DOCUMENT RESUME

ED 434 271 CE 079 326

AUTHOR Forman, Susan L.; Steen, Lynn Arthur

TITLE Beyond Eighth Grade: Functional Mathematics for Life and
Work.

INSTITUTION National Center for Research in Vocatiocnal Education,

SPONS AGENCY

Berkeley, CA.
Office of Vocational and Adult Education (ED), Washington,
DC.

REPORT NO MDS-1241
PUB DATE 1999-05-00

NOTE 50p.

CONTRACT V051A30004-98A; V051A30003-98A

AVAILABLE FROM

NCRVE Materials Distribution Service, 46 Horrabin Hall,
Western Illinois University, Macomb, IL 61455 (order no.
MDS-1241, $3). Tel: 800-637-7652 (Toll Free).

PUB TYPE Guides - Classroom - Teacher (052)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS *Active Learning; Curriculum Development; Equal Education;
High Schools; *Mathematical Applications; *Mathematics
Curriculum; *Mathematics Instruction; Mathematics Skills;
Vocational Education

IDENTIFIERS *Job Related Mathematics

ABSTRACT

A 3-year high school program based on functional mathematics
(FM) benefits all students, regardless of career goals, by providing a strong

background for students entering the workforce and for those moving directly
into postsecondary education. A high school curriculum that helps all
students master FM would effectively address issues of both equity and
competitiveness. All students would have equal opportunity to master the
mathematics required for the new world of work. To achieve its goal of

preparing students both for work and for further education,

FM respects the

many parts of the traditional curriculum that are broadly useful, while

including topics such as spreadsheets, data analysis,
control that are hardly ever part of high school mathematics.

In FM, utility

is center stage. The elements of FM can be embedded in many different
curricula, but any mathematics curriculum designed on functional grounds
emphasizes authentic applications from everyday life and work. It requires

appropriate content, authentic contexts, engaging tasks, and active learning.

FM provides a rich foundation of experience and examples on which students

can build subsequent abstractions and generalizations.
needs that are otherwise often neglected,

It addresses many
including the technical and

and statistical quality

problem-solving needs of the contemporary workforce or the modern demands of
active citizenship. (Appendixes contain the elements of FM. Contains 51
references.) (YLB)

hhkkhkkhkhkhkhkhkhkhkhkhkrkhkhkhkhkhkhkhkhkhhkhkhkhkrkrdrdhkhkhhkhhhkhhkhhkrhkhkrdhhkrdhkhkhdhkhhkhkhkrdhbhkhkhrhkhrhhhkhkhkhkkthhkhhhk

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
hhkdhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkhhkkkkhkkhkkhhkkkkkkhkhkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkhkhkhkkkhkhkhkhkhkhkhkhkkkrhkhkkkkkx*k

ERIC

Aruitoxt provided by Eic:



‘enter or Re earch in Vocati ‘na“l‘ di
f California, Berkeley 4\

2 ¥ o

ED 434 271

-S. DEPARTMENT OF EDUCATION

Oftice of Educational Research and Improvement
ELJUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as

received from the person or organization
originating it.

O Minor changes have been made to
improve reproduction quality.

® Points of view or opinions stated in this
document do not necessarily represent
official OERI position or




This publication is available from—

National Center for Research in Vocational Education
Materials Distribution Service
Western Illinois University
46 Horrabin Hall
Macomb, IL.61455
.(800) 637-7652

- NCRVE-MDS@wiu.edu

BEST COPY AVAILABLE




Beyond Eighth Grade:
Functional

Mathematics
for Life and Work

~ Susan L. Forman
Bronx Community College
City University of New York

Lynn Arthur Steen
St. Olaf College

MDS-1241
May 1999

National Center for Research in Vocational Education
University of California, Berkeley
2030 Addison Street, Suite 500
Berkeley, CA 94720-1674

Supported by the
Office of Vocational and Adult Education
~ US. Department of Education




\
= = TSR
Funding Information

Project Title: _ National Center for Research in Vocational Education

Grant Number: V051A30003-98A/V051A30004-98A

Act Under Which

Funds Administered: : Carl D. Perkins Vocational Education Act P. L. 98-524
Source of Grant: Office of Vocational and Adult Educafion

U.S. Department of Education
Washington, DC 20202

Grantee: ~ Regents of the University of California
c/o National Center for Research in Vocational Education
2030 Addison Street, Suite 500
Berkeley, CA 94720-1674

Director: David Stern

Percent of Total Grant . ,
Financed by Federal Money: - 100%

Pollar Amount of .
Federal Funds for Grant: $4,500,000

Disclaimer: - This publication was prepared pursuant to a grant with the
Office of Vocational and Adult Education, U.S. Department .
of Education. Grantees undertaking such projects under
government sponsorship are encouraged to express freely
their judgment in professional and technical matters. Points
of view or opinions do not, therefore, necessarily represent
official U. S. Department of Education position or policy.

Discrimination: Title VI of the Civil Rights Act of 1964 states: “No person in
the United States shall, on the ground of race, color, or
national origin, be excluded from participation in, be denied
the benefits of, or be subjected to discrimination under any
program or activity receiving federal financial assistance.” .
Title IX of the Education Amendments of 1972 states: “No
person in the United States shall, on the basis of sex, be
excluded from participation in, be denied the benefits of, or
be subjected to discrimination under any education program
or activity receiving federal financial assistance” Therefore,
the National Center for Research in Vocational Education
project, like every program or activity receiving financial
assistance from the U. S. Department of Education,
must be operated in compliance with these laws.

ll*

> -

J



About the Authors.......... e eeeeeeeeaeasteesreseesteaseeaseateaaseasteataeaseasnesteeeaes 40

Contents
Acknowledgments.............ccooveninnennne. ....... v
Executive Summary ......... eeerteeeeseeisreeeesseeeseeereeeareeateeeete st e s e ae s e an s \'
Need ANd ULGENICY......ounrvenrverreeeremesseesseessessssssssssssssssssssssssssssssssssssens 2

~ Employment and EAUCAtION. ......oeveeeeecerenetessesreeseesseeseneseenes v 4
Theory and Practice ......oenessesiseesnsnensnsennse: et 7
* High School Mathematics ... e 9
Functional Mathematics ...............ouuruemirimmmmessnnssssssssssssssssssssssssses 11
Functional Curricula..........ccocovivniininininic e 14
Teaching Functional Mathematics.........c.cocooemnnnnnnnnnninnn 15
Mathematics in CONEXt ..........covvririiririneinieei s 17
EMPploying COMPULETS..........c.civewmmererrermissssssessisssssssssssssssssssssssens 18
Avoiding Pitfalls ...........cccoooviriniiii e e 20
Mathematics in Life and Work.........ccooomiinniicen, 21
Reading Maps ..........ccceeeenennn S 21
Ensuring Quality ..........ccccooiminmninieeiesnscs e 22
Using Spreadsheets ................. S OROROO 23
Building Things.........c.cceiiiiiiiennneenenseese e 24
Thinking Systemically ...........ccocouveevminn 24
Making Choices ..........oceieiiinnimnnienictn e, 25
Making Mathematics Meaningful...........ccccccueeureeeereersrinnnsisscsssnnes 27
REfEIEIICES........ocvveneereietireertre sttt st eae e e s saas 29
Appendix A: Excerpts From Different Standards ............cccoovneeenne. 33
Appendix B: Elements of Functional Mathematics ....................... .35



v

Acknowledgménts

Beginning in 1996, several industry associations and coalitions
published occupational skill standards to document the entry-level
expectations of modern high-performance industries. At the same time,
the Institute on Education and the Eéonomy (IEE) at Teachers College,
Columbia University, organized a series of meetings to stimulate
discussion about integrating academic and industry skill standards. The
meetings and subsequent publications were undertaken by IEE in its

~ capacity as a site of the National Center for Research in Vocational

Education. One such meeting, held in November 1997 at the Arden
Conference Center in Harriman, New York, focused on mathematics.
Beyond Eighth Grade: Functional Mathematics for Life and Work is one
outcome of that meeting, a summary of issues and an interpretation of
ideas that blend desires of employers with the expectations of academics.
We wish to thank Thomas Bailey, Director of IEE, for suggesting and
supporting this work, as well as IEE staff members Eric Larsen, Donna
Merritt, and Lisa Rothman for their help with editorial and publishing
details. ' |

While the ideas and proposals in this paper are the authors, we wish to \
thank the many colleagues and associates who have provided forceful
arguments and stimulating critiques about the issues addressed. These
include Gene Bottoms, Maurice Burke, Gail Burrill, John Dossey, Teresa
Drawbaugh, Rol Fessenden, Evelyn Ganzglass, Carver Gayton, Frank
Girodano, Amy Gleason, Robert Glover, Amiee Guidera, Norton Grubb,
Travis Hembree, Gary Hoachlander, Judith Leff, Jack Lochhead, Robert
Kimball, Carole Lacampagne, Dane Linn, Charles Losh, Joyce Maddox,
Kathy Mannes, Adrianne Massey, Pamela Matthews, James McKenney,
Martin Nahemow, Robert Orrill, Arnold Packer, Jack Price, Larry
Rosenstock, Rhonda Rumbaugh, Gerhard Salinger, Lisa Seidman, C. J.
Shroll, Jimmy Solomon, Adria Steinberg, Elizabeth Teles, Margaret Vickers,
Jack Wilkinson, and Joyce Winterton.




