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Glossary of Terms and Notation

cumulative distribution function of the observed scores
Y in the national norming sample
population mean and standard deviation for Y
measurement error variance
test reliability coefficient; rel = (aN2 c4

) /
oN2

S, obtained score for an individual student examinee,
100 G(S) percentile rank (PR) for the score S
S = t + E measurement model for S, underlying true score T
100 .G(T) percentile rank in observed norming distribution for

individual under perfect measurement

G1(Y)

100 Cri(r)

hit-rate 1

G-1(P)

retest

reversal

compare2

cumulative distribution function with mean and
standard deviation (µN , [(c 02E )11/2);

G1(Y) represents a (hypothetical) norming distribution
not distorted by measurement error
percentile rank for an individual under perfect
measurement, in a norming distribution not distorted
by measurement error

probability that G(S) differs from G1(T) by no more
than the tolerance (tol) [section 3.1]
Pr{ I G(S) G1(T) I 5 tolerance I Gi(T))

standard set as a percentile, P , of the observed norms
distribution. Pr{G(S) > standard } = Pr{S > G-1( P )}
[section 3.2]

test-retest consistency probability,
Pr{ I G(Sa) G(Sb) I tolerance I Gi(T)) , based on two
(contemporaneous) scores for a single student with
observed percentile ranks G(Sa) and G(Sb). [section 4]

reversal probability for two students,
Pr{ G(S1) G(S2) > 0 I Gi(ri), G1(T2)}, although
G1(i1) < G1(T2) [section 5.1]

probability that the signed difference between the
percentile ranks is less than or equal to the quantity
"bound" for two students with values of Gi(ti), G1(r2),
Pr{ G(S1) G(S2) _. bound I Gi(ri), GI(T2)}. [section 5.2]
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ABSTRACT

In the reporting of individual student results from standardized tests
in Educational Assessments, the percentile rank of the individual
student is a major, if not the most prominent, numerical indicator. For
example, in the 1998 and 1999 California Standardized Testing and
Reporting (STAR) program using the Stanford Achievement Test
Series, Ninth Edition, Form T (Stanford 9), the 1998 Home Report and
1999 Parent Report feature solely the National Grade Percentile
Ranks. (These percentile rank scores also featured in the more
extensive Student Report.)

This paper develops a formulation and presents calculations to
examine the accuracy of the individual percentile rank score. Here,
accuracy follows the common-sense interpretation of how close you
come to the target. Calculations are presented for: (i) percentile
discrepancy, (the difference between the percentile rank of the
obtained test score compared to perfectly accurate measurement), (ii)
comparisons of a student score to a standard (e.g., national norm 50th
percentile), (iii) test-retest consistency (difference between the
percentile rank of the obtained test score in two repeated
administrations), (iv) comparison of two students (difference between
the percentile rank of the obtained test scores for two students of
different achievement levels). One important theme is to compare the
results of these calculations with the traditional interpretations of the
test reliability coefficient: e.g., Does high reliability imply good
accuracy?
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1. Introduction

1.1 Reporting Individual Scores as Percentile Ranks

In the reporting of individual student results from standardized tests in educational
assessments, the percentile rank of the individual student is a major, if not the
most prominent, numerical indicator. For example, in the California Standardized
Testing and Reporting (STAR) program which uses the Stanford Achievement Test
Series, Ninth Edition, Form T (Stanford 9), the 1998 Home Report and 1999 STAR
Parent Report feature solely the National Grade Percentile Ranks. (These percentile
rank scores also featured in the more extensive Student Report, and among the
scores reported only the percentile rank is given a graphical display of
uncertainty.).

STUDENT'S PERFORMANCE

Recently this student took the Stanford
Achievement Test. The graph to the right
presents the student's test results. These..
Percentile Rank Scores the iiiident's
performance with scores of students In the
same grade from across the nation: Please
keep in mind that this test is only one indicator
used In assessing a student's achievement. The
school has more detailed Information about
how the student is performing.

Total Roadlna

Total Math

LaMtaag

spaying

aft* Matt.
aolanoa

Social Solana.

Listening

Basle Battary

Complain battery

,M511 YEROMPIRMI

SUBTESTS AND
TOTALS

Number
of

Items
Number
C

National
%ile

NATIONAL GRADE PERCENTILE RANKS
Below Average Average Al

1 10 30 50 70 90

Total Reading 84 58 49 49
Vocabulary 30 19 43 43
Reading Comp. 54 39 53 53

Mathematics 48 19 37 37

31Language 48 25 31

Figure 1. Percentile rank reporting of Stanford 9 results in California STAR; main portion
of 1998 STAR Home Report at top; excerpt from 1999 Parent Report at bottom.

The calculations of this paper seek to provide guidance on the accuracy of test
scores reported in the percentile rank metric. How solid are these numbers? Even
for tests with respectable raw score reliability coefficients?
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lb 1.2 Accuracy in Real Life What Is Meant by Accuracy?

S
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p
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The generic statement here is that accuracy follows the common-sense
interpretation of how close you come to the target. Television is the main source for
these examples of common-sense accuracy. Example 1 is from Good Housekeeping
Institute, on the accuracy of home body-fat testers, and example 2 is from the
Pentagon, on accuracy of cruise missiles. The first example is communicated by
Sylvia Chase, ABC News, and the second example by Brian Williams on MSNBC.
For the home body-fat testers, the accuracy is expressed in terms of the discrepancy
between the home body-fat assessment and the body-fat assessment obtained from
much better quality of measurement a "gold standard" clinical assessment using a
body scan. For cruise missiles, the accuracy is stated in terms of the probability
that the missile lands "close" (quantified in terms of a distance) to its target.

Home Body-Fat Testers
The first illustration of accuracy is provided by that venerable authority on
psychometrics, Good Housekeeping. The example is a study of home body-fat
testers, conducted by the Good Housekeeping Institute reported in the September
1998 issue and also described in the ABC News television program PrimeTime Live
in August 1998. From the Good Housekeeping (p.42) print description:

Three recent new gizmos promise to calculate your body fat percentage at home.
To test their accuracy, Institute chemists sent two female staffers to the weight
control unit at St. Luke's-Roosevelt hospital in New York City to have their body
fat professionally analyzed. The clinic's results were compared with those of the
Tanita body fat monitor and scale, the Omron Body Logic, and the Omron Body
Pro.

Good Housekeeping's summative evaluation: "Don't bother, the fat percentages
measured by the devices were inconsistent with the clinic's findings." Interestingly,
Good Housekeeping identified multiple facets of error that influence the home
devices: "The amount of fluid in the body, skin temperature, time of day and how
long you've been sitting or standing can all interfere with getting an accurate
reading".

PrimeTime Live repeated the Good Housekeeping tests with an additional 5
volunteers. As in the Good Housekeeping trials, the "gold standard Dexa reading" is
obtained from the "weight control clinic at New York's St. Luke's Roosevelt
Hospital, [with] the Rolls Royce of body fat analyzers the Dexa, considered the
most accurate of fat measuring devices.... The Dexa scans the body, sorting out
what's fat and what's not."(Primetime Live 8/12/98). For one female subject the
Dexa gave 33 percent body fat. However, the Omron gave a 24 percent reading and
the health club skin-fold with calipers also gave 24 percent (recommended upper
limit is 25 percent). For one male subject, the Dexa gave 15.9 percent, whereas
skin-fold gave 5 percent.



The intended lesson from the body fat example is that the natural way to evaluate
accuracy of a measurement, whether it be a percentile rank score from a
standardized test or a reading from a home body fat tester, is by the discrepancy
between the gold-standard assessment (here the Dexa reading) and the field
reading (here the home device). In the Good Housekeeping trials, the approach is if
home tester produces scores close to clinical body fat evaluation, then it's a good
buy. Whether the observed discrepancies are acceptably small is a matter for
judgement; in these trials it seems a discrepancy of 10 percent body fat is viewed as
much too large to recommend the home devices or skin-fold. Extending this
example, envision a far more extensive evaluation of the home body fat testers, in
which, say, 1,000 individuals had a gold-standard reading from the Dexa and also
measurements from each of the home devices. From those hypothetical data, the
proportion of measurements within 5 percentage points of the Dexa, within 10
percentage points of the Dexa, etc., for each device, could be tabulated. That's the
type of assessment (via probability calculations) that will be presented in the next
section for the standardized test percentile rank score.

Cruise Missile Accuracy
The second illustration of accuracy is provided by descriptions of the accuracy of the
Tomahawk cruise missile in a November 12, 1998, segment of the MSNBC program
News with Brian Williams, titled Tomahawk Diplomacy. The screenshots in Figure
2 are accompanied by the narration at the right.

Insert Figure 2 here

To recast in the terms we will use for accuracy of percentile rank test scores, the
top frame of Figure 2 indicates the hit-rate is .50 for target at the 50-yard-line, and
tolerance 15 yards. In military jargon, the acronym is CEP, which stands for
Circular Error Probable-- a measure of the radius of the circle into which 50 percent
of weapons should impact. The bottom frame isn't exactly quantifiable in terms of
hit rate, but roughly we could say: hit-rate is large (e.g.,?.. .9) for strike within the
confines of the playing field and hit-rate is very large (e.g.,? .98) for strike within
the stadium. (A narrative version of this description of Tomahawk cruise missile
accuracy is provided, for example, by a DOD News Briefing by K. Bacon, 9/6/96.)

4
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"The Pentagon uses the
idea of a football field.
Says if the target were
the 50 yard line, half the
missiles would hit
within fifteen yards

most of the rest [fall] on
the field, but a few in

A the stands or even
outside the stadium"

E
1/4 r

(MSNBC, Nov. 12, 1998).

"t;'5";

Figure 2. Screenshots and accompanying narration on the accuracy of the Tomahawk
cruise missile in a November 12, 1998, segment of the MSNBC program News with
Brian Williams, titled Tomahawk Diplomacy.
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The analogy that is used here for the accuracy of percentile rank scores is, What's the
probability that the obtained percentile rank score lies within 5 percentile points of the
target?, or 10 percentile points of the target? Definition of the target for the percentile
rank score is through the (hypothetical) gold standard measurement obtained from a
far more extensive testing protocol (or repeated testings) of student achievement. The
technical content of this paper addresses the question: For the standardized testing
situation, will the percentile rank scores have adequate accuracy? Or to refine the
question, for what levels of the reliability coefficient will adequate accuracy be
obtained? One way to display the information on accuracy is through the probability
that the discrepancy between the percentile rank of the obtained student score and
that for the gold standard measurement is less than a specified tolerance (see Section
3.1).

