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Abstract

The purpose of this paper is to provide an in-depth critical analysis of the use

and misuse of correlation coefficients. Various analytical and interpretational

misconceptions are overviewed, beginning with the egregious assumption that

correlational statistics may be useful in inferring causality. Additional misconceptions,

stemming from researchers' failure to recognize that correlation coefficients are specific

cases of the general linear model (GLM), and are therefore bounded by GLM

assumptions, are also discussed. Other inappropriate practices are highlighted,

including failure to consider the statistical assumptions underlying correlation

coefficients, failure to interpret confidence intervals and effect sizes of correlation

coefficients, failure to interpret p-calculated values in light of familywise Type I error,

failure to consider the power of tests of hypotheses, failure to consider whether outliers

are inherent in the data set, failure to recognize how measurement error can affect

correlation coefficients, and failure to evaluate empirically the replicability of correlation

coefficients (i.e., internal replication). A heuristic example is utilized to illustrate how

jackknife and bootstrap methods can identify unstable correlation coefficients derived

from a given sample.
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Uses and Misuses of the Correlation Coefficient

In 1889, Francis Galton published his book entitled, Natural Inheritance (as cited

in Gigerenzer et al., 1989), in which he introduced the concept of correlation and

established the beginning of modern statistics (Coblick, Halpin, & Halpin, 1998).

Building on Galton's work, Karl Pearson extended the concepts of correlation and the

normal curve, developing the product-moment correlation coefficient and other types of

correlation coefficients (Coblick et al., 1998). It is likely that neither Galton nor Pearson

envisioned the impact that the correlation coefficient would have in the field of research,

particularly within the social and behavioral sciences. Indeed, today, slightly more than

a century later, the correlation coefficient is undoubtedly the most common statistic

used in research involving inferential analyses.

Correlation coefficients in general and the Pearson product-moment correlation

coefficient in particular, are utilized in the majority of studies in educational and

psychological research, either as a primary mode of analysis in which major hypotheses

are tested, or as part of a secondary analysis, providing background information

regarding relationships among variables of interest prior to or following a more complex

statistical analysis. Unfortunately, although the use of the correlation coefficient is

justified in many situations, like all statistical indices, it is subject to misuse. That is,

many examples exist wherein this statistic is misinterpreted.

Purpose of the Present Paper

The purpose of the present paper is to provide an in-depth critical analysis of the

use of correlation coefficients. As part of this critique, a variety of analytical and
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interpretational misconceptions are presented. Phenomena such as the crud factor and

positive manifold are discussed. Perhaps the most serious error in interpreting

correlational analyses is the failure to evaluate empirically the replicability of the

coefficients obtained with a given sample (Thompson, 1999). Although, as noted by

Thompson (1999), the most valid and appropriate manner of assessing the empirical

replicability of findings is unequivocally via new and independent samples (i.e., external

replication; Huberty & Wisenbaker, 1992), a paucity of researchers are able or willing to

conduct external replication analyses. As a more feasible alternative, analyzing data

from the sample at hand (i.e., internal replication; Huberty & Wisenbaker, 1992) is

recommended (Thompson, 1994a). Unfortunately, few researchers conduct internal

replications either. Thus, a heuristic example will be utilized to illustrate how two internal

replication techniques (i.e, jackknife and bootstrap methods) can identify unstable

correlation coefficients derived from the full sample.

Most of the discussion below is not new to the literature or even to our own

writing (e.g., Daniel, 1989, 1998a, 1998b; Onwuegbuzie, 1999a). However, the fact

that many beginning researchers misuse and misinterpret correlation coefficients

(perhaps as a result of the "mythology of statistics"Daniel, 1997; Kerlinger, 1960), as

well as the fact that very few of even the most experienced researchers conduct

internal replications as part of their data analyses justify our attention to this topic. In

any case, most methodological papers in this area have dealt with issues in piecemeal

fashion, whereas the current paper attempts to provide a more comprehensive

discussion of issues for consideration when utilizing correlation coefficients. Moreover,
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most quantitative methodologists tend to focus on issues pertaining to more complex

inferential techniques such as multivariate analyses. As such, methodological and

conceptual issues concerning the correlation coefficient recently have received scant

focus. Yet, common errors surrounding this seemingly simplistic measure of

relationship continue to permeate the literature.

Overview of the Pearson Product-Moment Correlation Coefficient

As all researchers know, correlation coefficients, which can vary from -1 to +1,

help to determine both the magnitude and direction of pairwise variable relationships.

The sign of the coefficient tells us whether the relationship is positive or negative,

whereas the numerical part of the coefficient indicates the magnitude of the correlation.

The closer the correlation coefficient is to 1 or -1, the greater the relationship between

the variables.

There are various "zero-order" correlational statistics (i.e., correlational measures

of bivariate relationships that do not include adjustments for other variables), including

the Pearson product-moment correlation coefficient (r), Spearman's rho (p), Kendall's

tau (T), point biserial correlation(! b), biserial correlation, phi (0), and tetrachoric

correlation. Pearson's r may appropriately be considered for use when both variables

represent either interval or ratio scales of measurement. Spearman's rho is most

appropriate when both variables represent the ordinal scale of measurement. Kendall's

tau is similar to Spearman's rho inasmuch as it is suitable for use when the variables

are in the form of ranks. The major difference between Kendall's tau and Spearman's

rho is the former tends to be used when tied ranks are present. Point biserial
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coefficients are appropriate when one variable is measured on the interval or ratio scale

and the other variable is a dichotomous variable which takes values of Os and ls (e.g.,

scores for items on a multiple-choice test). A point biserial correlation coefficient is a

special case of the Pearson product-moment correlation coefficient, and it is

computationally a variant of the t-test . The biserial correlation coefficient is similar to

the point biserial coefficient, except dichotomous variables are artificially created (i.e.,

using "cutoff' values of a previously continuous variable). Phi coefficients are used

when both variables represent true dichotomies. A phi coefficient, like the point biserial

correlation, is directly derived from the Pearson product-moment correlation.

Tetrachoric correlations are utilized when each variable is created through

dichotomizing an underlying normal distribution. (Various "higher order" correlations,

such as partial correlations, semipartial [part] correlations, and multiple R, are also

frequently used in the social sciences; however, these correlational statistics are

considered beyond the scope of the present paper.)

In the remainder of this paper, methodological and conceptual errors concerning

the most frequently utilized type of zero-order correlation coefficient, namely, the

Pearson product-moment correlation coefficient, will be presented. The Pearson r was

chosen as the focus of the paper in that most readers will be familiar with r even though

knowledge of various other zero-order bivariate measures may be somewhat more

limited. With a few exceptions, all other empirical measures of bivariate relationships

are susceptible to these same flaws.
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Flaw 1: Inadequate Checking of Statistical Assumptions

Many misconceptions stem from a failure to recognize that correlation

coefficients are a specific case of the general linear model (GLM). That is, correlation

coefficients are special cases of all other families of the GLM, including t-tests, multiple

regression, analysis of variance, canonical correlation, and structural equation models

(Cohen, 1968; Knapp, 1978; Thompson, 1998a). Indeed, Pearson product-moment

correlation analysis is directly analogous to simple linear regression (Myers, 1986). As

such, many of the assumptions which apply to these more complex members of the

GLM, also are pertinent to correlation coefficients.