Executive Summeairy

Mathematics is the key to many of the most secure and financially
reward_ing careers in every sector of the economy. The impact of computers
and information technology can be seen not just in engineering and
science, but in such diverse areas as manufacturing, agriculture, health care,
and advertising. To be prepared for careers in virtually any industry, and
especially for changing careers during a lifetime, secondary school students
need to learn a substantial core of mathematics. However, this core is not
like either the abstract pre-engineering mathematics of the academic
curriculum or the restricted topics of the discredited “vocational math.”
New approaches are needed to meet today’s challenges.

For most of this century, schools have been organized to prepare some
students for college and others for work. In the future, most jobs and all
careers will require some form of postsecondary education. Thus, all
students, regardless of career goals, can benefit from a mathematics
curriculum that prepares them for both work and higher education. A
three-year high school program based on “functional” mathematics can do
just that: provide a strong background for students entering the workforce
as well as for those moving directly into postsecondary education.

A high school curriculum that helps all students master functional
mathematics would effectively address issues of both equity and
- competitiveness. All students would have equal opportunity to master the
mathematics required for the new world of work. Moreover, a three-year
core of functional mathematics would give students a strong foundation
from which to enter the workplace or pursue advanced education.

Most of the elements of functional mathematics are unsurprising.
Percentages and ratios; linear and quadratic equations; areas, angles, and
volumes; and exponential growth and trigonometric relations are included
in any strong high school mathematics program. Although some topics in
functional mathematics are uncommon (e.g., index numbers, tolerances,
three-dimensional geometry, indirect measurement, financial
mathematics), most are taught in any high-quality high school
mathematics program. To achieve its goal of preparing students both for
work and for further education, functional mathematics respects the many
parts of the traditional curriculum that are broadly useful, even while




including topics such as spreadsheets, data analysis, and statistical quality
control that are hardly ever part of high school mathematics. In functional
mathematics, utility is center stage.

The elements of functional mathematics can be embedded in many
different curricula. However, any mathematics curriculum designed on
functional grounds—whether organized around external contexts or
mathematical themes—will emphasize authentic applications from
everyday life and work. In such a curriculum, students will gain
considerable experience with mathematical tasks that are concrete yet
sophisticated, conceptually simple yet cognitively complex. By highlighting
the rich mathematics embedded in everyday tasks, this approach (in
contrast to traditional “vocational math”) can dispel both minimalist views
about the mathematics required for work and elitist views of academic
mathematics as an area with little to learn from work-based problems.

A curriculum based on functional mathematics requires appropriate
content, authentic contexts, engaging tasks, and active learning. By featuring
mathematics in common contexts, a functional curriculum can motivate
students to link meaning with mathematics. Such contexts invite variations
that can propel students to deep understanding and stimulate mathematical
habits of mind.

Functional mathematics channels the much-criticized “mile-wide,
inch-deep” curricular river into a narrower stream of ideas and procedures
that reinforce each other as students progress through school and college
and on into careers. It provides a rich foundation of experience and
examples on which students can build subsequent abstractions and
generalizations. Indeed, to fulfill its goals, a functional curriculum must
leave students well prepared not only for work but also for subsequent
courses in more abstract mathematics. _

Functional mathematics addresses many needs that are otherwise often
neglected. Neither traditional college-preparatory mathematics curricula
nor the newer standards-inspired curricula were designed specifically to
meet either the technical and problem-solving needs of the contemporary
workforce or the modern demands of active citizenship. Although each
includes much that is of value for employment and citizenship, neither
provides the context, motivation, or balance of mathematical topics
necessary for employees or citizens in a data-drenched world.

Indeed, for most students, functional mathematics will provide better




preparation than current high school curricula. Functional mathematics
stresses an in-depth understanding of topics that are most likely to be used
by large numbers of people. By employing concrete methods in settings
that are both complex and realistic, functional mathematics pushes all
students to draw on the full breadth of mathematics. In short, by focusing
on what is useful, functional mathematics increases both student interest
and student learning.
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Beyond Eighth Grade:
Functional Mathematics
for Life and Work

For most of this century, schools have been organized to prepare some
students for college and others for work. But the world of work is
changing, much of it requiring increased use of data and computers,
measurements and graphs. In the twenty-first century, most jobs and all
careers will require some form of postsecondary education. Thus, all
students, regardless of career goals, will benefit from a curriculum that
prepares them for both work and higher education. Instead of either/or,
schools must now focus on both/and.

In this paper, we propose a three-year high school program based on
functional mathematics that prepares students for life and work. Typically,
classroom applications are designed to serve mathematics—to offer
context, to illustrate use, to motivate new concepts, or to integrate topics.
In functional mathematics, the priorities are reversed. Instead of
applications being introduced to help students learn a predefined body of
knowledge, the mathematical topics are selected to prepare students to
cope with common problems they will face in life and work. Examples of
such real-life problems appear throughout this paper to illustrate in a
concrete way the nature of functional mathematics.

Functional mathematics, if thoughtfully and rigorously developed, can
provide a strong background both for students entering the workforce and
for those moving directly into postsecondary education. Indeed, for most
students, functional mathematics will provide better preparation than the
current high school curricula. Functional mathematics stresses an in-
depth understanding of fundamental topics that are most likely to be used
by large numbers of people. By employing concrete tools in settings that
are both complex and realistic, functional mathematics pushes students to
draw on the full breadth of mathematics. In short, focusing on useful
mathematics increases total learning.




Given the complete record of a soccer league that
ended in a three-way tie, devise a fair means of
determining which team should be crowned champion,

Need and Urgemcy

Despite mathematics’ reputation as an ancient subject consisting of
indisputable facts, mathematics education has recently become the source
of passionate public debate. At stake is nothing less than the fundamental
nature of school mathematics: its content (what should be taught),
pedagogy (how it should be taught), and assessment (what should be
expected). At times, these “math wars” have become so heated that
Education Secretary Richard Riley (1998b) has issued a public call for a
truce.

At the risk of oversimplifying, this debate can be characterized as a
clash between “traditionalists” who expect schools to provide the kind of
well-focused mathematics curriculum that colleges have historically
expected and “reformers” who espouse a broader curriculum that
incorporates uses of technology, data analysis, and modern applications of
mathematics. The reform approach is championed by the National
Council of Teachers of Mathematics, whose standards (NCTM, 1989)
advocate a robust eleven-year core curriculum for all students, with
supplementary topics for those who are “college-intending.” Critics argue,
however, that the NCTM standards are diffuse and ambiguous (Cheney,
1997; Raimi & Braden, 1998), that they are based on questionable
assumptions about how students learn (Anderson, Reder, & Simon, 1997),
and that curricula based on these standards will not provide the kind of
rigorous preparation students need to succeed in calculus and other
college-level mathematics courses (Wu, 1997).

Largely left out of this debate is a major constituency of mathematics
education: employers. In today’s information age, economic prosperity—
for individuals as well as for the nation—depends on “working smarter,
not just working harder.” Yet, a majority of America’s businesses report
deficiencies in the technical and problem-solving skills of their workers
and a severe shortage of prospective employees with these requisite skills.
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The cost of finding skilled employees has become a serious impediment to
growth in many sectors of the U.S. economy (Carnevale, 1998).

Also left out are the voices of democracy and citizenship which were
so important in the development of public education in the United States.
Now, two centuries later, quantitative literacy is every bit as important as
verbal literacy for informed participation in civic affairs. Today’s news is
not only grounded in quantitative issues (e.g., budgets, profits, inflation,
global warming, weather probabilities) but is also presented in
mathematical language (e.g., graphs, percentages, charts).

Neither traditional college-preparatory mathematics curricula nor the
newer standards-inspired curricula were designed specifically to meet
either the technical and problem-solving needs of the modern workforce
or the modern demands of active citizenship. Although each includes
much that is of value for citizenship and employment, neither provides
the context, motivation, or balance of mathematical topics necessary for
citizens or prospective employees in a data-drenched world.

