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History and Aims of the PME Group

PMT. came into existence at the Third International Congress
on Mathematical Education (ICME 3) held in Karlsruhe, Germany,
in 1976. It is affiliated with the International Commission for
Mathematicai Instruction.

The major goals of the International Group and of the North
American Chapter (PME-NA) are:

1. To promote international contacts and the exchange of
scientific information in the psychology of mathematics
education;

2. To promote and stimulate interdisciplinary research in the
aforesaid area with the cooperation of psychologists,
mathematicians and mathematics teachers;

3. To further a deeper and better understanding of the psycho-

logical aspects of teaching and learning mathematics and
the implications thereof.
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Preface

The program for PME-NA XX was discussed and changes pro-
posed by PME-NA members attending the October, 1997, annual
meeting at Illinois State University. The theme of this conference is
the richness and power of students’ mathematical ideas where stu-
dents are broadly defined to include children, adolescents, and adult
learners. This theme is the focus of three plenary papers. Pat Thomp-
son and Paul Cobb debate the merits of psychological frameworks
versus sociocultural frameworks in their paper. Alan Schoenfeld dis-
cusses the theoretical implications of the Berkeley model for Teach-
ing-in-Context along with standards to judge such models. Jere
Confrey explicates a splitting-based analysis of multiplicative struc-
tures with examples of students who successfully build mathematics
structure.

At the 1997 annual meeting, the Steering Committee proposed
that preliminary proposals could be submitted in either English or
Spanish, and this change in procedure was approved by the general
membership. Another change proposed was to create 10 Working
Groups with an appointed organizer and panel members as a means
of increasing PME-NA attendance by senior researchers. The pur-
pose of these working groups was to establish a community of re-
searchers with common areas of expertise. Organizers of each work-
ing group have established goals and strategies to increase the schol-
arly activities within each of these 10 communities. It was expected
that many of the working groups will continue to collaboratively
pursue common research interests over the course of this year. The
following working groups and organizers were established for pilot
in 1998:

Advanced Mathematical Thinking - Kathleen Heid
Algebra - David Kirschner & Carolyn Kieran
Collegiate Mathematics - Ed Dubinsky

Gender and Mathematics - Suzanne Damarin & Diana
Erchick

Geometry and Technology - Douglas McDougall
Probability and Statistics - Carolyn Maher

Rational Number, Ratio, and Proportionality - Tom Post
Representations and Visualization - Fernando Hitt '

Socio-Cultural Theories - Judit Moschkovitz & Karen
Fuson

Teacher Education - Martin Simon

Beyond the papers of the 4 plenary speakers and 10 working
groups, there are papers from 2 discussion groups, 79 research re-

i Q
RN V3 ) | -



ports, 40 short oral reports and 50 poster sessions. There were 232
proposals submitted for review. The acceptance rate for research
reports was 56%. The research reports. discussion groups. short orals.
and poster presentations are organized by topic following the pattern
begun with the Proceedings of the 1994 PME-NA meeting. Propos-
als for all categories were blind reviewed by three reviewers with
expertise in the topic of submission. Cases of disagreement among
reviewers were refereed by a subcommittee of the Program Commit-
tee at North Carolina State University.

Submissions for the Proceedings were made on disk: read. ed-
ited, and formatted by the editors. The format of the papers was ad-
justed to make them uniform and to conform to the page limit speci-
fied in the documentation for manuscript submission.

The editors wish to express thanks to all those who submitted
proposals, the reviewers of proposals. the PME-NA XX Steering
Committee, and the PME-NA XX Program Committee. The Program
Chair would like to extend special thanks to the mathematics and
science education faculty at North Carolina State University for their
support and generous contributions to make this a succéssful profes-
stonal experience for the community of mathematics education re-
searchers.

The Editors

Sarah B. Berenson. Chair of PME-NA
Karen R. Dawkins

Maria L. Blanton

Wendy N. Coulombe

John R. Kolb

Karen Norwood

Lee V. Stff
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ON RELATIONSHIPS BETWEEN PSYCHOLOGICAL
AND SOCIOCULTURAL PERSPECTIVES

Pat Thompson Paul Cobb
Vanderbilt University Vanderbilt University
Pat. Thompson @ Vanderbilt.edu CobbP@ctrvax.Vanderbilt.edu

Discussions of sociocultural perspectives of education and educative processes
continue to occupy center stage in educational research and mathematics education.
In part, this is a natural reaction to the not-so-distant predominance of strongly
reductionist psychological theories drawing upon a correspondence between mental
representation and an external mathematical reality. Also, one of us has written
extensively about the difference between claiming that a perspective “has it right”
and acknowledging the possibility of adopting different stances in regard to a given
observation (Cobb, 1990, 1991, in press; Cobb, Yackel, & Wood, 1992). But tensions
do exist in trying to reconcile the two perspectives so that one need not suffer

“split-brain’ syndrome in order to use both without contradiction (Confrey, 1991,
1995; Steffe, 1995).

In this paper we make public an ongoing discussion related to the com-
patibility of psychological and sociocultural perspectives, and our discus-

sions of how either might be rethought to be more compatible with the
other.

Pat

The movie Contact opens showing us the earth as seen from an orbit-
ing satellite. The camera backs.away slowly at first, then increasingly rap-
idly, showing the moon in orbit around the earth, then the earth-moon pair
orbiting the sun. Mars appears to our left, then Jupiter, then Saturn. The
planets and sun diminish in size as we leave the solar system, which itself
becomes a speck against a sparkling background as we back away further,
passing Alpha Centauri. We pass through interstellar dust as we approach
the Milky Way’s edge, then we exit the Milky Way and continue backing
away until we see thousands of galaxies, then nebulae, and so on.

To me, a significant aspect of this opening was that at no moment did 1
feel like I'd made a jump in perspectives. I always had the feeling of mov-
ing through a continuous transition. Not once did I wonder about what 1
was seeing or how it fit within the overall transition. It was only when I
thought of fixed states within a larger overall transition, such as from an
image of a single cell to an image of thousands of galaxies, that I was
startled by a sense of apparent disconnection. But the sense of apparent
disconnection dissipates when we can imagine “zooming” continucusly
from one state to the next, keeping a coherent image of the transition.



We might describe any one perspective in isolation of the others in
structural terms related to human experience (e.g., swirls, columns, dust,
clouds, etc.). At the same time, it would be a challenge to describe the
mechanics of an exploding star using cell-level vocabulary. But we can
aspire to develop theories which articulate well enough across observa-
tions differing in orders of magnitude that we can translate among them
while keeping a sense of underlying or overarching phenomena.

I find this image, of “zooming out continuously”, to work metaphori-
cally for making a distinction between a unified perspective and the
coordination of multiple perspectives. A unified perspective is one which
enables us to transition among seemingly disparate phenomena —
phenomena which seem to need their own theories. Thermodynamics is
one example of a unified perspective. For many years, heat energy,
energy of falling objects, and the work of physical labor were treated as
unrelated quantities. The genius of thermodynamics was that it recon-
ceived the idea of energy so that measures of one form could be trans-
formed into an equivalent number of units appropriate for another form
(Klein, 1974).

The distinction between unified and multiple perspectives isn’t a
huge distinction, and it isn’t new. The unification of quantum mechanics
and the general theory of relativity was one of Einstein’s major, unful-
filled efforts (Fritzsch, 1994; Hawkings, 1988), and that one of the
obstacles to the unification is an absence of appropriate imagery in which
phenomena in both might be grounded (Miller, 1987). Newell (1973)
pointed out that what one takes as an object versus what one takes as
process varies with one’s grain of analysis. Paul’s enormously powerful
work on coordinating psychological and social perspectives (Cobb, 1990,
1995) makes a parallel point about coordinating different background
theories as a way of looking at classrooms from different points of view.

What might be a little new in the above is an orientation toward
establishing ways of thinking about phenomena that enable shifts be-
tween perspectives to be more like continuous zooming. Making the
attempt to think of unifying metaphors may be useful for framing current
questions about psychological versus social perspectives in mathematics
education. To achieve a unification of psychological and social perspec-
tives would mean that we become able to “zoom” out or in with respect
to a set of problems without loosing sight of where we started. In particu-
lar, we could “zoom in” from what we see as patterns of sociocultural
activity to seeing that same activity as an expression of a hugely complex
set of interactions among reflectively acting, cognizing, remembering,
interpreting, feeling individuals. Also, we could zoom out from what we
see as a collection of individuals who vary (or not) with respect to some
set of characteristics we’ve deemed of interest, and who we imagine
interacting by various means and with various resources, to seeing that
same collection as having stable and persistent characteristics that appear
to be independent of individual participants.
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Paul

Pat, I find your metaphor of zooming for coordinating perspectives
(or perhaps levels of analysis) helpful. I assume that you have something
like this in mind:

1. A student,

2. located in ongoing small group interactions,

3. located in an emerging classroom microculture,

4. located in the activity system of the school,

5. located in the practices of the local community,

6. located in the broader policy environment.

To start the conversation, I want to make two observation sparked for
me by the metaphor. The first is to differentiate zooming and the nesting
of settings from an alternative slant on the coordination of perspectives.
As an illustration, imagine that we are analyzing video-recordings of a
one-on-one teaching session between a researcher and a student. We
might focus on the ways in which the student reorganizes his or her
mathematical reasoning while interacting with the researcher. A psycho-
logical constructivist analysis of this type is, in effect, made from inside
the interaction and is concerned with the student’s interpretations of the
researcher’s actions. Alternatively, we might analyze the same video-
recording by focusing on patterns and regularities in the ongoing interac-
tion, and on the taken-as-shared meanings that the researcher and stu-
dents jointly establish rather than on the student’s (or teacher’s) personal
interpretations. A symbolic interactionist interpretation of this type is
established from the outside and makes the interaction between the
researcher and student and explicit object of analysis. As a further
possibility, we might view the researcher and student representatives of
different cultural traditions who are attempting to communicate. For
example, we might contrast the suppositions and assumptions that the
student makes as a consequence of her history of participation in particu-
lar cultural practices with those that the researcher makes about the
teaching session as a consequence of her induction into a particular
research tradition in graduate school. In an analysis of this type, which
might be characterized as sociohistorical in nature, our position is not
merely outside the local interaction, but is outside entire communities of
practice. _

My point in giving this example is to illustrate a case of coordinating
perspectives in which the scale of the phenomenon to be explained does
not change (at least on the surface). To be sure, zooming is still involved
— from inside the ongoing interaction, to outside the lpcal interaction, to
outside broad cultural traditions. However, it is accomplished (usually
implicitly) by the analyst as she switches from one perspective to an-
other. If we think about the coordination of theoretical perspectives in
such cases, the challenge of developing a “unified theory” involves
integrating a number of well-established theoretical perspectives such as
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psychological constructivism, symbolic interactionism, and
sociohistorical theory. The result would be something akin to a cosmol-
ogy that purports to provide a way of explaining almost everything
independently of situation and purpose. Aside from the issue of feasibil-
ity in light of conflicting epistemological assumptions, the quest for an
over-arching theoretic scheme of this type is of little interest to me as a
mathematics educator. To explain why, I turn to the second observation
sparked by your zooming metaphor.

As I read-the analogies you draw with the development of theory in
physics, I found myself reflecting on a characteristic of official, public
scientific (and mathematical) discourse that is incidental to your argu-
ment. As we are both aware, this discourse assumes an agent-less voice
that masks the interests and purposes for which a theory was developed,
and instead portrays the theory as the result of reading of the Book of
Nature. At times, when I read attempts to synthesize, say, Piagetian and
Vygotskian theory, I have a sense that this same orientation is involved.
In my view, this orientation, which Shotter (1995) referred to as the lure
of cosmology, should be avoided by mathematics educators. The type of
work we do as we seek to contribute to the continual improvement of the
learning and teaching of mathematics is not a spectator sport. Instead, co-
participation is at the core of work in our field. We might, for example,
co-participate in mathematical reasoning with a student during a one-on-
one teaching session, or we might co-participate with a teacher and his
students is the learning and teaching of mathematics during a ciassroom
teaching experiment, or we might co-participate with a group of teachers
in the development of a professional teaching community, or we might
co-participate in the restructuring of a school or school system as we
attempt to forge a common agenda with teachers and administrators. For
me, it is essential that the theoretical constructs we use to make sense of
what is happening in any of these cases capture our co-participation in
the process of educational improvement. To put the matter even more
directly, we have to avoid what might be termed split-brain syndrome
wherein we co-participate in the educational process with students,
teachers, and administrators, but then describe the experience of doing so
in the agent-less voice of the ultimate observer.

Against the background of these observations (some would say
diatribes), let me return to your zooming metaphor and formulate the
issue as I see it. I hope it is clear that the various forms of co-participa-
tion listed above can easily be brought into correspondence with nested
settings that I listed at the outset. On my interpretation, the issue you
ratse is that of developing a coherent set of interrelated theoretical
constructs that enable us to make sense of the various levels of activity in
which we might co-participate as we seek to contribute to the ongoing
improvement of mathematics teaching and learning. In this context,
coherent means that analyses of one level of activity can, at least in



principle, be recast in terms of analyses of activity at other levels. This s,
I believe, consistent with the spirit of your proposal. I wouid also add
that an important criterion for me is that analyses of any level of activity
feed back to inform our own (and hopefully others’) decisions and
judgments as we strive for improvement. The theoretical constructs used
to develop such analyses therefore have to do work. They might best be
viewed as conceptual tools that are specifically designed to support the
ongoing process of change and innovation. And, in this process, the
theoretical constructs would be modified and adapted in response to the
pragmatic concerns and interests that are encountered. In addition to
grounding theory to the multiple settings of mathematics learning and
teaching, this openness to pragmatic concerns serves as an antidote to the
lure of cosmology.

Now it’s your turn at the plate. Does the issue as I have formulated it
provide an adequate basis for our continuing conversation, or do you
want to tweak it a little?

Pat

Thank you, Paul, for helping me elaborate my original idea. In doing
so I think you take the conversation in interesting and productive direc-
tions I hadn’t considered. I'd like to begin with your last point, on co-
participation, then your early example of analyzing a videotaped inter-
view from multiple perspectives, then my original zooming metaphor.
This will be with the aim that we tease out some of the details needing
attention if we’re to actualize the connections we have in mind.

I remember learning in college that, to write scientifically, I should
write with authority, and to write with authority often translated into
writing in the passive voice. It is by employing this simple grammatical
trick, writing in the passive voice, that we, as researchers and observers,
turn our (certainly powerful!) personal insights into seemingly general
truths read from “The Book of Nature.” You said:

For me, it is essential that the theoretical constructs we use to
make sense of what is happening in any of these cases capture
our co-participation in the process of educational improvement.
To put the matter even more directly, we have to avoid what
might be termed split-brain syndrome wherein we co-participate
in the educational process with students, teachers, and adminis-
trators, but then describe the experience of doing so in the agent-
less voice of the ultimate observer.

This reminded me of Steir’s (1991, 1995) proposal that people doing
research in social settings attempt to capture their own contributions to
the phenomena they investigate, being open to the possibility that there
might not be anything to investigate had they not participated in creating
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the phenomena being studied. But even more, I read your statement as a
call that we always attempt to speak in ways that allow readers to know
where we, as observers, have positioned ourselves relative to what we
are describing. Put another way, I interpret your suggestion as one that
calls on us, as researchers, to always make clear in our text for whom we
imagine ourselves speaking. In regard to viewing a videotape of a
researcher and child and reporting our observations and analyses, we
could imagine ourselves speaking for:

* a participant in a dialog, conveying that person’s meanings and
motivations;

» an observer of a dialog who has access to the participants’
personal meanings and to each participant’s ongoing interpreta-
tions of the other; _

* an observer of a dialog who has access to the participants’
personal histories and to the histories of groups with whom they
identify themselves.

Your suggestion is especially powerful in its implications for making
research easier or harder for outsiders to read. By striving to make clear
for whom our text speaks, we help readers position themselves as they
build images of the phenomena we describe. This, with one small
exception, is consistent with your notion that sometimes we choose from
among different theoretical perspectives without “zooming” between
scales of analysis. The exception is one you noted yourself — that in
moving from one perspective to another *“...zooming is still involved —
from inside the ongoing interaction, to outside the local interaction, to
outside broad cultural traditions. However, it is accompiished (usually
implicitly) by the analyst as she switches from one perspective to an-
other.”

So, in proceeding it might be useful to state what I see is our com-
mon position and restate the issue I’¢ hoped to raise with the metaphor of
“zooming” among perspectives. I see our common position being that we
need a way to imagine the amalgam of settings in which we situate our
activities, observations, and analyses so that we can move across levels
of analysis — across what you’ve described as psychological
constructivism, symbolic interactionism, and sociohistorical theory —
without lapsing into the passive voice, and thereby avoiding “agentless
descriptions given by a universal observer”. The issue I'd hoped to raise
is that these “ways of imagining ...” will not come free. We must discuss
and debate possible “ways of imagining” explicitly (Miller, 1987). 1
should also agree explicitly with another point you made — that, as
mathematics educators, we should not lose sight that our actions are
tightly bound up with a set of core problems having to do with the
improvement of individuals’ mathematics education. This, I believe, will
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keep us from trying to develop, as you say, a theory of everything.

I do not have in mind a particular “way of imagining”, but I can
suggest a starting point for the discussion. In fact, you suggested it by
way of example:

We might contrast the suppositions and assumptions that the
student makes as a consequence of her history of participation in
particular cultural practices with those that the researcher makes
about the teaching session as a consequence of her induction into
a particular research tradition in graduate school. In an analysis
of this type, which might be characterized as sociohistorical in
nature, our position is not merely outside the local interaction, by
is outside entire communities of practice.

I suspect that analyses of participation and of practice will be par-
ticularly rich in possibilities for elaborating “ways of thinking” which
enable one to move between levels of analysis in ways that insights
drawn at one level inform our analyses at another. The reason I think this
is that, in its common usage, “to participate,” in its intransitive form,
suggests an interface between an actor and a setting. At the same time,
“practice”, as a noun, suggests a stable form of activity within a group
which need not be a common form of activity among members, but
rather is a state of dynamic equilibrium among its inter-acting members.
So, to me, by focusing on how we might understand or come to under-
stand the ideas of participation and practice we address explicitly the
question of how we can imagine individuals’ activities and groups’
characteristics in mutually supportive, compatible ways.

In closing this piece, I’d like to make explicit to persons reading our
exchange something said by Salomon (Salomon, 1993). It is that socio-
cultural and scientific theorists tend to think of explanations differently.
Sociocultural explanations tend to be oriented toward descriptions of
intact systems having certain observed characteristics, where descriptions
tend not to appeal to intenal mechanisms which produce the observed
characteristics. Scientific explanations tend to be more mechanistic — in
the sense of aiming to produce models having components that interact
accordit. g to certain principles and which produce, through interaction,
the observed phenomenon. This is not to be confused with strong infor-
mation processing models. Maturana captured the essence of modeling
when he described it as rethinking the observed phenomenon so that you
imagine from whence it arose.

As scientists, we want to provide explanations for the phenom-
ena we observe. That is, we want to propose conceptual or
concrete systems that can be deemed intentionally isomorphic to

the systems that generate the observed phenomena. (Maturana,
1978, p. 29)
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I, personally, find the modeling perspective to be useful in that
explanations we give tend to be less ad hoc than the former. The
scientist’s production of models also reflects the high value scientists
place on explanations which support prediction. A byprcduct of adopting
a modeling point of view is that it forces us to examine our basic con-
structs, to ask “what do we mean” by such basic terms as “participation”
and “practice.”

I suppose I leave my part with the question to you, Paul, of whc her
you see this as a productive direction.

Paul

Pat, judging from your comments, I think that we are very much on
the same page. In this response, I am going to address the last you point
you raise first by discussing what we might means by such basic terms as
participation and practice. My motivation for doing so is to attempt to
clarify as much for myself as for others what we might be talking about
when we throw these terms around. Given that this is an ongoing project,
I would certainly welcome further probing and pushing on your part.
Having taken a stab at addressing this issue, I will then focus on the
points you make about modeling and explanation.

As you know. I and several colleagues' have been trying to develop
the notion of a classroom mathematical practice for the last few years.
Our motivation for doing so stems directly from the problems and issues
we have encountered while conducting classroom teaching experiments.
For example, in preparing for a teaching experiment, we outline a
possible sequence of instructional activities by envisioning how students’
mathematical learning might proceed as the potential sequence is enacted
in the classroom. In doing so, we develop testable conjectures about both
1) possible learning trajectories, and 2) the specific means that might be
used to support and organize that learning (Gravemeijer, 1994). The
important point for our discussion is that these conjectures cannot be
about the anticipated learning of each and every student in a class for the
straight-forward reason that there are significant qualitative differences
in their mathematical thinking at any point in time. In my view, descrip-
tions of planned instructional approaches written so as to imply that all
students will reorganize their reasoning in particular ways at particular
points in an instructional sequence involve, at best, questionable idealiza-
tions. A problem that has arisen for us is therefore that of figuring out
how to characterize the envisioned learning trajectories that are central to
our work as instructional designers. In particular, if it does not make

' These colleagues include Janet Bowers, Koeno Gravemeijer, Kay McClain,
Michelle Stephan, Joy Whitenack, and Erna Yackel.



sense to view them as trajectories for the learning of individual students,
then what might they be trajectories of? Our current (and potentially-
revisable) solution is to view a hypothetical learning trajectory as con-
sisting of conjectures about the collective mathematical development of
the classroom community. This proposal in turn indicates the need for a
theoretical construct that enables us to talk explicitly about the math-
ematical learning of a classroom community.

* If we think of theoretical constructs as tools that are developed for
particular purposes and interests, then additional design specifica-
tions for the theoretical tool that we need include. It should enable
us to think about communal mathematical development over the
extended periods of time that are covered by instructional se-
quences. :

* It should enable us to make sense of what might be happening in
classrooms over these time periods in such a way that the resulting
analyses feed back to inform the ongoing instructional design
effort.

* It should enable us to relate the collective mathematical activity of
the classroom community to both the developing mathematical
reasoning of the participating students and to the broader activity

- system of the school (see the nesting of settings discussed earlier).

My reason for suggesting this last criterion is again pragmatic. For
example, when we make pedagogical decisions and judgments during a
teaching experiment, we find it essential to attend to students’ qualita-
tively different ways of interpreting and solving tasks, and in fact view
that diversity as a primary resource upon which to capitalize when
attempting to advance our pedagogical agenda. Further, we are all too
aware from personal experience that events in the classrocm do not occur
in a social vacuum. Influences that we have found it necessary to take
into account over the years include the students’ prior instructional
histories, the institutionalized procedures for assessing both students and
teachers, the established norms of participation for teachers within the
school community (i.e., their obligations to other teachers, administrators
and parents), and the students’ developing identities as members of
groups within the student body. In light of these issues, I hope it is clear
that while I am interested in coordinating levels of analysis, the purpose
for me is not to develop an encompassing theoretical scheme as an end in
itself. Instead, it is to come to grips with the types of issues that we find
ourselves addressing in the course of our work.

It is against the background of these and other considerations that we
have attempted to “hammer out” the notion of a classroom mathematical
practice. Described in terms of this construct, an envisioned learning
trajectory consists of an anticipated sequence of classroom mathematical
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practices together with conjectures about the means of supporting their
evolution from prior practices. To clarify what we might mean by a
mathematical practice, I will focus of three interrelated aspects: 1) The
taken-as-shared purpose, 2) the norms for mathematical argumentation,
and 3) the taken-as-shared ways of reasoning with tools and symbols. In
doing so, I am going to give a brief example from a seventh-grade
teaching experiment with which you are familiar that are focused on
statistical data analysis. During this experiment, the students routinely
used computer minitools prototyped in Java to compare univariate data
sets. In an analysis of this experiment, we argued that the first math-
ematical practice that emerged as the studerits used one of these
minitools involved exploring qualitative characteristics of collections of
data points. In giving this characterization, we are claiming that the
taken-as-shared purpose for analyzing data sets in this classroom was to
identify qualitative trends or patterns. For example, in one instructional
activity, the students attempted to determine which of two brands of
batteries was superior by analyzing data on the life spans of ten batteries
of each brand. A pattern identified by one student that was treaied as
significant by the teacher and other students was that all the batteries of
one brand lasted more than 80 hours whereas two batteries of the other
brand lasted considerably less than 80 hours. As this illustration indi-
cates, part of the challenge when describing a mathematical practice is to
clarify what mathematical activity might be about in a particular class-
room at a particular point in time.

Data Conclusion

A 4

Warrant
Explain how the data have been
structured and interpreted.

T

Backing
Explain why his way of structuring the data is
appropriate with respect to the question at hand.

Figure 1. Toulmin’s Justification Scheme
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In this same analysis, we also argued that the teacher and students
negotiated particular norms for mathematical argumentation. In terms of
Toulmin’s (1969) scheme, this can be represented as shown in Figure 1.

In the case of the sample solution, the student concluded from the
data that one of the brands of batteries was superior. He also gave a
warrant that explained why the data suprorted the conclusion when he
said that he had used the computer minitool to partition the data sets at
80 hours and had noticed that two batteries of one brand lasted less than
80 hours. In addition, he gave a backing to indicate why his warrant and
thus his method for comparing the two data sets should be accepted as
having authority when he explained that he wanted a consistent battery
that would last at least 80 hours. The norms of argumentation exempli-
fied by this explanation both reflect the taken-as-shared purpose for
analyzing data outlined above and serve to further clarify that purpose. In
particular, searching for patterns was not an end in itself. Instead, the
natterns identified by structuring data in a certain ways had to be justified
with respect to the question at hand.

The norms for argumentation also relate to the third aspect of the
mathematical practice we analyzed, the taken-as-shared ways of reason-
ing with the computer minitool, in that the students were developing
argumeaits for a decision or judgment when they used the minitool to
analyze data. In general terins, this last aspect of a mathematical practice
is concerned both with the ways of using tools and symbols that are
treated as legitimate in the classroom, and with what is reasoned about
while doing so. In the case of the statistics teaching experiment, taken-
as-shared ways of using the minitool to organize data included partition-
ing data sets, bounding the data points in particular intervals, and bound-
ing clusters of data points. Further, the taken-as-shared ways of reasoning
about data that was organized in these ways appeared to be additive
rather than multiplicative (see Cobb, in press, for a more detailed discus-
sion). It was for this reason that I in fact spoke of the students exploring
qualitative characteristics of collections of data points rather than, say, of
distributions. In our estimation, as we looked at public classroom dis-
course at the beginning of the teaching experiment, there was no indica-
tion that the teacher and students were concerned with how data sets
were distributed in a statistical sense (cf: Konold, Pollatsek, Well &
Gagnon, 1996). Instead, classroom discussions focused on the number of
data points in particular intervals, or above or below a partic:!ar values.

Well, Pat, that is the best that I can currently do to say what I mean
by a classroom mathematical practice. I should clarify that we have
refined this notion as we have conducted a number of specific analyses.
Part of the difficulty is therefore that of trying to explicate what we
actually do in action while making sense of what might be going on in
the classrooms in which we work. I would therefore anticipate that there
are a number of implicit suppositions and assumptions that we are yet to

3 40



dig out. In your language, how adequate is the above account in helping
you build imagery for the phenomena we are attempting to describe (and
how adequate is the construct itself given the purposes for which it is
being developed)?

In considering the other term you mention, “participation”, we have
to address the issue of coordinating individual and communal perspec-
tives on classroom events head on. In the way that I currently look at
what is going on in classrooms, a student’s mathematical reasoning is his
or her way of participating in communal classroom practices. Obviously,
this statement needs to be unpacked. When I speak of a student’s math-
ematical reasoning, I am taking a psychological constructivist perspec-
tive that brings qualitative differences in students’ thinking to the fore. In
contrast, when I speak of participation in communal practices, I am
taking a social perspective that situates the student’s reasoning within an
evolving classroom microculture. The above statement therefore involves
a claim about how these two perspectives on a student’s mathematical
activity might be coordinated (and thus how the collective mathematical
activity of the classroom community might be related to the developing
mathematical reasoning of the participating students). We in fact take the
relation between the two perspectives to be reflexive. This is an ex-
tremely strong relationship and does not merely mean that individual
students’ reasoning and the practices in which they participate are
interdependent. Instead, it implies that one literally does not exist without
the other (Mehan & Wood, 1975). What, from one perspective, is viewed
as an individual act of reasoning is, from the other perspective, viewed as
an act of participating in the communal practices of the classroom
community.