The major assumptions for conducting a null hypothesis significance test (NHST)

for the Pearson's product-moment correlation coefficient are the same as that for simple

linear regression. Specifically:

1. Each observation of the dependent variable (Y) must be statistically

independent of every other observation.

2. The dependent variable (Y) must be normally distributed.

3. The variability in scores for the dependent variable is approximately the

same at all values of the independent variable (i.e., the "conditional

distribution" or "homoscedasticity" assumption).

The first assumption, namely, independence of observations can be assessed by

carefully examining the research design. For example, if the dependent variable is a

test score, one should check that each student attempted the examination form

independently. The second assumption, normality, should be assessed by both
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graphical and statistical means. With respect to the former, frequency histograms could

be utilized. Expected normal probability plots are even more informative for assessing

normality. These plots represent the difference between the observed normal value for

each case (i.e., the z score that a case has in the observed distribution) and the

corresponding expected normal value (i.e., the z score that a case with the observed

rank holds in the normal distribution), such that if the observed scores are normally

distributed, then the bivariate points lie on the diagonal running from the lower left to the

upper right of the two-dimensional grid.

In addition to graphical checks of normality, the skewness and kurtosis can be

assessed for magnitude by comparing these values to their corresponding standard

errors. These four statistics are available in the Statistical Package for the Social

Sciences (SPSS; SPSS Inc., 1999). Indeed, a formal test of statistical significance can

be conducted by utilizing the fact that the ratio of the skewness and kurtosis coefficients

to their respective standard errors are themselves normally distributed. Most other

statistical packages print as options skewness and kurtosis coefficients but not their

standard errors. However, these standard errors can be approximated manually (the

standard error for skewness is approximately equal to the square root of 6/n, and the

standard error for kurtosis is approximately equal to the square toot of 24/n, where n is

the sample size). Large skewness and kurtosis coefficients affect the Type I and Type

II error rates. For example, non-normal kurtosis tends to produce an underestimate of

the variance of a variable, which, in turn, increases the Type I error rate (Tabachnick &

Fidell, 1996). Thus, if the assumption of normality is found to be violated, other
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correlational techniques such as Spearman's rho should be considered.

The third assumption, namely, homoscedasticity, could be assessed by

examining bivariate scatter plots. When points on this plot appear to take on a "funnel"

shape, it is likely that the assumption of homoscedasticity is not met. The more funnel

shaped the bivariate points are, the greater the level of heteroscedasticity. In extreme

cases of heteroscedasticity, data transformations (Fox, 1997) should be considered. If

heteroscedasticity is suspected, then the product-moment coefficient should be

abandoned for tests that are designed for unequal variance conditions (Huck &

Cormier, 1999).

Interestingly, the above three assumptions are often stated in terms of the errors

(es) of the simple linear regression analog to Pearson's product-moment correlation

coefficient. That is, the error components of the model must be normal, equally

variable, and independent of each other, with a mean of zero and constant variance.

The general equation underlying the simple linear regression (SLR) model is

Y = flo Ax e

where fio is an additive weight (or constant), A is a multiplicative weight

(unstandardized regression coefficient), and e represents the random deviation of an

observed y value from the estimated sample regression line (i.e., the model error).

Instead of computing the correlation coefficient, an analyst could directly undertake an

SLR analysis and then assess the assumptions regarding normality and

homoscedasticity by examining the residuals. Typically, either standardized or

studentized residuals could be analyzed (Fox, 1997). (The absolute value of the

10



Uses and Misuses 10

product-moment correlation coefficient can be derived by taking R, the square root of

the coefficient of determination, R2, from the SLR model; however, because the variable

weighting procedures used in linear regression always result in a positive value of R [0

< R < 1], the sign of the regression coefficient must also be consulted in order to

determine the directionality of the relationship.)

In examining residuals, one also should assess outliers. These observations are

extreme values which exert undue influence on models, and thus lead to both Type I

and Type II errors. Unfortunately, it is typically unclear as to what effect that outliers

have in a particular analysis (Tabachnick & Fidel!, 1996). Nevertheless, by identifying

potential outliers, analysts can make a decision as to whether to delete or retain the

case, to present results both with and without the outlying points included, or to

transform one or both of the variables involved. Popularly-used statistical packages,

such as SPSS include a variety of helpful statistics for detecting outliers. Alternatively,

in the presence of outliers one might use more robust correlations such as Spearman's

rho, Kendall's tau, and "percentage-bend" correlation (see Wilcox, 1997 for a discussion

of robust correlations).

Because a correlation coefficient involves one independent variable, or at least

one arbitrarily independent variable (in cases when the temporal order between the two

variables, such as self-esteem and anxiety, is unclear), multicollinearity is not an issue

when examining bivariate relationships. However, there are two more assumptions that

are often not checked, and yet, if violated, could invalidate the NHST for Pearson's

product-moment correlation coefficient. These assumptions are

11
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4. All variables are measured without error;

and 5. The relationship between the two variables is linear.

When conducting statistical significance tests of correlation coefficients, as with

all NHSTs, it is hoped that all variables are measured with little or no error. One way of

assessing error of measurement is through reliability coefficients. Yet, surprisingly,

relatively few researchers report reliability coefficients as they pertain to their sample

(Eason & Daniel, 1989; Meier & Davis, 1990; Onwuegbuzie, 1999a; Thompson, 1998a,

1999; Willson, 1980), often because of a failure to realize that reliability and validity are

a function of scores, not of instruments (Pedhazur & Schmelkin, 1991). Using measures

with low reliability typically increases Type II error (i.e., reduces statistical power) by

attenuating relationships. However, without information about the reliability of the

scores on each of the measures, it is not possible to assess the extent to which the

NHST for the product-moment correlation coefficient is affected. However, if reliability

estimates for the scores on the two variables are computed, the analyst will be able to

determine not only how much error is in each set of scores, but also the maximum

correlation one might expect under the conditions of the two reported reliability

estimates, considering that "the correlation between scores from two tests cannot

exceed the square root of the product for reliability [of scores] in each test" (Locke,

Spirduso, & Silverman, 1987, p. 28). For example, if the reliability estimate for scores

on variable X is .80, and the reliability estimate for scores on variable Y is .60, the

correlation between the two variables cannot exceed 1.691). Thus, as recommended by

Thompson (1998a, 1999), researchers always should report reliability coefficients for

1.2
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their own data.

The assumption of linearity means that there is a straight line relationship

between the two variables of interest. This is a crucial assumption because Pearson's

product-moment correlation coefficient only describes the linear relationship between

variables; any non-linear relationship that exists is not captured by Pearson's r. Non-

linearity (i.e., curvilinearity) can be examined either via bivariate scatterplots or from

residual plots stemming from SLR analyses. As obvious as the importance of linearity

is, and as easy as it is to check this assumption, it appears that few researchers

routinely do so. Yet, there are many variables, for example, variables that are a function

of time, which are susceptible to non-linearity. Thus, it should not be assumed that all

bivariate relationships of interest are linear. Indeed, as noted by Maxwell and Delaney

(1990, p. 361), "many graduate students have been embarrassed by writing theses

based on computer-generated summary statistics, only later to learn that the results

were nonsensical."