The common curricular alternative—vocational or consumer
mathematics—is significantly worse. Historically, vocational mathematics
has provided only a narrow range of skills limited to middle school topics
and devoid of conceptual understanding (National Center for Education
Statistics [NCES], 1996). Such programs leave students totally
unprepared—not only for modern work and postsecondary education,
but even for advanced secondary school mathematics. Although some
innovative school-to-career programs are seeking to change this pattern of
low expectations, the vast majority of secondary schools in the United
States offer students no effective option for mathematics education that
meets the expectations of today’s high-performance workplace.

13



- A student plans to take out a $10,000 loan at 7%
interest with monthly payments of $120, but before
she closes the deal, interest rates rise to 7.5%. What
will happen if she keeps her monthly payments at $1207

Employment and Education

Mathematics is the key to many of the most secure and financially
rewarding careers in every sector of the economy (Business Coalition for
Education Reform, 1998). The impact of computers and information
technology can be seen not just in engineering and science, but in such
diverse areas as manufacturing and agriculture, health care and
advertising. To be prepared for careers in virtually any industry, and
especially for changing careers during a lifetime, secondary school
students need to learn a substantial core of mathematics. However, this
core is like neither the abstract pre-engineering mathematics of the
academic curriculum nor the restricted topics of the discredited
“vocational math.” New approaches are needed to meet today’s challenges.

A recent survey of 4,500 manufacturing firms revealed that nearly two
out of three current employees lack the mathematics skills required for
their work, and that half lack the ability to interpret job-related charts,
diagrams, and flowcharts (National Association of Manufacturers, 1997).
Other reports cite a major shortage of qualified candidates for jobs in the
information technology industries (Information Technology Association of
America, 1997), as well as for technicians and licensed journeymen in the
skilled trades (Mathematical Sciences Education Board, 1995). Even office
work has changed, so that technical skills are now at a premium (Carnevale
& Rose, 1998).

What current and prospective employees lack is not calculus or
advanced algebra, but a plethora of more basic quantitative skills that could
be taught in high school but are not (Murnane & Levy, 1996; Packer, 1997).
They need statistics and three-dimensional geometry, systems thinking and
estimation skills. Even more important, they need the disposition to think
through problems that blend quantitative data with verbal, visual, and
mechanical information; the capacity to interpret and present technical




information; and the ability to deal with situations when something goes
wrong (Forman & Steen, 1998).

Business has discovered, and research confirms, that diplomas and
degrees do not tell much about students’ actual performance capabilities.
For example, data from the National Assessment of Educational Progress
(NAEP) (1997b) show that twelfth-grade students at the 10th percentile are
essentially similar to fourth-grade students at the 80th percentile. Indeed,
the level that NAEP considers “advanced,” and which is achieved by only
8% of U.S. students, is considered just barely adequate in the context of
college expectations (NAEP, 1997a). Enrollment data for postsecondary
mathematics courses confirm this discrepancy (Loftsgaarden, Rung, &
Watkins, 1997): three out of every four students enrolled in college
mathematics courses are studying subjects typically taught in high school
or even middle school (see Figure 1). Clearly, covering mathematics in
school is no guarantee of mastering it for later use.

1995 Postsecondary Mathematics Enrollments

Adv. Stat.
1% Adv. Math

. 3% Arithmetic & Basic Skills
Comp. Science 8%
4% ~__

Elem. Algebra
¢
Calculus & 1%

Linear Algebra

21%

Other Precalc.

Courses
12% ‘ College Alg.
Elem. Statistics & Trig.
7% 21%
[Figure 1

Nearly two-thirds of high school graduates enter postsecondary
education primarily in order to obtain further skills and an advanced
degree. Unfortunately, fewer than half of those who begin college attain
any degree at all within five years. Furthermore, the majority of those who
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begin a traditional liberal arts program never finish. Although the
economy clearly needs employees with advanced technical training (Judy
& D’Amico, 1997), these students—the majority—end up with just a list
of courses and no degree or job certification (Barton, 1997).

Ever since the publication of A Nation at Risk (National Commission
on Excellence in Education, 1983), many advocates of educational reform
have built their case on international competitiveness: to compete in a
global economy that is increasingly technological, U.S. workers need better
technical education (Commission on the Skills of the American
Workforce, 1990). Yet, data from international comparisons such as the
Third International Mathematics and Science Study (TIMSS) show that
U.S. students are far from competitive (NCES, 1998). Thus, according to
this argument, to remain internationally competitive, we need to radically
overhaul mathematics and science education (Riley, 1998a).

In fact, the U.S. economy is thriving despite consistently weak
performances by students on both national and international tests. This
paradox has led some observers to suggest that the problem with weakness
in school mathematics and science education is not so much that it hurts
the overall economy, but that it increases economic inequities by
providing the means to a good livelihood to only a few, primarily those
from upper socioeconomic backgrounds (Barton, 1997; Bracey, 1997).
From this perspective, the primary rationale for improving school
mathematics is not competitiveness, but equity: in today’s data-driven
world, there is no justification for approaches to mathematics education
that filter out those with greatest need and equip only the best-prepared
for productive high-income careers.

A high school curriculum that helps all students master functional
mathematics would effectively address issues of both equity and
competitiveness. Since all students would study the same curriculum, all
would have equal opportunity to master the mathematics required for the
new world of work. Moreover, a three-year core of functional mathematics
would give all students a strong platform on which to build either
technical work experience or advanced education. Either route would lead
to productive careers.
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A large load of topsoil forms a conical pile. Because of
its size, you cannot directly measure either its diameter
or its height. Find a strategy for estimating its volume.

Theory and Practice

Historically, education in the United States has vacillated between the
liberal and the pragmatic, between Robert Maynard Hutchins and John
Dewey. Mathematics reflects a similar tension in the delicate balance of
theory and practice, of the pure and the applied (Thurston, 1990).
Through most of this century, school mathematics has oscillated back and
forth between these poles (Kilpatrick, 1997). Indeed, nearly a century ago,
the president of the American Mathematical Society lamented the
“grievous” separation of pure from applied mathematics and urged schools
to provide a more “practical” mathematics education: “With the
momentum of such [education], college students would be ready to
proceed rapidly and deeply in any direction in which their personal
interests might lead them” (Moore, 1903). Today’s effort to make
mathematics more functional for all students is just the latest chapter in
this long saga.

In recent years, this debate has been expressed in the form of standards,
both academic and occupational. Coordinating these standards will involve
not only issues of content and pedagogy, but also the balance of school-
based vs. work-based learning (Bailey, 1997). Historically, vocational
curricula designed to prepare students for work have been burdened by
second-class status in comparison with more rigorous academic curricula.
Too often, vocational programs became dumping grounds for students
who appeared slow or unmotivated—“other people’s children.” Most
programs responded by limiting goals and lowering expectations, thereby
offering stunted education to students who were already behind. In
contrast, contemporary career-oriented curricula have been designed not
primarily as training for low-skill jobs but as motivation for rigorous study,
both academic and vocational (Bailey & Merritt, 1997; Hoachlander, 1997).
By setting high standards, these programs offer significant responses to the
twin challenges of equity and competitiveness.

17



Mathematics provides a microcosm of the duality between the
academic and the vocational. Widely perceived as the epitome of theory
and abstraction, mathematics is also valued as a powerful, practical tool
(Odom, 1998). In many occupations, quantitative literacy is as important
as verbal literacy (Steen, 1997); however, if mathematics education is to
serve the world of work, a different type of experience than that found in
typical mathematics courses is required (National Research Council,
1998). .
Between theory and application lies professional practice—the
synthesis of thought and action employed by practitioners in all vocations.
Many have argued that practice, properly understood, can be a legitimate
and unifying goal of education. Practice is functional knowledge, the kind
of know-how that allows people to get things done. According to educator
Lee Shulman (1997), practice can provide a context in which theory
becomes meaningful, memorable, and internalizable. Peter Denning
(1997), a computer scientist, believes that practice—not knowledge or
literacy—is what constitutes true expertise. Indeed, practice is what people
tend to expect of schools, especially of mathematics education. It is at the
heart of functional mathematics. _

An infusion of practice into school mathematics can overcome what
Shulman (1997) identifies as major deficiencies of theoretical learning:
loss of learning (“I forgot it”), illusion of learning (“I thought I
understood it”), and uselessness of learning (“I understand it but I can’t
use it”). Adults who are not professional users of mathematics will
recognize these deficiencies from their own experiences. Little of what
adults learned in school mathematics is remembered or used, so the
accomplishment of “learning” mathematics is often an illusion. In fact, the
mathematics many students are force-fed in traditional school
environments creates a severe psychological impediment to the practice of
mathematics in adult life (Buxton, 1991; Cockroft, 1982). Functional
mathematics avoids many of these pitfalls by emphasizing that the goal of
mathematics education is not just mathematical theory and word
problems, but authentic mathematical practice.