I hope that it is clear from this brief account that the coordination at
issue is not between individual students and the classroom community
viewed as separate, sharply defined entities. Instead, the coordination is
between two alternative ways of looking at and making sense of what is
going on in classrooms. In other words, we are coordinating different
ways in which we can interpret classroom events. What, from one
perspective, are seen as the norms and practices of a single classroom
community is, from the other perspective, seen as the reasoning of a
collection of individuals who mutually adapt to each others actions.
Whitson (1997) articulates this point as clearly as anyone when he
proposes that we think of ourselves as viewing human processes in the
classroom, with the realization that these processes can be described in
either social or psychological terms. This formulation is, I believe,
consistent with your discussion of the need to aliow readers (or conversa-
tion partners) know where we have positioned ourselves relative to what
we are describing. '

In turning to consider your comments about medeling and explana-
tion, I should clarify that my commitments as I try to understand what
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might be going on in classrooms are more than just to understand the
particular case at hand. Instead, specific classrooms serves a paradigm
cases as I try to develop ideas that might have more general relevance
and yet remain rooted in the settings in which we co-participate with
teachers and students. In the case of the statistics teaching experiment,
for example, our more general concerns were to further develop the
notion of a classroom mathematical practice and to deepen our under-
standing of the role that tool and symbol use can play in students’
mathematical development. I would note that in an approach of this type,
theorizing is not an abstract, esoteric game. Instead, it is a means of
attempting to be more effective in supporting students’ mathematical
learning. As a consequence, the perennial problem of bridging the gap
between theory and practice fails to materialize in that the resulting
theoretical ideas do not stand apart from practice but are instead devel-
oped in the context in which they will be used.

As a further point, I want to question whether models of the type you
describe that involve "components that interact according to certain
principles and which ... produce the observed phenomenon” are necessar-
ily the most useful for our purposes as mathematics educators. I assume
that the primitives in such a model of a classroom community might be
the teacher’s and students’ ways of interpreting each others’ actions.
When the model is “turned loose”, broad pattern such as those that we
point to when we speak of classroom mathematical practices might then
emerge as epiphenomena in much that same way that patterns emerge in
statistical data at the macro-level. A difficulty for me concerns what
might be taken as a primitive in such a model. Earlier, I clarified that I
take the relation between psychological and social perspectives and thus
between individual students’ reasoning and the practices in which they
participate to be reflexive. Given this theoretical commitment, teachers’
and students’ reasoning are not seen to exist apart from their participation
in communal practices, just as the practices are not seen to exist apart
from their continual regeneration as teachers and students mutually adapt
to each others’ activities. Thus, in adopting this view, I would not treat
individual students’ reasoning as being more primitive than communal
mathematical practices, or vice versa. Just as I would have difficulty with
a theoretical position that portrayed students’ reasoning as being deter-
mined by their participation in communal practices, so I would question
an approach that treats communal practices as mere epiphenomena. In
classroom teaching experiments, for example, our understanding of
students’ history of participation in classroom mathematical practices
helps us explain their reasoning in exit interviews. This attention to
history does not appear to be as relevant to the concerns of physicists and
biologists when they think through how the primitives in the systems that
they study will behave.



[ think that I have said more than enough at this juncture. As you can
see, I certainly found you comments both stimulating and provocative.
Hopefully, this response will serve to move the conversation along.

Pat .

Well, Paul, you certainly did move the conversation forward. Let me
see if I can recap what I last said and your response to it. I suggested that
it might be productive for us to discuss “ways to imagine” social and
psychological phenomena that would support our ability to “zoom”
between individual and social perspectives so that each truly becomes
background for the other. I suggested that the ideas of participation and
practice might be productive sites for this discussion, because the idea of
participation seemed to entail a relationship between individuals and a
group in which they are members, and activity of the group in which the
individuals participate. I also drew a distinction between explanations
common to sociocultural theories, which tend to describe social systems
as unanalyzed wholes having various properties, and scientific explana-
tions which are more analytic, breaking a system into component parts
and postulating how those components might interact to produce the
observed phenomena.

You agreed with the general thrust or my proposal, elaborating your
ideas of practice and participation, and then you went further to explain
by way of example that the idea of practice is important in your own
work because it supports your goal of understanding and affecting what
happens in classrooms. You closed by wondering what utility the activity
of scientific modeling might have for mathematics education, stating
your strong dislike for any approach that proposes communal practices as
“mere epiphenomena’.

To respond to all this is a challenge! I'll jump around a bit by first
touching on the example of practice as employed in your current project
and its affiliation with the notion of “taken as shared”. Then I'll respond
to your question about the utility of analytic models, and in doing so try
to explicate a confusion I have which stems from your remarks about
epiphenomena.

If I understand you correctly, you use “practice” in two senses — one
which supports your attempt to express what you hope an instructional
sequence produces. I had a horrible time formulating the previous
sentence so that I wouldn’t say something to which you would take
immediate exception. My original inclination was to say, “... what you
hope students learn,” not meaning that you expect every student to learn
what you state, but rather that you would be delighted if they did. In my
understanding, you use “practice” in the context of instructional design
almost heuristically — as a way to finesse the sticky problem of saying
what you hope students learn without committing yourself to the impos-
sible objective that every student learn it. It provides a way to imagine
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“the class, collectively” as if it were one person who could participate in
every setting you might imagine being pertinent to the ideas and disposi-
tions you want to address. If my interpretation is consistent with ycur

~ intention, then this sense of “practice” is consistent with what I wouid, in
other settings, call “cognitive goals of instruction” — the imagery,
orientations, dispositions, mental operations, schemes, etc. that would
enable a person to contribute to and partake of classroom conversations,
activities, and tasks productively. I must stress again, though, that I am
talking about intention, not expectation. I find this sense of “practice”
quite powerful, for it allows me to think about not just what I want
students to know, but also to think about ways they might think of the
settings in which they find themselves that will be supportive of their
desire to participate in ways which will contribute to other students’
intellectual growth. '

But I need help understanding what you mean by communal math-
ematical development and collective mathematical activity. On one hand,
I can understand these phrases as referring to phenomena I might observe
within the confines of a classroom which, when I leave them unanalyzed,
strike me as having certain features. I see this as being parallel with
observing a particular house not as a structure that evolved over time,
emerging from the joint efforts of its builders and designers, but as an
object having a certain color, shape, and size, and having certain accou-
trements. A consumer could function quite adequately with the latter
perspective; a designer could not. I also suspect that an experienced
designer could not look at a house without a background image of the
activity producing it. That is, I suspect that the notion of collective
mathematical activity has at its center the characteristic of being an
epiphenomenon. I’ll return to this later. But first I'd like to point to
another example.

Bransford et al. (in press) described two boys, one of whom could
not read and one of whom suffered attention deficit disorder. The two
cooperated in a cooking club by each relying on the other to compensate
for his own deficit. In this setting, we could view the two as, commu-
nally, constituting a pretty effective cook. How does this example differ
from the example of a house emerging from the communal efforts of its
builders. In two ways. First, the house is the product of a group’s activity,
but we never thought of the house as somehow constituted by the crew.
The house is analogous to a meal the boys produce. But another differ-
ence is that we view the house as having a permanence that the two boys
acting together do not. The two boys acting together is more like the
crew which produced the house. We imagine the crew as having, too, a
permanence in the sense that we expect some members to leave and
others to join without affecting the crew’s overall competence. That is,
we attribute a permanence to the crew — at least in terms of continuing
competence and skill. But we don’t attribute the same permanence to the
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communal competence of Bransford’s boys, largely because we don’t
expect them to stay together in settings other than the cooking club, nor
do we expect either boy’s deficiency to be redressed by his activities in
the cooking club.

My confusion, I think, is that I don’t know how to think about
communal activities as orher than epiphenomena, at least in regard to the
goal that instruction have some lasting effect. Being epiphenomenal,
then, I won’t know whether the communal activity is valuable unless 1
know something about the changes taking place within individual
children so they may contribute to it. It seems possible, in principle, that
a desired communal practice emerges, but few students are affected in
ways that will allow them to contribute in other settings to making it
emerge again.

In the same way that I don’t know how to think of communal prac-
tice as other than epiphenomenal, at least to think of it in ways that
matter to instructional design and students’ learning, I’m afraid I don’t
know how to think of “taken as shared”. On one hand, we could, like
Voigt, (1994, 1996), mean that it is a statement about what an individual
person thinks. In Voigt’s usage, an idea is “‘taken as shared” when an
individual person presumes other people think the same way as she does
about some meaning or idea. It is the observed actor who we claim is
doing the taking.

On the other hand, we could mean something in line with Lave
(Forman, 1996; Lave, 1991), that when we imagine some meaning or
practice as being “‘taken as shared”, that we are making no claim at all
about what members of a group think, believe, or mean. Rather, the claim
that something is “taken as shared” is a claim that the group, as a single
entity, seems to act as if it were one entity which thinks in some particu-
lar way. In other words, it is the observer who does the taking. “I take
this group’s behavior as if ...”

The examples from your statistics teaching experiment are helpful in
one way, in that they clarify for me the kinds of things you see happening
communally which inform your assessment of potential learning trajecto-
ries (i.e., they inform your evaluation of instructional design). But they
are unhelpful in a very important way. On one hand, you contend that we
cannot think of classroom mathematical practices as constituting some-
thing that each and every student will learn. On the on the other hand,
you offer one student’s activity as being illustrative of a practice you
claim developed. It is in thls sense that [ see a misfit between theory and
implementation. I would think that, to implement your idea of classroom
mathematical practices in the conduct of mathematics education re-
search, we would attempt to identify in classroom activities aspects of
the class’ taken-as-shared (in Lave’s sense) activity that emerges because
of a collage of behavior emanating from an interaction among students’
taken-as-shared (in Voigt's sense) meanings. But this scems to point



again to the need to think of mathematical practices as epiphenomena.
Now, it may be that we must clarify our personal meanings of “epiphe-
nomena”. To me, it points to thinking of an observation as being the
result of something else. I must be careful lest you think that I'm attribut-
ing reality to individuals in interaction and not to communal activity. Far
from it. In that regard, I think Bishop Berkeley’s (1963) famous dictum,
“To exist is to be perceived”, is very helpful. When we see communal
activity, it exists.

In closing, I must say I couldn’t agree more with your characteriza-
tion of the reflexive relationship between social and psychological
perspectives. However, for our purposes I think that, with respect to
modeling and designing, the psychological perspective is more funda-
mental. This is for the simple reason that the groups within which
children act do not persist. Students act within many groups, and they
will join many others over their life. Therefore, we would be remiss not
to address the question of how we hope to affect individual children so
they are able to act productively in a variety of settings. That is, it is
individual children who will persist over time, not the classes in which
we view them or in which they act for relatively short periods of time.
That is why while I agree completely with your characterization that, as
perspectives, psychological and social perspectives are mutually consti-
tutive — one perspective cannot exist without the other —I choose to
view the psychological perspective as more fundamental. It aligns more
explicitly with what I take as our fundamental goal of making a positive,
lasting difference in students’ lives after they leave our classrooms.

Paul

Wow, Pat, my immediate reaction is to disappear for a month and to
develop a position paper as a means of clarifying my own thinking on the
issues you raise. However, as we are under that gun, I will try to give
quick responses to the various points you raise.

In talking about our use of the term practice in the context of instruc-
tional design, you say that:

It provides a way to imagine “the class, collectively” as if it were
one person who could participate in every setting you might
imagine being pertinent to the ideas and dispositions you want to
address. If my interpretation is consistent with your intention,
then this sense of “practice” is consistent with what I would, in
other settings, call “cognitive goals of instruction” — the imag-
ery, orientations, dispositions, mental operations, schemes, etc.
that would enable a person to contribute to and partake of
classroom conversations, activities, and tasks productively. I
must stress again, though, that I am talking about intention, not
expectation.
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Here, I believe that there is a mismatch in our interpretations in that,
from my point of view, you have recast the notion of a classroom math-
ematical practice in individualistic terms. To tease out these difference, 1
will given an example from our ongoing work. Earlier, I mentioned a
seventh-grade teaching experiment that focused on statistical data
analysis. We are in fact currently in the process of planning for a follow-
up eighth-grade teaching experiment that we will conduct with the same
group of students in fall 1998. One of the mathematical ideas that we will
focus on is that of co-variation, which includes but is not limited to
correlation. An image that I have in mind as I think about possible
instructional goals concerns how scatter plots might be talked about and
used in public classroom discourse. In particular, we (currently) want
scatter plots to be talked about and referred to as texts about the situa-
tions from which the data were generated. If this occurs, then it will be
taken-as-shared that the aspects of a situation that were judged to be
significant and were measured when generating the data co-vary, and that
the specific nature of that co-vanation is shown by the graph. This
formulation of the instructional goal provides an initial orientation for
myself and my colleagues as instructional designers and teachers. For
example, it suggests that the cloud of dots'on a scatter plot should
explicitly be spoken about in classroom discussions as measures of
aspects of a situation that are distributed in a (two-dimensional) space of
values. We therefore have an initial, provisional sense of the types of
conversations that we might want to support in the latter part of the
teaching experiment.

I hope it is clear that in stating our instructional intent in this way, |
am not thinking about the classroom community as if it were one person.
Instead, I am thinking about what the teacher and students might be
doing collectively. And in doing so, I am attempting to articulate my
(potentially-revisable) image of the immediate social situation of indi-
vidual students’ mathematical development at the end of the experiment.
In addition to formulating goals, part of the challenge when planning an
experiment is to think through possible means of achieving these goals.
In this regard, I noted earlier that this involves outlining both 1) a
learning trajectory that might culminate with the mathematical practices
that constitutes the envisioned goal, and 2) the specific means that will
be used to support and organize that learning. In the case of the eighth-
grade experiment, for example my colleague Koeno Gravemeijer has
sketched such a trajectory and, at the time of writing, we are program-
ming two computer-minitools that we hope will be effective means of
supporting the mathematical learning of the classroom community and of
the students who participate in it. I mention this to stress that, in contrast
to your example of the house, we take a developmental point of view
when we think of classroom mathematical practices. Consequently, in the
planning process, we attempt to envision how practices might emerge as
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reorganizations of prior practices. This developmental emphasis is, I
hope, also evident in our analyses of what actually transpires in the
classroom when we conduct a teaching experiment. For me, an analysis
that merely lists a number of practices without describing the process of
their emergence from prior practices would be woefully inadequate given
that a primary objective when conducting a teaching experiment is to
_investigate the means of supporting the development significant math-
ematical ideas.

Pat, a second observation you made allows me to be a little more
specific about the process of analyzing classroom events in terms of
mathematical practices. You say that the examples I gave from the
seventh-grade teaching experiment in imy last response:

are unhelpful in a very important way. On one hand, you contend
that we cannot think of classroom mathematical practices as
constituting something that each and every student will learn. On
the on the other hand, you offer one student’s activity as being
illustrative of a practice you claim developed. It is in this sense
that I see a misfit between theory and implementation.

You are right, I did focus on one student’s explanation. However, in
doing so, I indicated that this explanation was treated as legitimate by the
teacher and other students. Thus, for me, it was an example of what
counted as an acceptable explanation in this particular classroom. My
focus was not on the reasoning of the student who gave the explanation
(psychological perspective), but on the status of the explanation in this
classroom community (social perspective). And, I contend, its constitu-
tion as a legitimate explanation was a collective accomplishment. As a
caveat, I should add that we would not in practice (that word again)
claim that certain norms of argumentation had been established on the
basis of one isolated case. For example, from what I said, you do not
know whether the other students were bored and had no interest in the
discussion, or whether they did not view it as their role to question each
others’ contributions. In general, when we make the inference that
something is normative in a classroom (e.g., a particular form of argu-
mentation or a way of reasoning with tools and symbols), we are claim-
ing that members of the classroom community will object when they
perceive that those norms have been breached. Thus, methodologically,
when we conjecture that something is normative in a classroom, we look
for instances where a student’s contribution violates those norms and
examine whether or not that contribution is constituted as legitimate by
the classroom community. In the case of the seventh-grade teaching
experiment, there were in fact occasions when students objected when
they perceived that the scheme of argumentation I illustrated had been
violated (Cobb, in press). This constitutes reasonably strong evidence
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that the standards of argumentation I described were normative.

A third point that you make brings us to the core issue, the types of
theoretical tools at might facilitate our attempts to contribute to the
continual improvement of the learning and teaching of mathematics.
Framed in this way, the issue at hand is not to decide whether communal
practices are epiphenomena in an ontological sense. Instead, it is to
clarify whether it more useful for our purposes to think about them as
epiphenomena or as phenomena in their own right. In this vein, you
comment that you will not know whether communal activity is valuable
unless you:

know something about the changes taking place within indi-
vidual children so they may contribute to it. It seems possible, in
principle, that a desired communal practice emerges, but few
students are affected in ways that will allow them to contribute in
other settings to making it emerge again.

Later, you reiterate this point when you say that “we would be remiss
not to address the question of how we hope to affect individual children
so they are able to act productively in a variety settings”. From this, you
conclude that “the psychological perspective as more fundamental,
because it aligns more explicitly with what I take as our fundamental
goal of making a positive difference in students’ lives”. I could not agree
more strongly with your statement of our overall goal as mathematics
educators. It is for this very reason that we have struggled so hard to
develop a way of talking about the mathematical learning of classroom
communities. I contend that what we need if we are to continually
improve our instructional designs are accounts of students’ learning that
are tied to analyses of what happened in the classrooms where that
learning occurred. An analysis of the classroom mathematical practices
established by a classroom community provides a way of describing
what transpired in the classroom over an extended period of time. In
addition, it enables us to specify the evolving social situations in which
the students’ mathematical development occurred. To be sure, this
analysis of communal learning should be coordinated with a psychologi-
cal analysis of the qualitatively different ways in which students partici-
pated in communal practices and what they learned when doing so. What
we then end up with is a situated account of students’ learning, one that
directly relates the process of their learning to the means by which it was
supported. As a consequence, we can immediately develop testable
conjectures about how we might be able to improve those means of
support. This in turn enables us to engage in educational reform as an
ongoing process of improvement in which we continually learn from our
experiences of experimenting in classrooms in collaboration with teach-
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In your argument for the primacy of the psychological perspective, I
was also struck by your suggestion that although a desired communal
practice could emerge, only a few of the participating students might
learn in significant ways. First, I should clarify that the establishment of
a classroom practice is,. for me, a collective accomplishment to which
students actively contribute by reorganizing their reasoning. Conse-
quently, a practice cannot, by definition, become established if only a
few students learn. Particular purposes, ways of arguing, and ways of

' reasoning with tools and symbols simply would not become taken-as-
shared. It could, however, be the case that the ways in which the students
reorganize their reasoning are not as significant as we had intended. This
is a question that has to be addressed empirically. In the case of the
seventh-grade teaching experiment, for example, we claim that a particu-
lar practice that involved reasoning multiplicatively about data emerged
during the last part of the experiment. Our classroom observations of the
students’ reasoning as they participated in this practice indicate that most
came to think about data in relatively sophisticated ways. To check the
validity of this inference, Cliff Konold, in his role as an independent
evaluator, is currently analyzing the individual exit interviews that we
conducted with the students. His findings could well lead us to revise our
interpretations of our classroom observations. In addition, his analysis,
when combined with the analysis of the classroom mathematical prac-
tices, will enable us to consider how our instructional design might be
improved.

In closing, I want to make a final comment that draws on my in-
volvement in the teaching during the seventh-grade teaching experiment.
This proved to be an significant experience for me in that I had not
taught in a school classroom for 15 months. I found that I was making
sense of what was happening in the classroom differently than I had done
previously. In particular, I truly saw a classroom community in which I
was a participant. For example, I found that I was looking at ongoing
discussions as collective social events. In doing so, I was able to think
about and influence the taken-as-shared ways of talking about and
reasoning with graphs and oth-r inscriptions, and thus the issues that
emerged as topics of conversation. This gave me a greater sense of
efficacy as I sought to achieve a pedagogical agenda in that I could
attempt to influence the social situation of all the students’ learning.’ I
should stress that in doing so, I tried to build on the students’ thinking
(although a viewing of the video-recordings indicates that there is
considerable room for improvement in this regard). However, rather than
looking at students contributions in purely individualistic terms, I found

* The conjectured learning trajectory for the instructional sequence was also im-
portant in that it, in effect, provided a big picture that served to frame the local
pedagogical decisions and judgments that ] and my colleagues made.
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that I was viewing them as acts of participation in ongoing social events.
This seemed to make the challenges of teaching more tractable. Perhaps
you can keep track of and attempt to influence the reasoning of 30
different individual students simultaneously. Such a feat is beyond my
limited capabilities. However, I found that I could (to some extent)
monitor both what we were doing as a community and three or four
qualitatively distinct ways in which the students were participating in
these collective activities. As a ccnsequence, classroom situations that
seem almost overwhelming complex when viewed in purely. individualis-
tic terms became more manageable.

Conclusion

This conclusion is written by just one of us (PT). Paul and I were
supposed to write the conclusion while attending a meeting in
Amsterdam. Unfortunately, I sat, stranded, in Washington Dulles airport
while Paul was in Amsterdam, and the deadline for final manuscript
passed. As such, Paul can’t be held accountable for whatever conceptual
errors I reveal in these last few paragraphs.

We began this paper with ~ inetaphor — zooming between perspec-
tives without losing the overarching or underlying phenomena revealed
at various scales of observation. We then explored how we might think of
psychological and sociocultural perspectives regarding mathematical
understanding/learning/activity to realize promising directions for
resolving conceptual conflicts between them, and in the process revealed
what appear to be different commitments to forms of explanation and
justification.

We did agree that the notions of practice and participation seemed
promising sites for making a connection between psychological and
social perspectives, but we ran into problems on how to view social
activity. Pat prefers to think of interaction and mutual influence among
individuals as being fundamentally constitutive of social activity. This is
in the same way that we think of chemical and molecular interactions as
being fundamentally constitutive of organic matter. We may not under-
stand the interactions in all their details, nor may we keep track of them
in real time. But we never pretend that perspectives of molecular interac-
tions and of organic matter are mutually, reflexively constitutive. Organic
matter “emerges” through special types of molecular interaction.

At the same time, Paul prefers to think of perspectives of individual
interaction and sociomathematical activity as being mutually, reflexively
constitutive. This is not to say that individuals and groups are mutually
constitutive. Rather, he prefers to adopt a perspective of social activity
that is fundamentally individualistic and adopt a perspective of indi-
vidual activity that is fundamentally social. One cannot conceive either
without having adopted the other.



We still agree that continued efforts to explicate the ideas of partici-
pation and practice will be productive. These are ideas that seem to
embody, at heart, significant aspects of both psychological and sociocul-
tural perspectives simultaneousiy.
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ON THEORY AND MODELS: THE CASE
OF TEACHING-IN-CONTEXT

Alan H. Schoenfeld
University of California at Berkeley
alans@socrates.berkeley.edu

The Teacher Model Group at Berkeley has, for some years, been work-
ing toward the development of a theoretically driven model of the teaching
process. The idea is to characterize, with the kind of precision typically
used in cognitive models, how and why teachers do what they do “on line”
~ that is, during the act of teaching. The main questions invoived in con-
structing this kind of model of teaching-in-context are as follows: What
knowledge does the teacher have? What beliefs? What goals? How does
the teacher perceive unfolding events in the classroom? What decisions
does he or she make, for what reasons? How does all this fit together, in
fine detail, at a level of mechanism?

We see this kind of work on modeling teaching as having both practi-
cal and theoretical implications. I will not pursue the practical side of things
in this paper, although I hope some of the pragmatic implications are obvi-
ous. Simply put, the better you understand any process, the more potential
you have to make it work better. Doing so may be far from easy — consider
how much work it has taken to translate research on problem solving into
productive problem-solving instruction — but as the case of problem solv-
ing shows, improved understanding can indeed yield improved performance.
Details regarding the pragmatic implications of our work in modeling teach-
ing, and on what it may take to transiate this kind of theoretical work into
practice, may be found respectively in Schoenfeld (in press-a) and van Zee
and Minstrell (in press). X

My focus in this paper is primarily metatheoretical. Main concerns are
questions of what theories and models of cognitive/behavioral phenomena
such as “teaching-in-context” might look like, and establishing standards
by which to judge work of this type. Within the space allotted for this pa-
per, I can only suggest the dimensions of the model itself and of the cases
we have worked through in detail. This will (just barely) convey some of
the flavor of the work. Then I shall suggest how well the model measures
up to the standards that have been elaborated. Though there i1s scant room
for detail here, extensive detail can be found in a forthcoming volume of
Issues in Education, which includes an extended discussion of the model
(Schoenfeld, in press-a), a series of commentaries on it. and a response to
the commentaries (Schoenfeld, in press-b), and in two papers that offer
case studies (Schoenfeld, Minstrell, & van Zee, 1996; Zimmerlin and
Nelson, 1996). I begin by providing some brief examiples of situations that
we have modeled.
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Cases in point: Typical situations that we try to model.

Example 1: Jim Minstrell. James A. Minstrell teaches physics at Mer-
cer Island High School in Washington state. Minstrell is an award-winning
teacher who has written extensively about his goals and practices (see, e.g.,
Minstrell, 1989, 1992; van Zee & Minstrell, 1997a, 1997b.). It is the fourth
day of the school year. Minstrell is teaching a lesson of his own design, one
of a sequence of introductory lessons carefully constructed to introduce
students to some of the important themes underlying the course. He wants
students to experience physics as a sense-making activity, and to under-
stand that even in rather simple and ostensibly “objective” judgments, there
are multiple issues of discretion — e.g., in deciding which data to collect,
which data to “count” after they have been collected, and how to combine
and interpret those data.

The topic under discussion appears simple: what is the width of a particu-
lar table in the classroom? Eight students in the class have taken measure-
ments, in centimeters, and have produced the following numbers: 106.8;

~107.0; 107.0; 107.5; 107.0; 107.0; 106.5; 106.0. The class has discussed
various issues, such as: Should all or only some of the data be included?
How might the data be combined, and which method of combining them
would yield the “best number” to represent the width of the table? In the
classroom discussion, students have mentioned and discussed the possibil-
ity of using the arithmetic average (defined by a student as ““Add up all the
numbers and then divide by whatever amount of numbers you added up”)
and the mode (“the number that shows up most frequently’’). At that point
a student says: “This is a little complicated but I mean it might work. If you
see that 107 shows up 4 times, you give it a coefficient of 4, and then 107.5
only shows up one time, you give it a coefficient of one, you add all those
up and then you divide by the number of coefficients you have.”

Here are the key questions in terms of the model. Assume we have
studied Minstrell carefully — read his papers, interviewed him, perhaps even
seen him teach previous versions of this course. We have a good sense of
what he thinks is important, what his agenda for the class that day is, and
what he knows. He is in the middle of teaching, and something unusual has
Jjust happened. Can we say how Minstrell is likely to respond? More im-
portantly, can we say what leads him to respond that way — what beliefs,
goals and knowledge shape his decision, and how their interplay results in
his choosing to act the way he does?

Examples 2, 3, and 4: Mark Nelson, Deborah Ball, and Alan Schoenfeld.
Here are some parallel cases, covering a wide variety of teaching “terri-
tory.” Mark Nelson is a student teacher teaching an algebra lesson on re-
ducing exponents in expressions like (x*y*/xy?). This is the first time he is
teaching the lesson, so he has little by way of pedagogical content knowl-
edge (Shulman, 1986) related to the topic, though his knowledge of the
mathematics is secure. He has had students work some problems at their
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desks, and is about to convene the class for a whole-class discussion of the
problems. We know his intentions and expectations, as well as his ciass-
room routines. If you “feed” us the class’s responses to his questions, one
by one, can we predict what he will say, and how the discussion will go?
Failing prediction — the toughest standard for any model — can we at least
explain, post hoc but in a principled way grounded in the mechanisms of
the model, why things evolved the way that they did?
: Expanding the problem space, consider a lesson taught by Deborah
Ball (the “Shea Numbers” tape of her third grade classroom on January 19,
1990). Ball enters the classroom with a specific item high on her agenda —
to have the students reflect about they ways they learn and what they take
as evidence for mathematical “truth” — as a follow-up activity to a meeting
they had had the previous day with a fourth grade class. The classroom
discussion keeps tending away from this kind of “meta-level” conversa-
tion to mathematical specifics: is the number zero even, odd, or special;
can a number be even and odd; and so on. How will she act, and why? Or,
consider the opening days of my problem solving course (see Arcavi, Kessel,
Meira, & Smith, 1998). The course is largely interactive, with many of the
ideas we work with generated by the students. Is it possible to model my
teaching — to say in advance, on a principled basis, how and why I will
react to the comments and suggestions made by students? Can this be done
in such a way that it “explains” my actions, from the moment I enter the
class on any g ven day to the moment the class session ends? [N.B. The
presentation at the conference will allow for elaboration in detail, includ-
ing a line-by-line discussion of transcripts, that is precluded here by space
constraints.]

How the model works

What follows is a brief suggestion of the mechanism by which the
model works — for detail on the specifics of the case presented see Schoenfeld
(in press-a, in press-b) and Schoenfeld, Minstrell, & van Zee (1996). As
noted, the core idea is that the decisions made by the model of the teacher
are a function of the teacher’s attributed beliefs. goals, and knowledge.
Here is how they play out in the case of example 1 described above.