6
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2. Technical Formulation

The technical formulation is a basic errors-in-variables model with all components
having Gaussian distributions. All that is meant by the phrase "classical test theory
calculation" is to identify the calculations herein as pertaining to the simplest case of
constant error variance across the score distribution with continuous, Normally
distributed scores. Thus, this formulation represents a restricted version of the full
statement of the classical test theory model, see Lord (1980, Chap. 1). The components
of what is referred to as the classical test theory calculation are listed below.

The cumulative distribution function of the observed scores Y in the national
norming sample is denoted by G(Y). The classical test theory formulation defines this
norming distribution, with density function g(Y), to be a Normal Distribution; denote
the corresponding population mean and standard deviation for Y by (1N , ON).

The observed measure Y contains error of measurement E . The classical test
theory assumptions dictate that the error of measurement, denoted by E, has a Normal
Distribution with mean 0 and constant variance c across the score distribution: i.e.,
E - N(0, -N/c4 ). (More general formulations, such as c depending on the level of the
test score, can be incorporated into many of these results, with the overhead of added
complexity.)

The test reliability coefficient is often used as an index of the quality of
measurement. The test reliability is defined for the full (norms) population; from the
classical test theory formulation, the reliability is rel = (oN2 of )/oN2 . For a rough,
but useful, illustration set the reliability of a 60-item test to be .90 (in line with
standardized achievement tests). Then use Spearman-Brown to obtain the approximate
test length equivalents for various reliability values:
reliability .60 .65 .70 .75 .80 .85 .90 .95

number items 10 12 16 20 27 38 60 127

The norming distribution, G(Y) is based on fallible Y-scores. An alternative is to
consider what the norming distribution would be if measurement had been perfect (i.e.
not distorted by error of measurement in Y). At the risk of over-complicating the
notation, denote by G1(Y) the cumulative distribution function with corresponding
mean and standard deviation (IAN , [(crrl c Y2); G1(Y) represents a (hypothetical)
norming distribution not distorted by measurement error (i.e., constructed from scores
with reliability 1).

The score for an individual student examinee is denoted by S. The percentile rank
(PR) for the score S is 100 G(S); thus G(S) can be thought of as a nondecreasing
transformation of the score S to the percentile rank metric. The score S has underlying
true score T ; the measurement model is S = T . An individual under perfect
measurement has percentile rank in observed norming distribution 100 -G(T) or, in a
norming distribution not distorted by measurement error, the percentile rank is
100 Gl(r). Often in the calculations, an individual (or an individual's achievement
level) is characterized a value of Gi(T).

7
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Adopting the interpretation of accuracy as how close you come to the target, the
following sections present calculations examining the accuracy of the individual
percentile rank score by comparing obtained score 100 G(S) to the percentile rank score
that would be obtained with perfectly accurate measurement 100 01(T) or 100 0(r)
(depending whether the calculation is done for a norming distribution not distorted by
measurement error). Section 3 focuses on the difference between G(S) and Gi(T), for
G1(i) set to a specific percentile: e.g., values of G(S) for a student with true standing at
50th percentile as in Pr{ I G(S) .50 I .10). Also, Section 3 includes calculations
comparing a student to a standard, such as a standard set at observed 50th percentile;
calculate, for example, probability above standard for student with true percentile
rank, G1(c) = .60. Section 4 extends the calculations to test-retest consistency; for
example, for a student with G1(ti) = .50 (true standing at 50th percentile), obtain two
test scores (Sa and Sb) and calculate Pr{ I G(Sa) G(Sb) I < .10 }. In Section 5, those
calculations are extended to comparing observed percentile scores from two students at
different achievement levels. One scenario, illustrated in Figure 4, has student 1 at
50th percentile (G1(t1) = .50) and student 2 at 75th percentile (G1(T2) = .75) (under
perfect measurement), and, for example, calculate the probability of a reversal,
Pr {G(S1) G(S2) > 0).

Figures 3 and 4 provide a depiction of the components of the calculations. Figure 3
shows the formulation relevant to Sections 3 and 4, whereas Figure 4 is relevant to
Section 5. A visual harbinger of the results in Sections 3 and 4 is provided by noting in
Figure 3, even with test reliability .90, that the depicted score distribution conditional
on the true percentile (pdf of S) does span a wide range of values of G(Y).

Insert Figures 3 and 4 here

One important theme is to compare the results of these calculations with the
traditional interpretations of the test reliability coefficient: e.g., Does high reliability
imply good accuracy? One way to address this question is through results of the
calculations described above for test reliability in the range of .80 to .95, which
represent values for the best standardized tests and subtests.

The present calculations are deliberately reduced to the most abstracted situation for
ease of exposition, and because the main points about accuracy are adequately
illustrated by the abstracted formulation. Similar calculations for specific (e.g., IRT
scaled) tests with error variances differing across the score distribution and empirically
obtained norms distributions (not necessarily Gaussian) and with discrete scale score
points can be carried out with some added complexity.

8
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0.1

0.08

0.06

0.04

0.02

600 650 700 750

Figure 3. Diagram for calculations for percentile accuracy for observed student score
(S) for student with true standing at 50th percentile. Diagram uses test reliability .90
and true score distribution N(654,38). Diagram also represents test-retest consistency
calculations with two draws from S distribution.



0.1

0.08

0.06

0.04

0.02

[.50] G1 [75]

600 650

G(Y)/1 0

700 750

Figure 4. Diagram for calculations for comparing scores for student 1 (score
distribution S1) at 50th percentile and student 2 (score distribution S2) at 75th percentile
(under perfect measurement). Diagram uses test reliability .90 and true score
distribution N(654,38).
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3. Accuracy for a Single Student Score

3.1 Percentile Discrepancy

How solid is the observed student percentile rank score 100 .G(S)? Accuracy of the
percentile rank is assessed by calculations based on the discrepancy between G(S) and
the percentile rank score the student would receive if measurement were without error.
Taking the target to be the percentile rank of the true student score for a norming
distribution not distorted by measurement error, the hit-rate is defined in terms of
G(S) G1(t). That is, calculate for a student whose percentile rank under perfect
measurement is 100 .G1(r);

hit -rater = Pr{ I G(S) GI(T) I tolerance I G1(r) }. (3.1)

Hit -rater is the probability that G(S) differs from G1(T) by no more than the tolerance;
this probability is put forth as one of the major ways to assess the accuracy of student
percentile rank score 100 .G(S). To calculate hit -rater for a test with reliability rel,
specify the student's percentile rank under perfect measurement (e.g., G1(z) = .50 or
.35) and specify the tolerance, tol (e.g., .10). Figure 3 provides a depiction for the core
calculation with G1(t) = .5. Extended numerical illustrations follow the derivation
below in a series of Exhibits (e.g. G1(t) = .5 in Exhibit IA and G1(T) = .75, .25 in Exhibit
IB).

Derivation.
hit -rater = Pr{ G-1[G1(t) toll S G-1[G1(r) + toll }

= Pr{ S G-1[G1(T) + tol] } Pr{ S < G-1[G1(T) tol] }

Let (13[x] indicate the distribution function (cdf) for N(0,1) and 4[x] indivte the density
(pdf) for N(0,1). Then G(x) = OR* -1.1N)/aN], and SIT N[ aN(1 rel) 2 ] so that
Pr{ S x} = ()[(x -r)/ 6N(1 rel) 2 . Also note that t = 1AN aN (I [G1(t)] and

G-1[G1(T) + toll = µN + crN(13-1[G1(t) + tol] .

Then substituting into hit -rater yields

hit -rater = ORO 1[ G1(i) + tol ] Orel) 413-1[G1(t)] }/(1
(1)[{(1)-1[ G1(i) tol ] (lrel) 4)-1[G1(T)] )/(1 rel) 2] (3.2)

Equation 3.2 shows that hit -rater depends only on rel, the test reliability coefficient,
G1(r), the level of the student true measurement in the forming distribution not
distorted by measurement error, and, tol, the chosen tolerance. In numerical
computations, if G1(t) + tol > 1 set it to 1, and if G1(t) tol < 0, set it to 0.

11



Alternatively, defining the target to be G(T ), recast the hit-rate in terms of the
distance between G(S) and G(i) (i.e. not considering the distortion of the norming
distribution by the error of measurement). We can write G(T) = (13[ ( 'Irel)(13-1[Gi(T)] ] or
G1(T) = c [(13-1[G(2)]krel ] to obtain:

hit-rateG = Pr{ I G(S) G(T) I 5_ tolerance}
Y2

= (1)[{(1)-1[ G(T) + tol ] (13-1[G(T)] )/(1 rel)12]
(1)[{0-1[ G(T) toll (3-1[G(T)] } /(1 rel) ] (3.3)

With G1(r) = .5, hit -rater and hit-rateG are identical. Otherwise the difference between
(3.2) and (3.3), for the same T, is small-to-negligible in most situations, except for low
reliability and G1(i) near 0 or 1. So it appears sufficient to illustrate percentile
discrepancy using only values for hit -rater .

Exhibits IA-IE presents results, expressed in Tables and Figures, for the percentile
discrepancy in terms of hit -rater . The exposition here attempts to give a guided tour of
the displayed results in the Exhibits, and encourages readers to draw their own
conclusions about acceptable levels of accuracy.