Habitat for Humanity uses volunteer labor to build
inexpensive homes, which it sells for the cost of
materials. Using information on standard building
supplies obtained from a local lumberyard, design a
simple home whose building materials can be obtained
for $15,000.

High School Mathematics

Traditionally, high school mathematics has served two different
purposes—to prepare college-intending students for calculus (and other
mathematics-based courses) and to equip other students with necessary
skills, mostly arithmetic, so that they can function as employees,
homemakers, and citizens. Although most traditionalists—and most
parents and grandparents—still support these dual goals, reformers argue
for a common curriculum for all students which emphasizes problem
solving, communication, reasoning, and connections with other
disciplines.

Proposed goals for school mathematics can be found in many sources.
Some focus directly on K-12, others on the needs of postsecondary
education or employers. NCTM (1989) provides a comprehensive set of
standards for grade levels K-4, 5-8, and 9-12 that represents the “reform”
perspective. In contrast, California recently adopted mathematics
standards that represent a more traditional perspective (California
Academic Standards Commission, 1997). The American Mathematical
Association of Two-Year Colleges (1995) articulated standards for college
mathematics before calculus that include expectations for the
mathematical foundation that students need to succeed in college. In
addition, in the influential report What Work Requires of Schools
(Secretary’s Commission on Achieving Necessary Skills [SCANS], 1991),
the U.S. Department of Labor outlined both foundation skills and broad
employability competencies for mathematics and other subjects.

These standards differ greatly in both mathematical content and
rhetorical style (see Appendix A), although most have overlapping goals.
Indeed, to succeed in the real world of teachers and parents, schools and

=)
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school boards, a mathematics curriculum must
(1) meet society’s expectations of what all high school graduates
should know and be able to do.

(2) reflect priorities common to state and national guidelines.

(3) increase the number of students who successfully persist in

advanced mathematics-based courses, including calculus.

(4) enable students to see and use mathematics in everyday aspects of

life and work.

(5) help students understand and use correct mathematical language.

Functional mathematics must also meet these objectives. The first two
objectives establish priorities: to focus early and often on what everyone
agrees must be learned, leaving to later (or to optional strands) those
topics that only some students will find interesting or important. The
third objective establishes a standard of quality: to increase the number of
students who persist in further mathematics-based courses (including
calculus, the traditional hallmark of mathematical success). The fourth
objective conveys a commitment to utility—to ensure that students see
mathematics as something real in their lives rather than as an alien subject
encountered only in school. Finally, the fifth objective stresses command
of the language of mathematics, a skill at least as important for success as
a command of English.

By meeting these objectives, functional mathematics will satisfy the
general public’s expectations of school mathematics. In addition, these
objectives also enhance functional mathematics’ primary goal of preparing
students for life and work. Consistent quality and high standards are
essential in today’s high-performance industries. Persistence in
mathematics is not just of academic importance; it is also one of the best
predictors of success in careers (Commission on the Skills of the American
Workforce, 1990). Moreover, the language of mathematics provides the
power to analyze and express complex issues in all aspects of life and
work. Fluency in this language is important not only for productive
employees but also for careful consumers and critical citizens.

In functional mathematics, utility is center stage. Other objectives play
important but supporting roles. Unfortunately, many mathematicians and
mathematics teachers find utility at best a bleak justification (Howe, 1998)
for a subject that they chose for its beauty and elegance. For them, the
power of mathematics—in Eugene Wigner’s famous phrase, its




“unreasonable effectiveness”—is not its primary virtue, but merely a
consequence of its elegance and internal structure. Thus, mathematicians
are wont to stage their subject with theory and abstraction at the center,
employing applications, technology, and practice as needed to help
promote understanding.

To engage mathematicians and mathematics teachers, functional
mathematics needs to be seen in terms of both utility and beauty. For
many students, utility can be a path to beauty, while for others,
mathematics by itself provides sufficient internal motivation to sustain
interest and accomplishment. For any mathematics curriculum to succeed
with all students, it must build on the twin foundations of utility and
elegance.

What measurements do you need to take in order to
tile the floor of a room? How can you use these
measurements to determine the number of regular
tiles, border tiles, and corner tiles that are needed?
What if you decide to lay the main tiles on a 45° angle?

Functional Mathematics

Functional mathematics comprises content, curriculum, context, and
pedagogy. By content we simply mean the mathematics students should
know and be able to do after finishing the first three years of high school
mathematics (see Appendix B). Because mathematics is mathematics—
whether traditional, reform, or functional—most of these elements are
unsurprising. Although some topics are uncommon (e.g., index numbers,
tolerances, three-dimensional geometry, normal curve, quality control
charts, standards of proof, financial mathematics, spreadsheets), most are
taught in any high-quality high school mathematics program. To achieve
its goal of preparing students for both work and further education,
functional mathematics respects the many parts of the traditional
curriculum that are broadly useful, even while reshaping the boundaries to
reflect its distinctive objectives.

21

i1



12

The outline of functional mathematics in Appendix B reflects an
inventory of mathematical topics selected for their importance in daily life
and modern jobs as well as for their value in providing a strong
foundation for further education. This outline is organized in predictable
strands that cover what is normally subsumed under the umbrella of
mathematics: numbers and data, measurement and space, growth and
variation, chance and probability, reasoning and inference, variables and
equations, modeling and decisions. Real problems cut across all this
mathematics, just as these topics cut across the diverse contexts of
authentic mathematical practice.

Clearly, many of the elements of functional mathematics are identical
to the mathematics found in both traditional and reformed curricula. The
core of school mathematics is more or less the same, even if viewed (or

* taught) from different perspectives. Percentages and ratios; linear and

quadratic equations; areas, angles, and volumes; and exponential growth
and trigonometric relations must be included in any strong high school
mathematics program. The distinctions among traditional, reformed, and
functional curricula lie not so much in core content as in contexts,
emphases, and pedagogy. '
Nonetheless, prospective employees for the new high- performance
workplace need expertise in several aspects of mathematics not now
emphasized sufficiently in school. On the one hand, students need greater
experience recognizing and using some parts of middle school
mathematics such as ratio, percentage, and measurement geometry that,

although covered in current programs, are not used sufficiently to be

learned well. On the other hand, as prospective employees, they need to
understand and be able to use mathematical notions such as data analysis,
statistical quality control, and indirect measurement that are hardly ever
required in high school (Forman & Steen, 1998).

- In addition to shifting the balance of topics, functional mathematics
provides much greater emphasis on “systems thinking”—on habits of
mind that recognize complexities inherent in situations subject to multiple
inputs and diverse constraints. Examples of complex systems abound—
from managing a small business to scheduling public transportation, from
planning a wedding to reforming social security. At all levels from local to
national, citizens, policymakers, employees, and managers need to be able
to formulate problems in terms of relevant factors and design strategies to




determine the influence of those factors on system performance. Although
such systems are often so complex that they obscure the underlying
mathematics, the skills required to address realistic problems very often
include many that are highly mathematical.

A curriculum built on functional mathematics gives students many
opportunities to solve realistic problems and build mathematical
understanding. Nevertheless, to make this learning valuable for work and
further education—as well as to enhance understanding—such a
curriculum must also help students become fluent in the language of
mathematics. Individuals need to be able to read, understand, and
interpret technical material with embedded charts and diagrams (e.g.,
property tax bills, stock market reports); they need to be able to speak
clearly about mathematical ideas (e.g., as a salesman explaining the
interest and payoff on an insurance policy); and they need extensive
experience writing reports based on mathematical and technical analysis
(e.g., a recommendation to a supervisor summarizing the conclusion of a
study).

Functional mathematics channels the much-criticized “mile-wide,
inch-deep” curricular river into a narrower but deeper stream of ideas and
procedures that reinforce each other as students progress through school
and college and on into careers. It provides a rich foundation of
experience and examples on which students can build subsequent
abstractions and generalizations. Indeed, to fulfill its goals, a functional
curriculum must leave students well-prepared not only for work but also
for subsequent courses in more abstract mathematics.
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You are helping your brother-in-law build a garage on
gently sloped land next to his house. After leveling the
land, you begin staking out the foundation. To check
that corners are square, you measure the diagonals
and discover that they differ by 3 inches. Is that
because the corners may not be perfectly level, or
because they are not perfectly square? How can you
determine what needs fixing to make sure that you
start with a foundation that is both level and square?