In sum, providing that the assumptions are met, the use of Pearson's product-

moment correlation coefficient is justified. However, when one or more of the

assumptions discussed above are grossly violated, the ensuing product-moment

correlation coefficient may be invalid and, more importantly, any interpretation of it will

be misleading. Thus, it is essential that researchers not only routinely assess all

pertinent validity assumptions associated with the Pearson r, but they also should make

reference to the results of these checks in their reports. Indeed, journal editors should

strongly encourage this practice, as such information often can be disseminated in a

13
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few sentences. Currently, a paucity of researchers discuss validity assumptions in their

articles (Keselman et al., 1998).

Flaw 2: Failure to Adjust for Type I Error When Conducting Multiple Tests

When the statistical significance of more than one correlation coefficient is tested

within a study, as is typically the case when bivariate relationships are of interest,

adjustments for inflated Type I error rates should be made. For example, when a

researcher conducts a statistical significance test for only one r coefficient, the

probability of rejecting a true null hypothesis is equal to the critical p (a)value for that

test. However, as Stevens (1996, pp. 6-9) illustrated, when k correlational tests are

tested for statistical significance, assuming independence of each test, with testwise

error probabilities of al, a2, . ak for the k tests, the overall alpha (or "familywise"

alpha) level will actually exceed the value of any of the individual testwise alphas:

overall a = 1 - (1 - al)(1 a2). .(1 ak)

In the case that all k statistical significance tests employ the same testwise alpha level

(aT), the equation could be simplified:

overall a = 1 - (1 - ar)k

Using this latter formula, in the case of computing and testing the statistical

significance of 10 independent is from a given sample at the .05 level of probability, the

overall Type I error probability would actually be not a meager 5%, but a whopping

40.1°/0! However, because the 10 correlation coefficients computed from the same

sample would likely not be completely independent (due to intercorrelations of the

variables as a set), the overall Type I error probability rate would actually fall

14
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somewhere between the testwise alpha (5%) and the overall alpha (40.1%), an

"improvement" of the odds that should give the researcher, at best, only minimal

comfort.

In handling this problem, all the tests of statistical significance can be undertaken

either by using the same "adjusted" alpha level via techniques such as the Bonferroni

adjustment (Tabachnick & Fidell, 1996), or by making some tests more liberal than

others in the set of correlations analyzed, via methods such as the Holms procedure

(Huck & Cormier, 1999). Whatever technique is used, it is important to attempt to

ensure that the actual Type I actual error does not exceed its nominal value.

Unfortunately, many researchers do not make adjustments for Type I error when

conducting multiple tests of correlation coefficients (Onwuegbuzie, 1999a). Further, in

the event that the variables being correlated represent two discrete sets (i.e., predictor

and criterion sets), it would behoove the researcher to utilize a more advanced

correlational procedure (e.g., multiple regression, canonical correlation). Use of more

advanced procedures serves to minimize the number of statistical significance tests

employed, thereby defeating the Type I error inflation problem, in addition to

representing a more realistic picture of the multivariable reality in which the variables

actually occur (Fish, 1988; Stevens, 1996).

Flaw 3: Failure to Consider the Power of Tests of Hypotheses

Statistical power is the hypothetical conditional probability of rejecting the null

hypothesis (e.g., of no relationship between two constructs) under some alternative

hypothesis for the population parameter's value (e.g., a non-zero relationship between
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two constructs). Power is affected by three factors: (a) the size of the statistical

significance level (increasing alpha increases power but also increases Type I error);

(b) the sample size (increasing sample size has the effect of reducing the standard

error which, in turn, increases power); and (c) the effect size--the discrepancy between

the value of the parameter under the null hypothesis and the value of the parameter

under the alternative hypothesis (the larger the difference, the greater the power to

detect a difference regarded as notable).

When sample sizes are relatively small, a correlation coefficient that appears to

be large may end up being statistically non-significant due to inadequate statistical

power. Thus, where possible, researchers should pay attention to sample size prior to

collecting data. Although power typically is difficult to calculate for more complex

members of the general linear model family, determination of power for tests of

correlation coefficients is relatively straightforward. For example, using Table 3.3.5 on

pages 92-93 of Cohen's (1988) book, it can be seen that, in order to test a nil null

hypothesis (i.e., a hypothesis of zero correlation; Cohen, 1994) for a Pearson product-

moment correlation, using an alpha of .05 and a power of .80 (which is deemed to be a

desirable combination), a sample size of 28 is needed to detect a large correlation (i.e.,

r = .5), a sample size of 84 is needed to detect a moderate correlation (i.e., r = .3), and

a sample size of 800 is needed to detect a small correlation (i.e., r = .1). When the

intention is to test multiple Pearson correlation coefficients, the Bonferroni adjustment

should be applied before Cohen's (1988) tables are utilized.

In cases when the researcher has little or no control over the size of the sample
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(as appears to be the norm in educational research), post hoc power analyses should

be undertaken. That is, the resultant sample size should be used to determine the

power of the test for an observed correlation coefficient and nominal level of

significance. Such post hoc analyses can help analysts to put their findings in the

proper statistical context. Yet, few researchers conduct either planned or post-hoc

power analyses (Keselman et al., 1998; Onwuegbuzie, 1999a), despite the fact that the

power of most studies is unacceptably low (Cohen, 1962, 1965, 1988, 1994, 1997;

Schmidt, 1996; Sedlmeier & Gigerenzer, 1989).

Finally, although many recommend that correlation matrices be used to present

the results of a correlational study in which there are three or more variables (in order to

allow researchers to replicate or to re-analyze their existing data), researchers should

refrain from highlighting all correlations that are statistically significant at the .05, .01,

and .001 levels, as is the current practice--especially when the number of variables

included in the table is large. Rather, researchers only should highlight correlations that

are statistically significant after adjusting for Type I error. In fact, bivariate correlations

should be tested for statistical significance only if bivariate hypotheses are of interest. If

more complex variable relationships are reflected in a study's hypotheses, and, hence,

a bivariate correlation table serves simply as a descriptive precursor to a more complex

analysis (e.g., multiple regression, canonical correlation), then the correlation matrix

should be presented with no references made to p-values either within or at the foot of

the table.

Flaw 4: Over-reliance on Null Hypothesis Significance Tests of Correlation Coefficients

1.7
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The literature is replete with calls for the reporting of effect sizes (e.g., Cohen,

1988; Daniel, 1998a, 1998b; Ernest & McLean, 1998; Knapp, 1998; Levin, 1998;

McLean & Ernest, 1998; Nix & Jackson Barnette, 1998a, 1998b; Thompson, 1996,

1998a, 1998b, 1999). Even the strongest proponents of NHSTs concur that statistically

significant results should be accompanied by one or more measures of practical

significance (Barnette & McClean, 1999). Nevertheless, relatively few researchers

consistently report estimates of effect size. According to Thompson (1998a), many

researchers appear to be under the delusion that p-values (a) test result importance, (b)

test result replicability, and (c) evaluate effect magnitude.