Percentile .50. For a student with true standing at 50th percentile (G1(T) = .50), hit -
rate1 is Pr{ I G(S) .50 I tolerance }. Exhibit IA presents various forms of that
calculation, which depends on the test reliability and the specified value of tolerance.
The 3D plot in Figure IA1 gives a broad look at the dependence of the hit-rate on test
reliability and the value of tolerance. The entries in Table IA1 in Exhibit 1A give the
numerical values for the 3D plot. For test reliability .90, the hit-rate is .309 for
tolerance .05, .577 for tolerance .10, and .777 for tolerance .15. That is, the probability
that the observed percentile rank is within 10 percentile points of G1(ti) = .5 (i.e., G(S)
between .40 and .60) is .577 for test reliability .90 (and hit-rate is reduced .487 for test
reliability .85). Does that seem to be acceptable accuracy? What reliability seems
necessary to obtain acceptable accuracy? Increasing the reliability to .95 (which is
equivalent to more than doubling the test length) increases the hit-rate noticeably (but
maybe not dramatically): For tolerance .05, hit-rate increases from .309 to .426; for
tolerance .10, hit-rate increases from .577 to .743

A more traditional way to approach the accuracy of G(S) is to think in terms of possible
bias in and the magnitude of the standard error of G(S). In a separate report, I derive
exact expressions for the moments of G(S); for purposes here it may be useful to report
that the standard error of G(S) for a student with G1(i) = .50 and with test reliability
.90 is .1204 (twelve percentile points). This result can almost be read off of Figure 3.
Even for test reliability .95, the standard error of G(S) is .0871, and for test reliability
.85 the standard error of G(S) is .1443.

12



The dependence of hit-rate on test reliability is most directly shown in Figure IA2; each
plotted curve is labeled with a specified level for the tolerance. The final entry in
Exhibit IA is the contour plot in Figure IA3; each of the contours is labeled with a
specified level for the hit-rate. The purpose of the contour plot is to show the
combination of test reliability and tolerance needed to achieve a specific value for the
hit-rate. A guide to reading the contour plot is provided by Figure 5.

One additional version of these accuracy calculations follows from the CEP (circular
error probable) from the cruise missile example. To obtain hit -rater = .50 with G1(ti) =
.50 requires tolerance .144 for test reliability .7, tolerance .119 for test reliability .8,
tolerance .084 for test reliability .9, and tolerance .06 for test reliability .95. But is hit-
rate, = .50 an adequate enough accuracy standard for judging the performance of
individual schoolchildren?

Insert Exhibit IA here
Insert Figure 5 here



Hit-Rate Contour Plot, 50th percentile
Prob[ I G(S) .501 < tolerance]

.50
e

0.1

0.075

0.05 1

0.025

0.75 0.8 0.85 0.9
Test Reliability

Red series, test reliability .90. First (lowest) horizontal line shows 50% chance of
observed percentile rank score being within ± 8.5% of true percentile,
Next (middle) horizontal line shows 75% chance of observed percentile rank score being
within ± 14% of true percentile (e.g. Width nearly 28%, more than a whole quartile).
Top horizontal line shows 90% chance of observed percentile rank score being within
± 19.5% of true percentile (e.g, Width 40%).
Green series, test reliability .85. Bottom horizontal line shows 60% chance of
observed percentile rank score being within ± 13% of true percentile (e.g. Width 25%,
a whole quartile).
Top horizontal line shows 75% chance of observed percentile rank score being within
± 17% of true percentile (e.g. Width 34%).

0.95

Figure 5. Color-annotated version of the contour plot in Figure IA3.
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Exhibit IA
Percentile Accuracy for student at 50th percentile

1

hit-
0.75

rate
0.5

0.25
0

0.7
0.75

0 . 8
rel 0.85

0.9

0.25

0.2

0.15
t

0.1
d

0.05

Figure IA1. 3D plot of Prob within tolerance (hit-rate) as a function of reliability (.7, .95), and tolerance
(.025, .25) for student at 50'h percentile.
Table IA1. Hit-rate as a function of reliability (.7, .95), and tolerance (.025, .25) for
student at 50th percentile.

tolerance
.025 .05 .075 .10 .125

rel
0.70
0.725
0.75
0.775
0.8
0.825
0.85
0.875
0.9
0.925
0.95

rel
0.70
0.725
0.75
0.775
0.8
0.825
0.85
0.875
0.9
0.925
0.95

0.0911 0.181 0.27
0.0952 0.189 0.282
0.0998 0.198 0.295
0.105 0.209 0.31
0.112 0.221 0.328
0.119 0.236 0.349
0.129 0.254 0.375
0.141 0.278 0.407
0.157 0.309 0.45
0.181 0.354 0.51
0.221 0.426 0.602

0.356
0.371
0.388
0.407
0.429
0.455
0.487
0.526
0.577
0.645
0.743

0.439
0.457
0.476
0.498
0.524
0.554
0.589
0.633
0.686
0.755
0.846

tolerance
.15 .175 .20 .225 .25

0.518 0.593 0.662
0.538 0.613 0.683
0.559 0.636 0.706
0.583 0.661 0.731
0.611 0.69 0.759
0.643 0.722 0.79
0.68 0.759 0.824
0.724 0.801 0.862
0.777 0.849 0.903
0.841 0.902 0.944
0.915 0.958 0.981

0.725
0.746
0.768
0.792
0.819
0.847
0.877
0.909
0.941
0.971
0.992

0.782
0.802
0.823
0.845
0.868
0.893
0.918
0.944
0.967
0.986
0.997
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Exhibit IA continued
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Figure IA2. Plot of hit-rate as a function of reliability (.7, .95), at each level of tolerance (.025, .05, .075,
.10, .125, .15) for student at 50'h percentile.

Figure 1A3. Contour plot of hit-rate as a function of tolerance and test reliability for
student at 50th percentile.
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Percentiles 75, 25. Because the 50th percentile (G1(t) = .50) produces the worst results
for hit-rate, Exhibit IB repeats the full set of displays for the 75th and 25th percentiles;
hit-rate results are identical for G1(t) = .75 and G1(t) = .25. Hit-rates are higher for
the same test reliability and tolerance in Exhibit IB than in Exhibit IA even though
the measurement error variance is the same, because the percentile rank scores
depend on G(Y) (which flattens out for higher and lower percentiles). For test
reliability .90 the hit-rate moves up to .381 (from .309) for tolerance .05, and to .685
(from .577) for tolerance .10. Taking the ratio of the entries of Table IB1 to those of
Table IA1, the hit-rate for G1(t) = .75, .25 is about 1.2 times as large as that for G1(t)
= .50 for the lower values of tolerance, the ratio decreasing to about 1.05 for high
reliability and larger tolerance values. For the CEP calculations, to obtain hit -rater =
.50 with G1(c) = .75 or .25 requires tolerance .117 for test reliability .7, tolerance .095
for test reliability .8, tolerance .068 for test reliability .9, and tolerance .048 for test
reliability .95.

Insert Exhibit IB here

Other G1(t) values. The basic results in Exhibits IA and IB can be augmented by
additional displays for other choices of G1(t) ; i.e., How much do the results in Exhibit
IA change for other choices of G1(t) ? Exhibit IC gives plots of the hit-rate with each
curve labeled for percentiles 50, 60, 70, 80, 90. (Only curves for G1(t) ?_ .50 are used for
the comparison, as results for G1(i) = .2 would be identical to G1(t) = .8 and so forth.)
First is the set of plots for test reliability .90, .85, .80 in Figure IC1. Those plots of hit-
rate vs tolerance show 50th and 60th percentiles are almost indistinguishable; G1(t) =
.80 gives notably higher hit-rates than G1(t) = .60. Next is a similar set of plots for hit-
rate vs test reliability for chosen levels of tolerance in Figure IC2. Furthermore,
Exhibit ID gives the table of hit-rate for test reliability and tolerance shown in Table
IA1 for each of percentiles 60, 70, 80, 90. Next is the plot in Figure ID1 of hit-rate on
test reliability for G1(t) = .90 (compare with G1(t) = .50 in Figure IA2). Finally, Figure
ID2 displays the set of contour plots (shown for G1(t) = .50 in Figure IA3) for each of
G1(T) = .60, .70, .80, .90.

Insert Exhibits IC, ID here

Randomly-sampled student. The final exhibit on these hit-rate calculations is
constructed for a student sampled at random from the population of students; for
example, consider drawing a G1(T) at random from U[0,1]. The sampling could be
described as Percentile Accuracy averaged over all percentiles. In Exhibit IE, the
results for hit-rate are slightly higher than results for G1(t) = .75, .25 in Exhibit IB.

Insert Exhibit IE here



Exhibit IB
Percentile Accuracy for student at 75th percentile
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Figure IB1. Hit-rate as a function of reliability (.7, .95), and tolerance (.025, .25) for student at 75'
percentile.
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Table IB I: Hit-rate as a function of reliability (.7, .95), and tolerance (.025, .25) for
student at 75th percentile.

tolerance

rel
.025 .05 .075 .10 .125

0.70 0.112 0.223 0.33 0.434 0.531
0.725 0.117 0.233 0.345 0.452 0.551
0.75 0.123 0.244 0.361 0.472 0.574
0.775 0.13 0.257 0.38 0.494 0.599
0.8 0.138 0.273 0.402 0.521 0.627
0.825 0.148 0.291 0.427 0.551 0.66
0.85 0.16 0.314 0.458 0.587 0.697
0.875 0.175 0.343 0.497 0.631 0.741
0.9 0.196 0.381 0.546 0.685 0.792
0.925 0.225 0.434 0.613 0.753 0.852
0.95 0.275 0.519 0.711 0.843 0.921

tolerance
.15 .175 .20 .225 .25

rel
0.70 0.62 0.698 0.764 0.815 0.849
0.725 0.641 0.719 0.783 0.831 0.863
0.75 0.664 0.742 0.803 0.849 0.879
0.775 0.69 0.766 0.825 0.867 0.895
0.8 0.718 0.792 0.847 0.885 0.911
0.825 0.75 0.82 0.871 0.905 0.928
0.85 0.785 0.851 0.896 0.925 0.946
0.875 0.824 0.883 0.921 0.946 0.963
0.9 0.868 0.917 0.947 0.966 0.978
0.925 0.915 0.951 0.972 0.984 0.991
0.95 0.962 0.982 0.991 0.996 0.998
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Exhibit IB continued
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Figure IB2. Plot of hit-rate as a function of reliability (.7, .95), at each level of tolerance (.025, .05,
.075, .10, .125, .15) for student at 75th percentile.

Figure 1B3. Contour plot of hit-rate as a function of tolerance and test reliability for
Student at 75th , 25th percentile.
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Exhibit IC
Plots of Hit-rate for students across various percentiles

Figure IC1. Hit-rate versus tolerance for G1(c) values .50, .60, .70, .80, .90; the three
frames have reliability values .90 (a), .85 (b), .80 (c).
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Exhibit IC continued
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Figure 1C2. Hit-rate versus reliability for labeled G1(ti) values .50, .60, .70, .80, .90;
each frame has a labeled value of tolerance.
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Exhibit ID Hit-rate for Gi(r)values .60, .70, .80, .90;
Table ID1. Hit-rate as a function of reliability (.7, .95), and tolerance (.025, .25) for
Gi(r)values .60, .70, .80, .90.

