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1 MEASUREMENT DEFINED

Measurement is the process of converting observations into quantities through theory.
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Measurement as a “process” implies an “act of ascertainment, of finding out” (Leonard, 1962, p.

4). The term “observation” refers to the qualitative observation or count, be it the color of a
blood glucose strip or the position of a column of mercury. The “quantity”, or measure, is the
number assigned to the attribute of the object of measurement. The term “theory” in this

definition makes clear that “every instance of measurement presupposes an extensive background

of explicitly confirmed, scientific theory” (Leonard, 1962, p. 4).

A construct theory in its more colloquial form, is just a story about what it means to move up and
down a scale. It is used to calibrate indicants. Examples of calibration include the placement of
lines on the tube of a liquid-in-a-glass thermometer or the assignment of difficulty calibrations to a

series of vocabulary test items. The theory creates a context in which the observation can be
understood as the data for an estimator for the measure. In the case of the attribute “reading
comprehension”, the “process” is the act of ascertaining the level of reading comprehension
attained by a person.



The process of measurement results in a quantity. The “observation” is often a raw score or
count correct on some set of items. The “quantity” is the amount of reading comprehension
ability that a person possesses expressed in some metric. The conversion of observations into
measures through theory is accomplished using the Rasch (1980) model, which states a
requirement for the way that theory (expressed as item calibrations) and observations (count of
correct items) interact in a probability model to make useful measures.

The above definition of measurement can be implemented in an equation that expresses the
relationships among an observation (0,), theory (C,...,C.), and measures (M):

(Mp Ci)

0,=%

i=1

1+e(Mp Ci) (1)

The Rasch model stipulates that the probability of a response to an indicant is governed by the
difference between the indicant calibration (C)) and the person’s measure (A4,). The number
correct for a person, i.e. the observation (0,), is set equal to the sum of these modeled
probabilities yielding Equation (1), which is then solved for the measure M,. When a person’s
measure greatly exceeds the items’ calibrations, then the probabilities will be high and the sum of
these probabilities will correspond to a high number correct. Conversely, when the item
calibrations generally exceed the person measure, the modeled probabilities of a correct response
will be low which corresponds to a low number correct. When we know the observation (O,) and
the indicant calibrations (C)), we can use an iterative procedure to find the measure (M4,) that will
make the sum of the modeled probabilities equal to the observation (0,).

Formula (1) possesses several distinguishing characteristics:

e The key terms from the above definition of measurement are placed in a precise relationship to
one another.

e The individual responses of, say, a person to each item on an instrument are absent from the
equation. The only piece of data that survives the act of observation is the number correct,
thus confirming that this number is sufficient for estimating the measure.

e For any set of items we know the possible raw counts. When it is possible to know the
indicant calibrations from theory, the only parameter that must be estimated in (1) above is the
measure that corresponds to each observable raw count (i.e., number correct). Thus, when
the calibrations (C)) are given by theory, a correspondence table linking observation and
measure can be constructed without reference to data on other individuals. Lest this seem
surprising, we emphasize that theory-based calibration of instrumentation is the norm
throughout science, engineering and commerce. Due largely to a dearth of good theory, the
behavioral sciences have been forced to rely on data alone for instrument calibration.

The measure (M,) in (1) depends only upon the particular indicant calibrations provided by theory
and on the observation. The observation (i.e., count correct) is completely sufficient as an
estimator of the measure. That is, there is no further information in the data or in the context of
measurement that can improve the estimate of the measure. This “complete sufficiency” is
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possible only in that specific arrangement of observation, theory and measure expressed in (1)
above. Only the Rasch model, informed by theory-based calibrations, offers complete sufficiency.

Even more important than sufficiency is the property of objectivity. The Rasch model (Wright
and Stone, 1979), in combination with a construct theory (Stenner, Smith, and Burdick, 1983),
allows the complete separation of the measure from particulars associated with the act of
measuring. A consequence of this complete separation is that measures achieve general
objectivity, a concept we explore in depth in the next section.

1.1 Specific and General Objectivity

In this section, we review the calls for objectivity in behavioral science measurement and
differentiate between two kinds of objectivity: specific and general.

Measurement is objective if it is independent of the conditions of measurement, e.g. which
instrument is used to do the measuring. If the measured difference between objects is independent
of conditions, the objectivity is specific or local. If the scale value of a single object is
independent of conditions, the objectivity is general. Because of the ambiguity in the location of
the origin, the Rasch model by itself yields local but not general objectivity. In combination with a
construct theory like the Lexile Framework, a criterion referenced interpretation is obtained which
resolves the ambiguity and yields general objectivity.

Objectivity is the foundation of valid measurement. Indeed, it is central to the idea of
measurement. When a number is reported as a measure, the underlying assumption is that the
measure is objective, that is, it has been sufficiently well-separated from the conditions of
measurement that we can ignore these conditions when reporting the measure. For example, if
we say that it is 80 degrees Fahrenheit, the inherent assumption is that the validity of this measure
does not depend on any conditions of measurement, such as which thermometer was used. This
objectivity, which is the foundation of physical science measurement, has not been achieved to the
same degree in the behavioral sciences, although it has long been sought after, witness Thurstone:

“It should be possible to omit several test questions at different levels of the scale
without affecting the individual score.

It should not be required to submit every subject to the whole range of the scale.
The starting point and the terminal point being selected by the examiner should not
directly affect the individual score” (Thurstone, 1926, p. 446).

It is clear that Thurstone believed that person measures should be independent of the particular
items used in the measurement instrument. What is not clear is whether or not Thurstone
intended that relative scores (i.e., differences) or absolute scores (i.e., point locations) should be
free of effects due to indicants. Two years later, he stated:

“The scale must transcend the group measured. One crucial experimental test
must be applied to our method of measuring attitudes before it can be accepted as
valid. A measurement instrument must not be seriously affected in its measuring
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function by the object of measurement. To the extent that its measuring function is
so affected, the validity of the instrument is impaired or limited. If a yardstick
measured differently because of the fact that it was a rug, a picture or a piece of
paper that was being measured, then to that extent the trustworthiness of that
yardstick as a measuring device would be impaired. Within the range of objects
for which the measuring instrument is intended, its function must be independent
of the object of measurement” (Thurstone, 1928, p. 547).

From 1926 to 1931, Thurstone published examples of “objectivity”, including weight and height,
that suggest an interest in sample-free, absolute measurement, although his models result in only
an approximation of specific objectivity. Thus Thurstone’s philosophizing on the attributes of
“good” measures focused on general objectivity (absolute scale locations are independent of the
instrument), whereas his mathematical models and research applications realized only local
objectivity (differences among persons are independent of the measuring instrument) (Stenner,
1994).

Although Thurstone did not use the word objectivity, he clearly had this concept at the forefront
of his thinking. Georg Rasch made objectivity the centerpiece of a new psychometric model.
Rasch (1960) states:

“Individual-centered statistical techniques require models in which each individual
is characterized separately and from which, given adequate data, the individual
parameters can be estimated. It is further essential that comparisons between
individuals become independent of which particular instruments — tests or items or
other stimuli — within the class considered have been used. Symmetrically, it ought
to be possible to compare stimuli belonging to the same class — ‘measuring the
same thing” — independent of which particular individuals within a class considered
were instrumental for the comparisons” (Rasch, 1980).

“Where this law can be applied, it provides a principle of measurement on a ratio
scale of both stimulus parameters and object parameters, the conceptual status of
which is comparable to that of measuring mass and force. Thus, by way of an
example, the reading accuracy of a child — as ascertained by means of any of the
oral reading tests catalogued in the appendix — can be measured with the same kind
of objectivity as we may tell its weight, though not with the same degree of
precision, to be sure, but that is a different matter” (Rasch, 1980, p. 115).