Even though correlation coefficients can be converted to effect size estimates

with relative ease, a paucity of analysts do so. Yet, nowhere is it clearer that the test

statistic underlying the NHST is largely dependent on the sample size than is the case

for the product-moment correlation coefficient. A test of the hypothesis concerning a

population correlation coefficient, like that for all other families of the general linear

model, takes the general form:

Proportion of variance explained

Proportion of variance unexplained

Utilizing the fact that R2 is the proportion of variance explained for a SLR model and 1 -

R2 is the proportion of variance unexplained, the test statistic for Pearson r generalizes

to

1.8
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r
Jl

which has a t sampling distribution for samples selected from a normal population. A

close examination of the numerator of the right hand side of the above equation

indicates that, holding the correlation constant, as the sample size (n) increases so

does the value of t, and, consequently, the probability of rejecting the null hypothesis.

Indeed, as derived by Pearson and Hartley (1962) and re-emphasized by Daniel

(1998a), using a = .05, whereas for a sample size of 3 the correlation coefficient has to

be as large as .997 to be statistically significant, the correlation coefficient can be as

low as .196 for a sample size of 100, .088 for a sample size of 500, .062 for a sample

size of 1,000, and .020 for a sample size of 10,000.

Thus, alongside p-values, the practical significance (r2)should be reportedfor

example, Cohen's (1988) criteria of .1 for a small correlational effect, .3 for a moderate

correlational effect, and .5 for a large correlational effect. Reporting effect sizes should

lead to the elimination of inappropriate language such as "highly significant" and

"approaching significance," as well as result in the regular use of the phrase

"statistically significant" (Carver, 1993; Cohen, 1994; Daniel, 1988, 1998a; Shaver,

1993; Thompson, 1996). Very recently, the American Psychological Association (APA)

Board of Scientific Affairs (1999), who convened a committee called the Task Force on

9
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Statistical Inference (TFSI), recommended in no uncertain terms that effect size

estimates always be reported when reporting p-values. Hopefully, their

recommendations will turn the tide.

In addition to the reporting of effect sizes, "what if' analyses could be reported.

These analyses indicate how many more subjects are needed to obtain a statistical

significance for the given correlation coefficient in cases in which the null hypothesis is

not rejected, and how few cases are needed before a statistically significant relationship

is no longer statistically significant (Daniel, 1998a). Furthermore, the confidence

intervals for product-moment correlation coefficients could be reported (see

Onwuegbuzie, 1999b for an example of reporting confidence intervals in a correlation

matrix). Since the sampling distribution of the sample correlation coefficient for all

values of the population correlation coefficient other than 0 is skewed, the sample

correlation coefficient must be transformed in such a way that it has a sampling

distribution which is approximately normal. Perhaps the most popular transformation is

Fisher's Z transformation. This transformation statistic is defined as

Izi 0.5 loge ( 1 + Irl)
1 Irl

where loge is the natural logarithm and the "I I" indicates that the number contained in it

can be either positive or negative. For example, the Fisher Z-value which corresponds

to r = 0.828 is

20
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Z = 0.5 loge
1.28

(

1 0.828)
0.5 loge

1

+

1 0.828 0.172

= 0.5 loge (10.6279) = 0.5(2.3635) = 1.182.

A simple way of obtaining the Fisher Z-values is to use the tables that are provided in

many standard statistics textbooks. Such tables give the value of Z for values of r from

0 to 1.00. (If r is negative, the Z value obtained becomes negative). If the exact value

of r is not listed, interpolation is used to obtain the corresponding Z-value. Conveniently,

the distribution of Z is approximately normal regardless of the size of n, with a mean

Zpop, which corresponds to p, and a standard deviation given by

az

A (1 - a)% confidence interval for Zi,,,, is

1

\In 3

z 1 (Zan) a.

Thus, the procedure for constructing 95% confidence intervals is as follows:

1. Transform r to Fisher Z using the equation above or the Fisher's Z transformation

table.

2. Compute the standard error of Z.

3. Find a (1 - a)% confidence interval for Zpop

4. Use the Fisher's Z table to transform the lower and upper confidence limits for

21
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Zpop back to r values.

In addition to allowing the researcher to test nil null hypotheses, confidence intervals

also provide an approximate index of statistical power, with narrow intervals indicating

high power and wide intervals indicating low power (Cohen, 1994). Unfortunately,

currently, very few researchers report confidence intervals for correlation coefficients,

probably because the major statistical packages do not provide this information. Thus,

we hope that future versions of statistical software will allow this analysis to be

performed.

Flaw 5: Conducting Tests of Statistical Significance for Reliability and Validity

Coefficients

Because estimates of reliability and validity are in the form of correlation

coefficients, many researchers undertake NHSTs of these coefficients using the nil null

hypothesis (Huck & Cormier, 1999). However, as Thompson (e.g., Thompson, 1994b,

1996, 1998, 1999) and Daniel and his colleagues (Daniel, 1998a; Witta & Daniel, 1998)

have argued, such tests are inappropriate. This is because large reliability and validity

coefficients typically are statistically significant even when the sample sizes that underly

them are small (Thompson, 1994b), whereas small coefficients will eventually become

statistically significant as the sample size is increased (Huck & Cormier, 1999), due to

the influence of sample size on NHSTs of correlation coefficients discussed above.

Moreover, reliability and validity coefficients are sample specific, and thus,

statistically significant coefficients are neither necessarily replicable not generalizable

(Witta & Daniel, 1998). Thus, rather than utilizing NHSTs of reliability and validity

22



Uses and Misuses 22

coefficients, effect sizes should be used to assess the adequacy of instrument scores

generated with specific samples. For example, Nunnally's (1978) criteria could be used

for assessing the reliability of scores on non-cognitive measures for a specific sample,

namely, that estimates of .70 and above are deemed to be adequate. For scores on

measures of cognitive performance, .80 often is used as the cut-off point (e.g., Sattler,

1990), although some (e.g., Gay, 1999) recommend that .9 be used. Conversely,

expressing a more liberal (though less rigid) view, Pedhazur and Schmelkin (1991, p.

110) noted that specific cutoffs should be avoided in favor of the researcher's judgment

as to the "amount of error he or she is willing to tolerate given the specific

circumstances of the study."

Flaw 6: Correcting for Attenuation

As stated earlier, one of the assumptions underlying a NHST of statistical

significance is that both variables involved are measured without error (Myers, 1986).

Obviously, this is seldom the case when dealing with social, behavioral, psychological,

and educational variables. Unfortunately, when measurement errors are present, the

relationship computed form the sample data will systematically underestimate the

strength of the association in the population (Huck & Cormier, 1999). That is, errors of

measurement produce biased estimates of the correlation coefficient that attenuate the

true relationship. The greater the measurement error, the more the correlation

coefficient is attenuated.

As a result, as has been previously noted, the statistical significance of a

correlation coefficient is also a function of the reliability of the scores generated by the
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sample. In other words, reliability coefficients affect statistical power. Specifically, low

reliability coefficients tend to lower statistical power. In cases when the null hypothesis

is not rejected, and one or more of the measures generate scores that have a low or

even moderate reliability coefficient, one cannot be certain whether the statistically

nonsignificant result suggests viability of the null hypothesis or merely represents a

statistical artifact.

Thus, some researchers who have knowledge of their sample-specific reliability

coefficients adjust their correlation coefficients to account for the estimated amount of

unreliability. These analysts use a correction-for-attenuation formula which yields an

adjusted/disattenuated correlation coefficient that is always higher than the

uncorrected, raw r (Huck & Cormier, 1999). However, correcting for attenuation is an

extremely controversial technique because it is subject to misapplication and

misinterpretation (Muchinsky, 1996). For example, some researchers incorrectly claim

that the method of correcting for attenuation improves the predictive accuracy of

measures.