Figure 1, which represents a small part of the complete parsing of
Minstrell’s lesson, provides a rough characterization of what Minstrell did
and why in response to the student’s suggestion of a “complicated” way to
arrive at a best value for the width of the table. The whole of our lesson
representation starts with a box representing the lesson, marked [1] in its
upper left-hand corner. In this case the analysis indicates that the lesson
can be decomposed into four major “chunks” (segments of the lesson that
cohere phenomenologically in some way), which are denoted [1.1], [1.2],
[1.3], and [1.4] respectively. The labeling continues in that way. Here, the
segment of the lesson catalyzed by the student’s comment is labeled [1.2.2.3]
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— already fairly deep in the nested structure of the lesson. In the upper
right-hand corner of each box in Figure 1 we identify the numbers of the
lines of transcript corresponding to each transcript chunk. Chunk [1.2.2.3]
extends from lines 164 through line 271 of the transcript, which is 517
lines long. It is further decomposed into chunks [1.2.2.3.1]. [1.2.2.3.2}], etc.
Inside each box, which represents a chunk of the lesson, we briefly de-
scribe the following: triggering and terminating events (what caused the
teacher to embark on this path, what caused it to be terminated); high prior-
ity beliefs related to this episode; goals that the teacher’s decision was in-
tended to achieve; relevant knowledge on which the teacher’s actions are
based and decisions are made; the nature of the chunk (e.g., standard peda-
gogical routine or script).

Here is a summary description of Minstrell’s initial decisions and ac-
tions in response to the student comment. In terms of content, Minstrell
believes that the class should serve as a sense-making community, in which
students explore physical phenomena in reasoned ways. In terms of peda-
gogy, he believes that he should be responsive to student initiatives that are
“in the ballpark.” Here the student comment, a proposed way to compute
the “best value,” is reasonable and germane. Thus the model says that
Minstrell will decide to pursue it — even if the short-term cost is to defer
other topics he’d planned on doing next in the lesson. But, how will he
pursue it? First, it is important to note that Minstrell recognizes that one
possible interpretation of what the student says is the standard formula for
“weighted average” of a collection of numbers. Hence there is the potential
to relate the student’s suggestion directly to an earlier discussion of “aver-
age.” Itis also important to know how Minstrell tends to introduce issues
into discussion. Minstrell employs a rhetorical device he calls “reflective
tosses” in which he “catches” the intellectual content of an idea and “tosses”
it back to the students for clarification, elaboration, or comment. Thus the
model predicts that, having decided to attend to the issue and having the
relevant knowledge, Minstrell will first ask the student to clarify her state-
ment (thus making it public, and open for classroom discussion) and will
then work with the class to explore it. This is what he does — in fact, by
asking the student who had first proposed a definition of “average” to com-
ment on this new proposal, setting the stage for a comparison of the usual
definition of average (“Add up all the numbers and then divide by what-
ever amount of numbers you added up™) and the formula for weighted av-
erage that he has written on the board. When this is resolved (bringing
chunk [1.2.2.3.1] to a close), a comment by the student leads (as the model
predicts) to a second round of clarifications, where the class compares
weighted and unweighted averages. At that point, having dealt fully with
the student’s comment, Minstrell returns to his agenda for the lesson. [For
more detail on this and the other cases, see the papers cited above.]
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Theoretical underpinnings

The Teacher Model Group’s work is situated in the “cognitive science”
approach to cognition — specifically in what Greeno (in press) calls “the
standard framing assumptions of cognitive theory.” Our intention (for now)
is to construct the architecture of a model that, in some meaningful way,
captures the thinking and decision-making that teachers make “on line.”
The specific goal of any particular model (of a particular teacher-in-con-
text) is to delineate the beliefs, goals, and knowledge of the teacher, and,
using these constructs, to characterize the decision-making of the teacher
as events unfold in the classroom. We are, then, studying what goes on “in
the head” of particular teachers. Our constructs are mental entities — in the
model, representations of beliefs, goals, knowledge (in the form of action
plans or other schemata), etc. The decision-making mechanism is akin to
that of Al-like models: one can think of a goal-driven architecture using a
spreading activation network. (Rough translation into everyday English:
When one or more goals that a teacher has are of highest priority at the
moment, and some action or sequence of actions within the teacher’s rep-
ertoire is likely to do the best job of meeting those goals, then that is the
action or sequence of actions the model says the teacher will take.)

Our modeling work draws upon the vast literature on teaching (see,
e.g., Borko & Putnam, 1996; Calderhead, 1996; Clandinin, 1986; Clark &
Yinger, 1987; Fenstermacher, 1994; Grossman & Stodolsky, 1994; Shulman,
1986, 1987; Thompson, 1992) and a more specific, cognitively-oriented
corpus of research that attempts to describe the mental constructs that sup-
port teaching and how they interact (see., e.g., Berliner, 1994; Clark &
Peterson, 1986; Leinhardt, 1993; Leinhardt & Greeno, 1986; Shavelson,
1986). I see the Teacher Model Group’s work as a logical extension of the
past few decades’ work on thinking, learning, and problem solving — as one
point on a continuum where the ultimate goal is to explain (individuals’)
thoughts and actions in complex social settings. This work is in many ways
a direct extension of my work on problem solving, and a reflection of the
field’s increasing capacity to model complex behavior. In the early years
we brought people into the laboratory to watch them working on problems,
in isolation—the reason being that the tools researchers had for understand-
ing cognition were so limited that we needed to control the environment as
much as possible. As the field’s understandings of things such as the knowl-
edge base, strategy use, metacognition, and beliefs grew, it moved toward
the study of cognition in more “‘natural” settings, e.g., in classrooms. As
the capacity to model interactive decision-making grew, studies of tutoring
and teaching-in-context became feasible. We are now, as the research un-
der discussion shows, capable of modeling such complex behavior. Yet,
this work is still quite constrained, and its limitations should be noted.

From an “internal” perspective (that is, living within the framing as-
sumptions of cognitive theory), there are at least two major issues to con-
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(164-271)

Major Unplanned Excursion:
Exploration of an aiternative
Formula for arithmetic
pverage

Initiating event (trigger):

A student suggests an idea that
*is a little complicated™ but
“might work.”

Belicts:

« Teacher should tollow
students’ lead in thinking
where appropriate.

* Content is relevant and
appropniate.

Guals:

* All overarching goals are
active (sce narrative).

- Explore and clarity the
the properties of the
student’s proposed formula.

* Have content emerge from
students it possible.

* Note: Second goal especially is
emcrgent (unplanned).

Methowaction plan:
* Interactive clicitation using
reflective tosses.

Chunk type:

* As above, interactive
elicitation (a tamiliar
classroom routine).

Knowledge base:

» Immediaie recognition and
understanding of proposed
student lormula.

» Memory of which students
were tamiliar with which
ideas.

Terminating cvent:

* Satistactory claboration of
student’s method and
comparison with standard and
alternative methods.

This entire episode was
unplanned. The time and effort
spent on it reflect Minstrell's
commitment to the goal of
taking student idcas
scriously and pursuing them
where possible.

—

[1.2.2.3.1) (164.225)
Impromptu Excursion:
Clarifying the nature of

a “complicated™ formuta

proposed by a student

Initiating event, beliefs,
goals. method, and chunk
type are ali as identitied
in Chunk 1.2.2.3.

Specitic content goal:

* Have students come o
conclusion that the
~complicated” tormula
yields the arithmetic

average.

Termunating event:
* The specific content goal
immediately above is
achieved.

>

[£.2.2.3.01 (163-167)

Student Comment

b))

[1.223.12)

Clarifying What the
Student Suggested

(168-169)

Specitic (emergent)

content goal:

* Make sure the class
understands the nature
of the proposed lormula.

Method:
« Interactive elicitation using
reflective tosses.

Terminating event:
* The content goal is achieved.

—

[1.2.2.3.1.3]

Showing the “Complicated™
Formula is the
Artithmetic Average

(200-225)

Specilic content goal:
* Have class conclude the
tormulas are the same.

Method:

s Interactive clicitation,
calling on a specitic
student to provide centent.

Terminating cvent:
* The content goal is achicved,

{1.2.2.3.2) (226-271)
Impromptu Excursion:
Comparing “weighted"

and “unweighted” formulas
for the average

Initiating event:

+ Student comment about
possible confusion between
the two formulas.,

Beliets, goals, method, and
chufik type arc all as
identificd in Chunk 1.2.2.3.

Specitic content goal:
« Clarity the difference
between the two formulas.

Terminating event:
* The specific content goal
immediately above is
achicved.

L] 11.2.23.2.0)
Student Comsment

(226)

=Y

........ (227-241)

Framing and Clarifying
the Comparison

Specitic {emergent)
content goal:
* Make sure the issuc
is clear to the students.

Method
* Interactive elicitation using
reflective tosses.

Terminating cvent:
* Student consensus (by
assertion) they are not
the same - goal achieved.

Note:

The next level of detail,

which would consist

of elaborating on Minstrell's

use of interactive

clicitation to achicve

the goals spaciticd 1n

the following chunks:
[1.2.23.1.2],
[1.2.2.3.13],
{1.2.2.3.2.2}. and
[1.2.2.3.2.3],

is not represented

here. A detailed

description of the ways

in which Minstrell

interacts with the students

using that method is given

n Schoenteld, Minstrell,

and van Zee (1996,

11.2.23.2.3] (242271

Framing and Clarifying
the Coinparison

Specific (emergent)

content goal:

* Work through compelling
example to make sure the
diffcrence is understood.

Method:
¢ Interactive clicntation using
retlective tosses.

Terminating cvent:
» Content goal clearly
achicved: teacher summanzes
with nuni-lecture.

Figure 1. A Representation of Part of Minstrill’s Decision-Making
Reprinted with permission from Schoenfeld, in press-a
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sider. The first is whether such modeling makes unwarranted assumptions
about the phenomena being studied, and thus distorts them. As Leinhardt
(in press) observes, physics makes progress by virtue of idealizations: “con-
sider a spherical cow” is not a bad assumption with which to begin solving
some physics problems. But the same hypothetical spherical cow, in a biol-
ogy lab, might be problematic. Is there the danger of introducing such beasts
into the classroom, via models such as ours? The second has to do with
very stringent constraints on the model, which should be stressed — the
model is a model of teaching-in-context, in the “here-and-now.” We do not
yet model history — except as in the mind of the teacher, whose knowledge
includes his or her memories of previous experiences with the content,
with these students, etc. We do not model context —except for the teacher’s
perceptions of the context, and of the supports and constraints within it. We
do not model mechanisms of change — for example, how and why the teacher
thinks differently after a lesson, or a unit, or the year is over. All of these
are limitations of the current model — but the kinds of things that might be
overcome, within the framing assumptions of cognitive theory, over the
next few decades. '

From an “external” perspective, the challenge can be raised (see.,e.g.,
Greeno, in press) that the lens through which this kind of model views the
classroom — the teacher’s — is all too distorted. The classroom is a highly
interactive environment in which there are multiple actors; the teacher is
only one (albeit an important one) whose view may or may not “explain”
much of what takes place. Moreover, the totality of the classroom may
supersede the perspectives of the individual actors, rendering individual
perspectives inadequate as versions of what takes place. In short, I agree.
The issue here is to see how far we can push this kind of model, and how
much it can explain under various circumstances — not to claim that what
the teacher sees, and how much of it we can model, represent “reality.” In
a fashion similar to Greeno, others may argue that the “interior lens,” which
only accounts for the teacher’s perspective of context (constraints, sup-
ports, etc.) and not for the “real thing,” must perforce be inadequate. Per-
haps so — but again, the teacher’s view of context (including the teacher’s
sense of what materials might or might

not be accessible, what flexibility there is with regard to curriculum,
and what the “abilities” of the students might be) is surely a significant
factor in shaping what happens in the classroom. The goal is to see what
can be explained with this kind of model, and then to transcend it.

Metatheoretical Notes

If only for a moment, it is worth stepping outside the space of current
assumptions to point out that the terms “theory” and “model” have very
different meanings in different fields. Consider Table 1, for example.

People with backgrounds in mathematics and physics expect theories
and models to have very specific entailments. In those domains, a theory

212 N



Table 1
Aspects of Theories and Models in Different Subject Areas

Subject: Math, Biology Education,
Physics Psychology

Theory of... Equations, Evolution Mind
Gravity

Model of...  Heat Flow Pedator-Prey =~ Problem
in a Plate Relations Solving

(e.g., the mathematical theory of equations or an inverse-square law of
gravitational attraction) is a precise statement of “what counts,” and a model
embodies that theory in very specific computational terms. Moreover, in
both domains, theories and models support a precise form of prediction.
By that standard, educational/psychological theories and models are often
found seriously wanting — although the rejoinder, that spherical cows don’t
necessarily represent real objects very well, should not be lightly dismissed.
In my opinion, theories and models from the biological sciences (which
may also be disdained by some mathematicians and physicists) may pro-
vide quite appropriate parallels to the kinds of theories and models that are
appropriate in psychology and education. Consider theory, for example.
The theory of evolution is not “provable” in the mathematical sense, but
evidence can be brought to bear on its validity. And, the theory can be and
is held to strict scientific standards, for example a kind of a posteriori “pre-
diction”: while evolution moves too slowly for predictions of the future to
be tested, the theory does imply that as yet undiscovered fossil records will
have certain properties, and will not have others. Equally important is the
stance toward models. One can take biological models (whether of preda-
tor-prey relations, or of specific organs such as the heart or even of the
human body) as ‘approximations, in the sense that actuarial tables are ap-
proximations — what they predict may best be thought of as a range of
outcomes, with probability values attached. (Such a distribution is, of course,
the precise form of genetic predictions using Punnett squares.) In many
contexts, it may be that the appropriate form for the predictions of educa-
tional and psychological models can most productively be thought of as
probability distributions of outcomes.

Standards for judging models and theories

In keeping with the above comments, I propose that four major criteria
are appropriate for judging theories and the models that embody them:
descriptive power, explanatory power, predictive power, and scope. De-
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scriptive power refers to how well the theory and model seem to capture
the situation being-characterized. Are important aspects of the situation
represented, and do they interact in the theory and model ways that seem to
correspond to the ways they interact in “reality?” Explanatory power takes
things a step further. Do the theory and the model provide a sense of mecha-
nism that explains how and why things fit together, above and beyond pro-
viding descriptions of their interactions? The notion of predictive power is
almost self-explanatory. What is obvious is that the more accurately the
theory and models derived from it predict outcomes, the more confidence
one will have in the robustness of the theory. Somewhat less obvious is the
nature of appropriate predictions — see the comment in the preceding para-
- graph about psychological predictions being conceptualized as probability
distributions of outcomes. Finally, on scope: the issue is, what range of
phenomena do the theory and model cover? A theory of equations that
covers only linear and quadratic equations is not of much interest; nor is a
theory of teaching that applies only to didactic lectures.

A preliminary assessment of the theory and the model

Lacking the space to examine Examples 1 through 4 in detail, I can
only argue here by assertion. The detail does exist. Minstrell’s lesson seg-
ment is analyzed in depth in Schoenfeld (in press-a) and in Schoenfeld,
Minstrell, & van Zee (1996); Nelson’s in Schoenfeld (in press-a) and in
Zimmerlin & Nelson (1996); Schoenfeld’s in Arcavi, Kessel, Meira, & Smith
(1998) and in Schoenfeld (in press-a); and Ball’s in Schoenfeld (in press-
b).

Broadly speaking, the model does well on the criteria of descriptive
and explanatory power. In all of the examples above, the teacher being
modeled has been an informant on the research and has provided substan-
tial information regarding the work. In some cases, such as Minstrell’s, we
did a preliminary analysis and then ran it by the person being modeled —
providing that person the opportunity to say that the assertions we made
were wrong, or that we had missed something important or emphasized the
wrong things. Thus far the analyses have held up rather well. They seem to
take into account what is important, both from the perspective of cognitive
theory (after all, the constructs in our models are derived from the main
constructs of cognitive theory) and from the perspective of our informants/
colleagues. In the case of Nelson, for example, the model predicts that he
will run into difficulty when an explanation he offers the students does not
clear up their (expected) confusion as he thinks it will. Moreover, the model
explains why he gets into that difficulty by providing a detailed description
of the specific cognitive and pedagogical resources Nelson has at his dis-
posal, and showing how those resources are insufficient to deal with the
situation he finds himself in.

Ata “face value” level, the model does fairly well by way of prediction
— at least in those cases (Minstrell, Nelson, Schoenfeld) where we have felt
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confident that the model captures the teacher’s decision-making. Here the
1ssue of scope becomes central. On the one hand, the three cases just men-
tioned cover a fair amount of territory: Minstrell is an experienced high
school physics teacher who was teaching an innovative lesson of his own
design, Nelson a beginning high school mathematics teacher working
through a traditional lesson for the first time, and Schoenfeld (like Minstrell)
an experienced teacher working through a college mathematics class of his
own design. I feel comfortable asserting that the model covers mathemat-
ics and science, secondary and collegiate, traditional and innovative — as
long as the lesson is agenda-driven. In ail of these cases, the teachers had
fairly clear ideas of where they wanted the lessons to go. Although there
was wide variation in how and with what success these teachers deviated
from the original agendas in response to classroom contingencies, there is
no question that, by and large, the teachers’ agendas were the primary driv-
- ing forces in shaping what took place in the lessons modeled. I have little
doubt that agenda-driven instruction, in general, can be modeled - and that
when it is, the models will fare rather well with regard to prediction.
Things get more complex, however, when one considers some of the
things that happen in Deborah Ball’s January 19, 1990 third grade class.
There the teacher is highly sensitive to developmental as well as content
concerns, making for a more complex initial agenda than is apparent in the
lessons that we have analyzed at more advanced levels. Perhaps more im-
portantly, the directions of that lesson evolve substantially in response to
unpredictable issues that arise during the class session. This kind of emer-
gent agenda has been much more difficult for us to model; it may, ulti-
mately, be where the model will break down. It is not yet clear that it will:
recently (Schoenfeld, in-press-b) we have had some success in analyzing
why (we believe) Ball makes some of the choices she does in that class,
and we may ultimately become successful at modeling that lesson. If we
do, we will have shown that the model has very large scope — the teaching
in these lesson segments spans a pretty large teaching space. If we do not
succeed, so be it. Where it is known to work — which already covers a fair
amount of territory — the model does well along the dimensions of descrip-
tive, explanatory, and predictive power. And when we discover where it
doesn’t, we will have an important set of phenomena to explore further.
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BUILDING MATHEMATICAL STRUCTURE WITHIN
A CONJECTURE DRIVEN TEACHING

EXPERIMENT ON SPLITTING
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It’s hard to imagine that another study involving ratio and proportions
or fractions could add to our understanding of students’ learning. And yet,
even with the significant amount of research on this topic (Behr, Harel,
Post, & Lesh, 1992; Harel & Confrey, 1994; Hart, 1984, Nesher, 1988;
Noelting, 1980a; Steffe, 1994), students continue to perform poorly on these
fundamental concepts. As a direct result of not mastering the concepts of
fractions, ratio and proportion, decimals, and percents, many students are
at risk in an “algebra for all” middle school movement of becoming part of
the failure statistics. Potentially robust alternative approaches to this array
of topics are still needed.

A second goal in discussing this study is to consider in some detail one
crucial aspect of a “modeling approach” to classroom instruction (Confrey,
1996; Confrey & Doerr, 1996a; 1996b). This “modeling approach” to in-
struction includes: 1) tool-based investigations grounded in modeling ac-
tivities, 2) support for the articulation of student voice within heteroge-
neous groups and whole group discussion, 3) careful elaboration, refine-
ment, and differentiation of concepts as intellectual tools through intra-,
and inter-activity sequencing, and 4) the use of reflection and practice to
stabilize student knowledge and promote teacher’s self-examination of their
own perspective. In this paper, I seek to clarify the meaning of the compo-
nent of “elaboration, refinement, and differentiation of concepts as intel-
lectual tools™ by discussing the ¢ itical moments of conceptual develop-
ment in this research. Specifically, I seek to focus on how to “build math-
ematical structure.” Too often, when one observes teachers implementing
constructivist inst:uctional practices using small groups, the articulation of
student method, or manipulatives, one fails to see them attain *“coherence”
(Stigler & Perry, 1988) or mathematical acuity and power (National Coun-
cil of Teachers of Mathematics, 1989). Though critics will discuss this as a
lack of attention to basic skills, I will argue that too often the inadequacy
lies in teachers’ failure to assist students in building mathematical struc-
~ ture. If done correctly, students learn basic skills, not as memorized facts,
but as interconnected ideas within a network of mutually supporting argu-
mentation.

To accomplish these two goals of explicating a splitting-based analysis
of “multiplicative structures” and of discussing how these students suc-
cessfully “build mathematical structure,” I will report on the results of a
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three year teaching experiment with approximately twenty children during
their third, fourth, and fifth giade years. From three to six months a year,
for 45 minutes to one hour a day, I taught them mathematics daily. It was a
school near a major university, that drew students from the university fac-
ulty and staff, but aiso from a poorer section of town. The study was de-
signed to develop and explore “the splitting conjecture™ (Confrey, 1988;
Confrey & Smith, 1995). This conjecture states, there are at least two inde-
pendent but connected primitive constructs that lead to a robust understand-
ing of numeration; one is counting and the other is splitting. Splitting has
its roots in activities like sharing, magnifying, shrinking, copying, and re-
producing and is the primitive that leads to the development of multiplica-
tion, division, and ratio. There are fundamentai, early, and essential ties
between ratio and two-dimensional space that make a set-based approach
to splitting inadequate, and necessitate careful ties to area, slope, rate, and
similarity (Confrey, 1988, pp. 255-259).

This work differs from related work in multiplicative structures in that
it tackles the entire array of related ideas of multiplication, division, and
ratio and proportion and relates them within a single conjecture: that mul-
tiplication, division, and ratio co-define each other and should be intro-
duced as a trio in the early elementary grades. This approach pioneered
two basic claims: 1) tc develop this reasoning, students must learn to work
in two dimensional mathematical space which means careful and extensive
attention to geometry and graphing. Simultaneously, this conjecture rejects
the reduction of elementary mathematics to the construction of the rational
number line and its operations—either as a set of fractions and mixed num-
bers or decimals (Confrey, 1995a); 2) to make ratio and proportion (and
percent) primary and to relegate fractions and decimals to its subset. I claim
that though treating multiplication as repeated addition and division as re-
peated subtraction ts necessary to link the splitting and counting worlds,
the overreliance on these methods of multiplication as repeated addition
and division as repeated subtraction as the dominant basis for multiplica-
tive reasoning creates spindly networks of mathematical reasoning on ra-
tio, rate, and later functions. Given the critical significance of these ideas
to advanced mathematics, neglect of the independence of splitting from
counting and lack of attention to the internal structure of the splitting world
will continue to hobble our students mathematically. On examination, it
appears that Japanese students do experience an early introduction to mul-
tiplication and division facts in a curriculum with a conceptual structure
that considers two models for muitiplication, that of scaling and one and
two dimensional arrays, both of which are structurally more consistent with
this conjecture and are not simply repeated addition.
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The Results

Data presenting the success of these students has been presented else-
where (Confrey & Scarano, 1995) demonstrating that by fifth grade, sev-
enteen of the twenty students scored in the nineties on the California test
with scores between 60 and 80 by the other three. By comparing the stu-
dent scores on entry with their outcome measures, we found a decreasing
gap between high and low achievers, showing the viability of a modeling
approach with heterogeneous groups. By using comparison tasks from
CSMP, we demonstrated that our students showed remarkably low inci-
dence of additive errors, and that their performance relative to other groups
improved as the problems increased in difficulty.

Critical Moments

In order to focus on “building mathematical structure” within the
elaboration and differentiation of intellectual tools, I have chosen to iden-
tify a sequence of nine critical moments from the splitting curriculum. Criti-
cal moments one and two come from the pilot studies with children in the
first and third grade. Three and four come from third grade, where we be-
gan work with our twenty students at the level where the schools perceive
multiplication and division are finally to be fully introduced. The last five
examples were drawn from a six month period in fourth grade during which
we focused on ratio and proportion making fractions a subset. Critical mo-
ments have been selected based on their subsequent reappearance as essen-
tial intellectual tools for further reasoning.

1: Doubling and Halving and Basic Sharing

As shown by Pothier (1983), doubling and halving develop very early
with a high degree of ease and accuracy. Furthermore, children in primary
grades demonstrate high interest and accuracy in splitting and sharing. In
1993, we undertook studies with first and third graders using play dough
cakes and cookies and poker chips to show that young students could ef-
fectively use a variety of strategies to share fairly across a variety of tasks
and that the language of splitting occurs repeatedly as they do so. Relying
on dealing into piles, they could undertake any kind of split. Occasionally,
while dealing, children would spontaneously line up their objects to create
arrays. A notable outcome of fair sharing was the children’s ability to claiin
the equivalence of the set without the necessity of counting, and used count-
ing to confirm and name their results, evidence of the independence of the
two structures of counting and splitting. In the continuous case, a heavy
reliance on symmetries in rectangular objects made even splits easier than

odd ones. The critical underlying construct is equal sized pieces and equal
sized groups. ‘
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2: Similarity

In another study of first and third graders, we experimented with young
children’s understanding of similarity. We demonstrated that large num-
bers of young children chose to sort sets of circles, squares, triangles (acute,
right, and obtuse) and rectangles (three different ratios of length to width)
as “the same” based on similarity. These young children achieved a high
degree of accuracy on the first three cases, with a significantly lower accu-
racy on rectangles which are notably harder even for adults. A few first
graders spontarnieously made the argument that matching two angles was
sufficient to convince them of the similarity of triangles. From this study,
we realized that spontaneous experience with similarity in perception of
depth and motion provides a rich and untapped resource in early reasoning
on ratio and proportion.

3: Relating Multiplication, Division, and Ratio: Unit Ratios

In introducing third grade students to multiplication facts, we used a
variety of problems including some of Marilyn Burns’, like her chopsticks
problems where there is a well-known underlying and constant ratio (two
chopsticks per guest). For instance, how many legs if there are seven horses?
A first characteristic of the students’ solutions was our requirement that: 1)
as they worked such problems, they would be asked to practice, write, and
discuss a multiplication fact, division fact, and underlying ratio. Hence the
problem mentioned would have coded with it: 4 x 7, 28/4 and 4:1. Helping
students see that across the entire set of problems concerning horses and
their legs, there was an invariant relationship of 1:4 , and this formed the
basis of their early use of the term ratio. We refer to this as a unit ratio
(where one of the two comparisons is always one). Because all examples
had external referent, we did not preference the form a:1 or 1:a requiring
only that the associated units were clarified. Although we did not realize it
at the time, introducing students to this trio should have included attention
to the construction of the language, 7 is one-fourth of 28. Moving between
construct of the ratio 1:4 and its use as an operator of “1/4 of”’ came to our
attention during the analysis phase of the work as we found students using
the phase “1/nth” of spontaneously but without our notice. Confrey (1995a)
analyzed it as a key structural element as an operational inverse to partitive
division. Its role in the construction of multiplication and division of ratio-
nal numbers will become evident in Critical Moment 8.

A second, and notably different, characteristic was that we introduced
the multiplication facts in an unusual order: by 2’s, 10’s, 5’s, 4’s, 3’s, 8’s,
6’s, 9’s, 7’s. This ordering reflects the multiplicative ease of the numbers
relative to their prime factors, rather than consecutive order. For instance,
multiplying times 4 is carried out as double, doubling and times 8 as double,
double, doubling. Five can be viewed as times ten and halving or counting
by fives. This is an elementary example of what I mean by helping students
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to move flexibly in multiplicative space, a skill which is badly neglected in
traditional curricula. In contrast, in the typical third grade treatment, multi-
plication is introduced separately from division, as repeated addition and
skip counting, and there is virtually no discussion of ratio except as the
identification and perhaps equivalence of basic fractions. Typically, multi-
plication tables are presented in consecutive order and the patterns that are
explored, using multiplication tables or skip counting, are additive rather
than multiplicative. This is an example of how the additive world and the
development of one-dimensional number line implicitly undergirds the el-
ementary curriculum to the detriment of multiplicative reasoning.

4: Linking Partitive and Quotative Division

A critical moment occurred as the children discovered the equivalence
of results of partitive and quotative operations. To children the problem, “if
I have 128 leaves and want to make four leaf clovers” is very different than
to have “128 candies and share them among four children” despite obtain-
ing the same numeric answer. A critical moment arose as the class struggled
to understand why the same answer is produced. The resolution came as
the children worked with Dienes blocks and flats to form their soluticns
into rectangular arrays. At that moment, children began to see that arrays
portray the same group as 32 sets of 4 leaves or as 32 candies for 4 chil-
dren. This was a critical moment in abstraction, in that the children began
to view 128 divided by 4 as equally coding a partitive or quotative action—
as “its just division” they would later say. As I have argued elsewhere
(Confrey, 1995b), abstraction is the ability to see likeness in things appar-
ently dissimilar—rather than as an act of disassociation with context as so
many try to argue.