G, Cr) = .60
tolerance

.025 .05 .075 .10 .125 .15 .175 .20 .225 .25

rel
0.70 0.0938 0.187 0.278 0.366 0.451 0.532 0.607 0.677 0.74 0.796
0.725 0.098 0.195 0.29 0.382 0.469 0.552 0.628 0.698 0.761 0.815
0.75 0.103 0.204 0.303 0.399 0.489 0.574 0.651 0.721 0.783 0.836
0.775 0.108 0.215 0.319 0.418 0.512 0.598 0.677 0.746 0.806 0.857
0.8 0.115 0.228 0.337 0.441 0.538 0.626 0.705 0.774 0.832 0.879
0.825 0.123 0.243 0.359 0.468 0.568 0.658 0.737 0.804 0.859 0.902
0.85 0.133 0.262 0.386 0.5 0.604 0.696 0.774 0.837 0.888 0.926
0.875 0.145 0.286 0.419 0.541 0.648 0.74 0.815 0.874 0.918 0.949
0.9 0.162 0.318 0.463 0.592 0.702 0.792 0.861 0.912 0.947 0.97
0.925 0.187 0.364 0.524 0.661 0.77 0.853 0.912 0.951 0.974 0.987
0.95 0.228 0.438 0.618 0.758 0.859 0.924 0.963 0.983 0.993 0.997

Gi(r) = .70
tolerance

.025 .05 .075 .10 .125 .15 .175 .20 .225 .25

rel
0.70 0.103 0.205 0.305 0.401 0.493 0.579 0.657 0.727 0.786 0.835
0.725 0.108 0.215 0.318 0.418 0.512 0.599 0.678 0.747 0.805 0.851
0.75 0.113 0.225 0.333 0.437 0.534 0.622 0.701 0.769 0.825 0.868
0.775 0.12 0.237 0.351 0.458 0.558 0.648 0.727 0.793 0.846 0.886
0.8 0.127 0.251 0.371 0.483 0.585 0.676 0.754 0.818 0.868 0.904
0.825 0.136 0.268 0.395 0.512 0.617 0.709 0.785 0.845 0.891 0.922
0.85 0.147 0.289 0.424 0.546 0.654 0.746 0.819 0.874 0.914 0.941
0.875 0.161 0.316 0.46 0.588 0.698 0.788 0.856 0.905 0.938 0.959
0.9 0.179 0.351 0.507 0.642 0.752 0.836 0.896 0.936 0.96 0.975
0.925 0.207 0.401 0.572 0.711 0.817 0.891 0.937 0.965 0.98 0.989
0.95 0.252 0.481 0.668 0.806 0.896 0.948 0.975 0.989 0.995 0.998

GI (I) = 80

tolerance
.025 .05 .075 .10 .125 .15 .175 .20

rel
0.70 0.126 0.25 0.369 0.483 0.587 0.677 0.748 0.795
0.725 0.132 0.261 0.386 0.502 0.608 0.698 0.767 0.811
0.75 0.138 0.274 0.404 0.524 0.631 0.721 0.787 0.829
0.775 0.146 0.289 0.425 0.549 0.657 0.745 0.808 0.848
0.8 0.155 0.307 0.449 0.577 0.686 0.771 0.831 0.868
0.825 0.167 0.327 0.477 0.609 0.718 0.8 0.855 0.889
0.85 0.18 0.353 0.51 0.646 0.754 0.831 0.88 0.911
0.875 0.197 0.385 0.552 0.69 0.795 0.865 0.907 0.934
0.9 0.221 0.427 0.604 0.744 0.841 0.901 0.935 0.958
0.925 0.254 0.485 0.674 0.809 0.892 0.938 0.963 0.979
0.95 0.31 0.576 0.77 0.888 0.947 0.974 0.988 0.994

G1Cr) = .90

tolerance
.025 .05 .075 .10 .125 .15 .175 .20

rel
0.70 0.192 0.378 0.547 0.663 0.719 0.766 0.807 0.841
0.725 0.202 0.396 0.569 0.683 0.739 0.787 0.827 0.86
0.75 0.213 0.416 0.592 0.704 0.761 0.808 0.847 0.879
0.775 0.226 0.439 0.619 0.727 0.784 0.831 0.868 0.898
0.8 0.24 0.465 0.648 0.752 0.809 0.854 0.89 0.918
0.825 0.258 0.495 0.68 0.78 0.836 0.879 0.912 0.937
0.85 0.279 0.53 0.716 0.81 0.864 0.905 0.934 0.955
0.875 0.307 0.573 0.757 0.844 0.895 0.931 0.955 0.972
0.9 0.342 0.627 0.804 0.882 0.927 0.957 0.975 0.986
0.925 0.393 0.697 0.858 0.923 0.959 0.979 0.99 0.995
0.95 0.473 0.791 0.919 0.966 0.986 0.995 0.998 0.999
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Exhibit ID continued
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Figure ID1. Plot of hit-rate vs test reliability for student at 90th percentile; labeled
tolerance values: {tol, .025, .10, .025).

Figure ID2. Array of contour plot of hit-rate as a function of tolerance and test
reliability for G1(T) values .60, .70, .80, .90; Hit-rate contours {.4,.5,.6,.7,.75,.8,.85, .9).
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Exhibit IE
Percentile Accuracy averaged over all percentiles
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Figure 1E1. 3D plot of hit-rate as a function of reliability (.7, .95), and tolerance (.025, .25) averaged
over all percentiles.

Table TEL Hit-rate as a function of reliability (.7, .95), and tolerance (.025, .25)
averaged over all percentiles.

tolerance
.025 .05 .075 .10 .125 .15 .175 .20

rel
0.75 0.181 0.321 0.439 0.539 0.624 0.696 0.757 0.808
0.775 0.191 0.337 0.459 0.561 0.647 0.719 0.779 0.829
0.8 0.202 0.355 0.481 0.586 0.673 0.744 0.803 0.851
0.825 0.216 0.376 0.507 0.614 0.701 0.772 0.829 0.874
0.85 0.232 0.401 0.537 0.646 0.733 0.803 0.857 0.898
0.875 0.251 0.432 0.573 0.684 0.77 0.837 0.886 0.923
0.9 0.277 0.47 0.617 0.729 0.813 0.874 0.918 0.948
0.925 0.313 0.522 0.675 0.786 0.863 0.916 0.951 0.972
0.95 0.368 0.599 0.755 0.858 0.922 0.96 0.98 0.991
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I Exhibit IE continued
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Figure 1E2. Plot of hit-rate as a function of reliability (.7, .95), at each
level of tolerance (.025, .05, .075, .10, .125, .15, .175, .20) averaged over all
percentiles.

Figure 1E3. Contour plot of hit-rate as a function of tolerance and test reliability
averaged over all percentiles (randomly sampled student). Contours -> (.4, .5, .6, .7,
.75, .8, .85, .9).
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A small aside: Percentile Bands, Score Reports. A common practice in standardized test
reports is to display the uncertainty in the percentile rank score using ±1 s.e.m.
confidence bands about the observed score S; this confidence band ranges from 100 G(S

s.e.m.) to 100 G(S + s.e.m.). For example, Harcourt Educational Measurement
(HEM) reports "National Grade Percentile Bands" in the Student Report as shown in
Figure 6.

SUBTESTS AND No. of
TOTALS ham

Raw
Score

Scaled
Score

National
1.114

National
NCE

NATIONAL GRADE PERCENTILE BANDS

I 10 30 SO 70 90 99
Total Reading 84 71 671 78.7 66.3 NM
Vocabulary 30 27 678 78-7 66.3
Reading Comp. 54 44 668 75.6 64.2

Total Mathematics 78 68 676 90-8 77.0
Problem Solving 48 41 669 87.7. 73.7
Procedures 30 27 686 87-7 73.7

Language 48 29 621 43-5 463
Lang Mechanics 24 10 590 20-3 32.3
Lang Expression 24 19 656 73-6 62.9

Spelling 30 20 629 54-5 52.1

Figure 6. "National Grade Percentile Bands" in the SAT9 Student Report.

Assuming that this confidence band is intended as an interval for G(T) , a probability
statement corresponding to the percentile band can be written as:

Pr{ G(S s.e.m.) G(T) G(S + s.e.m.) } = .683.

The probability statement for hit-rate in Equation 3.3 can be rewritten in the form
Pr{ G(S) tolerance G(T) G(S) + tolerance } = hit-rate.

So then selecting a hit-rate of .683 (i.e., a contour just below the .70 level) an
approximate equivalence can be stated in terms of:

tolerance = G(S + s.e.m.) G(S) and/or
G(S) G(S s.e.m.),
[G(S + s.e.m.) G(S s.e.m.)]/2 .

A different form of the approximate equivalence yields tol = G(T) G(T s.e.m.) etc.
(It's only for G(S) = .50 that both sides of that equivalence can be satisfied exactly, but
that's not critical.) As the s.e.m. is proportional to [(1 rel)/rel] 1/2 , for a stated test
reliability the tolerance-equivalent needed to make the hit-rate = .683 in the
probability statement can be computed as a function of test reliability. The entries in
Table 1 are the approximate tolerance equivalence in the confidence interval
probability statement (coverage .683) for test reliability (.7, .95) for scores at the 50th ,

75th , and 90th percentiles.
Table 1: Hit-rate and confidence interval equivalence for tolerance values.

rel
50

Score Percentile
75 90

0.70 0.208 0.180 0.124
0.75 0.191 0.164 0.109
0.8 0.173 0.146 0.0934
0.85 0.151 0.125 0.0776
0.9 0.124 0.102 0.0607
0.95 0.0885 0.0715 0.0411

To show the correspondence between the hit-rate probability statements used here and
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the confidence bands in the score reports, find in Table IA1 a tolerance value close to
the entry in the Table 1 .50 column with corresponding reliability and see if the
resulting Table IA1 hit-rate with corresponding reliability is close to the confidence
interval coverage .683. Note the following values for Table IA1 starting with the 50
score percentile column in Table 1: in Table IA1, rel .90, tol. .125, has hit-rate .686; rel
.85, tol. .15, has hit-rate .68; rel .725, tol .20, has hit-rate .683. Using the 75 column of
Table 1 and moving to Table IB1: rel .85, tol. .125, has hit-rate .697, and rel .90, tol .10,
has hit-rate .685. Moreover, using the 90 percentile column of Table 1 and moving to
Table ID1 for 90th percentile rel .925, tol. .05, has hit-rate .697.