“Thus, if a set of empirical data cannot be described by the [Rasch] model, then
complete specifically objective statements cannot be derived from them. Firstly,
the failing of specific objectivity means that the conclusions about, say, any set of
person parameters will depend on which other persons also are compared. As a
parody we might think of the comparison of the volumes of a glass and a bottle as
being influenced by the heights of some books on a shelf.

“Secondly, the conclusions about the persons would depend on just which terms
were chosen for the comparison, a situation to which a parallel would be that the
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relative height of two persons would depend on whether the measuring stick was
calibrated in inches or in centimeters” (Rasch, 1968, p. 7):

“Thus, in principle, the [M,’s] stand for properties of the objects per se,
irrespective of which [C/’s] might be used for locating them. Therefore, they really
ought to be appraised without any reference to the [C’s] actually employed for this
purpose, just like reading the temperature of an object should give essentially the
same result whichever adequate thermometer was used” (Rasch, no date, p. 5).

Rasch (1960) coined the term “specific objectivity” and realized that his model achieved a
separation of instrument and measure long sought after, but never achieved. Whether or not
Rasch distinguished between specific and general objectivity is not clear.

Rasch was always careful to point out that it was comparisons (i.e., relative measures) that were
independent of the instrument, suggesting that he clearly understood the distinction. But his
favorite physical science examples (mass and temperature) clearly possess a more general and
complete objectivity not shared by the reading comprehension tests he developed.

Finally, Wright (1968) offered an accessible and complete statement on specific objectivity. He
wrote:

“Let us call measurement that possesses this property ‘objective’. Two conditions
are necessary to achieve it. First, the calibration of measuring instruments must be
independent of those objects that happen to be used for calibration. Second, the
measurement of objects must be independent of the instrument that happens to be
used for measuring. In practice, these conditions can only be approximated, but
their approximation is what makes measurement objective.

Object-free instrument calibration and instrument-free object measurement are the
conditions that make it possible to generalize measurement beyond the particular
instrument used, to compare objects measured on similar but not identical
instruments, and to conceive or partition instruments to suit new measurement
requirements” (Wright, 1968).

After a quarter-century of exploration of “objectivity” as a fundamental requirement of
measurement:

“Objectivity is the expectation and, hence, requirement that the amount and
meaning of a measure has been well enough separated from the measuring
instrument and the occasion of measurement that the measure can be used as a
quantity without qualification as to which was the particular instrument or what
was the specific occasion.

Although a measuring occasion is necessary for a measure to result, the utility of
the measure depends on the specifics of the occasion disappearing from
consideration. It must be possible to take the occasion for granted and, for the
time being, to forget about it. Were such a separation of meaning from the
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circumstances of its occasion not possible, not only science, but also commerce,
and even communication, would become impossible” (Wright, 1991, p. 1).

Objectivity is clearly the cornerstone of measurement. Measures must be completely independent
of the particular instruments used and the particular conditions of measurement surrounding their
use. A critical distinction, however, exists between specific or local objectivity, as achieved by
Rasch, and the general objectivity that is inherent in measures from physical science.

“Local objectivity” is a consequence of a set of data fitting the Rasch model. When the data fit,
differences between object measures and indicant calibrations are shown to be sample-
independent. This means that apart from random error two indicants must differ by the same
amount no matter which sample of objects actually responds to the indicants. Similarly, two
objects must differ by the same amount no matter which samples of indicants (from the relevant
universe) are used to implement the measurement procedure. Consequently, when data fit the
Rasch model, then the relative locations of objects and indicants on the underlying continuum for
a construct are sample and test independent.

An ideal, approximated by measures in physics and chemistry (e.g., temperature measurements), is
that absolute location of an object on, for example, the Celsius scale, is independent of the
instruments and conditions of measurement. Temperature theory is well enough developed that
thermometers can be constructed without reference to any data. In fact, routine manufacture of
thermometers occurs without even checking the calibrations against data with known values prior
to shipping the instruments to customers. Such is our collective confidence in temperature
theory. We know enough about liquid expansion coefficients, gas laws, glass conductivity and
fluid viscosity to construct a usefully precise measurement device with recourse to theory only.

The consequence of operating with a construct theory and associated calibration equations is that
general objectivity is achieved. Measurement of the temperature of two objects results in not just
sample independence for the difference between their temperatures but sample independence for
the point estimate of each object’s temperature reading.

In summary, specific or local objectivity as achieved with the Rasch model ensures only that
relative measures, that is, the differences between objects or between indicants, are independent of
the conditions of measurement. In contrast, general objectivity ensures that absolute measures,
the amounts themselves, are similarly independent.

The fundamental requirement of a fully objective measurement procedure, therefore, is that it be
capable of converting an observation (raw count) into a measure without recourse to individual or
group data on indicants or objects. We call this feature of a measurement procedure “general
objectivity”:

“The difference between local and general objectivity is seen not to be a
consequence of the fundamental natures of the social and physical sciences, nor to
be a necessary outcome of the method of making observations, but to be entirely a
matter of the level of sophistication of the theory underlying the construction of
the particular measurement instruments” (Stenner, 1990, p. 111).
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We turn now to an application of these methods to the measurement of reading comprehension.

2 THE LEXILE FRAMEWORK

Reading comprehension is the most tested construct in education. It is probable that reading
comprehension ability is measured more frequently than temperature, height, or weight among
students ages 6 to 18. Reading comprehension ability is widely recognized as the best predictor
of success in higher education and on-the-job performance. Economists and educators have
joined in identifying low literacy rates as a primary causal factor in the United States’ dwindling
economic productivity. In an information age, reading comprehension is a survival skill.

The Ninth Mental Measurements Yearbook (Mitchell, 1985) reviews 97 reading comprehension
tests. Associated with each of these tests is a conceptual rationale (however primitive) and a
scale. Thus there are 97 different reading measures. The current status of reading comprehension
measurement is reminiscent of late seventeenth-century temperature measurement, in which the
absence of a unifying temperature theory resulted in some 30 different scales competing for favor
throughout Europe. The consequence for science and commerce was chaos. In a similar fashion,
the presence of dozens of competing reading comprehension scales produces confusion among
educators, researchers, policy makers, and parents.

2.1 The Lexile Theory

We communicate using various symbol systems including mathematics, music, and language. All
symbol systems share two features: a semantic component and a syntactic component. In
mathematics, the semantic units are numbers and operators, which are combined according to
rules of syntax into mathematical expressions. In music, the semantic unit is the note, arranged
according to rules of syntax to form chords and phrases. In language, the semantic units are
words. Words are organized according to rules of syntax into thought units and sentences
(Carver, 1974). In all cases, the semantic units vary in familiarity and the syntactic structures vary
in complexity. The comprehensibility or difficulty of a message is dominated by the familiarity of
the semantic units and by the complexity of the syntactic structures used in constructing the
message.

2.2 The Semantic Component

As far as the semantic component is concerned, it is clear that most operationalizations are
proxies for the probability that an individual will encounter a word in a familiar context and thus
be able to infer its meaning (Bormuth, 1966). This is the basis of exposure theory, which explains
the way receptive or hearing vocabulary develops (Miller and Gildea, 1987; Stenner, Smith, and
Burdick, 1983). Klare (1963) builds the case for the semantic component varying along a
familiarity-to-rarity continuum, a concept that is further developed by Carroll, Davies, and
Richman (1971), whose word-frequency study examined the reoccurrence of words in a five-
million-word corpus of running text. Knowing the frequency of words as they are used in written



and oral communication provides the best means of inferring the likelihood that a word will be
encountered and thus become a part of an individual’s receptive vocabulary.