5. Moving in Multiplicative Space

In fourth grade, we began our experiments in January, and wanted stu-
dents to become flexible in moving in multiplicative space. To do this, we
created challenges we called “daisy chains” (Confrey & Scarano, 1995).
Students were challenged to write as many ways as they could think of to
use multiplication and division to go from one number, say 12, to another,
say 20. They might write 12/ 3=>4 x 5 => 20; or 12 x 5=> 60/ 3 =>20.
Exercises required students to make longer and shorter chains. In a whole
class discussion, it came out that for any problem there were two algorith-
mic solutions: 1) to go from a to b, divide by a and multiply by b or 2)
multiply by b and divide by a. This inquiry set up two critical structural
elements used extensively in later work: the importance of the identity €l-
ement, one, in multiplicative and divisional reasoning; and the possibility
of moving among numbers using a combination of multiplication and divi-
sion, a process which I argue later is the basis for the construction of mul-

tiplication and division of rational numbers (also see Behr, Harel, Post, &
Lesh, 1994).
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_ 6: LCM and GCF and Prime Factors

A further elaboration of the joints in multiplicative and divisional space
came from a clapping exercise where the children were asked to predict
when one person clapping every fourth beat and one clapping every third
beat would clap at the same time (Confrey, 1993). Using manipulatives,
children explored this problem which led to a series of exercises on prime
factors and on using Venn diagrams of common and non-common factors
to identify the LCM (union of factors) and GCF (intersection of factors).
The underlying structure here is to develop an efficient means of analyzing
a number into its multiplicative constituents and seeing how these are use-
ful in predicting common splitting elements or multiplicative joints.

7: Comparing and Equivalence of Ratio: Ratio Units

One essential element of the modeling approach is creating a need for
an idea and a problematic which acts as a roadblock to where children want
to be (Confrey, 1991). With this goal to begin our discussions of ratio, we
had students conduct a poll conceming a topic of widespread interest and
controversy. In one set of results, the children realized that there was a
gender difference they wanted to compare, but they lacked a tool to quan-
titatively express this comparison. This open question led us to the ques-
tion of when two ratios are “the same” in the context of mixing lemonade
(represented by orange and white ping pong balls). Rather than *“*building
up” to create equivalent ratios, students were asked to work problems with
higher numbers of orange and white balls and to find ways to increase and
decrease the total amounts without changing the *“taste.” They used dou-
bling and halving, and out of these discussions the students created a criti-
cal construct which they named “the little recipe” (or as one child sug-
gested, the base combination). This littlest recipe describes a critical con-
cept in ratio and proportion reasoning, the smallest integral comparison to
describe a given set. Theoretically, we refer to it as the ratio unit (a:b) as
opposed to the urit ratio (a:1). The little recipe represented two fundamen-
tal ideas: 1) it gave the simplest formula for building equivalent ratios and
2) it expressed and coded the commonality across the different instances.
In other work, I examine in more detail the development of the “little recipe”
through the use of tables of data, examination of dot drawings, and nota-
tion including prime factoring (Confrey, 1995a).

8: Relating Slopes to Ratio and Interpolation

To help students understand the idea of ratios as invariance across a set
of equivalent proportions, we taught them to make two dimensional graphs
from the tables of values of equivalent ratios. Coordinates that fell along
the same line had a common ratio or, put more formally, they were vectors
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that shared a common basis. In related historical work on Greek mathemat-
ics, we (Confrey & Smith, 1989) defined a ratio as “an invariance across a
set of proportions,” a view of ratio that was mirrored in the teaching ex-
periment. This reverses the common stance that proportions are composed
of equivalent ratios. Viewing pi as an expression of the invariant relation
- between circumference and diameter often helps people to understand this
definition. The use of the two-dimensional plane gave the fourth graders a
way to see ratio as a commonality among variation. It also supported a
variety of strategies to compare ratios. Graphically they could build to a
common X value and compare y’s, build to a common y and compare x’s,
or look for differences in the angle of rotation of the vector line.

At this point, students had developed a discrete, rather than dense, no-
tion of equivalent ratios. For a ratio unit of a:b, they could find the set of
equivalent proportions of the form na:nb by incrementing and decrementing
or doubling and halving. The next step was for them to be able to solve
missing values problems for any target value. This was approached gradu-
ally through the use of a number of contextual problems and special repre-
sentations. Contextually, we chose to work with the idea of constant slope
and gave the children a design challenge to build a handicapped access
ramp. This design challenge took the students about six weeks to work on.
They began by finding ways to describe the slope of an incline they could
safely traverse in a wheel chair. During this six weeks, they worked on a
number of sub-problems such as how to copy a slanted line from one sheet
to another without tracing and how to predict the height of a tree from its
shadow length. Students made extensive use of tables in this work and
from their tables, we developed and elaborated the idea of the “ratio box.”
A ratio box is a two by two table which students used to analyze the under-
lying ratio and eventually to solve missing value problems. Its strength in
this context was that students viewed it as an abbreviated or collapsed set
of table entries, so they saw it as representing an invariance which they
already believed in. By exploring various ratio tables, students were able to
find that not only does the same ratio relate x, toy, as x, toy, but x, to x,
asy toy,.

This set of relations described by Noelting (1980b) and Vergnaud (1988)
distinguished as “within” (or scalar) vs. “between” (or functional) ratios
are brought into parallel and equivalent structure using the ratio box. An
advantage of the ratio box lies in its symmetry in displaying the two kinds
of ratios. In contrast, in traditional notation x,/y, = x, /'y, , this symmetry
is lost. Though the ratio box facilitated the transition to mulitplicative rea-
soning, it was the modeling challenge that propelled the students towards a
facility in missing value problems as it required them to extrapolate to a
missing value with a large magnitude. Building up using ratio units was
too cumbersome. The problem required students to use their calculation of
the ratio of the shadow to the height of a ruler to find the height of a tree
whose shadow was about 75 feet. The value of the contextual problems
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was that they assisted students in keeping straight the differences in the
two kinds of ratios, while applying the same abstract reasoning.

Finally, and perhaps most importantly, the students developed a unique
method of describing the movement from one cell to another horizontally
or vertically (the development of cross multiplication as a strategy evolved
later). Drawing upon their previous work with daisy chains, students de-
scribed the movement from one cell to another (horizontal or vertical) us-
ing a daisy chain and used this same method to find the missing value. For
instance, if aratio box had 3 and 5 as x, andy, and 10 as x, they would
search for y, by first arguing that to go from 3 to 5, you d1v1de by 3 and
multiply by 5, hence to find the missing value, you divide 10 by 3 and
multiply by 5 to get 50/3 or 16 2/3. Sometimes they would check by going
in the other direction, in this case, from 3 to 10 by dividing by 3 and multi-
plying by 10, applied this to 5 to confirm their prediction of 50/3. From this
work, a deep-seated belief among students developed that if they were given
three values of a ratio, a fourth one existed. There is more to the story of
how this initial work with missing values developed into an understanding
of multiplication and division of rational numbers as inverses, but space
limitations do not permit this explanation here.

9: Differentiating Adding Fractions from Combining Ratio Units

A critical issue in the literature has been to clarify the distinction be-
tween ratios and fractions. The resolution of this within the splitting con-
Jjecture surfaced in as students undertook a jigsaw puzzle expansion prob-
lem (Douady, 1991). Each member of a small group was assigned a par-
ticular puzzle piece and required to make replacement pieces that were
double the lengths of the sides. If each member acts correctly, the pieces fit
together to create a similar puzzle with new dimensions. The question came
up as to whether 1/4 + 1/4 = 2/8 which was 1/4. Students then needed to
figure out when they were combining ratio units, in which case they added
numerators and denominators and when they were adding fractions and
required to find and keep a common denominator as they added the nu-
merator. This discussion and one other in which the children debated whether
3 pizzas shared among 10 people produced 3/30 (each student got 3 pieces
of the ten pieces per pizza or 3 of 30 total pieces) or 3/10. We determined
that the critical issue was the identification of the whole, or the unit 1, thus
it was 3/30 of 3 pizzas or 3/10 of 1 pizza. This led us to postulate that the
difference between a fraction and a ratio is that within the context of frac-
tional units, a share unit of one must be presumed. Thus, in splitting terms,
2/3 as a fraction means 2/3 of 1. Since the 1/n of 1 develops as an early
construct in splitting, then 2/3 of 1 is not too advanced a concept. Confrey
(1995a) illustrated this distinction on the two dimensional plane. A fracture
of the plane along the line x=1 or y=1 produces a linear mapping of the set
of ratios built as vectors onto a single one-dimensional line. This line has
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the structure of the number line, and the numbers along it, by virtue of
sharing the line, share the unit of one. This number line has on it fractions,
which can be seen as a subset of the ratios represented in the plane. Any
vertical or horizontal line or line segment can be used to compare fractions
provided one is clear about the assumed units.

Implications for Additional Topics

Our work in the fifth grade began with multiplication and division of
rational numbers. We extended the work into an introduction to decimals
and percent. This study, (Lachance, 1996; Lachance & Confrey, 1996), is
important in that it demonstrates that the literature on decimals is overly
reliant on its relationships to base ten to the neglect of the underlying ratio
relations. In our studies, Lachance and I used an international weight com-
parison system based on varying ratios to create the need for a standard
unit of comparison across weights. Decimals met this need. As a result,
students demonstrated a stronger understanding of place value and a strong
ability to describe underlying relationships as a result of the intervention.
When introduced to percents, our students found the underlying reasoning
easily compatible with their ratio work. On reflection, we realized that there
is an isomorphism betweea the relationship between percentage and deci-
mal that mirrors the relationship between ratic and fraction. This is evident
in the parallel in a/b of n and c% of n. Moss and Case (1998) use percent-
age as a means to introduce multiplicative reasoning and it has the advan-
tage of being a common cultural tool. We see considerable commonality in
our approaches. Though we would not support an exclusive reliance on
percentage to the detriment of ratio, we would consider the possibility of
uniting these approaches.

Our students also demonstrated a deep understanding and intuition for
rate relationships and for an easy transition to algebra. Lachance (1996)
reports on their exploration of a problem involving falling dominoes in
which they generated spontaneously explanations and predictions about
acceleration and its appearance on graphs as curvature. Finally, in related
work, not directly with these students, we have argued extensively that
student understanding of exponential and logarithmic functions is greatly
facilitated if these are viewed as covariation of additive and multiplicative
structures (Confrey & Smith, 1995). This is an easy transition if the count-
ing and splitting worlds are built to be independent but interrelated.

Conclusions

Since the time of the original splitting conjecture, researchers have
begun to describe the relationship of additive and multiplicative reasoning
as parallel rather than as prerequisite (Carpenter, Fennema, & Romberg,
1993; Kaput & West, 1994; Thompson, 1994). I believe this research on
the splitting conjecture and on exponential and logarithmic functions has
contributed the foundations for this change and made the most extensive
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and explicit arguments in its favor. Furthermore, by arguing for the impor-
tance of two-dimensionality to reasoning on multiplicative structures via
splitting, we have been able to challenge the underlying dominarce of el-
ementary curriculum’s implicit construction of the rational number line.
Our work has established the importance of geometric reasoning and an-
ticipation of algebraic and rate reasoning throughout the elementary cur-
riculum. This complements the work of early algebra researchers (Kaput &
West, 1994; Nemirovsky, Tierney, & Wright, 1995; Stroup, 1998; Thomp-
son, 1994) and adds ratio to their work as a basis for an analytic passage
into rate concepts. Finally, it is hoped that through the careful elaboration
of the progressive path students followed and through the introduction of
new representational forms (daisy chains, ratio boxes), the critical moments
have documented the need for careful attention to building mathematical
structure from student ideas and contextual challenges in modeling.
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Traditionally, the area of “advanced mathematical thinking” research
has been the province of groups and individuals concerned primarily with
the education of students at postsecondary levels. Links to questions of
policy and practice in school mathematics education are not necessarily
established. However, recent trends in mathematics education point us to-
ward a case for more strategic thinking about the relationship between K-
12 mathematics education and mathematics learning as it occurs in higher
education, especially in the formulation and enactment of research agen-
das. Issues of articulation between school and postsecondary education
continue to present serious practical challenges, and stronger synergy in
the research enterprise would be worthwhile.

There is currently a proliferation of remedial mathematics courses at
major universities along with increasing numbers of students taking ad-
vanced placement courses and coming to higher education with some back-
ground in calculus, the traditional starting point for the undergraduate pro-
gram. Policies and practices that are established around the resulting array
of articulation issues have direct implication for the background of stu-
dents who will be involved in advanced mathematical thinking areas, and
for the faculty who will teach them.

Closely related to these complex problems of articulation is the matter
of the direction of reform in K-12 mathematics education. Standards-based
efforts to improve mathematics education are underway-at least at the policy
level-through state frameworks, new curriculum materials, and new ex-
pectations for teacher professional development. The foundations poten-
tially provided through standards are critical to what will be possibie later
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for students engaged in “advanced mathematical thinking” at the under-
graduate level. One of the major criticisms of the NCTM Standards and
related impiementation efforts is that such efforts may not be sufficiently
committed to advanced mathematical thinking, which many presume grows
from experience with mathematical formalisms, understanding of math-
ematical structures, early experience with logical reasoning and proof, etc.
The K-12 mathematics education community might be able to profit quite
substantially from closer collaboration with those who consider questions
about “advanced mathematical thinking.” The K-12 community faces ear-
lier versions of the same questions: What constitutes advanced mathemati-
cal thinking? What early experiences will help children move toward ad-
vanced mathematical thinking? Is advanced mathematical thinking in some
sense “‘generic,” or does it have particular characteristics within particular
content areas of mathematics? “Backwards mapping” from some of the
insights and issues considered by researchers at the postsecondary level
would be a useful means for research to play a role in bridging the K-12/
undergraduate gap. Thinking that is underway at postsecondary could help
to guide research and practice at earlier levels, and vice versa.

A third area of intersection between ‘“advanced mathematical think-
ing” and K-12 mathematics education has to do with the preparation of
future teachers of mathematics. Although questions of teachers’ understand-
ing-of mathematical content have been of interest within the “advanced
mathematical ‘thinking” arena, it would be appropriate to capitalize on
heightened national attention to issues of mathematics teachers’ content
knowledge (several projects are underway, including one to produce new
“standards” for teachers’ mathematical content expertise). Research direc-
tions that seem especially promising might include careful examination of
the ideas that teachers can learn useful mathematical content for “sites of
practice.” Although there is considerable support and momentum for this
idea in arenas of policy and practice, the research and foundation from
which more informed curriculum and program development might occur is
thin.

Complementing the reform in K-12 mathematics education have been
efforts to improve the teaching and leaming of undergraduate mathemat-
ics. A national conference held at Tulane University in 1986, (Douglas,
1986) marked the formal beginnings of a movement to reform the teaching
of calculus. The methods workshop of the Tulane conference listed several
goals for calculus instruction which appear relevant to this working group’s
discussion (Davis et al., 1986) of “advanced mathematical thinking.” Ac-
cording to these goals calculus instruction should focus on the develop-
ment of conceptual understanding and flexibility in applying the subject
matter, on improving students’ ability to articulate mathematical ideas, and
on develop students’ abilities of construct logical arguments. Many cur-
riculum development and implementation projects have been funded since
the Tulane Conference and there remains continuing national interest in
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the area. Efforts have also begun in differential equations, linear algebra,
and abstract algebra. All of these efforts could berefit from a deeper under-
standing about how students learn advanced mathematics.

Data from the CCH Evaluation and Documentation Project (Ferrini-
Mundy, 1994) suggest that questions surrounding appropriate: goals for
calculus instruction still exist as do questions related to appropriate ways
to implement tiiese gcals. One of the survey questions asked participants to
respond how well they thought the CCH materials accomphsii the follow-
ing goal as stated in the instructor’s manual, “Let formal defiritions and
proofs evolve from a long process of common sense investigations, rather
than to start with abstract definitions.” (Please note that although this infor-
mation was collected as part the CCH documentation and evaluation cf-
fort, similar statements could most likely be made about many of the re-
form-based projects.) The coliection of responses indicated that there was
no general consensus on the issue. Respondents disagreed in a variety of
ways on how mathematical thinking evolves. Another question in the sur-
vey asked the participanis to state their own definition of “mathematical
rigor.” Here again, there was no overall consensus. Answers ranged from
one-word definitions such as “proofs” to more extensive definitions such
as:

»  Mathematical rigor: highly symbolic methods that rely on funda-

mental axioms or theorems. Intuitive reasoning is not allowed.

*  An argument that convinces another knowledgeable person.

» Establish with enough certainty to bet your life on.

* APPROPRIATE choice, use of tools (functions, graphs, logs, etc.)

and solid understanding of the real-life meaning of results.

Participant responses to both of these questions raise important issues
that need to be discussed and researched by individuals interested in the
area of “advanced mathematical thinking.” What constitutes “advanced
mathematical thinking” at the level of calculus and beyond ? What consti-
tutes “mathematical rigor” at the level of calculus and beyond ? How are
the two quantities related ? What are the cognitive and developmental char-
acteristics of this type of thinking? What are the most appropriate learning
experiences for developing this thinking? What is the role of definitions
and proof in developing such thinking processes? How can research in this
area inform curriculum development in calculus and other more advanced
courses in mathematics ?

There are powerful examples of the relationship of advanced math-
ematical thinking to school mathematics. Following are examples of ways
of mathematical thinking (a) that are essential to the learning of advanced
mathematical content and (b) whose development must start in an early
age when elementary mathematical contents are taught. These examples
will give rise to additional questions about advanced mathematical think-
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Multiple ways of understanding. Most students’ repertoires of rea-
soning do not include the understanding that a concept can be understood
in different ways, that it should be understood in different ways, and that it
is advantageous to change ways of understanding of a concept while at-
tempting to solve a problem. In linear algebra, a course which requires
multiple ways of understanding, one must understand, for example, that
problems about systems of linear equations are equivalent to problems about
matrices, which, in turn, are equivalent to problems about linear transfor-
mations. Students who are not equipped with these ways of thinking are
doomed to encounter difficulties (See Harel, 1998.). At the precollege level,
there are various opportunities to help students think this way. The study of
fractions provides one such opportunity. Students should learn, for example,
that the fraction 3/4 can be understood in different ways: 3 individual ob-
jects, each of quantity 1/4; the result when 3 objects are shared among 4
individuals; the portion of the quantity 4 that equals the quantity 3; and the
number 3/4. Students should also learn that depending on the nature of the
problem, some interpretations are more advantageous than others.

Transformational reasoning. Harel and Sowder (1998) coined the
phrase “proof scheme’” to refer to what convinces a person, and to what the
person offers to convince others. They provided a system of three classes
of proof schemes, which were derived from observaticns of the behavior
of college students working in different mathematical domains. Key to the
concept of mathematical proof is the transformational proof scheme—a
scheme characterized by consideration of the generality aspects of the con-
Jecture, application of mental operations that are goal oriented and antici-
patory, and transformations of images as part of a deduction process. The
education of students toward transformational reasoning must not start in
college. Years of instruction which focus on the results in mathematics,
rather than the reasons behind those results, can leave the impression that
only the results are important in mathematics, an opinion sometimes voiced
even by mathematics majors. Harel and Sowder argue that instructional
activities that educate students to reason about situations in terms of the
transformational proof schemes are crucial to students’ mathematical de-
velopment, and they must begin in an early age.

Practicing reasoning rather than mere application. Research has
shown that repeated experience, or practice, is a critical factor in enhanc-
ing, organizing, and abstracting knowledge. The question is not whether
students need to remember facts and master procedures but how they should
come to know facts and procedures and how they should practice them.
Consider the following examples (from Harel, 1998), one from elementary
mathematics and one from iinear algebra.

Two elementary school children, S and T, were taught division of frac-
tions. S was taught in a typical method, where he was presented with the
rule (a/b)(c/d)=(ac)/(bd), and the rule was introduced to him in a meaning-
ful context and with an adequate justification that he understood. T, on the
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other hand, was presented with no rule. Each time she encountered a divi-
sion of fraction problem, she explained its meaning and the rationale of her
solution. S and T were assigned homework problems on division of frac-
tions. S solved all the problems correctly, and gains, as a result, a good
mastery of the division rule. It took T much longer time to do her home-
work. Here is what T—a real third-grader—said when she worked on (4/
5)/(2/3):

How many 2/3s in 4/5? I need to find what goes into both [meaning: a
unit-fraction that divides 4/5 and 2/3 with no remainders]. 1/15 goes into
both. It goes 3 times into 1/5 and 5 times into 1/3, so it would go 12 times
into 4/5 and 10 times into 2/3 (She writes: 4/5=12/15; 2/3=10/15; (4/5)/(2/
3)=(12/15)/(10/15). How many times does 10/15 go into 10/15? How many
time do 10 things go into 12 things? One time and 2/10 of a time, which is:
I and 1/5.

T apparently had opportunities for reasoning of which S was deprived.
T practiced reasoning and computation, S only computation. Further, T
eventually discovered the division rule and learned an important lesson
about mathematical efficiency (which is part of algorithmic thinking)—a
lesson S had little chance to learn.

Similarly, ready-made theorems, formulas, and algorithms, even when
motivated and completely proved, are hastily introduced in undergraduate
mathematics courses. In Harel and Sowder’s teaching experiments, an in-
teresting phenomenon was observed. It illustrates the importance of prac-
ticing mathematical reasoning. Until a mathematical relationship is declared
a theorem, the students continue—either voluntarily when they needed to
use the relationship or upon request—to justify it. Once the relationship
was stated as a theorem, there seemed to be a reduced effort, willingness,
and even ability with some of the students to justify it. This phenomenon
was explained in terms of students’ authoritarian view of mathematics: For
them the label “theorem” renders the relationship into something to obey
rather than to reason about. Or, possibly, these students had not practiced
enough the reasoning behind the theorem.

The ways of mathematical thinking we have identified here can be
translated into essential cognitive objectives—objectives that would posi-
tion elementary mathematics content for the successful subsequent learn-
ing of advanced mathematical content. But what is the complete set of such
ways of thinking? Is the set a mere list, or does it have an underlying struc-
ture and is it guided by a small number of principles? Advanced math-
ematical thinking research can and should take the lead in answering these
critical questions.

As we study the early development of advanced mathematical think-
ing (or the conceptual underpinnings of advanced mathematical thinking
or the cognitive roots of advanced mathematical ideas), we should do so
with an awareness of current theories and debates about the nature of math-
ematical thinking. Some of these theories, related to cognition or to con-

.57 83



cept images, suggest that our attention should be turned to ways that math-
ematical knowledge might be organized. Other theories (debated by math-
ematics e=ucation researchers like Dubinsky, Sfard, Tall and Gray, and
Confrey) remind us to proceed with caution as we examine the qualitative
evolution of students’ understandings of mathematical entities, especially
as our inquiry centers on the relationship between process understanding
and object understanding. As we examine advanced mathematical thinking
as it relates to mathematics education reform at the school and college lev-
els, we might draw on the resulits of research programs, like that reported in
a recent special issue of Journal of Mathematical Behavior, which have
aimed at accounting for the current evolution of particular mathematical
ideas (in this case, those arising in abstract algebra) in students. An under-
standing of the possible evolutions of mathematical understandings could
inform the content and sequencing of advanced mathematical content. We
might extend our understanding of students’ advanced mathématical un-
derstandings by applying the results of researchers who, like Moore, Harel,
and Sowder, have studied the development of an understanding of proof,
of Edwards, who has examined the ways in which students’ understand-
ings of definition develop in the context of an advanced mathematics course,
and of Williams and Zadieh who have studied the development of under-
standing of particular mathematics concepts like limit and derivative. In
the current mathematics education reform arena, advanced mathematical
thinking takes a center-stage role. We need to develop research agendas in
advanced mathematical thinking that can serve to inform that reform.
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VISIONS OF ALGEBRA IN DIVERSE INSTRUCTION

Algebra Working Group Organizers

David Kirshner, Louisiana State University, dkirsh@Isu.edu
Carolyn Kieran, University of Quebec at Montreal
kieran.carolyn@uqam.ca

Algebra Working Group Panelists

Tom Kieren, University of Alberta
Analicia D. Schliemann, Tufts University

In the past decade or so, the vision of school algebra has gradually
been widening to encompass activities and perspectives beyond the tradi-
tional study of literal symbols and operations on such symbols. This Work-
ing Group will sample the diversity of current approaches to algebra in-
struction, taking as its problematic the vision of algebra underlying each.
This mission contributes to engoing efforts to redefine and recharacterize
school algebra as a more stimulating and more potent educational strand
(Bednarz, Kieran, & Lee, 1996; Sutherland & Rojano, in press). However,
we do not envision, nor seek, a unitary answer to the question “What is
algebra?” Rather we will revel in the diversity of current practices, coming
eventually to weigh the tensions and relationships between the visions of
algebra they entail. This process, we feel, is the most productive route to
informing the coming generation of schcol algebra initiatives.

The Working Group Plan

1. Preparations

The panelists each have prepared a one page summary of an approach
that they have developed for teaching aigebra (below). Similarly, we invite
intending Algebra Working Group participants to contribute a one page
summary of an approach that they have developed, used, or are interested
in (see Guidelines for Submissions to Algebra Working Group, below). We
will receive these contributions by September 30, and select a small num-
ber of them for presentation in the Working Group. Five approaches to
algebra including those of the panelists, participants, and possibly one or
both of the organizers will be used to structure the work of the Working
Group.

2. First Day

After brief introductions, Working Group participants will view five
Poster Presentations on the five approaches to algebra. During this time
participants will be asked to sign up to study and discuss one approach of
interest to them. (To help ensure an equal distribution of people to groups,
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there will be opportunity for cooperative participants to move to less heavily
subscribed groups.) This period of time also is viewed as a social occasion
to mingle and become acquainted with other Working Group members.

The remainder of the first day will be spent in the S subgroups estab-
lished through the above process. Each subgroup will begin its work with a
brief presentation by the Poster author. This presentation will focus on how
the approach is supposed to be implemented, not on the vision of algebra
that may have motivated that instructional approach. It will then be the
responsibility .of the subgroup as a whole, and not just the author of the
approach, to deliberate on the underlying vision of algebra. The subgroup
must prepare a comprehensive five minute presentation for the Working
Group that describes the vision of algebra, as they see it embedded in the
instructional approach. A member (or members) of the group, other than
the Poster author should be selected to present the position of the subgroup
to the Working Group. Overhead transparencies will be provided for each
subgroup; however, we hope that the transparencies will be prepared, out-
side of Working Group time. A written record of the subgroup’s position
(possibly just a typed version of the overhead transparencies) will need to
be prepared for distribution by the Working Group leaders.

3. Second Day

This day will be devoted to presentation and discussion of the sub-
group reports. Each subgroup will be allocated a 20 minute time slot. We
recommend the following breakdown of time use: 1) no more than 10 min-
utes for the Poster author to present the basic approach, 2) S minutes for the
subgroup representative(s) to present the vision of algebra they see embed-
ded in the approach, 3) the remaining 5 or more minutes for questions/
discussion with the audience. The text of the instructional approach and the
summary of its underlying algebraic vision for each subgroup will be pho-
tocopied and distributed to all participants on the third day.

4. Third Day

On our final day we will consider the composite picture of algebra
represented by the diverse instructional approaches previously considered.
We will begin by creating an Algebra Collage by gluing statements, pic-
tures, icons, etc. onto a large beach ball supplied for that purpose. Most of
the rest of the session will be spent tossing around the algebra ball, as it
were; considering the tensions and harmonies between alternative visions,
and reflecting on the current state of thinking about algebra as reflected in
our joint work together. If interest expresses itself, time will be taken at the
close of the third day to consider future communication/projects of the
Working Group.

The success of the Working Group depends largely on the quality of
the five approaches selected as the focus for our activities. The approaches
of the panelists are outlined below, in sample one page summaries. Each of
the Working Group organizers (both experienced algebra researchers) is
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prepared to step in and fill another of the five slots, as needed. However,
we hope that readers of this notice who are interested in participating in the
Algebra Working Group will contribute a one page outline of an approach

that they would like to have featured at the Working Group. Please see the
following guidelines.

Guidelines for Submissions to Algebra Working Group

Intending participants are invited to submit a one page summary of an
instructional approach to algebra that they have developed, used, or are
interested in to David Kirshner by September 30, 1998. Mailing address:
Department of Curriculum & Instruction, Louisiana State University, Ba-
ton Rouge LA 70803-4728; Email address: cikirs@lsuvm.sncc.lsu.edu; Fax
number: (504) 334-1075; Phone: (504) 388-2332. If p0551ble please pro-
vide an email address when submitting your page.

Those persons whose submissions are accepted must be w1llmg to:

(1) prepare a Poster Presentation of your approach to be viewed by the
Working Group on the first day. It is essential that this poster describe only
the instructional approach, and not the underlying vision of algebra.

(2) use your poster to give a presentation to your subgroup on your
instructional approach. This will be followed by what is primarily an op-
portunity for you to hear from others what they see as the underlying vi-
sion of algebra embedded in your approach. As a responsible moderator
you need to be willing to withhold your own comments until the ideas of
others have been fully expressed and explored.

(3) use your poster (perhaps supported by overhead transparencies) to
give a presentation on your instructional approach (maximum 10 minutes)
to the Working Group.

Our criteria will include the conceptual similarity/difference of the sub-
missions to one another, so selection or rejection should not be construed
as a judgment as to the merits of the approach.

Pre-Reading

For intending Algebra Working Group participants who wish to do pre-
reading, we recommend Kieran (1996), The Changing Face of School Al-
gebra, available on the internet at http://www.math.ugam.ca/_kieran/, or
through regular postage from David Kirshner, address above.