A common misapplication stems from the practice by many meta-analysts of

disattenuating findings from individual studies before aggregating them into a

composite score (i.e., effect size measure) . Unfortunately, because researchers are

inconsistent in the statistics that they use to estimate reliability (i.e., internal

consistency, test-retest, and parallel forms), these meta-analysts end up violating a

major assumption of classical measurement theory that invalidates the

interchangeability of different types of reliability (Cronbach, 1947). In other words,
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aggregating findings that have been disattenuated using different measures of reliability

seriously affects the validity of the resultant effect size estimates. Moreover, because

the majority of researchers presently do not report sample-specific reliability coefficients

in their reports, meta-analysts who prefer to disattenuate the findings of original

researchers are left with incomplete data. Whether the analyst removes studies that do

not present reliability coefficients from the analysis or imputes values (however

determined) for missing reliability coefficients, there is no doubt that the composite

effect size estimates will be biased.

Another area of controversy surrounding correcting for attenuation centers

around which formula to utilize. Some theorists believe that Spearman's (1910) double

correction formula should be used, namely:

pxy
rxy

xx ryy

where pxy is the corrected validity coefficient, Gy is the obtained sample correlation

coefficient, rx, is the reliability of scores yielded by the measure of the independent

variable, and ryy is the reliability of scores generated by the measure of the dependent

variable. This formula corrects for unreliability of scores generated by measures of both

the independent and dependent variables.

Other measurement theorists advocate the single correction formula
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where the first single correction formula corrects for unreliability in scores generated by

measures of the dependent variable only, and the second single correction formula

adjusts for unreliability in scores yielded by measures of the independent variable only.

These corrections can be useful in cases in which the reliability of scores on one of the

variables is unknown to the researcher (e.g., when using data from standardized

achievement tests in which only total scores are reported by the agency administering

the test). Of the two single correction formulae, the former is utilized more often than is

the latter (Muchinsky, 1996).

Also disputed is to which type of reliability coefficient the correction formulae

should be applied. Historically, some theorists (e.g., Johnson, 1950) have noted that

test-retest reliability coefficients should be used in correction formulas, whereas some

(e.g., Guilford, 1954) have advocated that reliability coefficients of equivalence should

be employed, and whereas others (e.g., Nunnally, 1978) have advanced internal

consistency estimates. The debate continues today.

Whichever correction formula is used and whatever reliability estimate is utilized,

researchers should never report disattenuated correlation coefficients in isolation. When

these coefficients are presented, so should the raw (unadjusted) correlation
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coefficients. Displaying disattenuated correlation coefficients alongside their unadjusted

counterparts will allow the reader to assess the impact of unreliability on each bivariate

relationship. In addition, the authors should explain which correction formula(e) have

been used.

Flaw 7: The Crud Factor and Positive Manifold

As demonstrated above, as the sample size increases, so does the probability of

rejecting the null hypothesis of no relationship between two variables. Indeed,

theoretically, given a large enough sample size, the null hypothesis always will be

rejected (Cohen, 1994). Hence, it can be argued that "everything correlates to some

extent with everything else" (Meehl, 1990, p. 204). Meehl referred to this tendency to

reject null hypotheses in the face of trivial relationships as the crud factor.

In support of the contention of the existence of a crud factor, Standing, Sproule,

and Khouzam (1991), who computed a 135 x 135 matrix of correlations using 2,058

cases, found that, on average, each variable correlated at a statistically significant level

(p < .05) with 41% of the other variables, although the absolute magnitude of the

correlations averaged only .07. This finding not only provides a compelling example of

the danger of relying solely on NHSTs, but also of the importance of selecting

relationships of interest carefully, preferably stemming within a sound theoretical

framework. In a similar analysis utilizing an extremely large sample, Meehl and Lykken

(as cited in Cohen, 1994) conducted a study of 57,000 high school students in which

cross tabulations for 15 Minnesota Multiphasic Personality inventory (MMPI) items

yielded 105 chi-square tests of association--all of which were statistically significant,
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with 96% of them being statistically significant at p < .000001.

Similar to the crud factor is the statistical artifact called a "positive manifold," in

which individuals who perform well on one ability or attitudinal measure tend to perform

well on other measures in the same domain (Neisser, 1998). For example, Tucker,

Bass, and Daniel (1992) measured 106 university professors and administrators on

three variables tracing the outcomes of transformational leadership (satisfaction,

effectiveness, and extra effort) as reflected in their respective subscale Multifactor

Leadership Questionnaire subscale scores. Because these outcomes are theoretically

related, it is not surprising that the intercorrelations among the three sets of scores were

characterized by positive manifoldall three correlations exceeded .65, with a mean

across the correlations of .71.

Flaw 8: Inferring Causation from Correlation Coefficients

In interpreting correlation coefficients, researchers often infer cause-and-effect

relationships, even though such relationships can, at best, only be determined from

experimental studies. Scientific experiments can frequently make a strong case for

causality by carefully controlling the values of all variables which might be related to the

ones under study. Then if the dependent variable is observed to change in a

predictable way as the value of the independent variable changes, the most plausible

explanation would be a causal relationship between the independent and the

dependent variable. In the absence of such control and ability to manipulate the

independent variable, we must admit the possibility that at least one more unidentified

variable is influencing both the variables under investigation.
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This does not mean that correlational analysis may never be used in drawing

conclusions about causal relationships. A high correlation in many uncontrolled studies

carried out in different settings can provide support for causality--as in the case for the

relationship between cigarette smoking and lung cancer. That is, correlations can be

used to rule in or to eliminate (under conditions of replication) the possibility of a causal

relationship. Kenny (1979) distinguished between correlational and causal inferences,

noting that four conditions must exist before a scientist may appropriately claim that X

causes Y: (a) time precedence (X must precede Yin time), (b) functional relationship (Y

should be conditionally distributed across X), (c) nonspuriousness (there must not be a

third variable Z that causes both X and Y, such that when Z is controlled for, the

relationship between X and V vanishes, and (d) vitality (a logistical link between X and

Y that substantiates the likelihood of a causal link (such as would be established via

controlled experimental conditions). Taken together, these four conditions lead the

researcher to infer causality: "The law of causation is a conceptual figment extracted

from phenomena, it is not of their very essence" (Pearson, 1911, p. 157).

Hence, substantiating causal links in uncontrolled (correlational) studies is a very

elusive and futile task. Thus, researchers should pay special attention when interpreting

findings stemming from correlation coefficients. Unfortunately, some researchers and

policy makers are prone to relatively loose interpretations of such findings.