3.2 Comparing a Student Score to a Standard 0

A secondary set of calculations addresses the accuracy of an individual percentile rank
score by examining the probability that a student's score is above a standard. There
are many different treatments of this type of problem in the literature; calculations
here focus on a standard set as a percentile of the observed norms distribution. Denote
this percentile by P , and thus the standard is G-1( P ). Given the student's percentile
rank under perfect measurement, G1(t), calculate

Pr{G(S) > standard } = Pr{S > G-1( P ) } = 1 Pr {S G-1( P ) } =

= 1 (1)[{0-1{ P ] ( '1rel) (VI [Gi(r)] }/(1 rel)Y2] (3.4) 0

I

If, instead, the student is identified by the percentile rank of T in the observed norms,
G(T), the calculation yields:

Pr {S > G-1( P) } = 1 (1)[{(1)-1[ P ] cicr1[G(t)] }/(1 rel)Y2] (3.5)

Three sets of numerical illustrations for Equation 3.4 follow. The standard is chosen to
be observed score norm 50th percentile in Exhibit IF, the 90th percentile in Exhibit IG,
and the '75th percentile in Exhibit IH. For each of these artificial standards used in the
Exhibits, the quantities displayed are: (i) tabled values of Probability above Standard
as a function of test reliability and true student percentile rank, G1(t) , and (ii) a plot
of Probability above Standard as a function of test reliability labeled with values of
true student percentile rank, G1(i) . For example, for test reliability .85, a student
with G1(r) = .3, has a 10.6% chance of obtaining a test score above the 50th percentile,
or for test reliability .90, a student with G1(T) = .6, has a 22.4% chance of obtaining a
test score below the 50th percentile, (Exhibit IF). Furthermore, for test reliability .85,
a student with G1(i) = .90 (e.g., a potential GATE student), has a 9.95% chance of
obtaining a test score below the 75th percentile (Exhibit IH).

Insert Exhibits IF, IG, IH here
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Exhibit IF
Comparing a Student to a Standard:
Standard Set at Observed Norms 50th percentile

Table IF1. Probability above Standard for student with true percentile rank as a function of
test reliability.

.2 .25 .3 .35 .4 .45 .5

rel
0.75 0.0725 0.121 0.182 0.252 0.33 0.414 0.5

0.775 0.0591 0.105 0.165 0.237 0.319 0.408 0.5

0.8 0.0462 0.0887 0.147 0.22 0.306 0.401 0.5

0.825 0.0338 0.0715 0.127 0.201 0.291 0.392 0.5

0.85 0.0226 0.0542 0.106 0.18 0.273 0.382 0.5

0.875 0.013 0.0372 0.0827 0.154 0.251 0.37 0.5

0.9 0.00579 0.0215 0.0578 0.124 0.224 0.353 0.5

0.925 0.00156 0.00892 0.0328 0.088 0.187 0.329 0.5

0.95 0.000122 0.00164 0.0111 0.0465 0.135 0.292 0.5

G1(.0

.55 .6 .65 .7 .75 .8

rel
0.75 0.586 0.67 0.748 0.818 0.879 0.928

0.775 0.592 0.681 0.763 0.835 0.895 0.941

0.8 0.599 0.694 0.78 0.853 0.911 0.954

0.825 0.608 0.709 0.799 0.873 0.928 0.966
0.85 0.618 0.727 0.82 0.894 0.946 0.977

0.875 0.63 0.749 0.846 0.917 0.963 0.987
0.9 0.647 0.776 0.876 0.942 0.978 0.994

0.925 0.671 0.813 0.912 0.967 0.991 0.998

0.95 0.708 0.865 0.953 0.989 0.998 1.

Pr {above}
1

0.8

0.6

0.4

0.2

.7

.6

.5

.4

.3

0.75 0.8 0'85 rel 0.9 0.95

Figure IF1. Probability above Standard as a function of test reliability; each curve is labeled
with GI(T) value (student true percentile rank).
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Exhibit IG
Comparing a Student to a Standard:
Standard Set at Observed Norms 90th percentile

Table IG1. Probability above Standard for student with true percentile rank as a function of
test reliability.

rel
.65 .675 .70

G1(.0

.725 .75 .775

0.75 0.029 0.0378 0.049 0.0633 0.0815 0.105
0.775 0.0235 0.0315 0.0419 0.0557 0.0735 0.0968
0.8 0.0181 0.0251 0.0346 0.0474 0.0647 0.0877
0.825 0.013 0.0188 0.0271 0.0387 0.0549 0.0773
0.85 0.00839 0.0129 0.0197 0.0296 0.0443 0.0654
0.875 0.00459 0.00767 0.0126 0.0205 0.0329 0.052
0.9 0.00189 0.00356 0.00658 0.0119 0.0212 0.037
0.925 0 0.00101 0.00227 0.00494 0.0104 0.0213
0.95 0 0 0 0 0.00263 0.00737

G1(T)

.80 .825 .85 .875 .90 .925 .95 .975
rel
0.75 0.134 0.172 0.221 0.284 0.366 0.472 0.613 0.797
0.775 0.127 0.167 0.218 0.285 0.373 0.488 0.637 0.825
0.8 0.119 0.16 0.214 0.286 0.381 0.505 0.664 0.854
0.825 0.108 0.151 0.208 0.286 0.389 0.525 0.694 0.883
0.85 0.0959 0.139 0.2 0.284 0.398 0.547 0.728 0.913
0.875 0.081 0.125 0.189 0.281 0.407 0.573 0.766 0.941
0.9 0.0633 0.106 0.173 0.274 0.418 0.605 0.811 0.966
0.925 0.0424 0.0811 0.149 0.261 0.429 .0.647 0.864 0.986
0.95 0.0196 0.0487 0.112 0.237 0.442 0.707 0.925 0.998

Pr {above}i

0.8

0.6

0.4

0.2

.95

.90

.80

.85

0.75 0.8 0.85
rel

0.9 0.95

Figure IG1. Probability above Standard as a function of test reliability; each curve is
labeled with G1(t) value (student true percentile rank).
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Exhibit II-1
Comparing a Student to a Standard:
Standard Set at Observed Norms 75' percentile

Table IH1. Probability above Standard for student with true percentile rank as a function of
test reliability.

rel
.50

0.75 0.0887
0.775 0.0775
0.8 0.0658
0.825 0.0534
0.85 0.0408
0.875 0.0282
0.9 0.0165
0.925 0.00689
0.95 0.00128

.6

0.181
0.171
0.158
0.144
0.127
0.108
0.0849
0.0578
0.0279

Pr{above}
1-

0 . 8

0 . 6

0 . 4

0 . 2

G1(.0

.65 .7 .75 .8 .85 .90

0.248 0.33 0.428 0.543 0.672 0.808

0.24 0.327 0.432 0.556 0.692 0.831
0.23 0.323 0.437 0.569 0.714 0.854
0.219 0.318 0.441 0.585 0.738 0.879
0.205 0.311 0.446 0.603 0.766 0.905
0.187 0.301 0.451 0.625 0.798 0.931
0.164 0.288 0.456 0.652 0.836 0.957
0.134 0.267 0.462 0.689 0.88 0.979
0.0906 0.233 0.47 0.743 0.933 0.995

.90

.50

.70

.60

0.75 0.8 0.85 rel
0.9 0.95

Figure IH1. Probability above Standard as a function of test reliability; each curve is labeled
with G1(r) value (student true percentile rank).
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4. Test-Retest Consistency for a Single Student

Another strategy for describing accuracy, test-retest consistency, uses only
(potentially) observed percentile-rank scores. Consider two (contemporaneous)
scores from a single student, denoted here by G(Sa) and G(Sb), and examine the size
of the discrepancy between the scores, I G(Sa) G(Sb) I . In terms of the depiction in
Figure 3 the scores Sa and Sb are two draws from the labeled S-distribution. Test-
retest comparisons have a long history in measurement, and the test-retest
correlation is one of the standard approaches to estimating reliability. The
calculations here, which describe test-retest consistency as a function of test
reliability, allow us to ask, How well does a test-retest correlation inform about
accuracy?

Some additional motivational references and scenarios. The Parent Assistance
Packet from California Department of Education (CDE, 1999) gives the following
caption for interpreting the National Percentile Rank Scores:

"No single number can exactly represent a student's level of achievement. If a
student were to take a different form of the test within a short period of time,
that score could vary from the first score." (page TM-15).

The test-retest accuracy calculations here answer the question (under classical test
theory assumptions), How close would two (contemporaneous) percentile rank
scores be?

Another approach to test-retest consistency is to follow the amateur handyman
dictum: "measure twice, cut once" (the title of Norm Abram's fine text, Abram, 1996).
Represent accuracy as how close together (or far apart) two measurements on the
same student would be; if you measured a board twice and the two measurements
were not close, you may not be satisfied with the quality of your measurement.
Another story for this same calculation is "identical twins separated at test-time."
For example, two kids (e.g., next-door-neighbors) with identical achievement (both
really belong at the same percentile). What's the chances of their percentile rank
scores being more than 10 percentile points different?

Yet another motivation for these calculations is the recent history in California, in
the Pupil Testing Incentive Program, of seeking comparability of individual scores
across tests. To wit, AB265 in 1995 sought the reporting of "valid, reliable,
comparable individual pupil results" from many different test publishers. A
canonical example in the discussion of AB265 is that a student is in district A in
fifth grade and moves to district B in sixth grade, and even though districts A and B
have selected tests from two different publishers, successful comparability of the
tests will allow the fifth-grade score and the sixth-grade score to be interpretable in
terms of student progress. The calculations herein on test-retest consistency relate
to the empirical consequences of having perfect linking between tests in the
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following sense: The best results that could be seen from comparability would be the
test-retest consistency seen from a student taking the same test. To take this into
the realm of a thought experiment, a newspaper might choose to do the following
study. Assemble a group of 100 "typical" students and pay them to spend one
Saturday taking Publisher A test and the next Saturday Publisher B test (A and B
being prime in the list of tests that are claimed to have been made comparable). The
journalists may reasonably expect the successive scores for the same student to be
pretty much the same.