Functional Curricula

The elements of functional mathematics can be embedded in many
different curricula—the paths students follow through their education.
Although some parts of mathematics impose a necessary order on the
curriculum (e.g., arithmetic before algebra; linear equations before
quadratic), large parts of mathematics can be approached from many
different directions. Data analysis can be either a motivation for or an
application of graphing and algebra; geometry can either precede or follow
algebra, and each can reinforce the other. The order in which elements are
listed bears no relationship to the order in which they may be taught
through a three-year core curriculum.

The elements of functional mathematics arise from common contexts
of life and work—measuring objects, managing money, scheduling time,
making choices, and projecting trends. Although it is possible to organize a
curriculum around such contexts, without a list of elements such as those
in Appendix B to guide instruction, the mathematics itself may remain
largely hidden. Alternatively, a functional curriculum can be organized
around mathematical themes such as the sections of Appendix B. Indeed,
the latter fits better the experience of most mathematics teachers and is
more likely to be adaptable to most school settings.

Any mathematics curriculum designed on functional grounds—
whether organized around external contexts or mathematical themes—will
emphasize authentic applications from everyday life and work. In such a
curriculum, students will gain considerable experience with mathematical




tasks that are concrete yet sophisticated, conceptually simple yet cognitively
complex (Forman & Steen, 1995). A functional curriculum compels a
better balance of statistics (numbers), geometry (space), and algebra
(symbols)—the three major branches of the mathematical sciences. By
highlighting the rich mathematics embedded in everyday tasks, this
approach (in contrast to traditional “vocational math”) can dispel both
minimalist views about the mathematics required for work and elitist views
of academic mathematics as an area with little to learn from work-based
problems (Bailey & Merritt, 1997; Forman & Steen, 1998).

Because of the history of low standards in traditional vocational
programs, many teachers and parents believe that a work-focused
curriculum will necessarily lack the rigor of a precollege academic track.
Contrary to this belief, the “zero-defect” demands of the high-performance
workplace for exacting standards and precise tolerances actually impose a
much higher standard of rigor than do academic programs that award
students a B for work that is only 80-85% accurate. Moreover, the lengthy
and subtle reasoning required to resolve many problems that arise in real
contexts provides students with experience in critical thinking that is often
lacking in academic courses that rush from topic to topic in order to cover
a set curriculum.

Five friends meet for dinner in a restaurant. Some have
drinks and others do not; some have dessert and
others do not; some order inexpensive entrees, others
choose fancier options. When the bill comes they need
to decide whether to just add a tip and split it five
ways, or whether some perhaps should pay more than
others. What is the quickest way to decide how much
each should pay?

Teaching Functional Mathematics

Although the public thinks of standards primarily in terms of
performance expectations for students, both the mathematics standards
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(NCTM, 1989) and the science standards (National Research Council,
1996) place equal emphasis on expectations for teaching, specifically that
it be active, student-centered, and contextual:

» Active instruction encourages students to explore a variety of _
strategies; to make hands-on use of concrete materials; to identify
missing information needed to solve problems; and to investigate
available data.

* Student-centered instruction focuses on problems that students see as
relevant and interesting; that help students learn to work with others;
and that strengthen students’ technical communication skills.

* Contextual instruction asks students to engage problems first in
context, then with mathematical formality; suggests resources that
might provide additional information; requires that students verify
the reasonableness of solutions in the context of the original
problem; and encourages students to see connections of mathematics
to work and life.

These expectations for effective teaching are implicitly reinforced in
recently published occupational skill standards (National Skill Standards
Board, 1998) that outline what entry-level employees are expected to
know and be able to do in a variety of trades. Although these standards
frequently display performance expectations for basic mathematics as lists
of topics, the examples they provide of what workers need to be able to do
are always situated in specific contexts and most often require action
outcomes (Forman & Steen, in press).

Most students learn mathematics by solving problems. In traditional
mathematics courses, exercises came in two flavors: explicit mathematical
tasks (e.g:, solve, find, calculate) and dreaded “word problems” in which
the mathematics is hidden as if in a secret code. Indeed, many students,
abetted by their teachers, learn to unlock the secret code by searching for
key words (e.g., less for minus, total for plus) rather than by thinking about
the meaning of the problem (which may be a good thing, because so
many traditional word problems defy common sense).

In a curriculum focused on functional mathematics, tasks are more
likely to resemble those found in everyday life or in the workplace than
those found in school textbooks. Students need to think about each
problem afresh, without the clues provided by a specific textbook chapter.
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Rather than just being asked to solve an equation or calculate an answer,
students are asked to design, plan, evaluate, reccommend, review, define,
critique, and explain—all things they will need to do in their future jobs
(as well as in college courses). In the process, they will formulate
conjectures, model processes, transform data, draw conclusions, check
results, and evaluate findings. The challenges students face in a functional
curriculum are often nonroutine and open-ended, with solutions taking
from minutes to days, and requiring diverse forms of presentation (oral,
written, video, or computer). As in real job situations, some work is done
alone, and some in teams.

A round chimney &” in diameter protrudes from a roof
that has a pitch of 3:1. Draw a pattern for an aluminum
skirt that can be cut out of sheet metal and bent into
a cone to seal the chimney against rain.

Mathematics in Comntext

Students’ achievements in school mathematics depend not only on the
content of the curriculum and the instructional strategies employed by the
teacher but also on the context in which the mathematics is embedded.
Traditionally, mathematics has served as its own context: as climbers scale
mountains because they are there, so students are expected to solve
equations simply because it is in the nature of equations to be solved.
From this perspective, mathematics is considered separate from and prior
to its applications. Once the mathematics is learned, it supposedly can
then be applied to various problems, either artificial or real.

Many of the new curricula developed in response to the NCTM
standards or state frameworks give increased priority to applications and
mathematical models. In some of these programs, applications are at the
center, providing a context for the mathematical tools prescribed by the
standards. In others, applications serve more to motivate topics specified in
the standards. In virtually all cases, the applications found in current
curricula are selected, invented, or simplified to serve the purpose of
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teaching particular mathematical skills or concepts. In contrast, the
mathematical topics in a functional curriculum are determined by the
importance of the contexts in which they arise.

For most students, interesting contexts make rigorous learning
possible. Realistic problems harbor hidden mathematics that good
teachers can illuminate with probing questions. Most authentic
mathematical problems require multistep procedures and employ realistic
data—which are often incomplete or inconsistent. Problems emerging
from authentic contexts stimulate complex thinking, expand students’
understanding, and reveal the interconnected logic that unites
mathematics.

Devise criteria and procedures for fair addition of a
congressional district to a state in a way that will
minimize disruption of current districts while creating
~ hew districts that are relatively compact (non-
gerrymandered) and of nearly equal size.

Employing Computers

It has been clear for many years that technology has changed
priorities for mathematics. Much of traditional mathematics (from long
division to integration by parts) was created not to enhance
understanding but to provide a means of calculating results. This
mathematics is now embedded in silicon, so training people to
implement these methods with facility and accuracy is no longer as
Important as it once was. At the same time, technology has increased
significantly the importance of certain parts of mathematics (e.g.,
statistics, number theory, discrete mathematics) that are widely used in
information-based industries. , '

Many mathematics teachers have embraced technology, not so much
because it has changed mathematics but because it is a powerful
pedagogical tool. Mathematics is the science of patterns (Devlin, 1994;
Steen, 1988), and patterns are most easily explored using computers and




calculators. Technology enables students to study patterns as they never
could before, and in so doing, it offers mathematics what laboratories offer
science: a source of evidence, ideas, and conjectures.

The capabilities of computers and graphing calculators to create visual
displays of data have also fundamentally changed what it means to
understand mathematics. In earlier times, mathematicians struggled to
create formal symbolic systems to represent with rigor and precision
informal visual images and hand-drawn sketches. However, today’s
computer graphics are so sophisticated that a great deal of mathematics
can be carried out entirely in a graphical mode. In many ways, the
medium of computers has become the message of mathematical practice.

Finally, and perhaps most significantly, computers and calculators
increase dramatically the number of users of mathematics—many of
whom are not well-educated in mathematics. Previously, only those who
learned mathematics used it. Today, many people use mathematical tools
for routine work with spreadsheets, calculators, and financial systems—
tools that are built on mathematics they have never studied. For example,
technicians who diagnose and repair electronic equipment employ a full
range of elements of functional mathematics—from number systems to
logical inferences, from statistical tests to graphical interpretations. Broad
competence in the practice of technology-related mathematics can boost
graduates up many different career ladders.