REPRESENTING ALGEBRAIC RELATIONS BEFORE
ALGEBRA INSTRUCTION

Analicia D. Schliemann, Tufts University

Research in mathematics education has consistently found that stu-
dents have enormous difficulties with algebra. Paradoxically, more recent
research shows that even seven year-olds understand the basic logical prin-
ciples underlying transformations on equations (Schiiemann, Carraher,
Pendexter, & Brizuela, 1998) and that children in elementary school class-
rooms use algebraic reasoning while they interact with their peers and the
teacher to solve relatively complex, cpen-ended problems (Schifter, 1998).
Moreover, extremely successful attempts to teach algebraic representation
from grade one are found in Bodanskii’s (1991) work with Russian chil-
dren.

These new findings suggest that it is time to seriously consider deep
changes in the elementary and middle school curricilum and the possibil-
ity of having children discussing, understanding, and dealing with alge-
braic concepts and relations from the earlier grades. But such radical change
demands analysis of children’s own ways of approaching and representing
algebra problems in different contexts and of the most adequate instruc-
tional models for initiating algebra instruction.

In a series of interviews and classroom activities we have explored
how third and fifth graders intuitively produce notations to solve verbal
problems. Our first findings show that third graders do understand that
equal transformations on the two sides of an equality do not destroy the
equality and that equal unknowns on the two sides of an equality could
assume any value without destroying the equality. But they must overcome
two main difficulties to solve algebra problems, namely, to accept to work
out a solution from unknown quantities and to develop a notation for the
unknowns.

To overcome these difficulties, we have used two approaches that seem
promising. The first (Schliemann, Carraher, Pendexter, & Brizuela, 1998)
involved discussions with an interviewer, guiding children to develop a
consistent notational system for knowns, unknowns, and their relationships
in events described in verbal problems. In this process, their use of circles
and shapes to represent collective bunches appeared as a meaningful tran-
sitional notation between measured quantities and unknown quantities. The
second (Carraher & Schliemann, in preparation) uses a computer software
(The Visual Calculator™) where quantities are represented as directed line
segments. The software help students visualize and discuss what happens
to the lines when they are subjected to arithmetical operations. But the
problems discussed in this environment cannot be solved through compu-
tational routines alone. Instead, they require reasoning about the relation-
ships between numbers and physical quantities, and their representation in
algebraic statements. We found that, as children deal with the problems
they spontaneously use algebraic notation, write equations, and meaning-
fully discuss algebraic relations.
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AS IT HAPPENS: ALGEBRA KNOWING IN ACTION
THE POLYNOMIAL ENGINEERING PROJECT

Tom Kieren
University of Alberta

This project arose out of an attempt to understand in practical class-
room terms what might be meant by the following view of mathematical
knowing adapted for mathematical educational purposes from the work of
Maturana and Varela(1987): “Knowing occurs in action as a students bring
forth a world of algebraic significance determined each by their own struc-
tures or histories of actions, with other students and a teacher, in a
sphere of behavioral possibilities. This view suggests that algebraic know-
ing is a coemergent phenomenon. Thus a teacher reeds to understand all at
once both how students knowing in action and how elements of the envi-
ronment act as occasions for knowing.

To study such knowing we have interacted with students through some
30 hours, during which they are introduced to ideas from the algebra of
polynomials. During this study students worked with two and three dimen-
sional models of polynomials and were guided by some 60 lesson set-ups
each of which was developed based on our observation of and our being
occasioned by the student knowing exhibited in previous lessons. It was
intended that these materials and lessons would allow the students (of very
varied mathematical backgrounds ) to experience and use polynomial con-
cepts, language and computations to design and describe algebraic objects
and 1o look for relationships in so doing. The algebraic actions in which
students engaged included actions on physical materials; actions in which
they developed images (both mental and on paper); actions with informal
schemes which were sometimes used descriptively and sometimes used
more conceptually; actions on standard formal expressions; and actions in
which students deliberately inter-related physical, image, scheme and stan-
dard formal re-presentations of their thinking (Kotagiri (1992)). Deliberate
attempts were made to have students illustrate their ideas for others and to
explain their thinking in various modes. It is certainly beyond the scope of
this note to capture either .1e instruction/leaming aspects of this work or
the research on mathematical knowing and dynamical understanding which
is occurring within it. But a brief example might help:

Donny and Jennifer (2 students with very weak performance histories
in school mathematics) are working on this prompt: The following poly-
nomial is known to form a rectangular design or tiling with pieces from
the Polyset. However it is missing a term. What might the term be.

Offer a possibility or a list of possibilities to go over with your partner.
2x% + /llIx +24
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Donny to look for algebraic relationships among schemes (see arrows and
notes). This approach appears to allow students with varying backgrounds
to act together in bringing forth a world of algebraic significance and al-
lows teachers and researchers to observe that knowing in action as it hap-
pens.
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THEORIES AND EXPERIMENTS IN COLLEGIATE
MATHEMATICS EDUCATION RESEARCH

Working Group Organizer Panelist: Francisco Codero
Ed Dubinsky Centro de Investigacion y
Georgia State University, USA Estudios Avanzados del IPN,
edd@cs.gsu.edu Mexico
: fcordero@mail.cinvestav.mx
Panelist: Joel Hillel Panelist: Rina Zazkis
Concordia University, Canada ~ Simon Fraser University, Canada
JHILLEL @ Vax2.Concordia.CA Rina_Zazkis@sfu.ca

The structure of this paper follows the structure of the three two-hour
sessions of the Working Group. The paper consists of four sections
written, respectively by Ed Dubinsky, Rina Zazkis, Joel Hillel and
Francisco Cordero. The first two sections will form the basis of discus-
sion at the first Working Group session and the second two sections will
be considered in the second session. The third session will be devoted to
general discussions and topics which are proposed by members of the
Working Group.

The format of the first two sessions will consist of one hour devoted
to each of the sections in this paper. The first 20 minutes of the hour will
be a presentation of the material in the corresponding section of this
paper followed by 30 minutes of general discussion. There will be a 10-
minute break after the first discussion, and after the second discussion we
will consider our activities for the third session.

In the first section, Dubinsky raises the question of what a theory of
learning might be and how it can be useu in collegiate mathematics
education research. To set the discussion going, he describes how his
own work is one possible response to these questions.

In the second section, Zazkis describes a model, which is preliminary
to developing a theory, based on “Fuzzy Logic” which is an alternative to
standard logic. It is a tool for understanding students’ thinking and can
serve as an aid in introducing students to mathematical conventions.

In the third section, Hillel describes in some detail the design of an
experiment using a dynamic geometry computer environment to study stu-
dents’ understanding of eigenvalues and eigenvectors. His research group
found it necessary to first investigate understanding vectors, linear combi-
nations, and linear transformations. Having created an instructional design
for fostering the learning of these concepts, they found some unexpected
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confusion by the students between the dynamic aspect of the geometry
(e.g. dragging vectors) and linear algebra operations such as taking linear
combinations.

Finally, in the fourth section, Cordero considers certain categories of
mathematical knowledge that form an epistemology for Calculus and Analy-
sis. This is the beginning of a comprehensive program for organizing col-
legiate mathematics and investigating students’ learning in this domain.

Acknowledgments. Contributions to the discussion leading to
this paper were made by the Working Group Advisory Board con-
sisting of Broni Czarnocha, Bill Martin, Alan Schoenfeld, Pat Th-
ompson, Draga Vidakovic, and Joe Wimbish. The work described
by Dubinsky was participated in by various members of RUMEC.
The project discussed by Hillel is a joint work with Anna Sierpiska
and Tommy Dreyfus. Jana Traglova also participated in the design
and implementation of the experiment. Some of the results re-
ported by Cordero were obtained by Ricardo Cantoral and Rosa
Maria Farféan.

1 Use of theory in studying how collegiate mathematics can be
learned

The purpose of this first discussion is to consider application to colle-
giate mathematics of the general notion of using a theory to investigate
how learning mathematics can take place. First, we will consider what
might be meant in education by the term “theory”. Next is the question of
how a theory might be used and I will start off the discussion with an ex-
ample from my own work. After a very brief description of the theory 1
prefer to work with, I will indicate some examples of its use. Finally, I
think we must consider the question of research in which a theoretical per-
spective may not be helpful, or at least be premature.

Much of what I have to say here will be focused on one particular
theoretical perspective — the ones I use. Ido this in the spirit of hoping to
hear about alternatives in the discussion. ,

What can be meant by the term “theory”? According to Alan
Schoenfeld in “Toward a theory of teaching-in-context”, to appear in /s-
sues in Education, models and theories support prediction, have explana-
tory power, and are applicable to broad ranges of phenomena. To this I
would add that a theory can help organize one’s thinking about complex,
interrelated phenomena, serve as a tool for analyzing data, and provide a
language for communication of ideas about learning that go beyond super-
ficial descriptions.

This is one view of what a theory might be. The Working Group can
discuss other views and possibly organize a critique and / or synthesis of

various ways of understanding the meaning of theory in educational re-
search.
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A research paradigm for using a theory. Aside from what might be
meant by theory is the question of how a theory is used in actually conduct-
ing research. Again there are different views about this which the Working
Group can discuss. In my presentation I will describe the way in which
theory relates to the research I do.

I think that mathematics education research in its fullest sense ought to
be some combination of theoretical analysis, design and implementation of
instruction, and the gathering and analysis of data. Things get a little more
interesting when you ask about the nature of the combination. The way in
which I combine them is illustrated in Figure 1.

As a constructivist, I think that the role of theoretical analysis should
be to propose mental constructions a person might make in order to learn
and understand a mathematical topic. Instruction should be designed so as
to foster these constructions in the context of the mathematics to be learned.
Implementation may require pedagogical strategies and tools other than
what is traditionally used. Data of all sorts need to be gathered using quali-
tative methods, quantitative methods and combinations thereof. Triangu-
lation should be an important goal. Finally, the relation between theory
and the analysis of data is two-fold. The theory can direct the analysis of
an often unmanageable mass of data by helping to focus on specific ques-
tions. Conversely, atheory lives or dies by the data. Did the students make
the mental constructions proposed by the theory and if so, did they learn
the desired mathematics? In my view, the value of a theory should be
almost totally based on the answers to these questions.

Theoretical
Analysis

Observation and ¢ Design and Implement
Assessment Instruction

Figure 1. Relationship of Theory to Research
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APOS Theory: one example. The APOS theory, put forward, devel-
oped and used by a Research in Undergraduate Mathematics Education
Community (RUMEC), postulates that learning a mathematical concept
consists in constructing certain actions, processes, and objects and orga-
nizing them in schemas. An action is a mental or physical transformation
of mathemat- ical objects that is directed externally by a set of explicit
instructions. An action can be reflected upon and interiorized into a pro-
cess in which the transformation takes place internally under the control of
the subject, perhaps in her or his imagination. A process can be encapsu-
lated into an object to which actions or processes can be applied. The
tichest form of such a construction will allow the subject to alternate in
interpretation between process and object. Finally, a schema is a collection
of actions, processes, objects and other schemas which is coherent in the
sense that there is some general criteria for knowing in advance if a previ-
ously unmet phenomenon fits in the schema. Schemas can also be
thematized so as to become objects.

We can see how this relates to what I mean by theory. The explanatory
power of APOS Theory, which also provides a language for communica-
tion, lies in its expression of understanding a mathematical concept in terms
of very specific mental construcions. This can explain student difficulties
in the sense that fine-grained comparisons of successful and unsuccessful
student performances are related to making, or not, the specific construc-
tions proposed by the theory. It is here that APOS theory supports predic-
tion: a falsifiable assertion is that if a student makes certain specific mental
constructions then he or she will be successful in a certain mathematical
situation. The theory provides a tool for analyzing data by focusing on

- specific questions to ask of the data. There is no doubt that in using APOS
theory, researchers organize their thinking in terms of actions, processes,
objects, schemas and their interrelationships. Finally, there is really now a
fair-sized (and growing) body of published research into a broad collection
of topics in which APOS theory is applied. This includes mathematical
induction, predicate calculus, thefunction concept, elementary set theory,
slopes, limits in calculus, the chain rule, cosets, Lagrange’s theorem and
quotient groups, permutations and symmetries, number theory, elementary
concepts in statistics, place value in arithmetic and fractions. It is used
both by those involved in developing the theory as well as others who have
read about it.

Using APOS Theory. One fairly simple, but very effective applica-
tion of APOS theory is to the concept of coset of a subgroup in abstract
algebra and Lagrange’s theorem. Both of these can be very difficult for
students, although to working mathematicians they appear quite simple.
The difference, according to APOS theory, is the ability to go beyond an
action conception of coset to understand the process of forming cosets and
then to encapsulate this process into an object.
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More specifically, an individual’s understanding of coset is restricted
to action when he or she can only think in terms of some formula such as
the set of integers whose remainder on division by 4 is 2. This will work
only in such simple cases as groups of integers and subgroups of all mul-
tiples of a single integer. For more complex groups such as the group of all
permutations of n objects, it is necessary to understand a coset of a sub-
group as a process of applying the group operation with a single, fixed
element of the group and all elements of the subgroup. Finally, this pro-
cess must be encapsulated to see a coset as an object to which actions and
processes can be applied, but always based on the process of its formation.

Our research has suggested that students often do not see cosets as
objects in this sense. When they do, counting the number of cosets, com-
paring their size and checking their common elements becomes fairly simple
actions on these objects, also, if necessary, interpreted as processes. Since
such actions amount to a proof of Lagrange’s theorem, it is not surprising
that when we design instruction (using cooperative learning, computer pro-
gramming, and active learning methods) focusing on mental constructions
of cosets as processes and objects, students appear to find Lagrange’s theo-
rem more accessible than in standard abstract algebra courses.

Sometimes not. Let me close this essay by making clear that I am not
suggesting that everyone uses a theory in this or some other sense in all
research. A theory is a tool that, in each case, one chooses to use or not.
Although I am strongly convinced of the value of using theory in general,
and APOS Theory in particular, this is not a dogma and 1 have engaged in
research related to visualization as well as predicate calculus (in studies
other than ones in which APOS Theory has been used) in which there is
either a different kind of theoretical analysis, or none at all — for the present.

2 What is “true” in mathematics?- a Fuzzy Logic perspective on
students’ arguments.

I would like to suggest a model (not yet developed enough to be called
a “theory”) for interpreting some of the students’ arguments in making de-
cisions about the “truth” value of mathematical statements. The context I
refer to is a course “Foundation of mathematics for elementary school teach-
ers”’, which is a core course in many teacher education programs.
Consider the following statements:
(1) Prime numbers are odd.
(2) Even numbers are divisible by 4.
(3) Numbers that have the last digit of 5 are even.

In a mathematical convention each one of the statements is “false”.
However, a repeating “error pattern” in the responses of my students was
to label the statement (2) as “partly-true, partly-false” and label the state-
ment (1) as “almost true” or “true with one exception”. Aithough such
students’ responses do not receive credit on any graded assignment, they
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are much more informative than the conventionally correct, “false”. To
consider the loss of information in a traditional approach of standard biva-
lent Aristotelian logic, a new domain of mathematics was introduced in the
late 60s, called Fuzzy Logic.

In my presentation I will explain the motivation for developing Fuzzy
Logic and Fuzzy Set theory. Briefly, Fuzzy Logic is a multivalent logic,
which sees the True/False dichotomy of standard logic as a continuum,
where the truth value of a statement is represented by a number in the
closed interval [0,1]. A statement can be “true to a degree” and “false to a
degree”, which means “true and false” at the same time. Therefore, from
a perspective of a Fuzzy Logic statement (2) is indeed 50.

It has been my conjecture that mathematical decision making by many
students does not correspond to standard logic and can be modeled using
Fuzzy Logic. I am conducting a research project that attempts to investi-
gate decision making of pre-service elementary school teachers regarding
the truth value of mathematical statements. I will share results of this re-
search and present several questions for discussion.

After being submerged in mathematical culture for many years we take
for granted that in order to claim that a given mathematical statement is
true one has to provide a convincing argument — a proof, whereas in order
to claim that a statement is false, a single counterexample is sufficient. Is
this a prevalent way of decision making among individuals aiming at a
teaching career? After the mathematical convention had been discussed in
class the following story was presented to a group of 58 preservice elemen-
tary school teachers, seeking their written response:

Jennie has been asked to decide whether a given mathemati-

cal statement was true or false. She checked several examples at

random. In three cases the statement was true, in two other cases it

was false. Can you help Jennie make a decision? What will be
your advice?

About one half of the students claimed that the statement was false
because one example was sufficient to disprove it, and, in fact, Jennie found

two such examples. The responses of the other half varied; several typical
arguments follow:

* Isuggest that Jennie keeps checking more examples to see on what
side (true or false) you have more.

*  When you don’t get true in all the cases or false in all the cases you
have to guess. In Jennie’s case she should guess “true” because
then her chances of getting it right are 3 to 2.

» The statement is both true and false because you’ve got examples
of both cases.

* My advice will be to ask Rina or one of the assistants.

In students’ responses (the first three) we can recognize applications of
fuzzy arguments to a situation where they are not applicable or not invited.
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(By “fuzzy” I mean here multivalent rather than imprecise or vague.) While
in standard logic a statement is either true or false, the ideal of true and
false 1s acceptable in Fuzzy Logic. Therefore a Fuzzy Logic model has a
strong p ower to explain students’ responses. Using this model we identi-
fied several cases in which students’ errors are not the result of misunder-
standing concepts, but rather the result of a failure to apply a standard logi-
cal argument.

Excerpts from clinical interviews with students will be presented. I
will discuss students’ responses for mathematical decision making as well
as the influence of quantifiers on determining the truth value of a state-
ment. For example, students’ responses to “‘even numbers are divisible by
4” were quite different froin their responses to ““all even numbers are divis-
ibie by 4”.

I believe that acknowledging students’ intuitive fuzzy perspective on
mathematics can help in understanding students’ thinking and can serve as
a springboard in introducing students to mathematical conventions. I won-
der how this model can be developed further to become a theory for ex-
plaining students’ learning of predicate calculus.

3 Eigenvalues and eigenvectors: genesis of a research project in
linear algebra.

In a typical first linear algebra course, eigenvectors of a linear trans-
formation are defined, then illustrated geometrically by means of co-lin-
earity of a vector and its image, and finally, students are taught the proce-
dure of finding eigenvalues and eigenvectors. Yet, when asked at the end
of the course to define an eigenvector, students’ answers generally go like
this “it is when you find the characteristic equation and solve for the roots
and...”.  Or, when asked to decide whether a particular vector X, is an
eigenvector of a matrix A, students still go through the whole general pro-
cedure. In other words, it seems that the majority of students have not
acquired the concept of a eigenvector at the end of their linear algebra
course.

Given the centrality of the notion of eigenvectors in linear algebra a
research project probing into students’ conceptions seemed to us timely
and sufficiently focused. However such probing quickly opened up the
proverbial can of worms of other difficulties which, in retrospect should
not have come as a surprise. Eigenvectors are linked to the notion of both
vector and linear transformation and very quickly we found ourselves ask-
ing what our students’ conceptions of both of these notions were. Some of
the more salient aspects that emerged were that the concept image of a
vector was that of an n-tuple; that there was a lot confusion about the status
of a vector when one n-tuple was represented by its coordinate vector rela-
tive to a basis; that matrices were often looked at in a static way as repre-
senting system of equations rather than transformations; and that the model
of vectors as arrows in the usual coordinate 2- and 3-dimensional space
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was not well understood (for example, when asked to show vectors (x,, x,)
such that x, + x, = 1, students drew the line x;, + x, = 1 and drew some
arrows lying on the line).

Our initial aim of looking at eigenvectors and designing a brief in-
struction sequence to foster their construction by students led us to a longer
term design starting with the notions of vectors, basis, linearity, and trans-
formation. The design was to be based both on our findings about stu-
dents’ conceptions as well as on epistemological analyses of basic math-
ematical concepts and of the modes of reasoning of linear algebra (see
chapters VI and VII in Dorier’s recent book on research in linear algebra,
1997 Dorier, J.L. (Ed.), L’enseignement de I’algébre linéaire enquestion,
Bibliothéque Recherches en Didactique des Mathématiqurs). We also
looked at instructional practices — for example a series of videotapes of
four colleagues teaching eigenvectors showed how easily we tend to slide
back and forth between the abstract, the arithmetic (n-tuple), and the geo-
metric (arrows and points) modes of description of vectors without ever
making these shifts explicit to the students.

In our project we decided to try to restore the geometric roots and think-
ing in linear algebra at the intuitive and heuristic levels without downplaying
the power of analytic methods. Our decision to start with a geometric
model was influenced by the possibility of creating such models within a
dynamic geometry software such as Cabri. We projected an instructional
design in three phases: the phase of geometric intuitions in the plane, the
phase of arithmetization and generalization to higher dimensions, and the
phase of applications. In the first phase, the main goal is the students’
interaction with a geometric model of the two-dimensional vector space,
constructed in Cabri. The notion of linear transformation in the two-di-
mensional space is.introduced in a geometric way as a generalization of the
one-dimensional notion of proportionality. Eigenvectors are modeled by
the idea of the invariant line of a linear transformation, and are visualized
by the co-linearity of a vector and its image. The arithmetization process
in the next phase starts only after students have gained some geometric
intuition for vectors, bases and transformations. It starts with the idea that
a linear transformation is completely determined by its values on a basis.
In the final phase, applications are emphasized in several contexts, not only
geometric ones.

But even a decision to begin with a coordinate-free geometric model
for vectors necessitatedmaking a choice among: 1. Vectors as directed line
segments emanating from a fixed point; 2. Vectors as dots; 3. Vectors as
equipollent line segments; and 4. Vectors as translations. We considered
the tradeoff among these possibilities and opted for the first. We created
CR2, a Cabri model of 2-dimensional vector space (including vectors and
a scalar line) and designed an instructional sequence for the first phase of
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the study. While we have given a lot of thought to the different aspects of
the design (which includes the geometric environment, scripted interven-
tions by the instructor, and students’ activities), our pilot project with a pair
of students produced very inconclusive results.

A pair of (relatively weak) students does not make a reasonable scien-
tific experiment but it was sufficient to wave some red flags about several
problems, some of our making, others perhaps inherent to a dynamic ge-
ometry environment. For example, a vector v with a fixed initial point can
be dragged on the screen - it is still labeled v so our students’ initial idea
was that the only attribute of vector worth attending to was its length -
vectors were not equal only if they have different lengths (discussing equality
of vectors and, later on, equality of linear transformations, was not in our
design). This looks like a fixable problem. More serious was the implicit
idea that a single vector v “generates” the whole space since every other
vector can be obtained from v by dragging. This problem only became
apparent when we started to work with bases and linear transformations.
In particular, our students had trouble understanding why two (basis) vec-
tors are required in order to determine a transformation. A Cabri vector v
was looked upon as a variable vector and the implicit change to an ‘arbi-
trary but fixed’ status (which essentially meant that dragging was not a
legitimate option) created serious obstacles. Certainly our faith in the po-
tential of a dynamic geometry environment to provide solid intuitions for
basic linear algebra concepts has been shown to be a bit naive.

We have now changed our design and are about to experiment with
3-4 pairs of students. Our new design is more elaborate and, at this stage,
touches only the concepts of vectors, linear combinations, and linear trans-
formations. So eigenvectors, which were the original raison-d’etre for our
research, have been put on the back burner. Thus we have begun with a
specific concept and with the idea of being able to design some practical
instructional interventions. But research seems to have taken its own course.
It has generated new questions and led us to design a new learning envi-
ronment — one which will enable us to answer some questions but which
is impractical as an instructional design in real classroom situations (it is
too elaborate). We feel that we gained much better understanding of some
of the conceptual difficulties that students have, and the possible short-
comings of dynamic geometry models. But we have gotten further away
- from our initial concern with eigenvectors and, at this moment, it is not
clear if we will be able to reestablish that connection.

A question we might consider in the Working Group is whether the
kind of evolution of the research project which I have described is more or
less inevitable whenever one tries to examine a complex mathematical con-

cept which is linked to other concepts or are there ways to avoid the pro-
cess of “infinite regress”?
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4 The role of some categories of mathematical knowledge in the
teaching and learning of collegiate mathematics.

The purpose of investigating categories of mathematical knowledge in
relationship with teaching and leaming in collegiate mathematics is to find
an epistemological basis for explaining all inter-actions among knowledge,
teacher, student, classroom, institution, social situation and cultural frame-
works. This basis could be a comprehensive program to organize colle-
giate mathematics.

I am going to consider an example from Calculus and Analysis. I will
use some results that my colleagues and I have achieved in the past several
years. With this example I will point out the main aspect of our point of
view. And finally, I would like to reflect on how this kind of view could
~ modify the sources from which the individual makes mental constructions.
In this sense the focus of research will be on mathematical content in that it
means to pay attention to the relation of knowledge to the physical and
social characteristics of situations to which the student must attend.

I will start with the example but first, it is necessary to describe our
epistemological position on the nature of Calculus and Analysis. 1 will
explain some aspects of the basis of our epistemological position through a
set of questions.

What does the abstraction of properties and relations of operations in
Calculus and Analysis give or offer? Certainly mathematical knowledge,
but why does that mathematical knowledge exist? In other words, what is
the relation of mathematical knowledge to physical and social characteris-
tics of situations?, What is an adequate and careful selection of situations
that bring out mathematical knowledge?, What are the relations between
problems to be solved and specific conceptions?

Calculus and Analysis would not exist if they did not provide an ac-
ceptable model of some reality, such as physical entities, and if it did not
help to work on empirical problems. Therefore, the categories of math-
ematical knowledge that make up an epistemology perhaps should be in a
functional framework. This means that the individual establishes relations
between processes and objects through meanings. Thus, these categories
do not correspond to logical operations but rather with modeling and use.
Certainly these could be the basis of those categories.

Some categories that we have found in our epistemological studies, so
far, are the following: prediction notion, due to Cantoral, accumulation
notion and tendency behavior of functions due to Cordero, and permanent
state notion due to Farfdn. And each one is in relation with the mathemati-
cal structure of Calculus and Analysis: approach, derivation, integration
and convergence.

The functional aspect focuses the kind of categories that contrast with
categories found in the mathematical structure. The contrast consists of
procedures obtained, on one hand, for representations, and on the other, for
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formal operations.” In this sense, the important aspect of categories, in
mathematical didactics, do not consist in establishing a mathematical defi-
nition but in establishing or identifying all relations of mathematical con-
tent (tool and meaning) through representations and procedures in this frame-
work.

The nature of these relations relates more to the manner of construc-
tion of processes and objects than to processes and objects themselves.
This corresponds to cognition, that is, variability of the frameworks and
multiplicity of representations affect the method of construction. To know
how they are affected we must analyze the progress and restriction of men-
tal constructions. ‘ :

The inter-relation of mathematical content, representations and proce-
dures are elements that we want to see in a “developmental understanding
structure”. For that, we must design situations that take into accont inter-
relations of context organized by those categories.

The methodology that we use for the design of situations is composed
of three dimensions: epistemological, cognitive and didactic. The episte-
mological dimension establishes the reference framework of mathematical
content. This is necessary for the cognitive dimension where the plai. of
representations and procedures of the student appear. Also both the frame-
work and the representations and procedures are necessary for the didactic¢
dimension to establish arguments or explanations ~f what is orgamzed there
In this sense the categories transform to a program that organizes contents,
concepts and ideas.

Thus, the epistemological explanations with their social mteractlom
(society, school, institution and culture) are based on the following ele-
ments: meanings, symbolical systems, procedures, processes and objects,
and arguments. These elements together we call construction of represen-
tations.

Moreover, the construction of representations covers, so far, three
groups: variability of the variables, graph of the function and formal ex-
pression. Each group is an epistemological framework of machematical
knowledge and also the students construct representations and apply pro-
cedures in relation with the operations that they are able of capturing and
transforming, and in relation with the conditions that are being built in
progress. For example, following horizontally each group the procedures
that have been obtained of the students are: comparison of two states, varia-
tion of variable and coefficients of a transformations and formal opera-
tions. The process and objects on which they work are: quantity, form of
the graph of function and function. And arguments that they have gener-
ated are: taking the differential element, tendency behavior of function and
analytic function.

This kind of program not only orients what should be Calculus and
Analysis for teaching and learning, but also composes a program of iaves-
tigation of the collegiate mathematics in the field of mathematics educa-
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tion. The orientation consists in taking tools such as a base of these catego-
ries. This would be to pay attention to the progress of a student’s execu-
tions or in the development of new or better methods of use. Here struc-
ture is not a priori a set of arrangements, but rather is the result of the kind
of activities and actions that a tool permits when used in a certain way.
This carries out the act of seeing similarities in structures and these are
different contexts that could be the source or the basis of abstraction. Con-
cretely, we are referring to all the relations and interactions that could be
established among the three groups referred to above.
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Our working group/discussion session constitutes a coming together
of researchers in mathematics education in order to weave together the
findings of various strands in research and understanding of issues in gen-
der and mathematics. Over the past several years there has been a signifi-
cant turn in the study and understanding of women’s (and girls’) relation-
ships to the study and use of mathematics. Fifteen to twenty years ago, two
kinds of studies dominated research on women and mathematics: (1) stud-
ies of sex differences in mathematics ability, study, achievement, and use,
and (2) causal modeling studies which sought to identify social and psy-
chological variabies which interacted to predict female success in math-
ematics.