For the calculations of test-retest consistency select a G1(t), and for that G1(t)
compute:

retest = Pr{ I G(Sa) G(Sb) I 5. tolerance I G1(t) } (4.1)
= Pr {G(Sa) G(Sb) tol } Pr {G(Sa) G(Sb) < -tol }

For example, for a student with G1(t) = .50 (true standing at 50th percentile), obtain
two test scores (Sa and Sb) and calculate Pr{ I G(Sa) G(Sb) I < .10}. Table IIA1 in
Exhibit IIA shows that quantity to be .492 for test reliability .925 (i.e., even for this
high reliability slightly more than half of the test-retest pairs will be more than 10
percentile points apart). For test reliability .85, only 36.7% of the test-retest pairs
will be within 10 percentile points (and less than two-thirds will be within 20
percentile points).

Computation of Retest Probability: Technical Details
The computation of the retest probability is implemented using the following
conditioning argument. For a student with a specifiq G1(t), condition on a draw of
an Sb from the S-distribution (S N[ , (INTO rel) ] ) and express that Sb in
terms of its fractile of the S-distribution, psb , to obtain:

Pr {G(Sa) G(Sb) 5 tolerance I psb = Pr{ S. S G-'[G(Sb) + toll I psb } =

(1)[{(13.-1[01)[(1 (13-1[psb] + (4rel) (1)-1[G1(t)] ] + tol ] (Irel) 1[G 1(t)] }/(1 reel
Then uncondition by integrating over psb in [0,1] the quantity
Pr {G(Sa) G(Sb) 5 tolerance I psb } Pr {G(Sa) G(Sb) < -tolerance I psb }:

retest = [( (1)[{(13 1[1,1)[(1 re0 <1)-1[psb] + (\lrel)(13-1[Gi(t)] ] + tol ]
('rel) (1)-1[G1(T)] }/9. rel)

/2])

1[0[0 rel) 2 43-1[psb] + (4rel) 0-1[Gi(r)] tol

Orel) (13-1[Gi(r)] rel)Y2DidPsb
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Results for 50th , 25th -thlb percentiles. Exhibits HA (G1(t) = .50) and JIB (G1(t) =
.75, .25) have the same structure: a Table whose entries give numerical values for
dependence of the retest probability on test reliability and the value of tolerance.
The dependence of retest probability on test reliability is most directly shown in the
Figure below the table; each plotted curve is labeled with a specified level for the
tolerance. The final entry in the exhibit is the contour plot; each of the contours is
labeled with a specified level for the retest probability. The purpose of the contour
plot is to show the combination of test reliability and tolerance needed to achieve a
specific level for the retest probability. As noted for Section 3, the 50th percentile
(G1(t) = .50) produces the worst results for hit-rate (even though the measurement
error variance is the same for all score values, because the percentile rank scores
depend on G(S) which is bounded above and flattens out for higher and lower
percentiles). Taking the ratio of the entries of Table IIB1 to those of Table IIA1, the
retest probability for G1(t) = .75 is about 1.2 times as large as that for G1(t) = .50 for
the lower values of tolerance, the ratio decreasing to about 1.05 for high reliability
and larger tolerance values (quite similar to the corresponding comparison noted in
Section 3). Also of note are comparisons between the retest probability and
percentile discrepancy hit-rate in Section 3; roughly, the retest probability is about
3/4 to 4/5 as large for comparing Exhibits IIA and IA. For G1(ti) = .50, the ratio of
the entries of Table IIA1 to those of Table IA1 is near .75 for the lower values of
tolerance, the ratio increasing to the range .85 to .90 for high reliability and larger
tolerance values. For G1(t) = .75, the ratio of the entries of Table IIB1 to those of
Table IB1 is similar for low tolerance value, but the ratio is larger (>.90) for high
reliability and larger tolerance values.

Insert Exhibits IIA, IIB here

Other percentiles. The results in Exhibits IIA and JIB can be amplified by
additional displays for other choices of G1(t); i.e., How much do the results in
Exhibits IIA, IIB change for other choices of G1(t)? Using test reliability .90,
Exhibit IIC gives plots of the retest probability with each curve labeled for
percentiles 50, 60, 70, 80, 90. (Only curves for G1(ti) > .50 are used for comparison as
results for G1(t) = .2 are identical to G1(t) = .8 and so forth.) Plots of retest
probability vs tolerance show 50th and 60th percentiles are almost indistinguishable;
G1(t) = .80 gives notably higher retest probabilities than G1(t) = .60. The
subsequent tables give the retest probability for test reliability and tolerance, for
G1(t) = .60, .90.

Insert Exhibit IIC here
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Exhibit IIA
Test-Retest Accuracy for student at 50th percentile

Table HAL Retest probability as a function of reliability (.7, .95), and tolerance
(.025, .25) for student at 50th percentile.

tolerance
.05 .075 .10 .15 .20 .25

rel
0.70 0.139 0.208 0.275 0.403 0.52 0.624
0.725 0.144 0.215 0.285 0.416 0.536 0.642
0.75 0.15 0.224 0.296 0.432 0.555 0.662
0.775 0.157 0.234 0.309 0.45 0.576 0.685
0.8 0.166 0.246 0.324 0.471 0.6 0.71
0.825 0.176 0.261 0.343 0.496 0.629 0.739
0.85 0.188 0.279 0.367 0.527 0.663 0.772
0.875 0.204 0.303 0.396 0.565 0.704 0.811
0.9 0.226 0.334 0.436 0.614 0.754 0.856
0.925 0.259 0.38 0.492 0.68 0.817 0.906
0.95 0.312 0.453 0.579 0.774 0.895 0.959

retest

0 . 6

0 . 4

0.75 0.8 0.85 0.9 red 0 5

Figure HAL Plot of retest probability as a function of reliability (.7, .95), at each level of tolerance
(.025, .05, .075, .10, .125, .15) for student at 50'h percentile.
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Exhibit 1L4 continued
Figure 11A2. Contour plot of retest probability as a function of tolerance and test
reliability: Student at 50th percentile.

0.2

T 0.175

0
I 0.15

e

r 0.125

a 0.1
n

c 0.075
e

0.05

Test Reliability
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Exhibit IIB
Test-Retest Accuracy for student at 75th percentile

Table IIB 1. Retest probability as a function of reliability (.7, .95), and tolerance
(.025, .25) for student at 75th percentile.

tolerance
.05 .075 .10 .15 .20 .25

rel
0.70 0.167 0.248 0.325 0.467 0.59 0.694

0.725 0.174 0.257 0.337 0.484 0.61 0.714

0.75 0.182 0.269 0.352 0.503 0.632 0.736

0.775
0.8

0.191
0.201

0.282
0.297

0.369
0.388

0.525
0.551

0.656
0.684

0.76
0.787

0.825 0.214 0.316 0.412 0.58 0.715 0.816

0.85 0.23 0.339 0.44 0.615 0.751 0.848

0.875 0.251 0.368 0.476 0.658 0.792 0.883

0.9 0.278 0.406 0.522 0.711 0.84 0.92

0.925 0.318 0.461 0.586 0.778 0.895 0.956

0.95 0.383 0.547 0.682 0.864 0.952 0.986

I 0.75 0.8 0-85 rel ° 9 0.95

Figure IIB1. Plot of retest probability as a function of reliability (.7, .95), at each level of tolerance
(.025, .05, .075, .10, .125, .15) for student at 75th percentile.
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Exhibit JIB continued
Figure 11B2. Contour plot of retest probability as a function of tolerance and test
reliability: Student at 75th percentile.

0 . 2

1-0.175

0

1 0.15

e
0.125

a
0.1

n

C 0.075
e

0.05

0.8 0.85 0.9

Test Reliability
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Exhibit IIC
Test-Retest Accuracy for additional percentiles

1

retest
0 . 8

0.6

0.4

0.2

0.05 0.1 0.15 0.2
tol

0.25

Figure IIC1. Plot of retest probability for reliability .90 as a function of tolerance (.025, .25) for
student at labeled G1(t) values (.5, .6, .7, .8, .9).
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Exhibit IIC continued
Table IIC1. Retest probability as a function of reliability (.7, .95), and tolerance
(.025, .25) for student at 60th percentile.

tolerance
.05 .075 .10 .15 .20 .25

rel
0.70 0.143 0.213 0.281 0.411 0.53 0.635
0.725 0.148 0.221 0.292 0.426 0.547 0.653
0.75 0.154 0.23 0.303 0.442 0.566 0.673
0.775 0.162 0.24 0.317 0.46 0.587 0.696
0.8 0.17 0.253 0.333 0.482 0.612 0.722
0.825 0.181 0.268 0.352 0.508 0.642 0.751
0.85 0.194 0.287 0.376 0.539 0.676 0.784
0.875 0.21 0.311 0.407 0.578 0.717 0.822
0.9 0.233 0.344 0.447 0.628 0.768 0.866
0.925 0.266 0.391 0.505 0.695 0.83 0.915
0.95 0.321 0.466 0.593 0.788 0.905 0.964

Table IIC2. Retest probability as a function of reliability (.7, .95), and tolerance
(.025, .25) for student at 90th percentile.

tolerance
.05 .075 .10 .15 .20 .25

rel
0.70 0.261 0.374 0.473 0.634 0.751 0.835
0.725 0.274 0.392 0.495 0.659 0.776 0.856
0.75 0.289 0.413 0.519 0.686 0.801 0.878
0.775 0.307 0.436 0.547 0.716 0.828 0.899
0.8 0.327 0.463 0.578 0.748 0.856 0.921
0.825 0.35 0.494 0.613 0.783 0.884 0.941
0.85 0.378 0.531 0.653 0.821 0.913 0.96
0.875 0.414 0.575 0.701 0.862 0.941 0.977
0.9 0.46 0.631 0.758 0.905 0.967 0.989
0.925 0.523 0.704 0.826 0.948 0.987 0.997
0.95 0.619 0.802 0.907 0.984 0.998 1.
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5. Comparing Two Students

Another extension of the basic accuracy calculations is to consider two students who
under perfect measurement have different score levels. For example, as is shown
in Figure 4, take Student 1 at 50th percentile, and Student 2 at 75th percentile
( G1(T1) =.50, G1(T2) = .75). From Figure 4, the depicted score distributions for Si
and S2 (for test reliability .90) overlap considerably, and each does span a wide
range of values of G(Y). In Section 5.1 (and Exhibit IIIA), the focus is on calculating
the probability of a reversal (e.g., for Student 1 and Student 2 G(Si) > G(S2) even
though G1(ti) < G1(t2) ). In Section 5.2 (and Exhibit IIIB), the distribution of the
difference of the two students' observed percentile rank scores is showne.g.,
Pr {G(S1) G(S2) bound }.