Variables such as the average number of letters or syllables per word have been found to be
proxies for word frequency. There is a high negative correlation between the length of words and
the frequency of word usage. Polysyllabic words are used less frequently than monosyllabic
words, making word length a good proxy for the likelihood of an individual being exposed to
them. '

Stenner, Smith, and Burdick (1983) analyzed more than 50 semantic variables in order to identify
those elements that contributed to the difficulty of the vocabulary items on Forms L and M of the
Peabody Picture Vocabulary Test—Revised (Dunn and Dunn, 1981). Variables included parts of
speech, number of letters, number of syllables, the modal grade at which the word appeared in
school materials, content classification of the word, the frequency of the word from two different
word counts, and various algebraic transformations of these measures. Correlations were
calculated between the logit difficulties of the test items and each predictor variable. The best
operationalization of the semantic component of reading was found to be word frequency.

The word frequency measure used was the raw count of how often a given word appeared in a
corpus of 5,088,721 words sampled from a broad range of school materials (Carroll, Davies, and
Richman, 1971). Exploratory data analysis was performed to test the explanatory power of this
variable. This analysis involved calculating the mean word frequency for each of 66 reading
comprehension test passages from the Peabody Individual Achievement Test (Dunn and
Markwardt, 1970). Correlations were obtained between algebraic transformations of these means
and the rank order of the test items. Since the items were ordered according to increasing
difficulty, the rank order was used as the observed item difficulty. The mean log word frequency
provided the highest correlation with item rank order.

2.3  The Syntactic Component

Sentence length is a powerful proxy for the syntactic complexity of a passage. But an important
caveat is that sentence length is not the underlying causal influence (Chall, 1988). Researchers
sometimes incorrectly assume that manipulation of sentence length will have a predictable effect
on passage difficulty. Davidson and Kantor (1982), for example, illustrate rather clearly that
sentence length can be reduced and difficulty increased and vice versa.

Klare (1963) provides a possible interpretation for how sentence length works in predicting
passage difficulty. He speculates that the syntactic component varies with the load placed on
short-term memory. This explanation is supported by Crain and Shankweiler (1988), Shankweiler
and Crain (1986), and Liberman, Mann, Shankweiler, and Westelman (1982), whose work has
provided evidence that sentence length is a good proxy for the demands that structural complexity
places upon verbal short-term memory.

Algebraic transformations of the mean sentence length for the 66 Peabody Individual
Achievement Test (PIAT) reading comprehension items were again correlated with item rank
order. It was found that the log of the mean sentence length was the best predictor of passage
difficulty. Thus, the two constructs in the Lexile Theory of reading (semantics and syntax) are
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operationalized in terms of word frequency and sentence length into a calibration equation which
can be used to scale the difficulty of English language text and reading comprehension test items.

2.4  The Calibration Equation

The word-frequency and sentence-length measures were then combined to produce a regression
equation designed to “explain” most of the variance found in any set of reading comprehension
task difficulties. A provisional equation was developed from a regression analysis of the PIAT
reading comprehension items. The log of the mean sentence length and the mean of the log word
frequencies combined to explain 85 percent of the variance (r=.92) in PIAT item rank order.

The regression equation produced by this analysis was used to assign theoretical difficulties to
400 pilot test items (see Figure 1). The pilot items were ordered by difficulty and administered to
approximately 3,000 students ranging from grades 2 to 12. Misfitting items were removed,
leaving 262 test items for which observed logit difficulties were obtained using the Rasch analysis
program MSCALE (Wright, Rossner, and Congdon, 1985).

FIGURE 1
An Example Lexile Test Item

Wilbur likes Charlotte better and better each day. Her campaign against A. agreed

insects seemed sensible and useful. Hardly anybody around the farm B. gathered

had a good word to say for a fly. Flies spent their time pestering others. C. laughed
The cows hated them. The horses hated them. The sheep loathed them. D. learned
Mr. and Mrs. Zuckerman were always complaining about them, and

putting up screens. Everyone about them.

from Charlotte’s Web by E. B. White, 1952, New York: Harper & Row.

The final specification equation was based upon the observed logit difficulties for the remaining
262 pilot test items. A regression analysis was performed using sentence length and word
frequency as predictors of these logit difficulties. The adjusted correlation between the observed
logit difficulties and the theoretical calibrations was .97. The weights produced by the regression
analysis formulated the following equation:

Theoretical Logit = (9.82247 x LMSL) - (2.14634 x MLWF) - constant (2)
where LMSL = log of the mean sentence length and MLWF = mean of the log word frequencies.
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2.5 The Lexile Scale

The logit scale obtained from a Rasch analysis using MSCALE has its zero located at the mean
difficulty of the items used. An item would therefore experience a shift in its logit difficulty
obtained using MSCALE if it were transferred to a test with different mean difficulty, which
violates general objectivity. General objectivity requires that scores obtained from different test
administrations be tied to a common zero. To achieve general objectivity the theoretical logit
difficulties obtained from Equation (2) must be transformed to a scale in which the ambiguity
regarding the location of zero is resolved.

The method of setting a scale with a fixed zero is easily described. First, identify two anchor
points for the scale. They should be intuitive, easily reproduced, and widely recognized. For
most thermometers, the anchor points are the freezing and boiling points of water. For the Lexile
Scale, the anchor points are text from seven basal primers for the low end and text from the
Electronic Encyclopedia (Grolier, 1986) for the high end. These points correspond to middle of
first grade text and the midpoint of workplace text.

Second, using Equation (2), obtain the logit difficulty of the two anchors. The mean logit
difficulty of the primer material was -3.3 and the mean logit difficulty for the encyclopedia
samples was +2.26.

Third, determine the unit size. For the Celsius thermometer, the unit size (a degree) is 1/100 of
the difference between freezing (0 degrees) and boiling (100 degrees) water. For the Lexile scale
the unit size was defined as 1/1000. Therefore, a Lexile by definition equals 1/1000" of the
difference between the comprehensibility of the primers and the encyclopedia.

Fourth, assign a value to the lower anchor. The low-end anchor on the Lexile scale was assigned
a value of 200. Zero was not used as the low-end value in order to minimize the occurrence of
negative Lexile values.

Finally, a linear equation of form
(logit score + constant) x CF + 200 = Lexile text measure 3)

was developed to convert logit difficulties to Lexile calibrations. The values of the conversion
factor CF and the additive constant are determined from the anchors. Equation (2) yields
difficulties of -3.3 logits for the primers and 2.26 logits for the encyclopedia. Plugging these
values for the logit score into (3) and setting the respective Lexile scores equal to 200 and 1200
yields the following equations:

(-3.3 + constant) x CF + 200 = 200 Lexiles @)
(2.26 + constant) x CF + 200 = 1200 Lexiles

Solving these equations yields 3.3 for the constant and 180 for the conversion factor. Thus, the
final equation that converts theoretical logit difficulties produced by the Equation (2) into Lexile
units 1s:

12
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[(Logit +3.3) x 180] + 200 = Lexile text measure (5)

Measurements for all persons and all texts are now reportable in a common unit, a Lexile, which
is similar to the degree calibrations on a thermometer. The higher the Lexile measure for a text,
the more difficult the material is to read and the more reading ability a student must possess to
comprehend the text. Text measures are located on the Lexile map (see attachment) at the point
corresponding to a person with the ability to achieve 75 percent comprehension. People are
located on the scale by analyzing their performance on calibrated reading tasks. They are located
on the map at the point where they are forecast to realize 75 percent comprehension. A person
with a Lexile measure of 1000L is expected to answer correctly 75 percent of native Lexile items
sampled from a text with a 1000L measure. This provides the means for matching a person’s
Lexile literacy measure with reading materials at his comprehension level. The attached Lexile
map is a poster-sized graphic that can be used to bring meaning to the relation between text and
person measures. :

2.6  Testing the Lexile Equation

A computer program incorporating the Lexile equation has been developed that analyzes
continuous prose and reports text measures in Lexiles (MetaMetrics, 1995). In order to test the
utility of the theory, 1,780 reading comprehension test items appearing on 9 nationally normed
tests were analyzed (Stenner, Smith, Horabin, and Smith, 1987). The study correlated empirical
item difficulties provided by the publisher with the Lexile calibrations specified by the computer
analysis of the text of each item. In those cases where multiple questions were asked about a
single passage, empirical item difficulties were averaged to yield a single observed difficulty for
the passage. See Table 1 for detail on this analysis.