This poses a unique challenge for mathematics education: to provide
large numbers of citizens with the ability to use mathematics-based tools
intelligently without requiring that they prepare for mathematics-based
careers. Although mathematicians take for granted that learning without
understanding is ephemeral, many others argue that where technology is
concerned, it is more important for students to learn how to use hardware
and software effectively than to understand all the underlying
mathematics. But even those who only use the products of mathematics
recognize the value of understanding the underlying principles at a time
when things go wrong or unexpected results appear. In a functional
curriculum where, for example, algebra emerges from work with
spreadsheets, the traditional distinction between understanding and
- competence becomes less sharp.
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— How many school teachers are there in New York
City? How many electricians? How many
morticians?

— How many words are there in all the books in the
school library? How many megabytes of disk
storage would be required to store the entire library
on a computer?

Avoiding Pitfalls

Those who develop materials and examples for a functional
curriculum need to avoid some common pitfalls that plague all attempts
at situating mathematics in authentic contexts. On the one hand, there is
the temptation to give priority to the mathematics, either by selecting
tasks to ensure coverage of mathematical topics without much regard to
the tasks’ intrinsic importance or by imposing unwarranted structure on a
contextually rich problem in the interest of ensuring appropriate |
mathematical coverage. On the other hand, it is easy to overlook
interesting mathematics hidden beneath the surface of many ordinary
tasks or to choose problems that fail to help students prepare for advanced
study in mathematics. Any curriculum that is to prepare students for
subsequent mathematics-dependent courses must recognize the
importance of intellectual growth and conceptual continuity in the
sequencing of tasks in which mathematical activities are embedded.

Context-rich mathematics curricula often present tasks in the form of
worksheets, outlining a series of short-answer steps that lead to a solution.
While ostensibly intended to help students organize their thinking and
assist teachers in following students’ work, these intellectual scaffolds strip
tasks of everything that makes them problematic. Indeed, worksheets
reveal a didactic posture of traditional teaching (teacher tells, students
mimic) that undermines learning and limits understanding. Students will
learn and retain much more from the chaotic process of exploring,
defending, and arguing their own approaches.

Finally, although a functional mathematics curriculum is motivated
largely by examples that seem to lie outside the world of mathematics, it is
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nonetheless very important for students’ future study that instructors
bring mathematical closure at appropriate points. Students need to
recognize and reflect on what they have learned; to be clear about
definitions, concepts, vocabulary, methods, and potential generalizations;
and to have sufficient opportunity to reflect on the accomplishments and
limitations of mathematics as a tool in helping solve authentic problems.

A patient with an aggressive cancer faces two options
for treatment: With Option A, he has a 40% chance of
surviving for a year, but if he makes it that long then
his chance of surviving a second year is two out of
three. With Option B, he has a 50-50 chance of
surviving each of the first and second years. Survival
rates beyond the second year are similar for each
option. Which: choice should he make?

Mathematics im Life and Work

The diverse contexts of daily life and work provide many realistic
views of functional mathematics—of the mathematical practice
underlying routine events of daily life. These contexts offer episodic views,

incomplete in scope and less systematic than a list of elements, but more
" suggestive of the way functional mathematics may be introduced in

courses.

Reading Maps. Road maps of cities and states provide crucial
information about routes and locations. For those who know how to
“read” them, maps also convey scale and direction, helping drivers know
which way to turn at intersections, permitting quick estimates of driving
time, and revealing compass directions that relate to highway signs at road
intersections. Map scales are just ratios—an essential part of school
mathematics. Different scales not only convey different detail, but also
require different translations to represent distance.

Reading maps is not just a matter of thinking of distances in different
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scales. In many cases, the geometry of maps represents other features such
as temperature or soil content. Most common are weather maps with
color-coded regions showing gradations in recorded or predicted
temperatures. Similar maps sometimes display recorded or predicted
precipitation, barometric pressure, vegetation features, or soil chemistry.
Like topographic maps used by hikers, these maps represent some feature
of the landscape that changes from place to place. The spacing between
regions of similar temperature (or pressure, or elevation) conveys the
steepness (or gradient) of change—what mathematicians call the “slope”
of a line.

Scale-drawings and blueprints are also widely used to illustrate details

of homes, apartments, and office buildings. These drawings represent sizes

of rooms, locations of windows and doors, and—if the scale permits—
locations of electrical outlets and plumbing fixtures. Architects’ rulers with
different units representing one foot of real space make it possible to read
real distances off scale drawings, taking advantage of the geometrical
properties of similar figures. New geographic information systems (GIS)
encode spatially oriented data in a form suitable for computer
spreadsheets, thereby enabling other factors (e.g., costs, environmental
factors) to be logically linked to the geometric structure of a map.

Ensuring Quality. Statistical process control (SPC) and statistical
quality control (SQC) are crucial components of high-performance
manufacturing, where “zero defect” is the goal. Instead of checking and
repairing products after manufacture, firms like Boeing, General Motors,
Kodak, Motorola, and Siemens now insist that at every step in the
manufacturing process, materials, parts, and final products be
manufactured within tight tolerances. Moreover, workers on assembly
lines are responsible for ensuring this consistent level of quality.

The two tools that make this possible are based on statistics—the
science of collecting and organizing data. The first, statistical process
control, occurs during manufacture: assembly line workers chart key

~ indicators of the process—perhaps the temperature of a mixture or the

pitch of a grinding tool—on graph paper marked with curves representing
the limits determined by the required (or contracted) tolerances. If the
process strays outside these limits, or approaches them too often, workers
may decide to shut down the assembly line to make adjustments in the




manufacturing process rather than risk producing products that do not
meet design specifications.

Statistical quality control is like statistical process control, but takes
place when components (e.g., computer chips) are completed. By
sampling finished products and charting their performance characteristics,
workers can identify potential problems before products exceed permitted
tolerances—and then take action to prevent the shipping or further
manufacture of defective (i.e., out-of-tolerance) products.

Using Spreadsheets. Almost everyone who works with a computer uses
a word processor for writing, whether for correspondence or business
reports. Almost as popular are “number processors,” commonly known as
spreadsheets. Originally designed as a tool for accountants, spreadsheets
are ubiquitous both in the office and at home—wherever anyone deals
with budgets and expenses, taxes and investments. Spreadsheets are used
to record business inventories and scientific data, to keep track of medical
records and student grades, to organize crop records and airline schedules.
Virtually any systematic information can be made more useful by being
put in a properly organized spreadsheet.

To a mathematician, a spreadsheet is just algebra playing on a popular
stage. The basic operations of a spreadsheet—adding cells together,
calculating percentages, projecting growth rates, determining present
values—are entered as formulas into the appropriate cells. More complex
formulas (e.g., exponential, financial, trigonometric) are available from a
pull-down menu. Once the computations are completed, the results can
be displayed in graphs of various sorts (lines, bars, pies), often in vivid
color. ( |

Figuring out how to translate a task into a spreadsheet design is just
like setting up a word problem in algebra: it involves identifying important
variables and the relations among them. Preparing a spreadsheet requires
equations which are suitably located in the cells. The spreadsheet does the
arithmetic, and the designer does the algebra. Then, as in any
mathematical exercise, the designer needs to check the results—typically
by specifying independent computations to confirm key spots in the
spreadsheet. (For example, adding all the entries in a grid can confirm the
accuracy of the sum of the row totals, thus catching possible errors in the
spreadsheet formulas.) Variables, equations, graphs, word problems—the
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ingredients of a good algebra course—are just the ticket for mastering
spreadsheets.

Building Things. One in every four American workers builds things—
automobiles or airplanes, bicycles or buildings, containers or chips. These
products are three-dimensional, created by casting and cutting, by folding
and fastening, by molding and machining. Designing things to be built
(the work of engineers and architects) and building objects as designed
_ (the work of carpenters and machinists) require impressive feats of
indirect measurement, three-dimensional geometry, and visual
imagination.

In a typical aluminum airplane part, for example, some measurements
are specified by the designers, while others must be calculated in order to
program the cutting tool that will actually create the part. In three
dimensions, things are even more complicated. Planning how to drill holes
at specified angles in a block of aluminum whose base is not square and
whose sides are tilted in odd directions would tax the skills of most
mathematics teachers. But machinists are expected to perform these
calculations routinely to determine settings on a “sine plate,” a device
‘whose surface can tilt in two different dimensions in order to compensate
for odd angles on the part that is to be drilled.

Both designers and builders now use computer-assisted design (CAD)
and computer-assisted manufacturing (CAM) to ensure the exacting
tolerances required for high-performance manufacturing. To use these
tools effectively, workers need to have mastered the basic skills of drawing
geometric objects, measuring distances, and calculating angles, distances,
areas, and volumes. The basic principles of geometry in three dimensions
are the same as those in two dimensions, but the experience of working in
three dimensions is startlingly more sophisticated. A good command of
geometry and trigonometry is essential for anyone building things in
today’s manufacturing industries. '

Thinking Systemically. Systems surround us—in commerce, science,
technology, and society. In complex systems, many factors influence
performance, thus making the task of solving problems inherently
multidimensional. Indeed, the interaction of different factors is often
difficult to predict, sometimes even counterintuitive. Complex systems
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defy simplistic single answers. Thus, the first step in mathematical analysis
is often to prepare an inventory of all possible factors that might need to
be considered.

