1.00

N .1,000 G2 .29 .56 .52 .18 .47 .50 1.00

M2 .24 .59 .51 .27 .54 .50 .82 1.00
Q2 .22 .61 .53 .21 .55 .50 .90 .96 1.00

N = 100 G2 -.21 -.23 -.23 .16 -.18 -.21 -.35 -.18 -.24 1.00

M2 -.07 -.14 -.02 -.16 -.16 -.01 .44 .06 .20 .26 1.00

Q2 -.03 -.07 .14 .22 -.07 .07 .26 .06 .13 .51 .77 1.00



Table 9
Four Model-Based Indices of Standardized Impact and Four Indices of Observed Score Impact

Model-Based Index Observed-Score Index

Item T(1) T(2) T(3) T(4) T'(1) T'(2) T'(3) T'(4)
1 .0188 1034.59 .0010 56.38 .0067 368.78 .0005 25.70

2 .0433 2381.63 .0020 107.90 .0131 719.84 .0003 18.24

3 .0555 3052.95 .0034 189.56 .0475 2611.77 .0034 187.26

4 -.0017 -93.08 .0001 7.54 -.0070 -385.19 .0002 11.50

5 -.0072 -398.08 .0001 5.66 -.0394 -2168.00 .0019 105.31

6 .0106 584.12 .0002 8.92 -.0179 -982.90 .0006 35.43

7 -.0547 -3008.52 .0054 294.62 -.0792 -4358.73 .0086 474.94

8 -.0160 -879.32 .0005 29.91 -.0521 -2868.14 .0032 174.85

9 .0134 737.16 .0002 13.72 -.0196 -1076.74 .0019 105.24

10 .1785 9819.36 .0333 1832.03 .1479 8139.31 .0233 1281.11



Table 10
Cross Classification of Item 10 Score by Summed Score for Male and Female

MaleFocal Group
Item

Score
Summed Score

2 8 1 1 1 1. 1 18 1

0 475 404 535
1 0 123 180
2 0 0 13

736
274

15

873
417

29

1064 1121 1226 1232 1177 1251
634 884 1092 1456 1810 2172

45 83 137 182 270 371

1280 1220 893 665 383 147 49 15
2648 3170 3571 3435 2818 1698 784 291
556 725 1057 1474 1904 2038 1809 1176

0 0
81 0

585 264

Total 475 527 728 1025 1319 1743 2088 2455 2870 3257 3794 4484 5115 5521 5574 5105 3883 2642 1482 666 264

Female Reference Group
Item

Score 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 240 245 315 391 480 584 576 658 624 635 641 636 589 500 345 197

1 0 75 126 229 327 479 658 866 1192 1502 1894 2319 2927 3354 3095 2484
2 0 0 12 16 48 56 93 131 198 332 431 650 1022 1511 2147 2764

Total 240 320 453 636 855 1119 1327 1655 2014 2469 2966 3605 4538 5365 5587 5445

Summed Score

64
1692
3104
4860

27
716

2711
3454

9
283

1893
2185

0

64
1057
1121

0

0
500
500

BEST COPY AVAILABLE



Figure Captions

Figure 1. Latent roots in order of size for N = 105, 731, N = 10, 000, N = 1,000, and

N = 100.

Figure 2. Illustration of the calculation of the model-based index of standardized impact.

Figure. 3. Illustration of the calculation of the observed score index of standardized impact.
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Category Response Functions for Female
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Empirical Trace Lines for Males
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Appendix

Zwick and Thayer (1996) presented two variances for the SMD. Using the notation in Table 1,

the two variances are presented below. It should be noted that the first is based on the

hypergeometric model and known to provide better standard errors (Zwick & Thayer, 1996).

The first variance of the SMD were given as

VarH (SMD) = E WF1 (-NFlT
1

+
1 2

VarH(Fi),
1=0 IV RI

where the subscript H designates the hypergeometric framework,

NFl
W Fl = 7

K

Fi = E Ak/Yk,
k=1

and VarH(Fj) is defined in Equation 16.

The second based on the multinomial model is

where

Fkl

Varm(SMD) =- E wF,
1=0

1 21T 21
v ar mv arm kr[(-)

NFl
+ ()

NR1

VarM(Fz) = NFl

Varm (Ri) =-- NR1

Akl /NFI, and 71-Rkt

K

E
k=1

K

7tRklYk2
k=1

C> frFkiYk
k=1

K 2

(
E irRkiK)1
k=1

= Bkl /NRI. The subscript M, of course,

expressions are obtained using the multinomial model.

(42)

(43)

(44)

(45)

(46)

(47)

indicates that these
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