The empirical difficulties were obtained in one of three ways. Three of the tests included
observed logit difficulties from either a Rasch or three-parameter analysis (e.g., NAEP). For four
others, logit difficulties were estimated from item p-values and raw score means and standard
deviations (e.g., CAT). TestCalc (Horabin, 1989), a computer program for analyzing test data,
was used to estimate these logit difficulties. Two of the tests provided no item parameters, but in
each case items were ordered on the test in terms of difficulty (e.g., PIAT). For those tests, the
empirical difficulties were approximated by the difficulty rank order of the item.

13
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TABLE 1
Correlations Between Theory-Based Calibrations Produced
by the
Lexile Equation and Data-Based Item Difficulties

Test Number of | Numberof | Mean { SD | Range | Min | Max | rop | Ron | Ron
Questions Passages

SRA 235 46 644 353 1303 33 ] 1336 .95 .97 1.00
CAT-E 418 74 789 258 1339 212 ] 1551 91 .95 .98
Lexile 262 262 771 463 1910 -304 | 1606 .93 .95 .97
PIAT 66 66 939 451 1515 242 | 1757 .93 .94 97
CAT-C 253 43 744 238 810 314 | 1124 .83 .93 .96
CTBS 246 50 703 271 1133 173 | 1306 .74 .92 .95
NAEP 189 70 833 263 1162 169 | 1331 .65 .92 .94
Battery 26 26 491 560 2186 -702 | 1484 | .88 .84 .87
Mastery 85 85 593 488 2135 -586 | 1549 | .74 5 7
Totals

Grand 1780 722 767 343 1441 50| 1491 | .84 91 .93
Means

ror = raw correlation between observed difficulties (O) and theory-based calibrations (T).

Ron = correlation between observed difficulties (O) and theory-based calibrations (T) corrected  for
range restriction.

R’or, = correlation between observed difficulties (O) and theory-based calibrations (T)  corrected  for

range restriction and measurement error.

*Means are computed on Fisher Z transformed correlations.
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Once theory-specified calibrations and empirical item difficulties were computed, the two arrays
were correlated and plotted separately for each test. The plots were checked for unusual residuals
and curvature, and it was discovered that the equation did not fit poetry items or non-continuous
prose items (e.g., recipes, menus, or shopping lists). This indicated that the universe to which the
Lexile equation could be generalized was limited to continuous prose. The poetry and non-
continuous prose items were removed and correlations were again obtained and used to describe
the fit of observation to theory.

Model misspecification is not the only influence which operates to deflate the correlation between
theory and observation. Another is range restriction in the item difficulties. Some tests do not
cover the full developmental continuum for reading comprehension. The NAEP (1983), for
example, is administered to grades four, eight, and eleven. The resulting restriction in the range
of item difficulties attenuates the correlation between theory and data. Thorndike (1949) gives a
procedure for correcting a correlation for restriction in range where the range of the variable in
the unrestricted group is known.

Table 1 presents the results of correlating the theoretical calibrations and observed difficulties for
nine tests. The last two columns of the table show the raw correlations between observed item
difficulties and theoretical item calibrations, and these same correlations corrected for restriction
in range. The Fisher Z mean of the raw correlations is Rz = .84. When corrections are made for
range restriction, the Fisher Z mean disattenuated correlation between theory-based calibration
and empirical difficulty in an unrestricted group of reading comprehension items is R oy = 91.
These results show that most attempts to measure reading comprehension, no matter what the
item form, type of skill objectives intended or response requirement used, measure the common
comprehension factor specified by the Lexile theory.

A second study was performed in which Lexile calibrations were obtained for units in 11 basal
series. It was presumed that each basal series was sequenced by difficulty. So, for example, the
latter portion of a third-grade reader is presumably more difficult than the first portion of the same
book. Likewise, a fourth-grade reader is presumed to be more difficult than a third-grade reader.
Observed difficulties for each unit in a basal series were estimated by the rank order of the unit in
the series. Thus, the first unit in the first book of the first-grade was assigned a rank order of one
and the last unit of the eighth-grade reader was assigned the highest rank order number.
Correlations were computed between the ranked order and the Lexile calibration of each unit.
After correction for range restriction the Fisher Z average correlation between the Lexile
calibration of text comprehensibility and the rank order of the basal units was .97 (see Table 2).

The fact that Lexile theory accounted for the unit rank ordering of 11 basal series is all the more
noteworthy when we recognize that the series differ in prose selections, the developmental range
addressed, the types of prose introduced (i.e., narrative versus expository), and the purported
skills and objectives they emphasize. The theory works throughout the full developmental range
from pre-primer (-200 Lexiles to 200 Lexiles) through advanced graduate school material (1400
Lexiles to 1800 Lexiles).
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2.7  Interpreting Lexile Measures

One of the biggest shortcomings of many current testing procedures is the limited usefulness of
the normative interpretation of a score. A normative interpretation only expresses how a student
did on the test compared to other students of the same age or grade. A student’s performance is
typically reported as a percentile. A percentile of 65 for a third-grade girl indicates that she
scored better than 65 percent of all third-grade students involved in the norming study. Percentile
scores on standardized reading tests do not provide any information about what a student can or
cannot read. What can a teacher or parent do with a percentile score? What kind of instruction
can a teacher give a student when the only information provided is that a particular child is
reading at the 65" percentile of some sample of third-graders?

An important feature of the Lexile Framework is that it provides criterion-referenced
interpretations of every measure. When a person’s measure is equal to the task’s calibration, then
the Lexile scale forecasts that the individual has a 75 percent comprehension rate on that task.
When 20 such tasks are given to this person, one expects three-fourths of the responses to be
correct.

There is some empirical evidence supporting the choice of a 75 percent target comprehension
rate, as opposed to, say, a 50 percent or 90 percent rate. Squires, Huitt, and Segars (1983) found
that reading achievement for second graders peaked when the success rate reached 75 percent. A
75 percent success rate also is supported by the findings of Crawford, King, Brophy, and
Evertson (1975).

Since the Lexile theory provides complementary procedures for measuring people and text, the
scale can be used to match a person’s level of comprehension with books that the person is
forecast to read with a high comprehension rate. Up to this time, trying to identify possible
supplemental reading for students has, for the most part, relied on a teacher’s familiarity with the
titles. For example, an eighth-grade girl who is interested in sports but is not reading at grade
level might be able to handle a biography on Chris Evert. The teacher may not know, however,
whether that biography is too difficult or too easy for the student. The Lexile Framework
provides a reader measure and text measure on the same scale. Armed with this information, a
teacher, librarian, student or parent can plan for success.

Students develop reading comprehension skills by reading. Skill development is enhanced when
their reading is accompanied by frequent response requirements. Response requirements may be
structured in a variety of ways. An instructor may ask oral questions as the reader progresses
through the prose or written questions may be embedded in the text, much as is done with Lexile
test items. Response requirements are important; unless there is some evaluation, there can be no
assurance that the reader is properly targeted and comprehending the material. Students need to
be given text on which they can practice being a competent reader (Smith, 1973). The above
approach does not complete a fully articulated instructional theory, but its prescription is
straghtforward. Students need to read more and teachers need to monitor this reading with some
efficient response requirement. One implication of these notions is that some of the time spent on
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skill sheets might be better spent reading targeted prose with concomitant response requirements
(Anderson, Hiebert, Scott, and Wilkinson, 1984).