For example, the rise of efficient package delivery services and
instantaneous computer communication have enabled many
manufacturing companies to operate with minimum inventories, thus
saving warehousing costs but risking a shutdown if any part of the
network of suppliers fails. Understanding how a system of suppliers,
communication, and transportation works requires analysis of capacity,
redundancy, single-point failures, and time of delivery—all involving
quantitative or logical analyses.

Other system problems arise within the everyday work of a typical
small business. For example, the stockroom of a shoe store holds several
thousand boxes labeled by manufacturer, style, color, and size and arranged
on floor-to-ceiling shelves. Deciding how to arrange these boxes can have a
significant impact on the profit margin of the store. Obvious options are by
manufacturer, by style, by size, by frequency of demand, or by date of
arrival. Clerks need to be able to find and reshelve shoes quickly as they
serve customers. But they also need to be able to make room easily for new
styles when they arrive, to compare regularly the stockroom inventory with
sales and receipt of new shoes, and to locate misshelved shoes.
Mathematical thinking helps greatly in exploring the advantages and
disadvantages of the many possible systems for arranging the stockroom.

Making Choices. Life is full of choices—to rent an apartment or
purchase a home; to lease or buy a car; to pay off credit card debt or use
the money instead to increase the down payment on a house. All such
choices involve mathematical calculations to compare costs and evaluate
risks. For example:

The rent on your present apartment is $1,200 per month and is likely
to increase 5% each year. You have enough saved to put a 25% down
payment on a $180,000 townhouse with 50% more space, but those
funds are invested in an aggressive mutual fund that has averaged 22%
return for the last several years, most of which has been in long-term
capital gains (which now have a lower tax rate). Current rates for a 30-
year mortgage with 20% down are about 6.75%, with 2 points charged
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up front; with a 10% down payment the rate increases to 7.00%. The
interest on a mortgage is tax deductible on both state and federal
returns; in your income bracket, that will provide a 36% tax savings.
You expect to stay at your current job for at least 5-7 years, but then
may want to leave the area. What should you do?

This sounds like a problem for a financial planner, and many people
make a good living advising people about just such decisions. But anyone
who has learned high school mathematics and who knows how to
program a spreadsheet can easily work out the financial implications of
this situation. Moreover, by doing it on a spreadsheet, it is quite easy to
examine “what if” scenarios: What if the interest rate goes up to 7% or
7.25%? What if the stock market goes down to its traditional 10-12% rate
of return? What if a job change forces a move after three years?

In contrast to many problems of school mathematics which are routine
for anyone who knows the right definitions (e.g., what is cos (7t/2)?) but .
mystifying otherwise, this common financial dilemma is mathematically
simple (it involves only arithmetic and percentages) but logically and
conceptually complex. There are many variables, some of which need to
be estimated; there are many relationships that interact with each other .
(e.g., interest rates and tax deductions); and the financial picture changes
each year (actually, each month) as payments are made.

The complex sequence of reasoning involved in this analysis is typical
of mathematics, which depends on carefully crafted chains of inferences to
justify conclusions based on given premises. Students who can confidently
reason their way through a lengthy proof or calculation should have no
problem being their own financial advisors. And students who learn to
deal with long chains of reasoning inherent in realistic dilemmas will be
well prepared to use that same logic and careful reasoning if they pursue
the study of mathematics in college.




In preparing fertilizer for a garden, a homeowner poured
one quart of concentrated liquid fertilizer into a two-
gallon can and filled the can with water. Then she
discovered that the proper ratio of fertilizer to water
should be 1:3. How much more liquid fertilizer should
she add to the current mixture to obtain the desired
concentration?

Making Mathematics Meaningful

Those who discuss mathematics education frequently describe
mathematical knowledge in broad categories such as skills and
understanding, concepts and facts, procedures and practices, or insights
and knowledge. Whole volumes of educational research are devoted to
distinguishing among these different aspects of mathematical knowledge.
The standards movement has tended to subsume all these distinctions into
two categories of knowledge and performance: what students should
know and what students shoud be able-to do (Ravitch, 1995; Tucker &
Codding, 1998).

The two broad cultures of mathematics education argue with each
other largely because they differ in the interpretations they give to these
different aspects of mathematical knowledge. Those who favor the
traditional curriculum centered on algebra, functions, and Euclidean
geometry argue that mastery of facts and basic skills are a prerequisite to
understanding and performance. Reformers who favor a broader
curriculum take a more constructivist view—that understanding and
mastery are an outgrowth of active engagement with contextualized
mathematics. Regardless of approach or emphasis, both traditional and
reform curricula generally cover a similar set of topics designed to move
students along the path from arithmetic to calculus.

Functional mathematics follows much the same path, with variations
that reflect its grounding in authentic problems. However, by embedding
mathematics in practice, functional mathematics can offer students both
theory and know-how. Although in some technical areas, practical “of-the-
moment” learning offers little that outlasts the next generation of gadgets,




the logical structure that unites mathematics guarantees that all
understanding, no matter how specific, has the potential to enhance
mastery of other areas. What matters for long-term mastery of
mathematics is not so much which particular skills are learned as that the
process of learning be, in Shulman’s words, “meaningful, memorable, and
internalizable.” Although topics in functional mathematics may be chosen
for proximate utility, their study can provide insight and understandings
sufficient for lifelong learning.

A curriculum based on functional mathematics requires appropriate
content, authentic contexts, engaging tasks, and active instruction. By
featuring mathematics in common contexts, a functional curriculum can
motivate students to link meaning with mathematics. The best problem
settings offer opportunities for exploration from multiple perspectives,
including graphical, numerical, symbolic, verbal, and computational.
Technology—from graphing calculators and word processors to
spreadsheets and symbolic algebra systems—can enhance understanding
from each of these perspectives. Effective contexts provide opportunities

~ for horizontal linkages among diverse areas of life and work as well as

vertical integration from elementary ideas to advanced topics. Experience
with rich contexts helps students recognize that asking questions is often
as important as finding answers. Such contexts invite variations that can
stimulate mathematical habits of mind and propel students to deep
understanding.
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| Appendix As
Excerpts From Different Standards

The diverse ways that different organizations express expectations for
mathematics illustrate a variety of approaches to setting standards. The
excerpts that follow illustrate this variety in the particular case of algebra, the
core of high school mathematics.

From the National Council of Teachers of Mathematics (1989):
In grades 9-12, the mathematics curriculum should include the
continued study of algebraic concepts and methods so that all students can
* represent situations that involve variable quantities with expressions,
equations, inequalities, and matrices; |
+ use tables and graphs as tools to interpret expressions, equations, and
inequalities;
» operate on expressions and matrices, and solve equations and
inequalities; ‘
« appreciate the power of mathematical abstraction and symbolism;
and so that, in addition, college-intending students can
* use matrices to solve linear systems;
+ demonstrate technical facility with algebraic transformations,
including techniques based on the theory of equations.

From the California Academic Standards Commission (1997):
By the end of Grade 10, all students should be able to:

Solve linear equations and inequalities with rational coefficients; use
the slope-intercept equation of a line (y = mx + b) to model a linear
situation and represent the problem in terms of a graph.

Describe, graph, and solve problems using linear, quadratic, power,
exponential, absolute value, polynomial, and rational functions;
identify key characteristics of functions (domain, range, intercepts,
asymptotes).

Derive and use the quadratic formula to solve any quadratic equation
with real coefficients; graph equations of the conic sections
(parabola, ellipse, circle, hyperbola), identifying kéy features such as
intercepts and axes.

Describe, extend, and find the nth term of arithmetic, geometric, and
other regular series.




And in Grades 11-12, mathematics students should learn about:
Piece-wise defined functions; logarithm function and as inverse of
exponential; polar coordinates; parametric equations; recursive
formulas, binomial theorem, mathematical induction; trigonometric

functions, graphs, identities, key values, and applications; vector
decomposition.

From the American Mathematical Association of Two-Year Colleges (1995):

The study of algebra must focus on modeling real phenomena via
mathematical relationships. Students should explore the relationship
between abstract variables and concrete applications and develop an
intuitive sense of mathematical functions. Within this context, students
should develop an understanding of the abstract versions of basic number
properties and learn how to apply these properties. Students should develop
reasonable facility in simplifying the most common and useful types of
algebraic expressions, recognizing equivalent expressions and equations, and
understanding and applying principles for solving simple equations.