Flaw 9: Inappropriate Use of Hotteling's t-Test When Comparing Correlated Correlation

Coefficients

Situations arise in which a comparison of the magnitude of two correlation
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coefficients is of interest. For example, we might be interested in determining whether

the relationship between test anxiety and test performance for female high school

students is different from that of their male counterparts. Because the sampling

distribution of r is skewed, we do not compare the correlations directly, but compare

their corresponding Fisher Z-values. The z-test for testing independent es is given by

where

Z1 z2
Z

0 2 \I 1
+

1
= Voz2 + cy2

z2z, z2 nn1 -3 n
2

3

The right hand side of the first equation is the difference between Z1 (i.e., Fisher's Z-

value for the correlation pertaining to the first sample) and Z2 (i.e., Fisher's Z-value for

the correlation pertaining to the second sample) divided by the standard error of the

difference. A confidence interval for the difference between two independent

population correlations, A p2, is given by the r transformations of the lower and upper

limit obtained from

(z1 Z ) ± z ( 021 )

In addition to conducting NHSTs of independent correlations, effect size

measures should be reported. The most common effect size measure is the difference
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between the two Fisher's Z-values (i.e., Z1 Z2 ). Cohen's (1988) criteria for product-

moment correlations (i.e., .1 = small, .3 = medium, and .5 = large) could be utilized to

determine the magnitude of effect sizes. At present, very few researchers formally

compare independent correlation coefficients, probably because the major statistical

packages do not conduct such analyses. Thus, we hope that future versions of

statistical software will allow these analyses to be undertaken.

If a single sample is drawn from one population, and one is interested in

comparing two correlation coefficients that are computed on the basis of the sample

data, the null hypothesis is that there is no difference between the two correlations in

the single population associated with the study. For instance, one may be interested in

comparing the relationship between self-esteem and achievement to that between

anxiety and achievement for the same sample. In this case, two correlated correlations

are being compared. The procedure for performing a NHST of two correlated

correlations is different than that for comparing two independent correlations.

Presently, the most common technique for comparing correlations is Hotelling's

t-test (Hotelling, 1940). Unfortunately, this technique has a serious flaw. Although

Hotelling's t-test is exact, it only tests the nil null of equal correlation coefficients when

the sample variance of both variables of interest equals the corresponding population

variance, which very rarely occurs. In fact, Hotelling (1940, pp. 276-277) warned, "The

advantages of exactness and of freedom from the somewhat special trivariate normal

assumption are attained at the expense of sacrificing the precise applicability of the

results to other sets of the predictors."
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A more appropriate statistic for comparing two correlated coefficients with a

common variable was proposed by Meng, Rosenthal, and Rubins (1992). Specifically,

these authors derived the following Z-test for assessing the statistical significance of the

difference between two sample correlation coefficients rra and ry,, where variables X1

and X2 are predictors of the dependent variable Y:

N 3Z = (zri Zr2) \I 2(1 rx) h

where N is the number of subjects, zo is the Fisher Z-transformation of the first

correlation, zr2 is the Fisher Z-transformation of the second correlation, G is the

correlation between the two predictor variables, X, and X2,

1 f r2 r 2

h ! + (1 f)
1 r2 1 r2

f 1 rx

2(1 r2)

and r2 is the mean of the two correlations involving the predictor variables. A 95%

confidence interval for the difference in Fisher z's is

z ±1.96
2(1 -rx)h

N 3

Again, we hope that future versions of statistical software will allow these analyses to
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be performed.

Flaw 10: Failure to Assess the External and Internal Replicability of Correlation

Coefficients

There is little doubt that external replication is the essence of science. Thompson

(1994) provides four reasons for replication. First, an individual study cannot explain

adequately a phenomenon without introducing bias. Second, the findings from an

individual investigation are limited by design and measurement flaws. Third, an

individual study is limited by analytical methods. Fourth, an individual study is affected

by the inherent limitations of NHSTs.

Types of replication include direct replication, simultaneous replication,

systematic replication, and clinical replication (Gay, 1999). Direct replication involves

replication by the same investigator using the same or different subjects in a specific

setting. Simultaneous replication refers to replications undertaken on subjects with the

same characteristics at the same location and at the same time. Systematic replication

pertains to replication which follows direct replication, involving different investigators,

behaviors, or settings. Finally, clinical replication involves the development treatment

programs, comprising two or more interventions which have been found to be effective

individually (Gay, 1999).

Regardless of the type of external replication conducted, the more that results

are replicated, the more confidence can be placed on the original finding. Indeed, it is

only by replicating findings across different settings and using different samples that we

can hope to form theoretical generalizations. Thus, researchers should not only
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compare their correlation coefficients to those obtained in previous studies, but should

also encourage and attempt external replications.

Unfortunately, as noted by Thompson, few social scientists conduct external

replication analyses, probably due to time, resources, or energy constraints (Thompson,

1994). Thus, we recommend that internal replications be undertaken in which the

stability of sample correlation coefficients are assessed using data from the available

sample. Although internal replications are inferior to external replications, the former still

provide useful information about the stability of coefficients, and thus should be utilized

routinely--even when external replications are possible!

The three most common classes of internal replication utilize either cross-

validation, jackknife, or bootstrap techniques. For the Pearson product-moment

correlation coefficient, cross-validation involves dividing the sample into two

approximately equally sized groups, computing a correlation coefficient for the first

group, and then using the second group to attempt to confirm this coefficient. Jackknife

techniques involve computing a series of correlation coefficients, with groups of

subjects of an equal size (usually one at a time) being deleted from each analysis once

only. Finally, bootstrap methods involve resampling the same dataset repeatedly (i.e.,

thousands of times), and then computing the correlation coefficient for each sample.

The mean correlation coefficient is then computed and compared to the original

correlation from the full sample in order to assess stability.

At present, very few social scientists conduct internal replications. Of those who

do, these replications tend to occur after multivariate models have been fitted. Virtually
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no researchers conduct internal replications to examine the stability of the Pearson

product-moment correlation coefficient, despite the fact that (a) this coefficient is a

member of the general linear model family, (b) this coefficient is the most widely used to

conduct inferential analyses, and (c) this coefficient Is as susceptible to instability as are

other members of the general linear model. Thus, what follows is an example using a

small heuristic dataset to illustrate how internal replication techniques can identify

unstable correlation coefficients derived from the full sample.

Heuristic Example

Recently, Onwuegbuzie, Slate, Paterson, Watson, and Schwartz (in press)

conducted a study investigating correlates of achievement among students enrolled in

several sections of a graduate-level quantitative-based educational research course at

a southeastern university. The theoretical framework for this investigation, though not

presented here, can be found by examining the original study. Although several

independent variables were examined by Onwuegbuzie et al., we will restrict our

attention to one .of them, namely, anxiety resulting from fear of the statistics instructor.

Fear of the statistics instructor is one of the six subscales of the Statistical

Anxiety Rating Scale (STARS; Cruise & Wilkins, 1980). This subscale is a 5-item, 5-

point Likert-format instrument which assesses students' perceptions of their statistics

instructor. Scores on this subscale range from 5 to 25, such that high scores represent

high levels of anxiety induced by fear of the statistics teacher. According to

Onwuegbuzie et al. (in press), scores pertaining to the fear of the statistics instructor

subscale had a classical theory alpha reliability coefficient of .83. This represents an
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acceptable level (cf., Flaw 5). Evidence of construct-related validity was obtained via

correlations ranging from .50 to .75 between scores on the fear of the statistics

instructor subscale and scores on the other five subscales of the STARS. For purposes

of this heuristic example, the total score of the fear of the statistics instructor subscale

(M = 12.27, SD = 4.04) was used as the independent variable.