As the reader improves, new titles with higher text measures can be chosen to match the growing
person measure, thus keeping the comprehension rate at the most productive level. We need to
locate a reader’s “edge” and then expose the reader to text that plays on that edge. When this
approach is followed in any domain of human development, the edge moves and the capacities of
the individual are enhanced.

What happens when the “edge” is over-estimated and repeatedly exceeded? In physical exertion,
if you push beyond the edge you feel pain; if you demand even more from the muscle, you will
experience severe muscle strain or ligament damage. In reading, playing on the edge is a
satisfying and confidence-building activity, but exceeding that edge by over-challenging readers
with out-of-reach materials reduces self-confidence, stunts growth and results in the individual
“tuning out”. The tremendous emphasis on reading in daily activities, makes every encounter with
written text a reconfirmation of a poor reader’s inadequacy. Is it any wonder that 15 to 20
percent of US high school students decide to find some other way to spend their days (Hahn,
1987)?

For individuals to become competent readers, they need to be exposed to text that results in a
comprehension rate of 75 percent or better. If the match between reader and text results in a 50
percent comprehension rate, there will be too much unfamiliar vocabulary and too much of a load
placed on the reader’s tolerance for syntactical complexity for that reader to attend to meaning.
The rhythm and flow of familiar sentence structures will be interrupted by frequent unfamiliar
vocabulary, resulting in inefficient chunking and short-term memory overload. When readers are
correctly targeted, they read fluidly with comprehension; when incorrectly targeted, they struggle
both with the material and with maintaining their self-esteem.

2.8 Forecasting Comprehension Rates

A person with a measure of 600L who is given a text measured at 600L is expected have a 75
percent comprehension rate. This 75 percent comprehension rate is the basis for selecting text
that is targeted to a student’s reading ability, but what exactly does that mean? And what would
the comprehension rate be if this same student is given a text measured at 350L or one at 800L?

The 75 percent comprehension rate for a student-text pair can be given an operational meaning by
imagining the text to be carved into item-sized slices of approximately 120 words each with a
question embedded in each slice. A student who answers 3/4 of the questions correctly has a 75
percent comprehension rate.

Suppose instead that the text and student measures are not the same. It is the difference in
Lexiles between person and text that governs comprehension. If the text measure is less that the
student measure, the comprehension rate will exceed 75 percent. If not, it will be less. The
question is: by how much? What is the expected comprehension rate when a 600L student reads
a 350L text?
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If all the item-sized slices in the 350L text had the same calibration, which would, of course, be
350L, the 250L difference between the 600L reader and the 350L text could be converted to
logits with the conversion factor of 180 and, after adding the 1.1 logit offset, plugged into the
Rasch model to obtain the expected comprehension rate. Unfortunately, comprehension rates
calculated by this straightforward procedure will be biased because the slice calibrations in
ordinary prose are not all the same. The average difficulty level of the slices and their variability
both affect the comprehension rate.

Although the exact relationship between comprehension rate and the pattern of slice calibrations is
complicated, experience has shown that a useful approximation results if we use the
straightforward procedure just described but change the conversion factor from 180 to 225. This
yields the following equation for comprehension rate of a text:

eEId+I.l

Rate = H—em (6)

where Eld is the “effective logit difference” given by:

PersonLexileMeasure — TextLexileMeasure
225

Eld =

Tables 3 and 4 show the comprehension rates calculated from Equation (6) for various
combinations of person and text measures. .

2.9  Ergonomics of the Framework

The last section reviewed the evidence supporting the validity of the Lexile Framework. The next
section looks at how measurement error propagates through the Framework and influences the
certainty with which texts and readers are located on the Lexile Scale. Intertwined with and
influenced by the reliability and validity of the framework is the issue of how well fitted the
product is to the form and function required by the user community, in short, the product’s
ergonomics. An assessment framework may produce reliable and valid measures and still fail to
achieve its promise due to inattention to “soft’ product features like beauty, accessibility,
believability, and extensibility. At present the evidence supporting the Framework’s ergonomic
fitness is largely anecdotal but these anecdotes serve to add context to the validity coefficients and
standard errors of measurement reported in the adjoining sections.

In addition to ordering texts in a manner consistent with how basal publishers order selections and
how test publishers assign calibrations to test items, the Lexile Framework orders literature titles
in a way consistent with teacher judgments about which titles are read at different grade levels.
Scholastic Publishing, Inc. reported Lexile text measures for many of the books offered in their
1997 catalog and employed the Framework to link products developed in different divisions of the
corporation (Scholastic Catalog, 1997). The North Carolina State Administration for School
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Libraries has begun publishing Lexile text measures for all titles approved for purchase by media
coordinators (Infotech). These independent applications of the Lexile Framework show that the
Framework orders text in a way found useful by diverse user groups.

Reader measures produced by the Framework have been found to correlate in expected ways with
age, grade, sex, SES, grade attained, books in the home, income, occupations, and many other
demographic variables. Lexile reader measures have been found to correlate with other reading
tests as highly as parallel forms of those tests correlate among themselves. Attempts to isolate
second and third dimensions of reading have been singularly unsuccessful (Zwick, 1984). Finally,
teachers report that Lexile measures order students in ways consistent with reading group
formation and their judgments about reading proficiency.

There are dozens of readability equations that can be used, almost interchangeably, to order the
comprehensibility of text. Likewise, there are hundreds of reading tests that order readers. What
distinguishes the Lexile Framework is its ability to conjointly order texts and readers on the same
scale. The ability to characterize a reader as 1000L and a text as 1000L enables a forecast of the
comprehension rate that that reader will have with that particular text. The difference between an
absolute measure of the text and of the reader is used to forecast the relative construct called
“comprehension”. Comprehension, itself, is not an absolute; rather it is the consequence of an
encounter between a reader and a text.

The subjective experience of 50%, 75%, and 90% comprehension as reported by young readers
varies greatly. A 1000L reader of 1000L text (75% comprehension) reports confidence and
competence. Teachers listening to such a reader report that the reader can sustain the meaning
thread, and reads with motivation, appropriate emotion and emphasis. In short, such readers
sound like they comprehend what they are reading. A 1000L reader of 1250L text (50%
comprehension) encounters sufficient unfamiliar vocabulary and syntactic structures that the
meaning thread is frequently lost. Such readers report frustration and will seldom choose to read
independently at this level of comprehension. Finally, a 1000L reader of 750L text reports total
control of the text, reads with speed and appears automatic. Dick Woodcock is linking the
Woodcock Johnson-Revised (1995) to the Lexile Framework and as part of this study is looking
at the kinds of errors that readers make when comprehending at 50%, 75%, and 90% rates.

A primary utility of the Lexile Framework is in large measure its ability to forecast what happens
when readers confront text. With every application by teacher, student, librarian or parent, there
is a test of the Frameworks accuracy. The Framework makes a point prediction every time a text
is chosen for a reader. The anecdotal evidence suggests that the Framework works as intended.
That is not to say that there is an absence of error in forecasted comprehension. There is error in
text measures, reader measures, and their difference modeled as forecasted comprehension.
However, the error is sufficiently small that our judgments about readers, texts, and
comprehension rates are useful.