Rote algebraic manipulations and step-by-step algorithms, which have
received central attention in traditional algebra courses, are not the main
focus. Topics such as specialized factoring techniques and complicated
operations with rational and radical expressions should be eliminated. The
inclusion of such topics has been justified on the basis that they would be
needed later in calculus. This argument lacks validity in view of the reforms
taking place in calculus and the mathematics being used in the workplace.

From the Secretary’s Commission on Achieving Necessary Skills (1991):

Mathematics. Approaches practical problems by choosing appropriately
from a variety of mathematical techniques; uses quantitative data to
construct logical explanations for real world situations; expresses
mathematical ideas and concepts orally and in writing; and understands
the role of chance in the occurrence and prediction of events.

Reasoning. Discovers a rule or principle underlying the relationship
between two or more objects and applies it in solving a problem. For
example, uses logic to draw conclusions from available information,
extracts rules or principles from a set of objects or written text, applies
rules and principles to a new situation, or determines which conclusions
are correct when given a set of facts and a set of conclusions.
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Appendix B:
Elements of Functional Mathematics

These elements outline aspects of mathematics that are important for all
students in their life and work. They emphasize concrete, realistic topics that
arise in common situations in news, sports, finance, work, and leisure. These
elements can be taught through many different curricula ranging from '
traditional to reform, from academic to vocational. Students completing any
curriculum that includes these elements would be well-prepared to enter a
wide variety of technical and academic programs, including a one-year
precalculus course.

Numbers and Data

Mental Estimation. Anticipate total costs, distances, times; estimate -
unknown quantities (e.g., number of high school students in a state or city)
using proportional reasoning; order of magnitude estimates; mental
checking of calculator and computer results.

Numbers. Examples of whole numbers (integers), fractions (ratlonal
numbers), and irrational numbers (s, \/i). Number line; mixed numbers;
decimals, percentages, scientific notation. Prime numbers, factors; simple
number theory; binary numbers and simple binary arithmetic; units and
magnitudes; extreme numbers (e.g., national debt, astronomical distances);

“number sense; scientific notation.

Calculation. Accurate paper-and-pencil methods for simple arithmetic
and percentage calculations; calculator use for complex calculations;
spreadsheet methods for problems with a lot of data. Strategies for

- checking reasonableness and accuracy. Significant digits; interval

- arithmetic; errors; tolerances. Mixed methods (mental, pencil, calculator).
Coding. Number systems (decimal, binary, octal, hex); ASCII code;

- check digits. Patterns and criteria for credit card, Social Security, telephone,
license plate numbers.

Index Numbers. Examples in the news: stock market averages;
consumer price index; unemployment rate; SAT scores. Definitions and
deficiencies; uses and abuses.

Information Systems. Collecting and organizing data; geographic




-information systems (GIS) and management information systems (MIS);

visual representation of data.

Measurement and Space

Measurement. Direct and indirect means; estimation; use of
appropriate instruments (rulers, tapes, micrometers, pacing, electronic
gauges); plumb lines and square corners; calculated measurements;
accuracy; tolerances; detecting and correcting misalignments.

Measurement Geometry. Measurement formulas for simple plane
figures: triangles, circles, quadrilaterals. Calculation of area, angles, lengths
by indirect means. Right triangle trigonometry; applications of
Pythagorean theorem.

Dimensions. Linear, square, and cubic growth of length, area, volume.
Coordinate notation; dimension as factor in multivariable phenomena.

Geometric Relations. Proof of Pythagorean theorem and of other basic
theorems. Construction of line and angle bisectors, finding center of
circular arc.

Spatial Geometry. Shapes in space; volumes of cylinders and spheres;
calculation of angles in three-dimensions (e.g., meeting of roof trusses).
Interpreting construction diagrams; nominal vs. true dimensions (e.g., of
2 x 4s); tolerances and perturbations in constructing three-dimensional
objects.

Global Positioning: Map projections, latitude and longitude, global
positioning systems (GPS); local, regional, and global coordinate systems.

Growth and Vaa*ﬁaﬁﬁon

Linear Change. Situations in which the rate of change is constant (e.g.,
uniform motion); contrast with examples where change is nonlinear (e.g.,
distance vs. time for falling body). Slope as rate of change; slope-intercept
equation, with graphical significance of parameters. Difference between
rate of change and value of the dependent variable.

Proportion. Situations modeled by similarity and ratio (e.g., height and
shadows, construction cost vs. square footage, drug dose vs. body weight);
examples where change is disproportional (e.g., height vs. weight).
Calculating missing terms. Mental estimation using proportions.

Exponential Growth. Situations such as population growth,
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radioactivity, and compound interest, where the rate of change is
proportional to size; doubling time and half-life as characteristics of
exponential phenomena; symbolic representation (2", 10™); ordinary and
log-scaled graphs.

Normal Curve. Situations such as distribution of heights, of repeated
measurements, and of manufactured goods in which phenomena
distribute in a bell-shaped curve. Examples of situations in which they do
not (e.g., income, grades, typographical errors, life spans). Parameters and
percentages of normal distribution; z-scores, meaning of 1-, 2-, and 3-g.
Area as measure of probability. -

Parabolic Patterns. Fa]hng bodies; parabolas; quadratlc equations;
optimization problems.

Cyclic Functions. Situations such as time of sunrise, sound waves, and
biological rhythms that exhibit cyclic behavior. Graphs of sin and cos;
relations among graphs; sin*0 + cos?6 = 1.

Chance and Probability

Elementary Data Analysis. Measures of central tendency (average,
median, mode) and of spread (range, standard deviation, midrange); visual
displays of data (pie charts, scatter plots, bar graphs, box and whisker
charts). Distributions. Quality control charts. Recognlzlng and dealing with
outliers. “Data = Pattern + Noise.”

Probability. Chance and randomness; calculating odds in common
situations (dice, coin tosses, lotteries); expected value. Binomial probability,
random numbers, hot streaks, binomial approximation of normal
distribution; computer simulations; estimating area by Monte Carlo
methods. Two-way tables; bias paradoxes.

Risk Analysis. Common examples of risks (e.g., accidents, diseases,
causes of death, lotteries). Ways of estimating risk. Confounding factors.
Communicating and interpreting risk.

Reasomning and [nference

Statistical Inference. Rationale for random samples; double-blind
experiments; surveys and polls; confidence intervals. Causality vs.
correlation. Multiple factors; interaction effects; hidden factors. Judging
validity of statistical claims in media reports. Making decisions based on
data (e.g., research methods, medical procedures).
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Scientific Inference. Gathering data; detecting patterns; making
conjectures; testing conjectures; drawing inferences.

Mathematical Inference. Logical reasoning and deduction; assumptions
and conclusions; axiomatic systems; theorems and proofs; proof by direct
deduction, by indirect argument, and by “mathematical induction.”

Verification. Levels of convincing argument; persuasion and
counterexamples; logical deduction; legal reasoning (“beyond reasonable
doubt” vs. “preponderance of evidence”; court decisions interpreting
various logical options); informal inference (suspicion, experience,
likelihood); classical proofs (e.g., isosceles triangle, infinitude of primes).

Variables and Equations

Algebra. Variables, constants, symbols, parameters; equations vs.
expressions. Direct and indirect variation; inverse relations; patterns of
change; rates of change. Graphical representations; translation between
words and graphs. Symbols and functions.

Equations. Linear and quadratic; absolute value; 2 x 2 systems of linear
equations; inequalities; related graphs.

Graphs. Interpretation of graphs; sketching graphs based on relations of
variables; connection between graphs and function parameters.

Algorithms. Alternative arithmetic algorithms; flowcharts; loops;
constructing algorithms; maximum time vs. average time comparisons.

Modeling and Decisions

Financial Mathematics. Percentages, markups, discounts; simple and
compound interest; taxes; investment instruments (stocks, mortgages,
bonds); loans, annuities, insurance, personal finance.

Planning. Allocating resources; management information systems;
preparing budgets; determining fair division; negotiating differences;
scheduling processes, decision trees; PERT charts; systems thinking.

Mathematical Modeling. Abstracting mathematical structures from
real-world situations; reasoning within mathematical models;
reinterpreting results in terms of original situations; testing interpretations
for suitability and accuracy; revision of mathematical structure; repetition
of modeling cycle.




Scientific Modeling. Role of mathematics in modeling aspects of science
such as acceleration, astronomical geometry, electrical current, genetic
coding, harmonic motion, heredity, stoichiometry.

Technological Tools. Familiarity with standard calculator and computer
tools: scientific and graphing calculators (including solving equations via
graphs); spreadsheets (including presentation of data via charts); statistical
packages (including graphical displays of data).
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