The dependent variable chosen for this heuristic example was level of

achievement in the educational research course, which was measured using students'

course averages (M = 88.51, SD = 4.92). Students' course averages comprised

evaluation of research articles, written research proposals, orally presented research

proposals, and conceptual knowledge (as measured by five untimed in-class

examinations). For the present study, the Statistical Package for the Social Sciences

(SPSS Inc., 1999) was utilized to obtain descriptive statistics, as well as for the

correlational and regression analysis. The Statistical Analysis System (SAS Institute

Inc., 1999) was used to perform the jackknife analysis. Finally, Amos 4.0 (Arbuckle &

Wothke, 1999) was utilized to undertake the bootstrap analysis.

Treating these two variables in isolation, the sample size of 121 reflected a

statistical power of .92 (cf., Flaw 3) to detect a moderate bivariate relationship (i.e., r =

.30) with a statistical significance level of .05 (Cohen, 1988). Thus, the level of power

for this heuristic example was high (cf., Flaw 3), and indeed much higher than is the

case for most NHSTs in educational research (see for example, Cohen, 1994, 1997).

An inspection of the scatterplot (cf., Flaw 1) suggested no evidence of a non-

linear relationship between the two variables. In addition, an examination of the
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histogram and the expected normal probability plot pertaining to the achievement

variable suggested normality. Furthermore, the skewness and kurtosis coefficients

indicated that the achievement variable was approximately normal. Specifically, both

the skewness coefficient of -0.30 (SE = .22) and the kurtosis coefficient of -0.21 (SE =

.44) were small enough for the distribution to be considered normal. Indeed, the z-

values corresponding to both skewness (z = -1.35) and kurtosis (z = -0.48) coefficients

were not significant (p > .05). Also, the Shapiro-Wilk test (Shapiro & Wilk, 1965;

Shapiro, Wilk, & Chen, 1968) did not indicate that the distribution of educational

research achievement scores was non-normal (W= .98, p > .05).

Similarly, the independent variable, fear of the statistics instructor, appeared to

be normally distributed. Specifically, the histogram and the expected normal probability

plot suggested normality. In addition, both the skewness coefficient of 0.43 (SE = .22)

and the kurtosis coefficient of 0.35 (SE = .44) were small enough for the distribution to

be considered normal. In fact, the z-values corresponding to both skewness (z = 1.95)

and kurtosis (z = 0.80) coefficients were not statistically significant (p > .05). Also, the

Shapiro-Wilk test did not indicate that the distribution of educational research

achievement scores was non-normal (W= .96, p > .05).

The fact that the scores pertaining to both variables appeared to be normally

distributed justified the use of the Pearson product-moment correlation coefficient (cf.,

Flaw 1) for examining the relationship between fear of the statistics instructor and

achievement. The Pearson product-moment correlation coefficient indicated a

correlation between these two variables of -.1761. (Four decimal places were used
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rather than the usual two decimal places to accommodate the jackknife and bootstrap

analyses.) The p-value associated with this correlation was .0533. Interestingly, some

p-value analysts may inappropriately use terms such as "approaching significance" or

"marginally significant" to describe this correlation. Indeed, if a p-value was the only

criterion used to describe a Pearson's product-moment correlation coefficient, a p-value

such as the above, may lead some analysts to reject the null hypothesis of a zero

relationship in the population, and some researchers not to reject the null hypothesis- -

depending on how many decimal places (e.g., 2 vs. 4 decimal places) are used for the

correlation coefficient and/or the p-value.

Although, strictly speaking, this correlation is not statistically significant at the 5%

level, this example strongly reinforces the important point that analysts of empirical data

should never rely merely on p-values to make statistical inferences about a sample (cf.,

Flaw 4). Indeed, use of Cohen's (1988) criteria for effect sizes to interpret the

educational/practical significance of the present correlation renders the discussion

about its statistical significance almost moot, because regardless of the level of

statistical significance, the correlation is quite small.

The problem in deciding whether the correlation is statistically significant also

bolsters our contention that confidence intervals for correlations also should be

reported. For the present example, using Fisher's Z-transformation, a 95% confidence

interval for the relationship between fear of the statistics instructor and achievement

was -.3438 to .0025. Since this interval includes 0, we would not reject the null

hypothesis at the 5% level--which supports our earlier decision. Moreover, the
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confidence interval is relatively wide, ranging from a zero effect to a moderate effect.

This suggests that the correlation coefficient may not be very stable--a finding that

would not have emerged if a confidence interval had not been constructed.

Influence Diagnostics

A simple linear regression (SLR) model was fitted, using SAS, with anxiety (i.e.,

fear of the statistics instructor) as the independent variable and achievement as the

dependent variable. This analysis yielded the following estimates of the model

parameters (the standard errors of the coefficients are in parentheses):

achievement = 90.592 -0.213*Anxiety

(1.407) (0.109)

This SLR model allowed us to check further the adequacy of the correlation coefficient.

In particular, an inspection of the studentized residuals generated from the model

(Myers, 1986) suggested that the assumptions of normality, linearity, and

homoscedasticity were met. Using the Bonferroni adjustment, none of the studentized

residuals suggested that outliers were present. Specifically, only 6 of the 121

studentized residuals had absolute values larger than 2.0, with 5 of these values being

less than 2.5, and the remaining value being 2.73. Thus, the studentized residuals did

not give any major cause for concern.

Additionally, the following influence diagnostics were examined: (1) the number

of estimated standard errors (for each regression coefficient) that the coefficient

changes if the ith observation were set aside (i.e., DFBETAS); (2) the number of

estimated standard errors that the predicted value changes if the ith point is removed
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from the data set (i.e., DFFITS); (3) the reduction in the estimated generalized variance

of the coefficient over what would have been produced without the ith data point (i.e.,

COVRATIO), and (4) a measure of standardized distance from the ith point of the

anxiety variable to the data center in the variable (i.e., HAT diagonal). Using criteria

recommended in the literature (e.g., Myers, 1986; Sen & Srivastava, 1990), it was

revealed that three observations were potential outliers, namely, subjects 73, 96, and

114. Subject 73 had a relatively large HAT diagonal, suggesting strong leveragability

(i.e., disproportional influence on the anxiety coefficient). This subject also had relatively

large DFFIT and DFBETA values for the intercept and slope. The DFFIT value of -0.32

indicates a one-third of a standard error decrease in achievement due to the inclusion

of this subject. The DFBETA value of -0.29 on the anxiety coefficient suggests that

without the 73rd participant, the regression coefficient decreases by 0.29.

Subject 96 had a DFFIT value of -0.34, also indicating a one-third of a standard

error decrease in achievement due to her/his inclusion. Also, the DFBETA value of 0.29

on the anxiety coefficient suggests that the exclusion of this participant would increase

the anxiety coefficient by 0.29. Finally, subject 114 had an absolute studentized

residual that was greater than 2, with a DFFIT value which suggested a one-third of a

standard error decrease in achievement, and a DFBETA value of .27.

Bootstrap Analysis

The second method of assessing result replicability utilized the bootstrap

method, which was developed by Efron and his colleagues (Diaconis & Efron, 1983;

Efron, 1979; Efron & Tibshirani, 1993). Bootstrap analyses involve resampling the

40



Uses and Misuses 40

same dataset (i.e., sampling with replacement) a specified large number (typically

thousands) of times and computing the statistics of interest for each sample. These

statistics are then averaged, and the standard deviation of the bootstrap-estimated

sampling distribution (i.e., standard error of estimate) is derived. The standard deviation

of the sampling distribution provides an estimate of the variability of the sample

statistics given fluctuations in the sample. In order to justify making inferences on the

bootstrap estimates, thousands of resamples are required.