3 MEASUREMENT ERROR

21

18



Measurement is the process of converting observations into quantities via theory. Repeated
observation of what is intended to be the ‘same thing’ results in a series of non-identical numbers.
When these observations (say, counts correct for a person on various reading comprehension
tests) are converted into quantities (e.g., Lexile measures) via calibrations provided by a theory
(e.g., Lexile Framework), the resulting quantities are distributed about a mean that is taken to be
the measure of the person’s reading comprehension. The standard deviation of this distribution
divided by the square root of the number of measurements is the standard error of measurement,
(SEM). Each measure resulting from repetition of a measurement procedure is assumed to be
exchangeable with any other of the possible measures that might have been made. In this approach
there is not a priori reason for favoring a measure obtained on Monday versus Tuesday, or one
based on multiple choice versus constructed response. Any measure from this class of measures is
specified to be equivalent. Asserting the exchangeability of a defined class of measures does not
imply that any measure at all will do, only any measure from the defined class. The arithmetic
mean of a sample of measures approaches a limit as the sample size increases. The “closeness
together” of these measures expressed as a standard deviation is an index of uncertainty regarding
the magnitude of the quantity.

In practice we rarely have available large numbers of measurements on each object of
measurement. Typically, there is only one measure. But there is still the necessity to attach some
estimate of uncertainty to that measure. Seventy years of psychometric research has yielded
dozens of proposed solutions in the form of reliability coefficients and associated SEMs.
Reliability coefficients, despite their well known sample dependencies, are defended on the basis
that they represent a “unitless” measure of precision that can be compared across scales (Note 1).
The SEM is defended for its stability over samples but is, of course, scale dependent. We find the
legion of reliability coefficients and SEMs deficient in one or more of the following ways, they:
(1) do not correctly model error variation due to methods and moments (e.g., retest coefficients
and KR-21), (2) ignore instrument/item main effects that are “error” in Rasch- and theory-
referenced measurement applications where absolute rather than relative scale location is the
focus (e.g., coefficient alpha), (3) yield an average group statistic that is uncritically attached to
each individual’s measure (e.g., alternate forms coefficients), and (4) ignore moment to moment
variation. Generalizability theory (Brennan, 1980) remedies some of these deficiencies; but as
applied still suffers from ailment (3). What is needed is an approach to measurement error that (a)
admits all species of intra-individual method and moment variation, (b) can be calculated from a
single response pattern without recourse to data on other instruments or persons, and (c) yields a
SEM that is easy to understand and calculate.

Resampling theory meets the above objectives. Measures that result from a theory referenced
measurement model are “generally objective”, i.e., absolute measures are independent of the
instrument used. Thus, a person’s 50 item response pattern can be treated as a personal item
bank. One thousand “replicates” of 50 items each can be sampled with replacement from this
response record. The standard deviation of this 1,000 measure distribution is a standard error of
measurement which meets the three criteria above.

Another way to look at a resampled SEM is as an answer to the laymen’s question, “What would
happen, if we did it again?” The result of doing it again and again is a distribution of measures the
standard deviation of which is the standard error of measurement. Time and cost always limit our
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ability to measure again. But we still want to describe our uncertainty about a measure’s long run
stability. The best evidence of what would happen if we measure again is gained by “measuring”
again and again with the data in hand. Resampling enables us to simulate “measuring again” and
to measure the dispersion in the replicated measures resulting from the resampling procedure.

The more dispersion or spread in our replicates, the more uncertainty we have about the measures
long run value.

Here is an example that clarifies how the resampling procedure works and shows its sensitivity to
theory misfit and mistargeting. Table S presents several response patterns to 10 Lexile reading
comprehension items uniformly distributed over a 5.5 logit test width. The first 3 people get 5
items correct and a measure of 813L, but the misfit increases as we move across the table. Person
3 has missed easier questions and answered harder questions correctly compared to persons 1 and
2. Note how the SEM increases as theory misfit increases. As theoretical expectations and what
is actually observed diverge, the caution index (SEM) increases.

Table 5: Measures and SEMs for Five Hypothetical Patterns

Item Calibrations | Person1 Person2 Person3 Person4 Person5
250L 1 1 1 1 1
375L 1 1 0 1 1
500L 1 0 1 1 1
625L 1 1 0 1 0
750L 1 1 1 1 1
875L 0 0 0 1 1
1000L 0 0 1 1 1
1125L 0 0 0 1 1
1250L 0 1 1 0 0
1375L 0 0 0 0 1

Person Measure 813L 813L 813L 1238L 1238L
SEM 113L 216L 256L 413L 496L

The last two people score 8 correct and are each assigned a measure of 1238L. Since these
individuals are less well targeted than the first three, we expect to see increases in the SEMs and
we do. Again, theory misfit contributes to the size of the SEM because person 5 has greater
misfit and a higher SEM than person 4. Error variance accumulates with each decrease in
targeting efficiency and with each increase in theory misfit. This example is too small to illustrate
how other sources of method and moment variance increase the intra-individual variance, but the
general idea should be clear. The lesson is: one cannot estimate what one does not replicate. So
design into the observation model variation in method and moment facets that are considered
important, then resample over these facets consistent with your definition of “do it again”. The
standard deviation of the resulting distribution describes uncertainty about the measure more
completely than conventional approaches to measurement error.

Note that because under a theory-referenced model, the absolute measure is instrument
independent, the only reason that one measure (computed on 50 items) would vary from another
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measure (computed on an overlapping but non identical 50 items) is because of (1) theory misfit,
(2) mistargeting, or (3) model error. Suppose it is now revealed that items 1-25 were
administered on Monday and items 26-50 on Tuesday, and that odd items were multiple choice
and even items were constructed response. The SEM is now a good index of intra-individual
variation generalizing over multiple sources of error. However, to make the SEM reflect our new
definition of “do it again” we must change the recipe we use to resample the data.

This perspective on error, which treats uncertainty as the dispersion observed in resampled
replicate measures, forces us to make explicit what we mean by “measure again”. For example,
what facets of the process of measurement are expected to vary with each prospective replication
(in ANOVA terms these facets are “random”) and what facets are expected to stay the same with
each replication (in ANOVA terms such facets are “fixed”)? There is no one “right” answer to
the question of how we decide to define “do it again” (i.e., measure again). In some research
contexts it may be useful to treat test items as fixed (e.g., when linking one instrument to another)
whereas in most applications items would be “random”. In psychological research on state
anxiety, day-to-day fluctuations in measures are represented as construct variance, whereas, in
studies of trait anxiety, day-to-day fluctuations are treated as error. In general, there is no
“cookbook” for defining the resampling design that is “best” for describing uncertainty. Your
definition of “do it again” must be made explicit and then the resampling process must be
executed in each measurement application in conformance with that definition.

With the above perspective on measurement error as a foundation, we turn to a discussion of four
kinds of error that arise in the use of the Lexile Framework: text measure error, reader measure
error, error in forecasted comprehension rate error, and error in linking tests to the Lexile
Framework.

3.1 Text Measure Error

When determining the Lexile measure for a book or manual, the standard procedure is to sample
20 pages randomly from the work. These pages are concatenated into a text file that is passed to
a software package called the Lexile Analyzer. The analyzer “slices” the text file into as many
125 word passages as possible, and passes the set of slices through an analysis process that
calculates a Lexile calibration for each slice. That set of calibrations is then passed to an equation
that solves for the Lexile measure corresponding to a 75% comprehension rate. The analyzer
uses the slice calibrations as test item calibrations and then solves for the measure corresponding
to a relative raw score of 75% (e.g., 30 out of 40 correct, as if the slices were test items).
Obviously, the measure corresponding to a relative raw score of 75% on Goodnight Moon (300L)
slices would be lower than the measure corresponding to a comparable raw score on USA Today
(1080L) slices. The Lexile Analyzer automates this process and thousands of books have been
measured in this way. But what “certainty” can we attach to these text measures?