5.1. Probability of Reversal

Results for probability of reversal are arrayed in Exhibit IIIA. The quantity labeled
as reversal is:

reversal = Pr{ G(S1) G(S2) > 0 I G1(c1), G1(T2)), where G1(t1) < G1(T2) .

= cI)[{(13-1[ Gi(ci)] 11[ G1(i2)l} /(2 rel)) } /'z] (5.1)

The severity of a reversal depends on the magnitude of G1(t1) GI(T2); obviously if
G1(ti) = .50 and G1(T2) = .55, some reasonable probability of reversal in the observed
scores would be expected, even for accurate tests.

Five comparison scenarios are shown in Exhibit IIIA; the first two are G1(t1) = .50,
G1(T2) = .75 and G1(v1) = .75, G1(T2) = .90. Tables and plots of reversal probability
as a function of test reliability are shown for each scenario. In Scenario 3, G1(T2) =
GI(Ti) + .20, and reversal is tabled as a function of test reliability over a range of of
G1(t1) values, with a corresponding plot for test reliability .90. Additional tables are
presented for Scenario 4 (G1(T2) = G1(ti) + .30) and Scenario 5 (G1(T2) = G1(r1) + .10).
The final part of Exhibit IIIA is a pair of plots for each of G1(t1) = .50, .65, .25. The
first plot in each pair is a plot of the reversal probability as a function of test
reliability shown for each labeled value for Student 2 true percentile (e.g., for G1(1.1)

= .50 values of G1(T2) = .60, .65, .70, .75, .80). The second plot is reversal probability
as a function of G1(T2) for each labeled value of test reliability (.75, .80, .85, .90, .95).

Insert Exhibit IIIA here
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Exhibit IIIA 411

Comparing Two Students: Reversal Probability

Scenario 1: Student 1 at 50th percentile, Student 2 at 75th percentile with perfect
measurement: G1(T1) = .50, G1(T2) = .75.

Table IIIA1
Reversal probability as a
function of test reliability.
rel Pr {reversal}
0.75 0.204
0.775 0.188
0.8 0.17
0.825 0.15
0.85 0.128
0.875 0.104
0.9 0.0762
0.925 0.047
0.95 0.0188

0.3

0.25

0.2

0.15

0.1

0.05

rfre

re

0.75 0.8 0.85 0.9 rel ° 95

Figure IIIA1. Reversal probability as a function of
test reliability; plot of 1-rel shown for comparison.
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Exhibit 111,4 continued
Scenario 2: Student I at '75th percentile, Student 2 at 90th percentile with perfect
measurement: G1(Ti) = .75, GI(i2) = .90.

Table IIA2
Reversal probability as a
function of test reliability.
rel Pr{reversal}
0.75 0.229
0.775 0.213
0.8 0.195
0.825 0.176
0.85 0.153
0.875 0.128
0.9 0.0989
0.925 0.0658
0.95 0.0307

0.25

0.2

0.15

0.1

0.05

0.75 0.8 0.85 0.9 rel° '95
Figure 111A2. Reversal probability as a function of
test reliability.



Exhibit 11L4 continued
Scenario 3: Student 2 is 20 percentile points greater than Student 1, with perfect
measurement: G1(T2) = G1(t1) + .20.

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Pr{reversal}

0.1 0.2 0.3 0.4 0.5 0.6 0.7
G1(ti)

Figure 111A3. Reversal probability for test reliability .90.

Table 111A3. Reversal probability as a function of test reliability for Scenario 3.

rel
.1

0.70 0.207
0.725 0.192
0.75 0.177
0.775 0.16
0.8 0.142
0.825 0.123
0.85 0.101
0.875 0.0783
0.9 0.0541
0.925 0.03
0.95 0.00981

GI(T)
.2 .3 .4 .5 .6 .7

0.263 0.286 0.292 0.286 0.263 0.207
0.25 0.274 0.28 0.274 0.25 0.192
0.236 0.26 0.267 0.26 0.236 0.177
0.22 0.246 0.253 0.246 0.22 0.16
0.203 0.229 0.237 0.229 0.203 0.142
0.183 0.21 0.218 0.21 0.183 0.123
0.161 0.189 0.197 0.189 0.161 0.101
0.136 0.163 0.172 0.163 0.136 0.0783
0.106 0.133 0.141 0.133 0.106 0.0541
0.072 0.0964 0.104 0.0964 0.072 0.03
0.0349 0.053 0.0592 0.053 0.0349 0.00981
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Exhibit 11L4 continued
Scenario 4: Student 2 is 30 percentile points greater than Student 1, with perfect
measurement: G1(T2) = + .30.

Table 111A4. Reversal probability as a function of test reliability for Scenario 4.

.1 .2 .3 .4 .5 .6

rel
0.70
0.725
0.75
0.775
0.8
0.825
0.85
0.875
0.9
0.925
0.95

0.133
0.119
0.104
0.0886
0.073
0.0572
0.0418
0.0272
0.0146
0.00534
0.000764

0.182
0.167
0.151
0.135
0.117
0.0982
0.0783
0.0577
0.0371
0.0183
0.00474

0.2
0.186
0.17
0.154
0.136
0.116
0.0952
0.0728
0.0495
0.0267
0.00826

0.2
0.186
0.17
0.154
0.136
0.116
0.0952
0.0728
0.0495
0.0267
0.00826

0.182
0.167
0.151
0.135
0.117
0.0982
0.0783
0.0577
0.0371
0.0183
0.00474

0.133
0.119
0.104
0.0886
0.073
0.0572
0.0418
0.0272
0.0146
0.00534
0.000764

Scenario 5: Student 2 is 10 percentile points greater than Student 1, with perfect
measurement: G1(T2) = G1(t1) + .10.

Table 111A5. Reversal probability as a function of test reliability for Scenario 5.
G1(.0

.1 .2 .3 .4 .5 .6 .7 .8

rel
0.70 0.317 0.366 0.385 0.392 0.392 0.385 0.366 0.317

0.725 0.307 0.358 0.378 0.386 0.386 0.378 0.358 0.307

0.75 0.295 0.349 0.37 0.378 0.378 0.37 0.349 0.295

0.775 0.282 0.339 0.361 0.37 0.37 0.361 0.339 0.282

0.8 0.267 0.327 0.351 0.36 0.36 0.351 0.327 0.267

0.825 0.25 0.313 0.339 0.349 0.349 0.339 0.313 0.25

0.85 0.229 0.297 0.324 0.335 0.335 0.324 0.297 0.229

0.875 0.205 0.276 0.306 0.318 0.318 0.306 0.276 0.205

0.9 0.175 0.25 0.283 0.295 0.295 0.283 0.25 0.175

0.925 0.137 0.215 0.25 0.265 0.265 0.25 0.215 0.137

0.95 0.0876 0.164 0.202 0.217 0.217 0.202 0.164 0.0876
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Exhibit 11L4 continued

Student 1 at 50th percentile, with perfect measurement: G1(r1)=.5.

0.4
Pr{reversal}

0.3

0.2

0 . 1

.60

0.75 0.8 0.85 rel ° 9 0.95

a

a

a

Figure 111A4. Plot of reversal probability for each labeled value for
G1(T2) (Student 2 true percentile) as a function of test reliability.

0.4
Pr{reversal}

0.3

0.2

0 . 1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
student 2

Figure 111A5. Plot of reversal probability for each labeled value of
test reliability as a function of G1(T2) (Student 2 true percentile) .

a
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Exhibit IIM continued
Student 1 at 65th percentile with perfect measurement, G1(r1)=.65.

0.35
Pr{reversal} 0.3-

0.25-

0.2-

0.15-
0.11

0.05:

75

90

.95

0.75 0.8 0.85
rel

0.9 0.95

Figure 111A6. Plot of reversal probability for each labeled value for
G1(T2) (Student 2 true percentile) as a function of test reliability.

0.4

Pr{reversal}
0 . 3

0 . 2

0.1

0.75 0 8 0.85 0.9 0.95
student 2

Figure 111A7. Plot of reversal probability for each labeled value of
test reliability as a function of G1(T2) (Student 2 true percentile).
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Exhibit IIIA continued
Student 1 at 25th percentile, with perfect measurement, G1(t1)=.25.

0.35
Pr {reversal} 0.3

0.25
0.2

0.15
0.1

0.05

Figure II1A8. Plot of reversal probability for each labeled value of
GI(T2) (Student 2 true percentile) as a function of test reliability.

0.4

Pr{seve ns a I}

0.3

0.2

0 . 1

.3 0.35 0.4 0.45 0.5
student 2

0.55

Figure II1A9. Plot of reversal probability for each labeled value of
test reliability as a function of G1(s2) (Student 2 true percentile).
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5.2 Difference Between Two Student's Percentile Scores

To extend the results on reversals, now examine G(S1) - G(S2), the signed
difference between the percentile rank scores for Student 1 and Student 2.
Calculations in Exhibit IIIB present the quantity:

compare2 = Pr{ G(S1) G(S2) bound I G1(t1), Gi(t2)) , (5.2)

the probability that the signed difference of the percentile ranks is less than or
equal to the quantity "bound" (bound may be negative or positive) for two students
with values of G1(t1), G1(T2). For bound set to 0, 1 compare2 gives the reversal
probability for G1(r1) < G1(r2).