For the purpose of this heuristic example, 10,000 resamples were undertaken on

the SLR model. The mean regression coefficient for the anxiety variable was -0.213.

Encouragingly, this value is identical to the regression coefficient for the original

sample. In addition, the standard deviation of the 10,000 bootstrap estimates (i.e.,

standard error of estimate) was .001, suggesting strongly that the regression coefficient

and, consequently, the correlation coefficient were both extremely stable. Because the

standard error of estimate was miniscule, the 95% confidence interval (not reported

here) was extremely narrow.

Jackknife Analysis

The third method of assessing result replicability utilized the jackknife method

(Crask & Perreault, 1977) (cf., Flaw 10). This procedure entailed conducting 121

separate correlations (each examining the same relationship between anxiety and

achievement), wherein each analysis involved dropping the ith participant until every

subject had been eliminated exactly once. That is, each of the resultant 121

correlations utilized 120 participants (i.e., n-1 participants, where n = the total sample
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size). The 121 r values which were generated from these models were examined for

stability. The summary statistics pertaining to this analysis are presented in Table 1.

Insert Table 1 about here

As can be seen in Table 1, encouragingly, the standard deviation (.0074) about

the mean jackknife correlation estimate (.1761) was extremely small. Also, assuming

that the sample estimates of the correlation coefficient are normally distributed (as

suggested by the closeness of the mean and median values for the correlation

estimates), it can be seen that the 95% confidence interval about the parameter

estimate lies between -.1775 and -.1748. Encouragingly, this interval is not only very

narrow, but it contains the estimate calculated using the complete data (i.e., r = -.1764).

This finding of a stable correlation coefficient echoes the result from the bootstrap

analysis.

However, caution should be exercised in interpreting this interval because,

although the skewness coefficient (.08) pertaining to the jackknife correlation estimates

was small relative to its standard error (.22), the kurtosis coefficient (3.06) was

extremely large as compared to its standard error. Indeed, the z-value associated with

the kurtosis coefficient was 7.00. Figure 1, which presents the histogram of the 121

jackknife correlation coefficients, supports this finding of a small skewness coefficient

and a large kurtosis coefficient. Moreover, from this graph, it can be seen that the

participants whose removal from the sample generated a correlation coefficient of -
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.2019 (subject 96), -.2025 (subject 114), and -.1475 (subject 73) may be outliers.

These three subjects also were highlighted via the influence diagnostic analysis. This

illustrates another useful role of jackknife analyses--identifying potential outliers (cf.,

Flaw 1). Interestingly, if these three subjects are removed from the sample, the

correlation increases to -.2010 (p < .05), changing our conclusion about the correlation

coefficient from statistically nonsignificant to statistically significant, although the effect

size is still relatively small.

Insert Figure 1 about here

The final step of the jackknife analysis was to examine the p-values associated

with each jackknife correlation estimate. Table 2 presents the descriptive statistics

pertaining to the jackknife p-values. (Ninety-five percent confidence intervals were not

constructed due to the large skewness and kurtosis coefficients.) It can be seen that the

p-values ranged from .0270 to .1069. The mean p-value was .0545, reflecting the

dilemma discussed above regarding the level of statistical significance of the bivariate

correlation. Even more disturbing was the fact that, of the 121 p-values, 33 (27.3%)

would have been declared statistically significant at the 5% level, whereas 88 (72.7%)

would not have been declared statistically significant. In other words, if only one

member of the sample had not been included in the study, relying only on p-values to

interpret the "significance" of the results would have led to inconsistent conclusions,

depending on which participant was absent. This undoubtedly provides the most
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compelling example of the importance of routinely interpreting effect sizes alongside p-

values (cf., Flaw 4).

Insert Table 2 about here

The fact that using the full sample would have led to a statistically nonsignificant

correlation coefficient, but that removing only one participant from the study yielded

statistical significance more than one-fourth of the time, indicates that the internal

replication error rate, to which we will refer as the Type V error rate, far exceeded the

nominal Type I error rate (i.e., 5%). Thus, jackknife analyses are extremely useful in

providing information about Type V error rates.

Conclusions

The purpose of the present paper was to provide an in-depth critical analysis of

the use of correlation coefficients. We argue that many social scientists do not exhibit

the same care and consideration when calculating correlation coefficients as they do in

conducting more complex analyses of the general linear model. Simply put, many

analysts take the correlation coefficient in general and Pearson's product-moment

correlation coefficient in particular for granted.

Ten flaws are identified and discussed which are made by many researchers

when examining bivariate relationships. From these flaws, the following "ten

commandments" are appropriate when utilizing Pearson product-moment correlation

coefficients:
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(1) Always check statistical assumptions prior to using Pearson's r, as well as

after the correlation has been computed.

(2) Always adjust for Type I error when conducting multiple NHSTs of

correlations.

(3) Always be cognizant of the power of NHSTs of correlations, preferably

before the data collection stage, and, at the very least, at the data

analysis stage.

(4) When making inferences about the Pearson r value, always interpret

effect sizes.

(5) Do not conduct tests of statistical significance for reliability and validity

coefficients.

(6) Do not report disattenuated correlation coefficients without also presenting

the raw coefficients.

(7) Do not correlate variables without a theoretical framework.

(8) Avoid inferring causation from a correlation coefficient, regardless of how

large the effect size is.

(9) Do not use Hotelling's t-test when comparing correlated correlation

coefficients

(10) Conduct external replications when possible, and, in their absence,

always undertake internal replications.

A heuristic example was provided to illustrate how jackknife and bootstrap

methods can assess the stability of product-moment correlation coefficients derived
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from the full sample. It was demonstrated that, even when correlation coefficients are

stable, as in the present example, large internal replication errors (i.e., Type V errors)

may prevail. As such, we hope that this paper will be useful for both beginning and

experienced researchers. Moreover, we hope that our efforts will help to motivate

others to pay more attention to our most commonly-used inferential statistic.
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Table 1

Descriptive Statistics and 95% Percent Confidence Intervals about the Jackknife

Estimates of Pearson's Product-Moment Correlation Coefficient (r)

(Using 121 Resamples Each of Sample Size 120)

Summary
Statistic r

Mean .1761

Median .1764

Standard Deviation .0074

Minimum .1479

Maximum .2019

Range .0540

Skewness .075

Standard Error of Skewness .220

Kurtosis 3.059

Standard Error of Kurtosis .437

95% Lower Bound .1748

95% Upper Bound .1775

Full Sample (n = 121) .1761
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Table 2

Descriptive Statistics for the Jackknife p-Values

Summary
Statistic p-Value

Mean .0551

Median .0539

Standard Deviation .0106

Minimum .0270

Maximum .1069

Range .0799

Skewness 1.077

Standard Error of Skewness .220

Kurtosis 4.860

Standard Error of Kurtosis .437

Full Sample (n = 121) .0533
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Figure 1: Histogram of 121 Jackknife Correlation Coefficients
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