Our perspective on assessing uncertainty (i.e., error) requires an answer to the question “what
would happen if we measured again?” We could measure again by sampling another 20 pages and
repeating the above analysis. The result would be a text measure which differs from the first. We
could repeat the sampling process over and over until we exhausted available time and resources
and then take the standard deviation of the resulting distribution of text measures as our standard
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error of measurement. But what if resource constraints dictate that we can only sample 20 pages
resulting in, say, 49 calibrated slices. Is there a way to simulate the act of continuing to repeat the
measurement process a large number of times. The answer is “yes”. We can use resampling
methods to simulate repeated measurements. This works as follows: sample with replacement 49
calibrations from the set of 49 slice calibrations and solve for the measure. Because the
resampling is done with replacement, the resampled 49 slices will differ from the original set of 49
because the “with replacement” feature insures that some slices will be sampled more than once in
some replicates and not at all in others.

Each replication results in a “replicate” text measure. The standard deviation over, say, 1000
replicate measures is the standard error of measurement and describes the uncertainty with which
we locate a title in the Lexile Framework. Table 6 presents standard errors (SE) for a group of
well known titles. The standard errors vary from a low of 26L to a high of 75L. Most text
measures in the Lexile Library, have standard errors from 30L to 40L (Notes 2 and 3).

Table 6: Standard Errors for Selected Text Measures

TITLE # of Slices Text Resampled  Resampled
Measure Measure Measure
Mean S.E.
Equality Among Mankind 80 1501 1501 32
Ivanhoe 92 1427 1426 26
David Copperfield 130 1196 1197 29
Swiss Family Robinson 44 1167 1168 28
Treasure Island 25 1081 1081 75
The Hobbit 85 1068 1068 24
Dr. Zhivago 48 1031 1026 43
20,000 Leagues Under the Sea 37 990 988 37
The Old Man and the Sea 55 905 908 50
Little House on the Prairie 67 754 753 29
Encyclopedia Brown 25 634 632 34
It’s Me, Margaret 29 511 509 37

N, = 1000

3.2 Reader Measure Error

What do we mean by “do it again” when measuring reader performance? Measuring again implies
a different set of items (method) on a different occasion (moment) meaning that method and
moment are random facets and are expected to vary with each replication of the measure-ment
process. With this definition of a replication there is nothing special about one particular set of
items or test, nor is there anything special about one particular Tuesday morning. Any calibrated
set of items given on any day within a two-week period is considered exchangeable with any other
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method and moment. By “exchangeable” we mean that we have no a priori basis for believing
that one particular method-moment combination will yield a higher or lower measure than any
other. That is not to say that we expect resulting measures to be the same. On the contrary we
expect them to be different. We just don’t know which method-moment combination will produce
lower measures and which higher. The anticipated variance among replications due to
methods/moments and their interactions is error. A better understanding of how these sources of*
error come about can be gained by describing some of the behaviors and measurement contexts
that may vary from replication to replication.

Suppose that most of the items used to measure Sally are sampled from books in the “Baby
Sitter” series and that this is Sally’s favorite series. When Sally is measured again, items are
sampled from less familiar texts. The differences in Lexile measures coming from highly familiar
and unfamiliar texts would be error. Now suppose that the particular response format used for all
items administered to Sally results in slightly higher calibrations than other item formats and that
this slight advantage is constant for all items of this type. This constant main effect for items also
contributes to error in measuring Sally’s reading performance.

Characteristics of the moment and context of measurement can contribute to variation in replicate
measures. Suppose, unknown to the test developers, that measures go up with each replication
because of practice effects. This “occasion main effect” also would be treated as error. Suppose
Sally is fed breakfast and rides the bus on Tuesdays and Thursdays, but on Monday, Wednesdays,
and Fridays her parent has early business meetings and she gets no breakfast and must walk one
mile to school. Some of the test replications are given on what Sally calls her “good days” and
some are given on “bad days”. Variation in her reading performance due to these context factors
contribute to the error. Yet another source of error arises if a particular kind of item, say, gets
easier, relative to other items, as readers get more practice with it. This item by occasion
interaction contributes to error.

Familiar reliability coefficients and SEMs do not reflect the uncertainty in reader measures that
arise from all of the sources described above. IRT model errors, equivalence coefficients, stability
coefficients, and alternate forms coefficients all underestimate the reader measure error under the
Lexile Framework. The Lexile Framework produces absolute measures and as such, treats as
error sources of variance that a relative measurement model either ignores or treats as construct
(i.e., wanted) variance.

The best approach to attaching uncertainty to a readers measure is to resample the item response
record, i.e., simulating what would happen if we actually measured again. Suppose 10 year old
Jose takes two 50 item reading tests one week apart. Occasions and the 50 items nested within
occasion can be independently resampled (two stage resampling) and the resulting two measures
averaged for each replicate. One thousand replications would result in a distribution of replicate
measures. The standard deviation of this distribution is the resampled SEM and it describes
uncertainty in Jose’s reading measure under a definition of “do it again” that treats methods
(items), moments (occasion and context), and their interactions as error. Furthermore, in
computing Jose’s reading measure and the error in that measure he is treated as an individual
without reference to other people’s performance.
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3.3 Error in Forecasted Comprehension Rate

The difference between a text measure and a reader measure can be used to forecast the readers
comprehension with that text. If an 1100L reader reads USA Today (1100L) the Framework
forecasts 75% comprehension. This forecast means that if an 1100L reader takes 100 Lexile test
items taken from USA Today the count correct is estimated to be 75 or 75% of the items taken.
The same 1100L reader is forecast to have 50% comprehension of Freshman college texts
(1350L) and 90% comprehension of Sounder (830L). How much error is there in such a
forecast? That is, if we made the forecast again what kind of variability in the comprehension rate
would we expect to observe.

How do we define “do it again” when we are talking about comprehension rate. When we “do it
again” we expect to sample another 20 pages from the title in question and we expect to test the
reader again. The result is a new text measure and a new reader measure which combine to
forecast a new comprehension rate. Thus, errors in reader measure and text measure combine to
generate variability in the replicated comprehension rate. This kind of replication can be
simulated by resampling a text measure replicant and a reader measure replicant that combine to
forecast a comprehension rate replicant. Repeating this resampling procedure, say, 1,000 times
will yield 1,000 comprehension rates that can be used to build a confidence interval around the
mean comprehension rate. Unlike text and reader error, the comprehension rate error will not be
symmetrical about the forecasted comprehension rate.

3.4 Linking Standard Errors

A linking study results in a table with three columns. Column 1 includes all possible scale scores
on the target test; Column 2 reports the Lexile equivalent for each scale score, and Column 3
gives the linking standard error (LSE) in Lexiles for the scale score to Lexile conversion. Table 7
presents the results from linking the North Carolina End of Grade (NCEOG) test to the Lexile
Framework. The linking standard error describes the expected variation in Lexiles associated
with repeating the linking study a large number of times. If a linking study produces a
correspondence between target scale score and Lexile of 158:980L, then each person scoring 158
on the target test would be assigned a Lexile measure of 980L. The correspondence is
symmetrical in that a 980L on the Lexile scale corresponds to a 158 on the target test. Thus,
target test scores are converted to Lexile measures (and back again) in the same way that
Fahrenheit temperatures are converted into Celsius temperatures (and back again).