Computation of Compare2 Probability: Technical Details
The computation of the compare2 probability is implemented, in a manner similar
to retest, using the following conditioning argument. For a Student 2 having a
specified G1(T2), condition /on a draw of an s2 from the S2-distribution
( S2 I T2 N[ T2, 6N(1 rel) 2 ) and express that S2-value in terms of its fractile of
the S2-distribution, ps2 , to obtain:

PriG(Si) - G(S2) bound I ps2 } = Pr{ Si G-1[G(S2) + bound] I ps2 =

0[P-1[0[0 re1)1/2 4:1)-1[ps2] + (\lrel) 4:13-1[G1(T2)] ] + bound] ( 'Jrel) (1)-1[G1(r1)] } /(1 'see]
(5.3)

Then uncondition by integrating Pr {G(S1) G(S2) S bound I psi ) over ps1 in [0,1]:

compare2 = J [ Ete 1 [1:11 [(1 rel)v2 1[ps2] + 4:1)-'[G1(T2)] ] + bound ]

0
(A/rel) 41)-1[G I (TO] }/(1 reel] dPs2 (5.4)

An alternative derivation is to condition instead on a draw of an Si through the
fractile psi:

Pr {G(S1) G(S2) 5 bound I psi = 1 Pr{G(S2) G(S1) 5 -bound I psi =
1 Pr{S2 C4-1[ bound] I psi =

1 [0[{(1) IRV rel) /2 (1)-1[ps1] + (A/rel) c11[G1(TI)] bound ]

Nrel) 4 1[G1(r2)] }/(1 reDY2}1 (5.5)



Then uncondition by integrating Pr {G(S1) G(S2) bound I psi } over ps, in [0,1]:

compare2 = f [i -(4)[{0-1[0[(1_ izto-I[ps1] + Orel) (13-1[G1(t1)] ] bound ]

Orel) 1[G 1(T2)] }/(1 rel)Y2])] dps (5.6)

Numerical illustrations. The three tables in Exhibit IIIB use the following
specifications, respectively: G1(t1) = .75, G1(T2) = .50; G1(T1) = .50, G1(T2) = .60;
G1(t1) = .90, G1(T2) = .75. For example, with G1(t1) = .50, G1(T2) = .60, test
reliability .85 yields the compare2 result of a 12.5% chance (1 out of 8) that Student
1 (lower student on true level) obtains a test score at least 15 percentile points
higher than Student 2.

Insert Exhibit IIIB here
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Exhibit IIIB
Comparing Two Students: Difference of Percentile Ranks

Table 111131
G1(T1) = .75, G1(T2) = .50; Student 1 at 75th percentile, Student 2 at 50th percentile
with perfect measurement.
Pr{ G(S1) G(S2) bound I G1(t1), G1(T2)}

bound
-.15 -.10 -.05 0.0 0.05 0.10

rel
0.70 0.101
0.725 0.0894
0.75 0.0778
0.775 0.0658
0.8 0.0536
0.825 0.0414
0.85 0.0296
0.875 0.0188
0.9 0.00961
0.925 0.00324
0.95 0.000387

0.137 0.181 0.233 0.293 0.36
0.124 0.167 0.219 0.28 0.348
0.111 0.153 0.204 0.265 0.335
0.0967 0.137 0.188 0.249 0.32

0.0819 0.12 0.17 0.232 0.304
0.0666 0.102 0.15 0.211 0.285
0.0509 0.0828 0.128 0.188 0.264

0.0354 0.0624 0.104 0.161 0.238
0.0208 0.0414 0.0762 0.13 0.206
0.00884 0.0215 0.047 0.0924 0.165
0.00169 0.0061 0.0188 0.049 0.11

bound
.15 .20 .25 .30 .35

rel
0.70 0.431 0.505 0.579 0.651 0.719

0.725 0.421 0.498 0.575 0.65 0.721

0.75 0.411 0.49 0.571 0.65 0.723

0.775 0.399 0.482 0.567 0.65 0.727

0.8 0.386 0.473 0.563 0.65 0.732

0.825 0.371 0.463 0.559 0.652 0.738

0.85 0.353 0.451 0.554 0.654 0.746

0.875 0.331 0.437 0.549 0.658 0.758

0.9 0.304 0.419 0.544 0.665 0.774

0.925 0.267 0.395 0.538 0.677 0.797

0.95 0.213 0.358 0.531 0.699 0.836

Table IIIB2
GA) = .50, G1(r2) = .60; Student 1 at 50`h percentile, Student 2 at60thpercentile
with perfect measurement.
Pr{ G(S1) G(S2) bound 1(11(3'0, G1(r2)} for Test Reliability .85

.05 .10 .15 .20 .25

0.747 0.818 0.875 0.918 0.949

bound
-.25 -.20 -.15 -.10 -.05 0.0

0.215 0.294 0.383 0.478 0.574 0.665
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Exhibit MB continued

Table II1B3
Student 1 at 90th percentile, Student 2 at 75th percentile with perfect measurement.
Pr{ G(S1) G(S2)

-.10
rel

5 bound I G1(r1), G1(T2)}

bound
-.05 0.0 0.05 0.10

0.70 0.125 0.181 0.256 0.346 0.444
0.725 0.112 0.168 0.243 0.336 0.437
0.75 0.0991 0.153 0.229 0.324 0.43
0.775 0.0853 0.138 0.213 0.311 0.422
0.8 0.0711 0.121 0.195 0.296 0.413
0.825 0.0565 0.103 0.176 0.278 0.402
0.85 0.042 0.0832 0.153 0.258 0.389
0.875 0.028 0.0627 0.128 0.233 0.373
0.9 0.0156 0.0416 0.0989 0.203 0.352
0.925 0.00599 0.0216 0.0658 0.163 0.324
0.95 0.000924 0.00616 0.0307 0.11 0.28

bound
.15 .20 .25 .30 .35

rel
0.70 0.54 0.63 0.71 0.78 0.838
0.725 0.538 0.633 0.716 0.788 0.847
0.75 0.536 0.636 0.724 0.797 0.857
0.775 0.534 0.64 0.732 0.808 0.868
0.8 0.532 0.644 0.741 0.821 0.881
0.825 0.53 0.65 0.753 0.835 0.896
0.85 0.528 0.658 0.768 0.852 0.912
0.875 0.526 0.668 0.786 0.872 0.93
0.9 0.523 0.682 0.809 0.896 0.949
0.925 0.52 0.703 0.841 0.926 0.97
0.95 0.516 0.738 0.887 0.961 0.989
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6. Discussion/Remarks

An important role for a statistician is in the assessment of uncertainty. The
implementation of accuracy in this paper can be seen as the flip-side of uncertainty
in terms of statements like, How certain can I be that my reported percentile rank
score is close to the target? The calculations of this paper use probability
statements (such as probability that the observed percentile rank differs from true-
rank by no more than the stated tolerance) to provide useful information on the
accuracy of reported percentile rank scores (which are the scores most often
reported to parents, media, etc.) The position of this paper in the presentation of
results is that the Exhibits should be left to speak for themselves. The reader can
be the judge of what is tolerable inaccuracy in a reported test score; this paper
merely seeks to lay out some facts. However, one assertion is pretty clear:
Conventional interpretations of test reliability coefficients do not well represent the
accuracy of percentile rank scores (even though reliability coefficients are about all
that is offered in most situations).

An interesting, and somewhat related, paper is the investigation of percentile rank
scores in May and Nicewander (1994). Their calculations, based on an IRT
formulation, employ more traditional criteria for accuracy; they seek (in part) to
compare the reliability coefficient for the student observed-score with a reliability
coefficient calculated for the corresponding percentile rank score (see their Table 2,
p. 319). In the notation of this paper, the comparison might be constructed as
Vary(T)/Vary(Y) compared to Vary(Gi(T))/Vary(G(Y)) ( where Vary is a variance
calculated over the population of persons), but such calculations won't be pursued at
present. May and Nicewander find "that increased difficulty lowered the reliability
of the PR [percentile rank] score at a substantially faster rate than the NR [number
right, observed ] score. In such cases an NR score of adequate reliability is
accompanied by a PR that is virtually useless (in terms of reliability)" (p. 318).
What these two papers have in common is a serious concern about the accuracy of
the percentile rank score, and a finding that even for high reliability of the observed
score, the percentile rank score may show disappointing properties. May and
Nicewander conclude: "There exist situations in which one can reliably estimate the
percentage of items known by examinees (using the percent-correct linear
transformation of the NR score) but not the percentage of persons falling below a
given score" (p. 325).

The limiting modifier "classical test theory" in the paper title is meant to
communicate two points: what the present calculations are and a direction for
further (similar) calculations. In this paper, the statement that the calculations are
carried out for a classical test theory setting is merely intended to indicate
calculations for Normally distributed, continuous scores, with constant error
variance. Extension of these same calculations to empirical norms (other forms of
G(Y)) and more complex measurement models (such as IRT scaling) where
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measurement error variance depends on score value can be done in much the same
manner. All that is needed are the specific forms of the norms distribution and the
error variance. Such calculations will be the subject of further reports, for example,
Rogosa (1999).

Another extension of this work, which will be reported in forthcoming Technical
Reports, is to the accuracy of group summaries. A group of individuals could consist
of a classroom of students, or larger collections of students such as a grade-level
across a school or across a district. Especially in the California STAR program,
accuracy properties of the group summary obtained from the National Percentile
Rank of the student mean score (or median score) are of interest. Certainly, a group
summary would be expected to have greater accuracy than an individual score; the
question is, How much greater accuracy?
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Author's Footnote

The basic material leading to the calculations on hit-rate and percentile discrepancy
in Section 3.1 has some history. Those calculations grew out of my work in the
Technical Study Group (TSG), Standards Curriculum and Assessment Division,
California State Department of Education, with an initial presentation of that
material to this group in September 1996, in regard to accuracy criteria for tests
submitted for PTIP (Pupil Testing Incentive Program). Also, an early version of the
test-retest consistency calculations in Section 4 was presented to the TSG group in
February 1997, in the context of the California Comparability activities. Special
acknowledgments go to the helpful comments and suggestions from William
Schmidt and Richard Wolfe over the past three years. Furthermore,
acknowledgment goes to Ross Green, CTB/McGraw-Hill, for independently
proposing in April 1996 a version of the hit-rate criterion for a calculation like Table
1E1 (for tolerance = 20). Moreover, this report benefitted from discussions with Joan
Herman, CRESST, from review comments by Robert Mislevy of ETS, and from
editorial assistance from CRESST staff.
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