While these lines of research provided interesting findings and led to
modest changes in some practices of mathematics education, they were
insufficient to address the issues of gender and mathematics in several re-
gards. The statistical findings on sex differences in predictive (indepen-
dent) variables were of a much smaller magnitude than the observable gen-
der differences in mathematics participation by women, and the purported
explanations for the lesser participation and success of women in math-
ematics lacked credibility in the views of many women (both mathemati-
cally successful and not).
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Beginning with Dorothy Buerk’s 1983 qualitative study of women in
college mathematics classes, many researchers interested in gender and
mathematics initiated new modes of research on the phenomena. Over the
past fifteen years, many studies and theory building activities based on
diverse research methods and theoretical bases have been conducted in the
area of gender and mathematics. These have been conducted in parallel
with two other deveiopments: (1) the rethinking and re-examination of gen-
der issues by feminist psychologists (e.g., Bem, 1993; Kimball, 1995), and
(2) increased attention to the philosophy of mathematics and the sociology
of knowledge within the mathematics education community (e.g., Ernest,
1994; Restivo et al., 1993). These broader considerations of gender and of
knowledge building lend support to new lines of research and provide im-
petus for work which can weave them into a more integrated understand-
ing of the current status of research on gender and mathematics.

In this context the purposes of this discussion at PME-NA XX were:
(1) to bring together in one discussion reports on the status of research of
gender and mathematics conducted within several research frameworks;
(2) to tdentify commonalities and conflicts in the research findings; (3) to
identify critical questions that must be addressed; (4) to work toward the
development of an edited volume conceived as a handbook of current re-
search, findings. and issues in the area of gender and mathematics; and (5)
to provide for the mathematics education community and other interested
researchers and practitioners a comprehensive view of the current state of
knowledge about gender and mathematics by weaving together the various
strands of knowledge and examining the resulting fabric.

The researchers participating in this session provided the following
contributions to form the foundation for our integrated perspective. We
examine what we learn through (1) research based on Women's Ways of
Knowing (Erchick); (2) research based on critical theory and media studies
(Appelbaum); (3) applications of feminist theories (Damarin); (4) a current
re-reading of the “classics” of gender and math (Hart); (5) studying the
intersections of gender and race (Cossey); (6) studies of women in math-
using fields (Condron); (7) studies of equity and K- 12 curriculum (Confrey);
and (8) talking with women in college mathematics classes (Buerk).
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Introduction

The working group on Geometry and Technology will discuss the inte-
gration of geometry and technology from the student and teacher perspec-
tive. This paper will provide a framework for some of our discussions and
to identify researchers who have contributed to the conversation. We will
first discuss the student perspective, followed by the teacher perspective.

The use of computers in a geometric environment has been investi-
gated by a number of researchers (e.g. Kilpatrick & Davis, 1993; Laborde,
1993; Noss, Hoyles, Healy & Hoelzl, 1994; Schwartz, 1994; Kajander,
1990, 1989). Computers, especially with their graphic capabilities, may
facilitate the construction of geometric concepts (Clements & Battista, 1992,
1994). Since computers have been introduced into the teaching and learn-
ing of mathematics, several software packages have been developed aimed
at improving learning of mathematics in general and geometry in particu-
lar (Laborde, 1993).

One of the first software programs developed to investigate geometric
relationships was LOGO, beginning with Papert in 1980. Many research-
ers have used LOGO with varying degrees of success in mathematics
(Johnson-Gentile, Clements & Battista, 1994; Clements & Battista, 1994;
Cohen, 1987; Hoyles, 1987; Hillel, 1986; Goldstein, 1985). Recently,
Johnson-Gentile et al. (1994) used LOGO motion with two groups: one
group used paper and pencil for the transformations while the other group
used LOGO on a computer. They observed that the computer group devel-
oped better geometric thinking skills. Based on these and other results, it is
important that we investigate the use of other software programs in the
learning of geometric relationships.

A growing number of teachers have used the dynamic geometric soft-
ware programs as the basis for geometric construction in place of a com-
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pass and straightedge. Dynamic geometric software allows the user to ex-
plore geometric properties and relationships and to manipulate images on
the screen to investigate relationships and patterns in geometric construc-
tions. This makes it possible for the user to make and explore conjectures
about the generality of their observations (Chazan & Houde, 1989). Be-
cause students will construct adequate drawings with the computer, they
can concentrate on the exploration and investigations of geometric rela-
tionships. This new focus on exploring conjectures can have the effect of
bringing curiosity, inquiry, and research into the mathematics classroom
(Schwartz, 1994).

The use of dynamic geometric software began in 1985 when Judah
Schwartz and Michal Yerushalmy developed the Geometric Supposers
(Schwartz & Yerushalmy, 1988}. In their previous research on geometric
constructions and proof, Yerushalmy et al. (1987) found that students had
difficulty with problem posing and with inductive thinking. They felt that
students would be better inductive thinkers if they could manipulate the
geometric figures on a computer screen. The Geometric Supposers soft-
ware program was therefore developed to give students the opportunity to
test conjectures quickly without the difficulties that arise when one uses a
compass and straightedge. The Geometric Supposers program is a member
of the first generation of geometric dynamic software.

Since 1987, two other programs, Cabri-geometrie and Geometer’s
Sketchpad, have been developed in addition to the Geometric super Supposer
program. Laborde et al. (1988) developed Cabri-geometrie as a second gen-
eration program (presented at the ICME IV meeting in Budapest). The
Geometer’s Sketchpad program was developed by Nicholas Jackiw, in early
1990, also as a second generation of educational geometry software. These
dynamic gzometric software programs enable the student to perform con-
structions and to observe the changes while they manipulate geometric
shapes on the computer screen. The transformation and scripting ability of
these programs has broadened the scope of what can be done with geomet-
ric software.

There is a considerable amount of curriculum materials available to
the dynamic geometric software user. A high school geometry textbook by
Serra (1989) encourages the students to create their own geometric con-
structions and formulate the mathematics for the relationships that they
discover. Students can work individually or in groups to do investigations
and discover geometric properties. Students are encouraged to look for pat-
terns and use inductive reasoning to make conjectures (Jackiw, 1992). Other
manuals and textbooks (Serra, 1989; Bennett, 1996) have additional ac-
tivities for students and teachers.

Researchers are asking important questions about what teachers can
do to better integrate geometry into mathematics classrooms. In Linn and
Pea (1994), Linn asked a key question about teachers in a geometric com-
puter environment: “What kind of support is really needed to create the
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kind of experimenting society where teachers really think that they can try
out a curriculum, listen to what students have to say, make some adjust-
ments and try it again?” (p. 12). The call to investigate geometric computer
tools has come from many researchers and reformers (Clements & Battista,
1994; Linn & Pea, 1994; ICMI Discussion Document, 1994; Davis, 1992;
Chazan & Houde, 1989). The computer can provide an exploratory envi-
ronment in which teachers and students can explore mathematics. It can
also be used to investigate what needs teachers have to enable them to
change their mode of delivery. Clements and Battista (1994) summarized a
number of studies that suggest that geometric computer environments can
help develop students’ thinking in geometry. According to these studies,
students can make conjectures, evaluate visual manifestations of those con-
jectures, and reformulate their thought (p. 188). Kilpatrick and Davis (1993),
in their review of computers in mathematics education, found that if stu-
dents use computers to test conjectures, then the demands on the teacher
are increased and more effort is necessary by the teachers and students.
Schoenfeld suggested that “‘we need to change the atmosphere in the class-
room, to establish a different kind of classroom dynamic that would ulti-
mately affect the student’s habits of mind” (cited in Linn & Pea, 1994, p.
11). Teachers play an important role in mathematics education. Their en-
thusiasm and interest can influence student interest and excitement for ge-
ometry (Mason, 1991). If teachers become uninterested or unimpressed
with geometric relationships and facts, they tend to maintain a teacher-
directed pedagogy. That is, they determine what questions are important to
ask and what geometric facts are important to ‘discover’. Use of dynamic
geometric software programs can help teachers to develop or redevelop an
enthusiasm for investigating geometric relationships. Researchers have
suggested that computers will change the way teachers teach. Pea (1987)
stated that it is difficult to predict how the role of the teacher may change
due to the increased use of technology. Yerushalmy (1987) called for a new
type of teacher and a new type of teaching. She states that this new type of
teaching must support and integrate exploration, inquiry, and ideas into the
mathematics classroom. Furthermore, Schoenfeld, in questioning what re-
searchers can do to investigate teachers in exploratory classrooms, asks
“What makes the magic happen when it happens?” (cited in Linn & Pea,
1994, p. 11). Therefore, the challenge is to assist teachers in using the com-
puter so that they can allow students to work in an open way and still be

comfortable in managing the students, their classroom activities, and their
time.
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What are the issues?

In the recent past, discussion has tended to focus on documenting stu-
dent “errors” and “misconceptions” in probabilistic reasoning. These are
certainly widespread. Given this awareness, we need to know more about
how students do learn to reason probabilistically. Here, therefore, we focus
our attention on precisely how, on the one hand, learners build mathemati-
cal models and how, on the other hand, these models interrelate both with
each other and with data. For this reason, our focus is on how students
build and work with information.

Theoretical Perspective

Children, in appropriate environments, conduct strong inquiries. Proba-
bilistic reasoning is complex, as models can extend distortions as easily as
they can contribute to the growth of understanding. Often they do both.
Indeed, the variety of representations which children find useful, and the
complex relationships between the models children build and the data which

they seek to explicate provide rich opportunities for discussions focused
- centrally on sense and meaning. Because of this complexity, the develop-
ment of probabilistic¢ thinking requires careful building over time, in which
earlier inquiries are revisited, reconsidered, extended and reformulated. The
tools available, the ways these tools are used, the ways in which ideas and
information move among the leamners, the teacher’s questions, ideas and
interventions also contribute (or fail to contribute) in important ways. Both
research and teaching need to take the long-term building into account, as
well as the complexity, at any given moment, of the work and discourse,
including adult intervention, in each given setting.

Background

A cross-cultural investigation concerning the emergence of statistical
reasoning in children and adult learmers was carried out by colleagues from
three countries (Brazil, Israel, and the United States) working together (Amit,
1998, Kaufman-Fainguelernt, E. & Bolite-Frant, J., 1998; Maher, 1998;
Speiser & Walter, 1998; Vidakovic, Berenson, & Brandsma, 1998). The
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studies examined, in detail, aspects of the development of statistical ideas
about dice games, the student’s visual and symbolic presentations of those
ideas, and the process by which the students were engaged in discourse in
convincing each other of the validity of their thinking. The studies center
around students’ investigations of these same tasks, across several grade
levels—elementary to college level— and from each of the respective com-
munities. A central idea is the assignment of correct probabilities to sample
points—whatever the model— and how these assignments interrelate. An-
other outcome is the recognition that models and data interact, that statisti-
cal prediction, therefore, is subtle -and hence takes time to develop. Stu-
dents’ work offers wide variety of representations but—it seems—with
very interesting constraints.

An Example

All students were challenged with the same two problem tasks.' Stu-
dents built sample spaces, in effect, while playing dice games. The data
describe learners’ ideas about chance, sampling, sample space, probability,
and fairness. Also, they provide information about student theories about
the fairness of the games and what students regarded as evidence for their
theories. The game with 2 dice triggers two models, based on different
sample spaces [see Appendix] which we denote by A (36 elements) and B
(21 elements). Learners were videotaped playing the following dice games:

Game 1: A Game for Two Players: Roll one die. If the die lands on 1,
2,3 or 4, Player A gets 1 point (and Player B gets 0). If the die lands on 5 or
6, Player B gets 1 point (and Player A gets 0). Continue rolling the die. The
first player to get 10 points is the winner. Is this a fair game? Why or why
not?

Game 2: Another Game for Two Players: Roll two dice. If the sum of
thetwois 2, 3,4, 10, 11, or 12, Player A gets 1 point (and Player B gets 0).
If the sumis 5, 6, 7, 8, or 9, Player B gets 1 point (and Player A gets 0).
Continue rolling the dice. The first player to get 10 points is the winner. Is
this a fair game? Why or why not?

Data

The following transcripts from video excerpts of fifth-grade children
(Maher, 1998) are presented as metaphors for conversationr among work-
ing group participants.

! The tasks were developed as part of longitudinal study of children’s thinking for
the strand of probabilistic and statistical reasoning (Maher, 1995). The research
was funded, in part, from a grant by the National Science Foundation (#MDR-
9053597). Any opinions, findings, and conclusions or recommendations expressed

in this paper are those of the authors and do not necessarily reflect the views of the
National Science Foundation.
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First play the game and see what happens. All the learners, almost
immediately, asserted that the first game was unfair. The groups proceeded
to modify the game in various ways so that each player would have the
same number of opportunities for a score.

Initial responses to the second game ranged widely. Several students
claimed that Player A had the advantage, since there were 6 opportunities
for a point (as compared to 5 for Player B). Others suggested that this game
was “probably fair”, on the grounds that Player B had certain numbers
which they felt were easier to roll, making up for the fact that Player A had
an extra number. Individual students asserted that even sums were harder
to roll than odd and that higher sums were easier to get than lower ones.
One student, Jeff, remarked to his classmate, Romina, that “snake eyes”
(2) and “boxcars” (12) were the most difficult sums to roll and that 7 was
the easiest. The students in each group played the game several times, re-
cording scores. According to these data, Player B won far more often than
Player A did, so many students began to revise their initial hypotheses. At
the end of the session, the students were asked to think about the game, to
play it as many times as they liked, and to return to the second session with
any results, hypotheses, and/or explanations that they could then develop.

Moral: model dice, not sums. The following episode, as this group
collaborated to develop a “fair” game, gives evidence about how Jeff might
represent his outcomes, and suggests potential implications for construct-
ing a “fair” game:

Romina:  1did this-Idon’t know. I put 2,3 and 4 - and 2 and 3 only
have one possibility, and so does 11 and 12.... And I put
that Player B has more.

Jeff: Well, if we get - They (Player B) have 1, 2, 3,4,5,6,7, 8,
9, 10, 11, 12,13 chances of hitting their number. So they
have more chances - and giving more points
wouldn’t work though -

Jeff produced a chart with each row recording what he considered to
be the possible outcomes resulting in a particular sum from 2 to 12, indi-
cating beside each row the number of outcomes which resulted in each
given sum. His sample space is clearly B, with 21 elements, in which Player
B receives 13 sample points, as opposed to Player A, who receives 8. Be-
cause 21 is odd, there is no way to partition the events (that is, the possible
sums) equally unless some events, somehow, can be omitted from consid-
eration.

Stephanie (joined by Ankur and Milin) works with a different model,
based on the sémple space A, which has 36 elements. She, too, has made
charts to represent her possibilities, including a colored histogram showing
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the triangular frequency distribution for the various sums. At this point in
the discussion, both Jeff and Stephanie appear to view the points of their
sample spaces as equally probable. On the one hand, both models ¢/ the
dice lead to the conclusion that Game 2, as originally posed, favors Player
B. On the other hand, the two competing models—by design—seem to
offer somewhat different possibilities for making the game fair. But on
what considerations, as these children see it, might such possibilities de-
pend?
Teacher: Do you think you could give some insight into why B has
an advantage and even more so what kind of an advantage
B has? Can you give some insight into the advantage of B
and even tell me a little more about the kind of an advan-
tage?
The responses from two of the three groups suggested reasoning based
on sample space B. This reasoning led to Amy’s prediction that there were
3 ways to get a six.

Amy: Well I think that B has the advantage because he has like
the numbers that a lot of people get like if they’re playing
a dice game...they usually get those kind of numbers in-
stead of like a 12 or an 11 they usually get 7’s or6’s or 8’s,

9’s.
Teacher: Why’s that?
Amy: Because they have...a like they have different pairs that

can add up to the numbers...like 6...3 and 3 or 4 and 2...
Teacher: OK. So you’re telling me there are two ways you can get
6...3and 3 and 4 and 2...so is that what you’re telling me?

Amy: Yeah.
Teacher: Well 3 you can get...how many ways?
Amy: One.

Teacher: OK so Amy is telling me there is one way you cn get
three and what’s that way?
Amy: 2and 1.
Teacher: Amy says you can get 3 by 2 and 1 ...one way...and she
can get 6 by?
Jeff: 2and 4..3 and 3...5 and 1.
Teacher:  Three ways. Do you all agree with that?
Ankur: No.
Teacher:  Ankur...Ankur doesn’t agree with that.
Ankur: I say...I say for three there’s 2 and 1 and 1 and 2...because
2 is on one die and 2 is on the other die and | is on the one
die and 1 is also on the other die.

This disagreement, which seems to depend on two quite
different representations, needed to be explored.
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Teacher:  Okay, so we have some disagreement here. Can somebody
tell me what thedisagreement is? Who can summarize
what the disagreement is? Michelle?

Michelle : He’s saying that you have | on one die and 2 on the
other...but you can also have 2 on one die and | on the
other...but it is the same thing. We’re working with what it
equals up to not the numbers that are on the die... we're
working with what it equals not what...

Jeff: Unfortunately he makes somewhat sense because actually
you do have two chances of hitting it.

Stephanie: What?

Ankur has advocated Stephanie’s idea, Jeff has listened,
Stephanie has alertly taken note. Now Jeff responds:

Jeff: See look because...if you roll...if this die might show a |
and this might show a 2...but next time you roll it might be
the other way around. [Jeff is demonstrates with dice.]

Stephanie: What, Jeff? [Stephanie is at the overhead throughout this
discussion, presenting her table and chart.]

Jeff: And that makes it two chances to hit that even though it’s
the same number. It’s two separate things on two different
dies.

Stephanie: Therefore there’s more of a chance ...therefore there two
different ways...therefore there are two ways to get 3.

Jeff: And that throws a monkey wrench...and that just screws
up everything we just sort of worked on for about the past
hour.

It’s a game of luck. For the second game, discussion began after the
students have had a chance to play the game. When the question about
fairness of the game was posed initially, there was little immediate re-
sponse. Once the students had a chance to play the game, however, ideas of
“fairness”, “luck”, and *“chance” became apparent. Stephanie, Michelle,
and Jeff reluctantly admit that player A has an advantage. Their reluctance
stems, as they describe it, from belief in “luck”. These children seem sharply
aware, through reflection on their own experience, that carefully reasoned
theoretical expectations about what should happen often differ from what
does happen. Their conflict, which reflects historic controversies, seems
profound. At the same time, despite their hesitation, these children do con-
nect their theories to their data, continuing to wonder and reflect.

Discussion

As we think about cognition, we, too, attempt to learn from special
cases, taking care to note the special nature of each case as well as its
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relationship, often strongly reciprocal, to models which we seek to build.
Probability, indeed, is subtle and complex, and so is children’s thinking
about it. Quite simple tasks produce rich data and important questions for
investigation. The transcripts above suggest that children’s social interac-
tion deserves as much study as their mathematics in this context. The vid-
eotape and accompanying transcripts—and their interpretation— are of-
fered as major counterexamples to widely held points of view. We invite
discussion and collaboration. ’
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APPENDIX: Sample spaces for Game 2.

There are two. The first, A, is defined to be the set of all possible ordered
pairs (x, y), where x and y are integers from one to six. The second sample
space is B. We define B to be the quotient A/s, where s denotes the symmetry
s: A—>A defined by s(x, y) = (y, x). Each sample point in B can be uniquely
represented by an ordered pair (x, y) in A, with the restriction, now, that we
have x 2y.

Events in A, their elements, their cardinalities:

2: (1,1 ] *
3: (1,2), 2,1) 2%
4: (1,3), (2,2), (3,1) 3%
5: (1.4, (2,3), (3,2), (4,1) 4

6: (1,5), 2,4), (3,3), (4,2), (5,1) 5

7 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 6
8: (2,6), (3,5), (4,4), (5,3), (6,2) 5

9: (3,6), (4,5), (5,4), (6,3) 4

10: (4,6), (5,5), (6,4) 3
11: (5,6), (6,5) 2%
12: (6,6) 1 *

Events in B, their elements, their cardinalities:

2: (I, 1*
3: (1,2) | *
4. (1,3), (2,2) 2%
5: (1,4), (2,3) 2
6: (1,5), (2,4), (3,3) 3
7: (1,6), (2,5), (3,4) 3
8: (2,6), (3,9), (4,4) 3
9: (3,6), (4,5) 2
10: (4,6), (5,5) 2%
11: (5,6) | *
12: (6,6) : [ *

Stars, above, mark Player A’s events.
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RESEARCH ON RATIONAL NUMBER, RATIO
AND PROPORTIONALITY

Working Group Organizer
Thomas Post, University of Minnesota, postx001 @maroon.tc.umn.edu

Working Group Panel

Kathleen Cramer Guershon Harel
University of Wisconsin-River - Purdue University
Falls
Thomas Kieren Richard Lesh
University of Alberta Purdue University

The purpose of this series of three two hour sessions will be to help
frame current and future research on rational number, ratio and proportion-
ality within the perspective of earlier important studies and the projects
which have conducted them. This will be accomplished with a series of
presentations providing overviews of several of these earlier studies along
with implications for further study and investigation. Ample time for dis-
cussion (about half) will be provided. Persons interested will receive a bib-
liography with suggested readings prior to the conference.

Major areas to be considered include: multiple interpretations of ratio-
nal number (subconstructs), children’s partitioning schemes, observed block-
ages to efficient learning, translations within and between modes of repre-
sentation, concept of unit considerations, ratio-a measure space interpreta-
tion perceptual distracters, evaluation—criteria for understanding, and con-
nections between rational number, ratio and proportionality. Teachers knowl-
edge in these areas will be addressed. A survey of rational number, ratio
and proportionality related research reported in past PME proceedings will
be discussed. Guidelines for the construction of theory based instructional
student/teacher materials will be considered. Time will also be devoted to
understanding innovative research designs for research on rational number -
constructs. Importantly, implications for our future work in these domains
will also be explored relying on participant discussion and contributions
from the floor.

We have lived through a series of “content free” programs which have
captured the attention of teachers and school administrators nationwide.
As a result, teachers have not spent the needed time to learn about actual
mathematical content and students struggles to learn it. An elementary school
administrator recently (and proudly) had boasted that every elementary
teacher in her district (over 1000) had 30 hours of Madeline Hunter. There
is nothing wrong with Hunter’s ideas, and the intent here is not to demean
those ideas but unless they are applied to meaningful mathematical (or
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other) content there is no a-priori reason to expect students achievement
levels to prosper. That time would have been better spent applying Hunter’s
ideas to children’s learning of rational number concepts or some other topi-
cal domain. Similar things have happened with cooperative learning and
radical constructivism. All sound ideas, but useful only to the extent they
are applied to high quality (useful and theoretically sound) mathematical
and pedagogical content. It is this latter category of concern which has
proven to be elusive to many teachers and administrators in school situa-
tions who are attempting to improve the school mathematical experience
for children. Site based management where individual school based teach-
ers and administrators make all curricular decisions does not help the situ-
ation either.

This session will attempt to reassert the importance of accumulating
knowledge about teachers and students learning of rational number, ratio,
and proportionality. We will do this by examining the work of several
projects, groups and individuals who have made important contributions to
the field. We will then use these “classical™ studies as a springboard to
identify additional investigations to further our knowledge and understand-
ings in these areas.

The Rational Number Project (RNP) is a program of cooperative re-
search which has been funded continuously by the National Science Foun-
dation (NSF) since 1979. It is thought to be the longest lasting cooperative
research project in the history of mathematics education. To date, there
have been six separate multi-year NSF grants involving the Universities of
Minnesota, Wisconsin at River Falls, Northern Illinois, Louisiana State,
Northwestern, Massachusetts at Dartmouth and Purdue. The project bibli-
ography contains eighty or so entries including books, research reports,
book chapters and technical reports. There also have been a like number of
presentations at regional, national and international meetings. The RNP
bibliography will be shared with participants at one of our sessions. The
RNP is generally considered to have made important contributions to our
understanding of children’s rational number thinking.

The first of the RNP grants was obtained in 1979 to examine the im-
pact of manipulative materials on children’s understanding of rational num-
ber concepts. Later grants have extended our study of fractions to the study
of proportionality in the middle grades. We are now working with middle
grade teachers in a teacher enhancement program to facilitate the imple-
mentation of new NSF middle school curricula, including the RNP fraction
lessons.

This latest grant (1994-98) is primarily concerned with the develop-
ment and testing of a model for re-educating middle grades teachers. The
model used attempts to integrate teachers mathematical, pedagogical and
psychological content knowledge. (a la Shulman)

Behr, Cramer, Harel, Lesh and Post have been the mainstays of the
RNP over the years although others have worked with us for shorter peri-
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ods of time. (Bright, Khoury, Silver and Wachsmuth and many, many gradu-
ate students through the years). In addition, RNP project personnel have
worked with many of our colleagues in mathematics and in psychology on
issues of mutual interest.

1) Tom Kieren has been interested in the domain of rational number
throughout much of his career at the University of Alberta. His work on
partitioning with Pothier have contributed important understandings into
the partitioning related behavior of young children. Tom is fond of saying
that mathematics is “about something.” “About scmething” is an impor-
tant idea which has been lost on many who have over the years driven
students to premature abstraction and to a preoccupation with computa-
tional algorithms. Tom has provided an important conceptual framework
for the RNP with his paper “On the mathematical cognitive and instruc-
tional foundations of rational numbers” (1976) in which he suggests im-
portant components of rational number understanding and his belief that a
mathematically literate person in the rational number domain has an inte-
grated view as to how the various subconstructs part-whole, ratio, decimal,
indicated division, measure and operator interact and are related to one
another. He argues for a research program which acknowledges the interre-
lated nature of these subconsiructs. Tom will comment on his current views
of these subconstructs and related rational number issues.

2) Vergnaud (1983, 1988) coined the term “Multiplicative Conceptual
Field” (MCF) to refer to a web of multiplicatively related concepts, such as
multiplication, division, fractions, ratio and proportions, linearity, and multi-
linearity. Similar to Kieren’s’ subconstructs of rational number, a key idea
of the MCEF is the observation that its content is not a mere collection of
isolated concepts but rather an interconnected and interdependent complex
structure. Its complexity is both mathematical and developmental.

Until the mid 80s, research in mathematics education looked, to a large
extent, at the development of individual multiplicative concepts, without
explicit attempts to deal with the interrelations and interdependencies within,
between, and among these concepts. For example, research on the rational
number concept did not take into account children’s conceptions of multi--
plication and division, and vice versa. Similarly, research on the learning
of the decimal system was quiet separate from research on fractions and
proportionality. During the middle-to-late 80s, the RNP advanced the re-
search on the MCF by exploring the interconnectivity of the cognitive de-
velopment of multiplicative concepts.

As an example, we mention one important result of this research:

In a study with inservice elementary school teachers, we found that
teachers use four solution strategies to multiplicative problems that do not
conform to Fishbein’s intuitive models:

(a) The Multiplicative strategy, involving the concept of proportional-
ity.
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(b) The Pre-multiplicative strategy, reflecting an early stage toward
proportionality.

(c¢) The Operation-search strategy, based on a trial-and-error approach.

(d) The Keyword strategy.

We found that teachers who solved the problems correctly and
relationally reasoned in terms of ratio and proportion concepts, whereas
teachers who arrived at correct solutions without these concepts did so by
a trial-and error like methods. This suggests that multiplicative problems
that do not conform to Fishbein’s models require for their solution a scheme
that includes the concepts of ratio and proportion. This finding suggests
that the formation of ratio and proportion concepts can be powerful tools in
dealing with multiplicative problems. The question of whether these con-
cepts are necessary tools for multiplicative problems that do not conform
to Fishbein’s intuitive models is still open and needs further research.

Within the enormous structure of the MCF, we have identified smaller
structures that, although interconnected, are, to some extent, autonomous.
An example of such a substructure consists of a three-stage development
of the concept of multiplication: from an early stage of whole-number
multiplication, to an operation non-conservation stage, and to an operation
conservation stage. We have called this structure, a Multiplicative Concep-
tual Subfield (MCS) because it represents a closed unit within the greater
structure of the MCF. Our semantic analyses of the different MCS’s-draw-
ing heavily on the work of many other researchers, particularly, the work
by Kieren, Steffe, Thompson, and Kaput—revealed critical deficiencies in
the mathematics curricula of elementary and middle schools. The areas
where the teaching of [MCS’s] is deficient include composition, decompo-
sition, and conversion of units, operation on numbers from the perspective
of mathematics of quantity, and mathematical variability.

Guershon Harel will discuss the implications of these issues for schos!
rational number curricula and for further research in the area.

3) Innovative Research Designs Needed for Research on Rational Num-
bers Constructs

New research designs have been developed are based on new assump-
tions about the nature of students’ knowledge, problem-solving, learning,
and teaching, they frequently involve lines of reasoning that are fundamen-
tally different from those that applied to industrial-era factory metaphors
for teaching and learning. Therefore, new standards of quality often are
needed to assess the significance, credibility, and range of usefulness of the
results that are produced by such studies. But, in general, the development
of widely recognized standards for research has not kept pace with the
development of new problems, new theoretical perspectives, and new ap-
proached to the collection, analysis, and interpretaticn of data.