The equation for converting target scores to Lexile measures is based on a linear linking design.
Each of the 956 students in the study took the NCEOG and a Lexile test of comparable length.
Some of the students took the NCEOG first and others took the Lexile test first: Less than two
weeks separated the two test administrations. The NCEOG score (transformed 3p IRT measure)
and the Lexile measure (transformed 1p Rasch measure) were plotted and a sd line (geometric
mean of the two regressions) was fitted to the data (Figure 2). The equation for the sd line was
used to build the correspondence Table 6. The procedure for computing the standard error for
each correspondence of NCEOG scale score and Lexile measure is described below.
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A linking standard error is an answer to the question “what would happen if we linked again™?
The best evidence of what would happen if we “linked” again is to link again with the data in
hand. The definition of “do it again” used in Table 7 assumes that different persons and different
Lexile test items would be used in each replication of the linking design. Thus, persons and Lexile
items are random (resampled) and NCEOG items are fixed (not resampled). The reason for
treating NCEOG items as fixed in the analysis is to mimic the case in which a standardized test
(e.g., ITBS) is linked to the Lexile Framework. In such a case the items on the ITBS (target test)
would not change throughout the roughly seven-year life of that test. In contrast, Lexile test
items are viewed as disposable and would likely be different with each replication of the linking
study.

The resampling procedure for computing a LSE in conformance with the above definition of “do
it again” would proceed as follows:

1. Sample with replacement 956 persons from the 956 person data set. For each person,
resample his/her Lexile response record and compute a replicate Lexile measure. Resample
the NCEOG response record and compute a replicate NCEOG measure. If a person appears
six times in a replicated data set, he/she will have a different Lexile measure each time but the
same NCEOG.

2. Plot the NCEOG scale score and the resampled Lexile measure for the 990 resampled
persons.

3. Compute the sd line and build the table of correspondence between NCEOG and Lexile
measures.

4. Repeat steps 1-3 100 times.

5. Compute the standard deviation of the 100 Lexile measures corresponding to each NCEOG
scale score and report this standard deviation as the linking standard error (LSE).
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TABLE 7

N.C. End of Grade
Scale Score to Lexile Conversion Table
Grades 3 through 8

Scale Score Lexile Std. Error Scale Score Lexile Std. Error
130 240 18.3 153 830 6.6
131 265 17.6 154 855 6.8
132 290 16.8 155 880 7.1
133 315 16.1 156 910 7.5
134 345 15.4 157 935 7.9
135 370 14.6 158 960 8.4
136 395 13.9 159 985 8.9
137 420 13.2 160 1010 9.4
138 445 12.5 161 1035 10.0
139 470 11.9 162 1060 10.7
140 500 11.2 163 1090 11.3
141 520 10.6 164 1110 12.0
142 550 10.0 165 1140 12.6
143 575 9.4 166 1165 13.3
144 600 8.8 167 1190 14.0
145 625 83 168 1215 14.7
146 650 7.8 169 1240 15.5
147 675 7.4 170 1265 16.2
148 700 7.1 171 1290 16.9
149 730 6.8 172 1317 17.7
150 755 6.6 173 1345 18.4
151 780 6.5 174 1370 19.2
152 805 6.5 175 1395 19.9
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A large LSE undermines our confidence in the correspondence between target scale scores and
Lexile measures. When the correspondence depends to a great extent on which persons or which
Lexile items are used to link the two scales, we are lost. When however, the correspondence is
generalizable over items, persons and occasions, we move one step closer to a common
framework for reading measurement and instruction.

3.5 How Errors Combine

When native Lexile items are used to measure readers, the reader error, previously discussed,
correctly describes uncertainty about a reader’s measure. When, however, a test using a non-
native item format (e.g., NCEOG or ITBS) is linked to the Lexile Framework reader error must
be inflated by the linking error. The previously discussed reader error is combined with the
linking error according to the square root law:

Total Reader Error = SEM, = +/SEM? + LSE>

Thus, the nominal reader error SEM is inflated by the corresponding linking error whenever a
linked test is used to generate a reader measure. When linking is involved, reader error will be
specified to include linking error as in Equation (7) above.

As an example suppose a fifth grader scores 158 on the NCEOG. Assume the SEM for this score
to be 2.73. To convert this SEM to Lexiles we must multiply by (272.02/10.61) [See Figure 2]
yielding 70L. Using Table 7, we look up the corresponding Lexile measure of 980L and find the
LSE to be 12L. Applying Equation 7, we obtain

SEM, = 4/70* +122 =71L

Note that reader error combines intra-individual variance due to method an moment of
measurement and linking variance.

The principle of combining sources of error can also be applied to assess the error in a forecasted
comprehension rate. Since comprehension rate for an encounter between reader and text is
determined by the reader measure and the text measure, errors in either of those measures will
cause error in the comprehension rate. Since comprehension rate is a non-linear function of the
difference between reader measure and text measure, we cannot use a square-root law to obtain a
standard error for the comprehension rate. We can, however, use a square-root law to calculate a
confidence interval for the comprehension rate.

The standard error for the difference is computed as follows:

SED = /SEM? + SEM” (8)

Where SEM?, = Reader error (Intra-individual + Linking) and SEM?% = Text measure error.
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Suppose a 1000L reader measured with 71L of error reads a 1000L text measured with 30L of
error. What is the 90% confidence interval about the 75% forecasted comprehension rate? The

answer is that the error of the difference (V71> L +30%L) is 77L. Table 8 can be consulted for an
estimate of the 90% confidence interval about a 75% comprehension rate, given that the error of
the difference is approximately 80L (rounding up from 77L to the nearest tabled value). The 90%
confidence interval is 63% to 84%.

In summary, there are three species of error of which users of the Lexile Framework should be
aware:

e Reader error describes uncertainty in the location of a reader on the Lexile Map. Reader error
reflects the fact that measuring again with different items on different occasions with tests that
are linked to the Lexile Framework would result in a series of non-identical measures with a
standard deviation equal to the SEM;.

e Text error describes uncertainty in the location of a title on the Lexile Map and reflects the
fact that repeatedly drawing 20 page samples from that title would result in a series of text
measures with a standard deviation equal to SEM;.

e Error in forecasted comprehension rate, which is a consequence of error in the difference
between reader mesure and text measure. Because of the nonlinear asymmetric relationship
between comprehension rate and the reader-text difference, this error is expressed in terms of
confidence intervals.
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Notes

1.

Why do we need scale free indices of uncertainty? Because we are awash in multiple scales
for the same construct (e.g., there are several hundred scales for reading comprehension).
When we realize that theory-referenced measurement can enable us to adopt a single scale
(but continue to use the two hundred different tests if we desire) we will be less attracted to
reliability as a “unitless” index of uncertainty and instead will embrace, as do all other
sciences, the standard error of measurement.

If the research focus is on disattenuating correlations then reliabilities based on relative error
models are the best choice. However, see Schmidt and Hunter (1996) for a discussion of the
ways that the wrong relative error model is often used to disattenuate correlations.

A more conventional approach to computing a SEM for these twelve titles might proceed as
follows: Compute measures separately for the odd and even numbered slice calibrations;
correlate the odd measures and even measures over the twelve titles to estimates the reliability
(ryy); multiply the standard deviation of the title measures by V1- ryy . The resulting standard
error of measurement (SEM) is used to describe the “typical” uncertainty in the text measures.

There are two reasons why the conventional approach does not work for estimating
uncertainty in Lexile text measures. First, the Lexile Framework is an absolute measurement
model meaning that SEMs computed using relative error models (e.g., Cronbach’s alpha, KR-
20, split half, test-retest, and alternate forms coefficients) underestimate the error and
therefore overestimate the reliability coefficient and consequently overestimate the certainty
with which titles are measured. Secondly, conventional approaches to reliability average
variances and co-variances over objects of measurement (in this case book titles) and thus are
best viewed as group statistics. When the focus is on the individual case, whether it be an
individual book title or reader, these group averages are very crude guides to the uncertainty
expected in a particular text measure or reader measure. A cursory glance at Table 6 should
make clear that a summary SEM is a poor substitute for individual SEMs (Note 2).
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