High-quality studies may be rejected because they involve unfamiliar
research designs, and because inadequate space is available for explana-
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tion, or because inappropriate or obsolete standards of assessment are used
(similar to a Type I error).

Low quality studies may be accepted in which innovative research de-
signs are done poorly, or in which traditional research designs even though
they are based on obsolete assumptions about the nature of teaching, learn-
ing, and problem-solving (or about the nature of program development,
dissemination, and implementation) (similar to a Type II error).

In research on rational numbers and proportional reasoning, as in other
areas of mathematics education research, some of the most important prod-
ucts of research has involved the development of new tools and research
methodologies. Yet, these products seldom are reported in research jour-
nals. In a series of projects known collectively as the Rational Number
Project, some of the most useful research designs that we’ve developed
involve the integrated use of qualitative and quanuiadve methods. Also,
because we often are interested in going go beyond investigating typical
development in natural environments to also focus on induced develop-
ment within carefully controlled and mathematically enriched environments,
we have had to develop new approaches to research that involve:

1) Action research: in which teachers participate as co-researchers.

2) Multi-tiered teaching experiments: investigating the interacting de-
velopment of students and teachers often over time periods involving sev-
eral months or years.

3) Carefully structured clinical interviews: in which it is important to
minimize uninteresting interventions by the researcher.

4) Iterative videotape analyses: in which it is important to take into
account interpretations involving a variety of theoretical and practical per-
spectives. '

5) Ethnographic observations: in which it is important to avoid need-
lessly distorting the perspectives of the people being observed.

6) New approaches to assessment: that focus on deeper and higher-
order understandings, and which go beyond simplistic assumptions that
-underlie most standardized testing programs.

Dick Lesh will lead a session which will deal with each of the preced-
ing approaches to research. Examples will be taken from relevant research
on rational numbers and proportional reasoning, and resources will include
selections from a new book, edited by Kelly & Lesh (in press), on Re-
search Design in Mathematics and Science Education.

References

To be distributed at or prior to the PME-NA Meeting.
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Introduction

The themes Representations and Mathematics Visualization have ap-
peared in the recent literature as fundamental aspects to understand stu-
dents’ construction of mathematical concepts and problem solving (diSessa,
1994; Dubinsky, 1994; Duval, 1995; Eisenberg & Dreyfus, 1990; Dreyfus,
1991; Glasersfeld, 1991; Janvier, 1987; Kaput, 1994; Presmeg, 1986;
Steinbring, 1991; Vergnaud, 1987; Vinner, 1989; Zimmermann &
Cunningham, 1990). It is interesting to observe that there are different lines
of research in which both theoretical and empirical approaches have been
developed.

An important objective of our working group on Representations and
Mathematics Visualization is to promote an open discussion of the rel-
evant theoretical orientations endorsed by different authors, and their in-
fluence in empirical research that intend to improve our understanding of
the learning of mathematics. Particularly, there is interest to discuss how
these research results can be interpreted and finally applied into classroom
settings.

The importance to discuss and contrast present theoretical orientations
is based on a well known fact that often authors follow different theoretical
approaches to tackle the learning phenomena. Here, it may occur that the
different perspectives are complementary but other times these perspec-
tives are irreconcilable. It could also be that one theoretical orientation
permit to have a better explanation of a phenomenon that other orientation.
Hence, it is important to ask: (i) To what extent one should adopt or follow
a theoretical orientation? (ii) Which orientation will help us to better ex-
plain a learning phenomenon? The well organized discussion of these types
of questions during the working group sessions might be useful for us to
study in depth what happens in the students’ process of leaming.

One aspect that the group should include is the discussion of research
related to problem solving in terms of searching what kind of mathemati-
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cal representations students use when solving a problem and the role of
mathematics visualization in this problem solving process.

We consider important in general that the working group should
focus on the discussion on four relevant aspects:

1) The relevance of doing empirical research linked to representa-
tions and mathematics visualization.

2) The importance of the theory in pursuing research on representa-
tions and mathematics visualization.

3) The application of research’s results that links the students’ learn-
ing of mathematics and the use of multiple representations within
a theoretical frame.

4) The influence of technology-based multiple linked representation
in the students’ construction of mathematical concepts.

1) The relevance of doing empirical research linked to representa-
tions and mathematics visualization.

Mathematics instructors, at all levels, traditionally have focused their
instruction on the use of algebraic representations with the intention to
avoid confusion between mathematical objects and their representations,
they normally do not take into account geometric and intuitive representa-
tions. This is because they think that the algebraic system of representation
is formal and the others they are not. Perhaps, some students difficulties in .
the construction of concepts are linked to the restriction of representations
when teaching. Nevertheless, it is known by empirical research that the
students’ construction of a mathematical object is based on the use of sev-
eral semiotic representations. The students’ handling of different mathemat-
ics representations will permit ways of constructing mental images (a con-
cept image in Vinner and Tall’ sense) of a mathematical concept. The rich-
ness (or lack of) of their concept image wili depend on the students’ han-
dling of the representations used. However, the tendency to remain in an
arithmetic or algebraic system of representation is well documented in the
bibliography. This tendency will produce errors in problem solving situa-
tions. In this context, Santos (1996, p. 275) shows us an example in which
a tennis ball problem was given to some students (How many tennis balls
do you need to fill your classroom?). Santos says: For the tennis balls
problem, the students {35, grade 10] experienced difficulty in estimating
the dimensions of the classroom and the tennis balls. All the students asked
the interviewer to provide the dimensions and when they were asked to
estimate, some of the students asked for a meter stick. The most common
approach was to divide the volume of the classroom by the volume of a
tennis ball.... Why are these children ot worried about the answer? Why
did they remain in the arithmetic system of representation?

Also related to this part, Goldenberg (1995, p. 155) quotes: We can-
not expect to understand that understanding if we look only at the student’s
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facility with one representation, or even the quali.y of a student’s handling
of euch representation in isolation. But, as we observe students juggling
the interaction among representations, we get a glimpse of the rich inter-
nal models they construct in their attempt to urderstand the bigger picture.

Are the students’ errors a product of a deficient handling of a represen-
tation when transforming it in the same semiotic system of representation
or when converting it to another system? That is to say, the difficulties
faced by the students could be explained as a lack of coordination between
" representations? A plausible answer seems to be that not all the difficulties
could be explained in terms of a lack of articulation between representa-
tions. There exist epistemoiogical obstacles that are explained by other ways,
for example through the evolution of mathematical ideas (see Hitt related
to functions, 1994); however, the identification of students’ errors when
handling different representations could give us a glimpse of the concept
image they have.

2) The importance of the theory in pursuing research on representa-
tions and mathematics visualization.

There are several questions that need to be addressed here. For ex-
ample, how can we explain the lack of success of first year university stu-
dents in Selden et al. studies (1989, 1994) when solving calculus nonroutine
problems? In this context, Zimmermann (1991, p. 136), state that: Concep-
tually, the role of visual thinking is so fundamental to the understanding of
calculus that it is difficult to imagine a successful calculus course which
does not emphasize the visual elements of the subject. This is especially
true if the course is intended to stress conceptual understanding, which is
widely recognized to be lacking ix: many calculus courses as now taught.
Symbol manipulation has been overemphasized and ... in the process the
spirit of calculus has been lost (Aspinwall et al., 1997, p. 301).

Why do some authors consider so important the study of the semiotic
system of representations on the construction of mathematical concepts?
For example, Duval (1993, p. 38) quotes: ...we are then in front of what we
could call a cognitive paradox of the mathematical thinking: On one hand,
the apprehension of the mathematical objects c'n only be possible as a
conceptual apprehension, and on the other hand, only mediated by semiotic
representations it is possible an activity on the mathematical objects.

Other authors emphasize the relations of symbols and ideas, Radford
& Grenier (1996) assert: ...the relation between symbols and ideas can not
only be considered as an interaction which consist to put in contact an
object (or an idea) changeless and extern to the individual with the repre-
sentations of that object, ... Far away from this, the interaction between
the symbols and the ideas must be, we think, seen as a system of relation
constructed by the individual himself in his intellectual path, at the sume
time socially and individually.
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By following the above ideas, we can pose other related questions:
a) What is the role of the mathematical intuition 'n this context?

b) To what extent mathematics visualization has to deal with certain
abilities related to the conversion of representations from one
semiotic system to another?

c) Isthe comprehension of a mathematical concept related to the use
of different semiotic representations of the concept in question?

d) Should conceptual knowledge be taken as an invanant of the mul-
tiple semiotic representations?

e) The cognitive knowledge being mediated semiotically, bring us a
culturalized vision?

f) What is the nature of the interaction between external and internal
representations?

g) How do individuals construct internal representations?
h) How do we infer internal representations?
These questions could be used as a framework to approach:

» Theoretical aspects of the learning of mathematics which take into
account the role of the semiotic representations on the construc-
tion of mathematical concepts.

» Theoretical aspects related to semiotic representations dealing with
a social epistemology of mathematical knowledge with applica-
tions to didactical situations in the classroom.

*  An analysis of the mathematical ideas related to a concept through
the history of mathematics to detect epistemological obstacles.

3) The application of research’s results that links the students’
learning of mathematics and the use of multiple representations
within a theoretical frame.

By taking into account different systems of representations, we can
identify specific variables related to cognitive contents and, by this way,
organize didactical proposals to promote the students articulation of differ-
ent representations.

In this context, Eisenberg & Dreyfus (1990, p. 25) state that: although
the benefits of visualizing mathematical concepts are often advocated, many
students are reluctant to accept them; they prefer algorithmic over visual
thinking... Indeed, with respect to problem nine [Given: f a differentiable
function such that f(-x) = -f(x). Then, for any given a: A) f’(-a) = -f’(-a)
B) f'(-a) =f"(a) C)f’(-a) =-f"(a) D) none of the above] one typical cal-
culus teacher (who also happens to have authored a calculus textbook)
wrote: f'(-a) = (f(-a))” = (-f(a))” = -f"(a). It might be that, this teacher is to-
tally convinced of his/her algebraic process and considers irrelevant a mental
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construction of one example of a function and the derivatives [for example,
the graph of f(x) = x* ] that he/she may realize that the proposed solution is
not correct. Similarly, as the case related to the tennis ball problem, men-
tioned before, Why did it happen that individuals get attached to the alge-
braic system of representation?

Dreyfus (1991, p. 42) quoted: Mathematics educators seem to have
recognized the potential power and the promise of visual reasoning; but in
spite of this, implementation is lagging: Students tend to avoid visual rea-
soning. It seems that teachers continue emphasizing thetr instruction on
nonvisuals methods.

4) The influence of technology-based muitiple linked representation
in the students’ construction of a mathematical concepts.

Related to this point, Kaput (1994, p. 387) states that: More subtle
examples of notation modification include such strategies as enabling stu-
dents to act on traditional mathematical notations in more natural ways,
as when in a computer environment, for example, one uses a pointing de-
vice and graphical interfuce to act directly on coordinate graphs by slid-
ing, bending, reflecting, and so forth (as with Function Probe,...). This is a
subtle exploitation of the rich knowledge based in kinesthetic experience to
act on mathematical notations, and hence to effect mental operations on
mathematical objects, that is, functions. Another example is the direct ma-
nipulation of algebraic objects used in Theorist... Yet another example,
reflecting the dynamic, interactive properties of the computer medium, is
offered by CABRI-Geometry....

How can we develop new external systems of representations that fos-
ter more affective learning and problem solving? More questions and lines
of research may appear during the development of the discussion.
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USING SOCIO-CULTURAL THEORIES IN
MATHEMATICS EDUCATION RESEARCH

Working Group Organizers

Judit Moschkovich Karen Fuson
TERC Northwestern University
judit_moschkovich@terc.edu fuson@nwu.edu

Working Group Panel

Yolanda de la Cruz Joanna Masingila Marta Civil
Arizona State Syracuse University University of Arizona
University

History of the Working Group

This Working Group began as a discussion group at PME-NA 1997.
During that discussion group several researchers presented summaries of
their research framed by socio-cultural theories. Out of these discussions
grew an interest in pursing these issues further and organizing future col-
laborations around this theme. The presentations in 1997 were: Judit
Moschkovich (organizer), Internalization and appropriation as metaphors
for learning; Marta Civil, Project BRIDGE: Linking home and school math-
ematics; Yolanda de la Cruz, Applying the Zone of Proximal Development
to mathematics learning; Karen Fuson, Building relations between sponta-
neous and scientific concept learning in the classroom; Lena Licon-Khisty,
Understanding equity issues from a socio-cultural perspective; Joanna
Masingila, Leamning and doing mathematics in and out of school.

Focus and Aims of the Working Group

Although socio-cultural theoretical perspectives (including Vygotsky,
Legntiev, Luria, and Bakhtin) have recently received attention in the litera-
ture on mathematics education (see for example, Educational Studies in
Mathematics, September 1995) many important questions remain regard-
ing how to apply these perspectives to research design, data analysis, cur-
riculum development, and teacher professionai development. Before ap-
plying socio-cultural theories to research questions in mathematics educa-
tion it is important to a) clarify which specific versions, aspects, or con-
cepts of socio-cultural theories are being invoked, b) unpack and question
key analytical concepts, and c) explore which aspects and concepts can be
useful for framing research on learning and teaching mathematics.

The focus of this working group will be the connection between socio-
cultural theories and research in mathematics education. This working group
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will serve as a forum where participants can discuss the issues involved in
using socio-cultural theory to frame mathematics education research. The
activities and discussion will address several areas where socio-cultural
theory might be applied: design of studies on learning or teaching, analysis
of data, design of teacher professional development, and curriculum de-

sign.

The central goals of the Working Group are to:

1)

2)

Develop a more shared sense of the contribution that socio-cul-
tural theories can make to research in mathematics education by
discussing research conducted using these theoretical perspectives
and by analyzing sample data using concepts from these perspec-
tives.

Develop a plan for a set of related projects using socio-cultural

theory to explore questions about learning or teaching mathemat-
ics.

Session 1-Judit Moschkovich

1)
2)

3)

Introduction and overview of the Working Group.

Two brief (5-10 minutes each) presentations by panel members
providing overviews or examples of how researchers have used
socio-cultural theory in their research. The purpose for these short
presentations is to provide examples of how socio-cultural theo-

" ries have been applied and show several different perspectives in a

structured way.

Participants will analyze and discuss a segment of videotape data
from a variety of socio-cultural perspectives, sharing their own
experiences in data analysis as part of the discussion.

Session 2-Karen Fuson

1)

2)

Two brief (5-10 minutes each) presentations by panel members
(providing overviews or examples of how researchers have used
socio-cultural theory in their research.

Discussion in small groups (or if the group prefers, as a whole
group) focusing on the following questions: a) What aspects of
socio-cultural theories have participants used in mathematics edu-
cation research? b) In what areas that have not been linked to these
perspectives might socio-cultural theories be useful? c) What are
some of the basic characteristics of a study conducted from a socio-
cultural perspective? d) How might this theoretical perspective in-
form participants’ research projects?

Session 3-Judit Moschkovich and Karen Fuson

Participants will discuss and plan future activities for the Working
Group. The anticipated follow-up activities from this discussion group in-
clude planning for a continuation of the Working Group at PME-NA 1999
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and ultimately organizing a collaborative writing project on this topic. Some
possible products from this Working Group are: 1) A collective list of basic
characteristics of studies conducted from a socio-cultural perspective; 2)
Plans for related research on mathematics teaching and learning applying
socio-cultural theories; and 3) Suggestions for how socio-cultural theories
might inform teacher professional development. '

Below are brief descriptions of panel members’ research projects and a
list of relevant references.

The Zone of Proximal Development and Collective Learning
Yolanda De La Cruz, Arizona State University West

The Family Mathematics Learning Program is strongly informed by
Vygotsky’s position on the social nature of learning and development.
Vygotsky proposed that learning was socially, culturally, and historically
determined. From this perspective, language is seen as a vital instrument
used to regulate behavior and organize thinking, thus creating new percep-
tions, memories and thought processes. The perspective taken by the Fam-
ily Mathematics Learning Program is that parents and children learned
collaboratively. Rather than taking the ZPD to be a factor in how individu-
als learn, this project has investigated how collectives of people learn and
develop through the self-conscious utilization of the ZPD.

Almost all learning observed during this project was in a sense col-
laborative, typically through interaction between a more expert agent and a
novice. Children challenged their parents by asking penetrating questions
which demanded a simple explanation of an abstract and complex concept.
Parents learned mathematical concepts while also learning strategies and
techniques to help their children in the home. The support systems in the
Family Mathematics Learning Program provided scaffolding for parents
while they learned to teach mathematics to their children.

Connecting In-school and Out-of-school Mathematics Practice
Joanna O. Masingila, Syracuse University

My view of knowing, doing, and learning is based on sociological and
anthropological research which suggests that (a) people make sense of things
mathematically through situations and contexts, drawing on their prior ex-
periences and social interactions, and (b) how one knows mathematics is
connected with how one learned it (Bishop, 1988; Masingila, 1994; Millroy,
1992; Saxe, 1988). My research work has been strongly influenced by Saxe’s
(1991) Emergent Goals framework. Saxe has delineated a “research frame-
work for gaining insight into the interplay between socio-cultural and cog-
nitive developmental processes through the analysis of practice participa-
tion” (p. 13). Saxe’s (1991) framework consists of three analytic compo-
nents: (a) goals that emerge during activities, (b) cognitive forms and func-
tions constructed to accomplish those goals, and (c) interplay among the



various cognitive forms. The theoretical underpinnings of the framework
are based on both Piaget and Vygotsky, but the framework moves beyond
them in considering this interplay. Although Saxe’s framework is a method
for studying the interplay between socio-cultural and cognitive develop-
mental processes, I find it helpful in thinking about working towards con-
necting in-school and out-of-school mathematics learning and practice.
My current research work is part of a four-year National Science Foun-
dation-funded project entitled, Connecting In-school and Out-of-school
Mathematics Practice. During this project we are (a) investigating how
middle school students use mathematics concepts and processes in a vari-
ety of out-of-school situations, and (b) working with a middle school teacher
to develop and implement curriculum materials for building on students’
out-of-school mathematics practice. All the data are being analyzed through

inductive data analysis procedures using Saxe’s Emergent Goals frame-
work.

Socio-cultural Contexts for Learning Mathematics
Marta Civil, University of Arizona

Our research project aims at developing mathematics teaching innova-
tions in which students and teachers engage in mathematically rich situa-
tions through the creation of learning situations that build on students’ and
their families” knowledge and experiences in their everyday life. A key
premise for us is the development of learning environments that allow stu-
dents to participate in activities that are meaningful to them and which at
the same time allow students to advance in their learning of academic math-
ematics. In this sense, we agree with van Oers (1996) characterization of
mathematical apprenticeship in the classroom by aiming for activities that
are “recognized as ‘real’ by the mathematical community of our days” and
by immersing the mathematical activity in “a socio-cultural activity that
makes sense for the pupils” (p. 106).

One of our goals is to characterize the mathematics embedded in the
practices of these students’ parents (all of whom are working-class and
Hispanic, primarily Spanish speaking). In analyzing these interviews in
our regular study group sessions, we hope to address issues of values and
beliefs as we discuss what counts as mathematics (Abreu, 1995). At the
classroom level, three teachers are currently developing curriculum themes
based on some of the findings from these occupational interviews. Another
goal of the project is to engage the students (and maybe their parents) in
mathematical activities that use these everyday practices as starting points
(this is similar to the work done by one of the BRIDGE researchers, Fonseca,
1997).

In my presentation at this working group, I will provide examples from
three very different schools in which our research project takes place. One
is a school where a garden theme was developed; another follows a re-
form-based curriculum for mathematics. Our project attempts to embed
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academic mathematics in the socio-cultural context of these classrooms.
My goal in bringing these examples is to engage the Working Group par-
ticipants in our ongoing discussion of questions such as “what is learn-
ing?” and “how does it take place?” and share our perspective on issues
that arise often in our study group sessions, such as context (Jacob, 1997),
individual cognition (Sfard, 1998), the role of interaction, and learning as
transformation of participation (Rogoff, 1994 ).

Socio-Cultural Foundations for the Children’s Math Worlds Project
Karen C. Fuson, Northwestern University

Children’s Math Worlds is a 6-year action-research project directed
toward designing a conceptually complex and challenging K-3 math cur-
riculum that builds on the individual experiences, interests, and practical
math knowledge that diverse children bring to our classrooms. Our col-
laborative-research project has been and is being carried out in urban schools
of under-represented minorities, mostly Latino English-speaking and Latino
Spanish-speaking children, as well as in English-speaking upper-middle
class schools. Our ambitious math curriculum is based on combining the
following: (1) pervasive use of enacted, linguistic, drawn representational,
and object conceptual supports to facilitate individual understanding and
communication, (2) teaching/learning activities that help children through
developmental sequences of conceptual structures so that they continually
build more-advanced conceptual structures, and (3) classroom
mathematizing methods using children’s personal stories to give teachers
and other children insight into their lives and culture and to provide famil-
iar real-world bases for mathematical thinking. Through active, social, and
affective teaching-learning processes that engage the participants as per-
sons, teachers and children re-construct and co-construct mathematical
knowledge through individual thinking and reflection and interpersonal
interaction.

The theoretical work of our Children’s Math Worlds project focuses
both on particular domains of mathematics and on more general teaching
and learning models. We carry out domain analyses of real-world situa-
tions that need to be discussed or introduced in the classroom, develop full
quantity conceptual support nets to facilitate children’s understanding of
mathematical linguistic and notational tools, and ascertain progressions in
children’s thinking that can be the basis for teaching efforts. Two of the
more general models are Vygotskiian. One describes how a referential class-
room bridges from children’s spontaneous concepts to cultural mathemati-
cal scientific concepts (Fuson, Lo Cicero, et al., 1997). Another specifies
an Equity Pedagogy that outlines attributes of a referential classroom which
can help teachers support students in building on their initial personal mean-
ings and experiences to create advanced and ambitious mathematical con-
cepts, notations, and methods (Fuson, De La Cruz, et al., 1997)
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DEVELOPING A CONCEPTUAL FRAMEWORK FOR
MATHEMATICS TEACHING

Statement of the Working Group on Mathemati
cs Teacher Education

Working Group Organizer
Martin A. Simon, Penn State University, msimor. ‘@ psu.edu

Working Group Panel

Deborah Ball Rijkje Dekker Susan Jo Russell,
Michigan State Freudenthal Institute TERC
University Netherlands

dball@pilot.msu.edu

In many countries of the world, there is a major attempt to reform and
improve mathematics education in ways that result in powerful mathemat-
ics for all students. Emphases are on mathematical thinking and problem
solving, conceptual understanding, and effective communication of math-
ematical ideas. Key to this reform is the mathematics classroom teacher. In
order for teachers to teach in ways which are radically different from the
ways that they were taught, they must undergo a transformation in the ways
that they conceptualize mathematics and mathematics learning and teach-
ing.

In the United States, large scale efforts are being funded to reform
teaching practice through a variety of systemic initiatives and collabora-
tive projects. One can ask whether the empirical and theoretical base is
sufficient to guide these ambitious efforts. The empirical and theoretical
base can be divided into two broad categories: detailed articulation of the
envisioned teaching, the goal of such teacher education efforts, and articu-
lation of a framework for fostering the development of such teaching. Clearly
the former is prerequisite to the latter.

The working group, Research on Mathematics Teacher Education, will
focus on the first of these two categories. Specifically, it will work towards
the development of a conceptual framework with respect to mathematics
teaching that can provide direction for mathematics teacher education and
research on mathematics teacher development. Towards this end, I will be
joined by an outstanding panel of Deborah Loewenberg Ball, University of
Michigan; Rijkje Dekker, University of Amsterdam; and Susan Jo Russell,
TERC as well as 26 mathematics education researchers attending this work-

ing group.
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The Need for a Conceptual Framework for Mathematics Teaching

The large-scale reform effort in mathematics education has its roots in
several phenomena: a general dissatisfaction with the results of teaching
mathematics as predominantly telling and showing, the adaptation by math-
ematics educators of important theories of knowledge development (e.g.,
constructivism, socio-cultural theories), and recent research on the math-
ematical conceptions of learners: The result of these three factors is a de-
sire to change mathematics teaching in ways that are more consistent with
and supportive of the ways that learners think and learn.

Although these factors are a reasonable and significant impetus for
change, they do not in themselves provide a vision or conceptual frame-
work for a new mathematics pedagogy. How do we make use of theories of
knowledge and greater insight into learners to promote powerful math-
ematics learning? In short, what new model(s) of teaching can take the
place of the traditional tell-and-show model?

I argue that not only has the work on this question been insufficient,
but that relatively few mathematics educators see this as an important un-
answered question. There seem to be two reasons for this. First, there is a
common conception that theories of learning related to constructivism de-
fine an alternative to traditional teaching through the injunctions “students
should be active in their learning” and “students should figure things out
for themselves, not be told by the teacher.” Second, useful teaching strate-
gies are often seen as the new pedagogy itself. Use of collaborative groups,
manipulatives, calculators, and large group problera solving discussions
can be powerful tools for teaching, but they do not in themselves define an
approach to promoting powerful mathematics learning.

Mathematics teacher education if it is to be effective, and particularly
if it is going to be transformative (promote a reform in mathematics teach-
ing), must.be guided by a clearly articulated conceptual framework that
specifies the nature of mathematics teaching that is its goal.

What Must Constitute the Framework?

Advocating a conceptual framework for mathematics teaching does
not imply a need for a monolithic view of mathematics teaching. There
seems to be some consensus on broad goals for mathematics instruction
(e.g., to help all students develop as powerful mathematical thinkers, to
value mathematics, and to be able to use mathematics in a variety of set-
tings). However, beyond these broad goals, determining where consensus
exists and where ideas diverge is part of the process of specifying a new
pedagogy. Divergence in goals, theories of learning, and emerging theories
of teaching may stimulate the development of multiple models.

Any new model of mathematics teaching must:

1. elaborate the goals for instruction on which it is based (including
an articulated view of mathematics),
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2. articulate an integrated conceptualization of teaching and learn-

ing,

3. define a technology for teaching students powerful mathematics.

These three exigencies of a new conceptualization of mathematics teach-
ing are interrelated. Let me explicate the second and third points, which
may not be distinct points at all.

An integrated conceptualization of teaching and learning must be based
on the goals of instruction. (What constitutes a useful conceptualization of
teaching and learning for memorizing formulae is likely not to be adequate
for promoting conceptual understanding.) The integrated conceptualization
of teaching and learning describes a reflexive relationship between these
two aspects. Thus, the conceptualization of teaching builds on and is con-
sistent with the perspective on students’ learning of mathematics and the
conceptualization of learning reflects a perspective on learning in the con-
text of a particular conceptualization of teaching.

By “defining a technology for teaching,” 1 am not referring to elec-
tronic technology, but rather a conceptualization of mathematics teaching
that specifies the role of pedagogy in promoting powerful mathematics in
learners. The rejection of traditional teaching, telling and showing as the
predominant approach, has left a void in the technology of teaching. The
technology of traditional teaching was well-defined: tell and show the stu-
dents what they should know and be able to do. What was to be learned
was put out by the teacher or text materials and taken in by the students.
How is learning promoted if this traditional technology is rejected? To as-
sert that students will learn if they are given non-routine problems, hands-
on materials, and encouraged to communicate in small and large groups
reflects the absence of a technology for intentionally promoting mathemat.-
cal ideas and ways of participating in mathematics.

What is the Nature of this Task and the Role of the Working Group?

The development of elaborated goals for mathematics teaching and an
integrated conceptualization of mathematics teaching and learning is likely
to be accomplished by an ongoing cycle of theoretical and empirical work,
what Gravemeijer refers to as “developmental research”. The theoretical
work informs and guides the next iteration of enacting effective pedagogy
which in turn is analyzed to advance the theoretical. Such developmental
research differs from one that seeks out extant examples of reform teach-
ing in order to analyze and conceptualize the teaching portrayed by these
examples.

Each of the panel members is engaged in some form of developmental
research that has the potential to contribute to elaborating a conceptual
framework with respect to mathematics teaching. Over the course of the 3
working group sessions, each of the 4 panel members will make a short
presentation of ideas deriving form his/her work. The majcrity of the time

109 1?0



will be spent discussing, questioning, challenging, synthesizing ideas of
the panel, participants, and the larger mathematics education community.
Participants are encouraged to come to the working group sessions ready
to contribute to the conversation ideas from their work or the work of oth-
ers.

About the Panel Members

Deborah Loewenberg Ball has been conducting research centering
on her own teaching of third grade. She uses this research site to develop
theoretical constructs that elaborate important aspects of mathematics teach-
ing. Her recent focus has been seeking to unearth, name, and analyze the
mathematics entailed in elementary school teaching and learning. Her work
examines also the dilemmas embedded in teaching mathematics in ways
that honors both the mathematics and students’ thinking.

Rijkje Dekker conducts research on teaching in the Netherlands. Dutch
researchers have developed Realistic Mathematics Education over the last
two decades, an integrated approach to mathematics teaching and learning
that builds on fundamental notions of Freudenthal and Piaget. Her recent
research involves analysis of the impact of different teacher roles on the
learning and participation of students.

Susan Jo Russell has used her role as a curriculum designer to study
important issues of mathematics pedagogy. Her work in producing /nvesti-
gations in Number, Data, and Space has involved her in reconceiving class-
room mathematics teaching and in thinking about the role of curriculum in
supporting and fostering a new pedagogy.

Marty Simon has been studying teaching in three contexts as part of
research projects on mathematics teacher development: the classroom prac-
tice of participating teachers, his teaching of mathematics for teachers, and
the thinking/learning of teachers in his mathematics pedagogy courses. Each
of these contexts provides opportunities for making distinctions about math-
ematics teaching.

Recommended Pre-Conference Readings

Ball, D. L. (1997, April). Crossing boundaries: Probing the interplay of
mathematics and pedagogy in elementary teaching. Paper prepared for
the Research Presession, annual meeting of the National Council of
Teachers of Mathematics, Washington, DC.

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of
teaching elementary school mathematics. Elementary School Journal,
93, 373-397.

Dekker, R., & Elshout-Mohr, M. (1998). A process model for interaction

and mathematical level raising. Educational Studies in Mathematics,
36, 303-314.
Freudenthal, H. (1978). Weeding and sowing. Dordrecht: Reidel.
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Russell, S. J. (1997). The role of curriculum in teacher development. In S.
N. Friel & G. W. Bright, (Eds.), Reflecting on our work: NSF teacher
enhancement in K-6 mathematics (pp. 247-254). Lanham, MD: Uni-
versity Press of America, Inc.

Simon, M. (1995). Reconstructing mathematics pedagogy from a
constructivist perspective. Journal for Research in Mathematics Edu-
cation, 26, 114-145.

Simon, M. (1997). Developing new models of mathematics teaching: An
imperative for research on mathematics teacher development. In E.
Fennema & B. Nelson. (Eds.), Mathematics teachers in transition (pp.
55-86). Hillsdale, NJ: Lawrence Erlbaum Associates.

Streefland, L. (1990). Realistic Mathematics Education (RME). What does
itmean? In K. Gravemeijer, M. van den Heuvel, & L. Streefland (Eds.),
Contexts free productions tests ar- 4 geometry in Realistic Mathematics
Education (pp. 1-9). Utrecht, the Netherlands: Research Group for
Mathematics Education and Educational Computer Centre State Uni-
versity.

Streefland, L. (1991). Fractions in Realistic Mathematics Education: A
paradigm of developmental research. Dordrecht: Kluwer.
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MATHEMATICS PEDAGOGY IN SOCIAL AND
CULTURAL CONTEXTS

Yolanda De La Cruz
Arizona State University West
ydelacruz@asu.edu

This paper reports an overview of our Children’s Math World project
work with families. We found it to be critical for teachers to involve fami-
lies in their children’s mathematical education. This paper presents a modi-
fication, based on the experiences of our project, of the Epstein (1989,
1995) model of building effective and supportive home-school relation-
ships. We have concentrated on efforts that will help families support their
child’s daily learning in the mathematics classroom, their practicing of
needed skills at home in family games, and their finding and talking about
mathematics in the real world outside of school. We found that when teach-
ers make strong efforts to establish home/school connections, human re-
sources can be found within the homes of almost all children to support
their mathematics learning. Teachers found it to be important to appreciate
and affirm all of the many efforts parents were making in raising their
children. The building of home/school links also needs to be viewed by all
participants as information-sharing, as building mutual adaptations between
the school and home settings, and as involving joint working toward the
common goal-—mathematical learning by the family’s child.

To achieve the high level of mathematics understanding and skill that
was our goal, children needed to complete daily homework. Our urban
children and families were very supportive of such homework. It made the
children feel grown-up, and most of them enjoyed doing most of the home-
work. Families were involved by identifying a Math Helper in each home
to be responsible for monitoring-the child’s homework completion and to
help if necessary. Identifying a particular person for this responsibility was
helpful in homes where many pressures create difficult on-going and chang-
ing life demands. When families understood that it was important to do so,
almost all would organize themselves to identify such a helper. This might
be a parent, an older sibling, an uncle or grandparent who lived with the
family or lived nearby, or a neighbor. Because of language differences, no
phone in the home, and distance from the school, teachers had to be re-
sourceful and persistent in order to communicate the need for a math helper
to some families.

Most homework involved repetitive mathematical experiencing so that
the demands on family helpers and on children were minimized. Some
elements of CMW are new (e.g., the use of MDMs) and were explained in
letters home, parent nights, and by the children themselves. Wherever pos-
sible, the homework was designed not to be too different from homework
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the home helper might have had. In some reform-math curricula, parents
are asked to do many different kinds of activities with their child. The read-
ing level is very high, too high for many of our families. Teachers did have
to work hard with some children to establish patterns of effective return of
homework. But most teachers who worked at it were able to achieve high
rates of such return, rates that were surprising to them and considerably
higher than in the past.

Because many Latino families are family-centered, we designed games
that family members could play to help their child practice important math
competencies. Some families and some children had no previous experi-
ence in playing board games or games with cards, so teachers organized
family nights in which they taught families to play the games. These were
generally weil-attended and enjoyed by all. One school librarian made fan-
cier versions of the games and made them available to family members in
the school library so that they could learn the games there. The feedback
from families involved in using the games was quite positive.
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PERFORMANCE ASSESSMENT OF K-12 PRESERVICE
TEACHERS’ MATHEMATICAL CONTENT

KNOWLEDGE
Thomas B. Fox Kay Meeks Roebuck
Ball State University Ball State University
tfox@wp.bsu.edu Kroebuck @wp.bsu.edu

Sheryl L. Stump
Ball State University
sstump@wp.bsu.edu

Both the Mathematical Association of America (MAA, 1991) and the
National Council of Teachers of Mathematics (NCTM, 1991) have pub-
lished sets of specific recommendations for the mathematical content prepa-
ration of preservice elementary, middle school, and high school teachers.
However there is little published discussion of how to assess teachers’
mathematical content knowledge. There is a growing need for such discus-
sion. For example, the emphasis of the National Council for Accreditation
of Teacher Education (NCATE, 1998) is moving toward evaluation of the
performance of preservice teachers rather than evaluation of merely the
curriculum of teacher education programs. Through the New Professional
Teacher project, NCATE is working with its subject matter professional
associations to develop performance expectations for teacher preparation.
Many states are revising their state teaching licensure and certification re-
quirements to reflect such an orientation. In response, an increasing num-
ber of teacher education programs will most likely require their students to
develop assessment portfolios. These portfolios must include items that
demonstrate the preservice teachers’ mathematical content knowledge.
Opportunities to develop these materials must be provided not only in math-
ematics methods courses but also in mathematics content courses for
preservice K-12 teachers. This major paradigm shift in evaluating an
individual’s readiness to begin teaching raises new challenges for teacher
educators as well as those less directly involved in teacher education, in-
cluding mathematicians who teach content courses for preservice teachers.

The topic for this discussion group is performance assessment of
preservice K-12 teachers’ mathematical content knowledge. The discus-
sion will focus on three main issues: 1) What research is in the existing
literature on performance assessment of preservice K-12 teachers? 2) What
suggestions for practice do the participants bring from their own experi-
ence? 3) What are some questions for research on performance assessment
of preservice K-12 teachers’ mathematical content knowledge?

The discussion will begin with an overview of the existing literature
on performance assessment of preservice K-12 teachers. Next participants
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will form small discussion groups to fegus on suggestions for practice and
questions for research. Discussion questions may include the following:
What types of performance mathematics activities have been successfully
used? How can mathematics assessment portfolio items be developed? How
are they evaluated? What constitutes a successful performance-based ac-
tivity? What supports will be necessary for those less familiar with teacher
education and its goals, including many mathematicians who will now be
required to design and administer such assessment tasks? How might these
assessments tasks enhance current mathematics instruction? Do we have to
change what we have been doing in our mathematics content courses to
better ensure that students will be able to meet new standards? How do we
assess performance assessment? As questions arise, do they require an-
swers from research? The small groups will report summaries of their dis-
cussions to the larger group. ‘

The group will then make plans for follow-up activities. To facilitate
these follow-up activities, participants will be asked to provide informa-
tion about their research interests and data sources and to collaborate on
research projects involving performance assessment of preservice teach-
ers’ mathematical content knowledge.

Reference

Mathematical Association of America. (1991). A call for change: Recom-
mendations for the mathematical preparation of teachers. Washing-
ton, DC: MAA.

National Council for Accreditation of Teacher Education. (1998). Devei-
opmental projects: New professional teacher project. [On-line]. Avail-
able: htpp//www.ncate.org/projects/npt/

National Council of Teachers of Mathematics. (1991). Professional stan-
dards for teaching mathematics. Reston, VA: NCTM.
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TEACHER CHANGE IN A REFORM CALCULUS
CURRICULUM: CONCEPTS RELATED TO
THE DERIVATIVE

Thomas B. Fox
Ball State University
tfox @bsu.edu

An experienced high school calculus teacher was studied to see what extent, if
any, her practice changed during her implementation of a reform calculus curricu-
lum relative to her previous instruction using a more traditional curriculum. Re-
sults showed that her focus on concepts relative to the derivative increased in im-
portant ways during her implementation of the reform curriculum.

Earlier this decade, implementation of reform calculus curricula began
on a large-scale basis at many universities. Today many secondary schools
are now using these materials. The changes called for in this movement
parallel those advocated for secondary mathematics in general (National
Council of Teachers of Mathematics [NCTM]; 1989, 1991). Teachers are
the ones that ultimately implement or reject advocated changes. Reforms
such as these are not easily accomplished, and high school mathematics
teachers can be among the most resistant to change (Wasley, Donmoyer, &
Maxwell; 1995). If reform is to take place, more knowledge about the pro-
cess and psychology of teacher change is needed in order to better facili-
tate it: “In light of the significant challenges teachers face to modify exist-
ing routines and procedures, it is crucial that we investigate how teachers
deal with . . . calls for reform” (Lloyd, 1996, p. 200).

In this era of mathematics education reform, curricular materials can
serve as change agents: “Because many teachers rely on textbooks as a
core for their teaching, a textbook is a reasonable candidate for communi-
cating and providing guidance for change” (Ball, 1990, p. 257). In the his-
tory of education, texts have been used with varying degrees of success to
bring about change. Ball (1990) believes that texts “clearly can provide
guidance to teachers . . . in selecting better mathematical tasks, and in cre-
ating different kinds of activities” (p. 257), yet they will not produce all the
changes espoused by reform movements. However, they reach more teach-
ers than reform documents and are more likely to be read by them (Ball,
1990). The text used by the teacher in this study, Calculus (Hughes-Hallett
etal., 1994) [to be referred to as HC], aspires to this goal. It is one of many
reform calculus texts commercially available and is often considered a
moderate attempt at reform.

The purpose of this research is to document any changes in practice of
one high school calculus teacher during her first-year implementation of
HC relative to her practice using a more ‘traditional’ curriculum (Larson &
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Hostetler, 1987) [to be referred as LH]. The specific research question ad-
dressed is: Regarding the conceptual development of the derivative, what
is the nature of any changes in the teacher’s practice during her first-year
implementation of HC relative to her instruction in LH?

Research Design and Methodology

A case study of teacher change was constructed in this study and is part
of a larger study that examined changes in practice and beliefs of a high
school mathematics teacher as she implemented HC. The teacher-partici-
pant in this study has taught mathematics for 13 years during 7 of which
she has taught one section of a non-Advanced Placement [AP] calculus
course. She was the only calculus teacher in her small, rural, Midwestern
high school. The teacher was the main influence on the school’s choice of
the reform curriculum materials and expressed a desire to change her in-
struction. Her class in the 1996-1997 school year consisted of 10 students.
The teacher described these students as “atypical” of calculus students she
had taught in the past, believing that they complained more and seemed
less studious than her former calculus students.

The data were collected as follows. In the summer of 1996, baseline
interviews with the teacher were conducted. These interviews focused on
teacher beliefs, instructional practices, and on reconstructing her lessons
from LH. The following school year, data collection included observations
of the teacher’s instruction in HC. All lessons pertinent to the conceptual
development of the derivative were observed and videotaped. Teacher in-
terviews were also conducted after all observations, before and after each
chapter in the text, and at the end of both semesters. These interviews were
tape recorded and transcribed. Artifact collection included teacher lesson
planning notes, student class notebooks, and handouts from both curricula.

Qualitative methods were used to analyze the data. Data were ana-
lyzed using grounded theory (Strauss & Corbin, 1990). The particular man-
ner in which the data were used is as follows. Field notes, interviews, and
written documents were coded. Coding the data helped the researcher find
commonalties. Initially, these data were Open Coded for rough categoriza-
tion. During the coding process, the focus was on mathematics content,
teacher actions and beliefs, assessment, technology use, and representa-
tions used in instruction. Axial Coding techniques were then used to relate
categories and their subcategories discovered during Open Coding. Rela-
tionships between the different categories were then examined to deter-
mine the presence of more abstract concepts that might link less abstract
categories (Strauss & Corbin, 1990). Direct comparison of instruction in
both curricula was also made. Multiple data sources were used to validate

trends in the data. The theory that emerged was used to construct the case
study.
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Results and Conclusions

In general when compared to her instruction in LH, the teacher main-
tained a relatively similar mode of instruction in HC. Her practice remained
largely teacher-centered and focused on demonstrating prototype examples.
However, significant changes in her practice included an increased focus
on conceptual knowledge that included, but was not limited to, the deriva-
tive. In the following discussion, all names used are pseudonyms. An ‘O’

indicates data from an observation, and an ‘I’ indicates data from a teacher
interview.

Comparison of the Teacher’s Instruction in Both Curricula

The major difference between the teacher’s presentation is the lack of
conceptual development in LH. Her presentation of the derivative in LH
began with the limit-based definition of the derivative and rules for calcu-
lating the derivative of functions:

The chapter before we did limits, and they relate the derivative to a
limit, and so some of it is just algebra. . . . They’ll have us look at a four
step process to finding the derivative [using the limit-based definition],
and I do that just a little bit . . .and then I go ahead. . . and show them how
to do simple derivatives even the first day. Like the derivative of 6-2x is -2.
Then I relate that to ‘well that’s a line. The slope is. . . -2". (I)

The teacher did not discuss the idea of a derivative as a rate of change
until the third section in the LH chapter, after she had presented the com-
mon procedures for differentiation. Furthermore, opportunities for concep-
tual development existed in the first section of the LH text. However, the
teacher, who focused instead on the more procedural probiems, omitted
these exercises. Data from student notebooks in LH confirmed this.

By contrast, the teacher used a more conceptual, real world example to
introduce the derivative her implementation of HC. This application in-
volved examining the average and instantaneous rates of change of the
distance traveled by a thrown object with respect to time. Following this
discussion that lasted several class periods, her instruction continued to
focus on concept related to the derivative. For several weeks, her instruc-
tion focused on looking at numeric, algebraic, and geometric notions of the
derivative. No procedures for finding derivatives were taught until after
this development. The reform calculus text was very influential in these
changes as it provided the overall structure for her instruction. :

Further strengthening a conceptual notion of the derivative, the teacher
emphasized in her implementation of HC problems that focused on the
derivative’s meaning in applied settings. Here the focus was not on calcu-
lating derivatives, but on interpreting them as a rate of change:

The teacher presented a problem from the text that asked for the sign of
the derivative of a function, f at a time ¢, that represented the temperature of
a yam as it was heated in an oven. She asked a student, Sammy, what the
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sign of f /() would be. When she received no response from her, she told
her that the yam was cold when it was put in the oven. Sammy responded
“up”. The teacher then asked her what the corresponding derivative’s sign
would be and Sammy said “positive”. After this response, she asked her
student why this was true, and Sammy told her why. . . ."The problem then
asked for the practical meaning of f /(20) = 2. The teacher asked Jimmy to
answer this, and he responded “at 20 minutes it goes up 2 degrees”. (O)

The teacher believed that text problems such as this influenced her
focus on concepts:

The new book, they want you to really think about the problems. If I
think about the meaning. . . of a derivative. They actually had us write out,
‘Okay, what’s that mean in English?’. Well, in the old book, it was ‘Okay,
you have a line y = 2x. Give me the derivative’. Not anything about ‘well
what does this mean?’. . . . So the new book is so much more conceptually
[orientated] than the old book. ()

Furthermore, in several instances the teacher spent a significant amount
of class time discussing problems from HC of a highly conceptual nature.
Her emphasis on a particular problem was a conscious choice on her part
and not a decision highly influenced by the text. This is a stronger indicator
of more importan* icacher changes.

In her implementation of HC, the teacher’s conceptual development of
the derivative’s geometric and numeric notions was far greater. While little
time was spent developing a geometric notion of the derivative in LH, she
devoted several days in her implementation of HC to sketching the deriva-
tive, f/(x), from the graph of f(x). Further strengthening this interpretation,
graphing calculator technology was utilized to study local linearity of a
function, a topic not studied in the LH. In both curricula, the teacher devel-
oped a numeric approach to the derivative. However, in HC, she empha-
sized it to a greater extent and further developed it using the limit-based
definition of a derivative and local linearity.

The teacher’s development of the derivative’s algebraic notions was
similar in both curricula. The limit-based definition was used to develop
this. However, in HC she used this definition to find the derivatives of less
complicated functions. Approximately the same amount of class time was
devoted to the limit-based definition of the derivative in both years, yet she
placed less emphasis on it as a “four step process” in her instruction in HC.

This study has two major limitations. The first involves generalizability.
As this is a highly contextual case study, sweeping implications are not
warranted. However, implications are possible for cases that closely re-
semble this one. A second limitation is the lack of formal observation data
of the teacher’s instruction in LH. An attempt was made to acquire knowl-
edge of the teacher’s instruction using student notebooks and interviews
designed to recreate instruction as it took place in her implementation of
the LH. While these methods generated important data, they cannot re-
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place formal observations. Any conclusions based on these data mus: be
constructed with this in mind.

This study suggests several future directions for research. In her imple-
mentation of HC, the teacher focused on concepts to a greater degree than
she had in the past. What connections exist between an increased teacher
focus on concepts and students’ acquisition of such knowledge? Her in-
struction focused more on multiple representations of the derivative in HC
than in her instruction in LH. In what specific ways does this emphasis
influence students’ acquisition of conceptual knowledge? As the student
procurement of conceptual knowledge is a major tenet of the reform calcu-
lus movement, it is important to further investigate the degree to which
students acquire such knowledge.
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A LOGO-BASED MICROWORLD AS A
WINDOW ON THE INFINITE

Luis Moreno Armella Ana Isabel Sacristdn R.
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Educativa, Cinvestav Educativa, Cinvestav
Imorenoa@data.net.mx asacrist@mail.cinvestav.mx

Introduction

We want to use this opportunity to introduce some issues that are im-
portant to articulate a reflection on the ways in which computational envi-
ronments mediate the construction of mathematical concepts. We adopt the
perspective that learning involves the construction of representations. That
it is through the construction of models, which serve to represent an ob-
served phenomena, idea or concept, that we make sense of the world, in-
cluding mathematical objects. Models become tools for understanding. In-
deed, they are mediational tools for the construction of knowledge.

Based on this premise, we built a microworld which could simulta-
neously provide its users with insights into a range of infinity-related ideas
and offer the researchers a window into the users’ thinking about the infi-
nite. An important research issue was to look at the ways in which the
different forms of representations were coordinated and integrated through
their interaction with the procedural code.

Papert (1993; p. 142) points to the importance of the use and construc-
tion of external representations in the process of knowledge construction:

“One of my central mathematical tenets is that the construction that
takes place “in the head” often happens especially felicitously when it is
supported by construction of 2 more public sort “in the world” [...]. Part of
what I mean by “in the world” is that the product can be shown, discussed,
examined, probed, and admired. It is out there”.

There is extensive research into the idea that writing a computer pro-
gram provides a means for sketching half-understood ideas. In fact, much
of the original research in this area involved programming with Logo and
such work still continues (See Noss & Hoyles 1996). Computers bring a
tool that incorporates the visual dimension into mathematics in ways that
were not previously possible. For instance, they allow a process to be seen
as it evolves or is generated in time ( Moreno & Sacristan, 1995). Thus the
dynamics and the behavior of the process as opposed to its result can be
observed. The writing of a procedure is, in a sense, similar to the construc-
tion of an isomorphism between any two models of a mathematical con-
cept. The interaction between these models facilitates the construction of
situated abstractions (Noss & Hoyles, 1996).

The Microworld: Activities and Some Relevant Results

The design of the study involved several phases: an exploratory study
was used for defining the activities and makeup of the microworld (to be
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used in the main study) as well as the research methodology. The main
study involved case-studies of 4 pairs of Mexican stude.us »f varying ages
and backgrounds', paired up by age-group. The analysis of student’s expe-
riences was carried out by working with one pair of students at a time,
using a clinical interview style, with approximately 15 hours of work for
each pair. A selection of the activities for the main study was made on the
richness of possibilities of each activity, taking into account those which
produced interesting results as well as the simplicity with which they could
be approached.

The activities finally chosen for the microworld in the main study were
the following:

1) Explorations of infinite sequences, and
i) Exploration of fractal figures (“limit objects”).

The former included the sequences {1/2"}, {1/n} and {1/n''} and the
sequences of their corresponding partial sums, studied through visual mod-
els—mainly spirals (e.g. Figure 1), bar graphs and staircases (See Sacristan,
1997, for further details).

The exploration of fractal figures centered mostly on the study of the
recursive structures of the Koch curve and snowflake (Figure 2) and the
Sierpinski triangle (Figure 3), and involved the encounter of some appar-
ent paradoxes such as that of a finite area bounded by an infinite perimeter.
Through these sequences and fractals activities we intended to confront
students with the idea of “what happens in the infinite” by allowing them
to visualize an infinite process through the dynamics—as the procedures
were running o computer-based approximations.

e

Figure 1. Spiral model for the se- Figure 2. The Koch snowflake
quence {1/2"]

' Since the research objectives did not make any particular demands on the sample,
we used students of differcnt age groups (a pair ot 14 year old students, a pair of
high-school students, a pair of college students, and a pair of math teachers in their
mid-thirtics) as it was also interesting to compare the conceptions and ways of
working of younger students with those of older students (and teachers).
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Asexplained in the introduction
above, an essential aspect of the
functioning of the microworld was
the programming activity on the part
of the students. All of the students
therefore wrote their own procedures
using the Logo programming lan-

Figure 3. The Sierpinski Triangle ~ guage, such as for instance those

, which produced the visual models,

although the activities were suggested by the researchers (who also served
as guide).

In the initial activity, the subjects were given the following procedure

(from which students derived the procedures for the activities that followed):

TO DRAWING :L
PU

FD :L

RT 90

WAIT 10
DRAWING :L/2
END

This procedure makes Logo’s turtle walk (without leaving a trace _ the
Pen is up) through a spiral with arms each having half the length of the
previous one (see Figure 1 above). It should be noted that as there is no
stop condition, the procedure continues indefinitely?. It was designed to
induce students to reflect on the behavior of the turtle and the procedure
itself.

This initial activity produced interesting results: in particular, the stu-
dents had to visualize the actual pattern without relying on the computer
drawing; it induced students to try to make sense of the relationships be-
tween the code and the graphical output: For instance, most students did
not expect to see the turtle endlessly spinning without leaving a trace. In
order to explain to themselves this unexpected behavior and make sense of
why the turtle was endlessly spinning, the students had to re-examine the
procedural code. Victor was one student who immediately remarked that
the procedure would never stop because the recursive structure of the code
represented an infinite process. He explained it was because the procedure
. called itself without anything telling it to stop, so it never would; the pro-
cess of turning and walking half the previous distance would continue re-
peating itself and would never stop. By analyzing the code Victor was able
to connect to it the behavior of the visual output (in this case the move-

2 Later, when the students became aware of the recursive structure, all of them
eventually added a stop condition, which also served as an important investigation
tool for making sense of the relationship between code and figure, as is describec
in Moreno & Sacristan (1995) and Sacristan (1997).
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ments of the turtle) since he correctly predicted the outcome and was able
to justify that visual behavior through the code. He linked the recursive
structure of the code with the infinitude of the process.

A modified procedure (with the Pen down) produced an inward spir2}
with the turtle then turning endlessly in its center. Victor and Alejandra
pointed out that althougi the turtle seemed to be just turning in the same
spot, in reality there was “a variation”. There were two factors here: a) The
turtle kept turning and b) the turtle turned at same spot. The first factor
could have served as an indicator that the process continued, but it was the
fact that the students seemed to be able to disregard the visual appearance
of the turtle — spinning in apparently the same spot — that suggests that
they understood that the underlying (mathematical) process continued, and
that they were able to link the output with the code and the process.

It was thus that students were able, via a process of experimenting
backwards and forwards from code to figure, to make sense of the behavior
of the turtle which seemed to be spinning on the same spot realizing that
the amount that the turtle moved each time was haived. The key point here
is that the analysis of the code allowed them to:

1) Recognize in the recursive structure a potentially infinite process.

2) To quantify the movement, to explain that although the turtle seemed
to be turning without moving forward, in reality there was a varia-
tion.

Thus by coordinating the visual and symbolic—in the order visual to
symbuiic to visual—and later complementing it through numerical explo-
rations, their understanding of the process became integrated and poten-
tially misleading visual appearances could be ignored.

The fractal explorations also produced interesting results. For instance,
during the Koch curve and snowflake explorations, some students, when
confronted with the fact that the perimeter of the snowflake tended to in-
finity but was contained in a finite area, found the conjunction of these two
elements at least counter-intuitive. In the case below the dilemma was solved
when one of the students (Manuel) pointed to the significance of the shape
of the figure as the determinant factor:

Jesus: It is incredible that it has an infinite perimeter and that it
comes to a point where the area is limited.

Manuel:  Well, not so incredible since...

Jesus: Well, it is unusual. What other figure do you know that has
an infinite perimeter with a limited area?

Manuel:  Well, what happens is that the perimeter is growing and

growing but it is somehow folding inside the (circumscrib-
ing) circle, and that is why the area is almost constant...
looking at it this way I don’t find it so incredible...
The experiences with the Sierpinski Triangle explorations were simi-
lar. We asked the students to imagine what would remain after removing
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the central triangles. Some students predicted from the beginning that the
remaining area would be zero. The younger students (Consuelo and
Veronica) initially suggested that if they rearranged the remaining areas
they might obtain a triangle the size of the initial central triangle. However,
when Veronica reflected on the fact that after level 7 of the process, all the
subsequent figures looked the same but had less area, thinking aloud she
exclaimed that it would be the entire triangle which would be removed.

The specific examples serve to illustrate and analyze some of the ways
in which students used and coordinated the elements of the exploratory
medium to construct meanings for the infinite. We divided the findings
into three categories:

i) The construction of meaning through programming;
ii) The use of the medium as a “mathematical laboratory” ; and

iii) The relationship between the activities and tools on the envi-
ronment and students’ conception of the infinite.

An interesting finding is that the younger students focused more on
open-ended explorations, while the more mathematically experienced stu-
dents (the pair of teachers) tried to make connections with the official math-
ematical knowledge. Another interesting remark is that when the students
were unable to see the deeper levels in the visual representations, some of
them blamed this on the resolution but were able to compensate for the
deficiencies by using information provided by the symbolic structures of
the procedures. For instance, one of the older students (Martin) explained
the behavior of the spiral as follows:

Martin: What happens is that there is a part that our eyes can no longer
perceive. Inside (the spiral) it continues the same way, because it is the
same process that continues...If we used a magnifying glass and looked at
that little square there, we would see like all this part (the full spiral).

We want to emphasize that it was the interplay (and linking) between
the programming code, the endlessness of the dynamical process, and the
turtle’s movements which led students to make sense of what they observed.
This includes confrontation with prediction, recursion and change of codes.
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SOCIOMATHEMATICAL NORMS AND STUDENT
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This study compared student performance and the nature of students’ intellectual
autonomy in two sections of a second semester calculus course. An inquiry-based
approach to instruction and the TI-92 graphing and symbolic calculator was used
in an experimental section while a more traditional mode of instruction and stan-
dard graphing calculators were used in the control section. At a macro ievel, there
was no significant difference in students’ performance on the common final exam.
However, individual student interviews revealed a striking difference in the nature
of students’ intellectual autonomy. In the experimental section, the two students
- interviewed reasoned in multiple ways regarding the viability of their solution. In
contrast, the two students from the control section appeared to be limited to check-
ing their calculations and looked to the interviewer for confirmation that their so-
lution was correct. In part, we attribute these important differences to classroom
norms regarding what constitutes an acceptable mathematical justification.

In the past decade there has been considerable discussion of and changes
to the teaching and learning of college calculus. Changes in modes of in-
struction and assessment, the use of technology, an increased emphasis on
conceptual understanding, the development of concepts graphically, nu-
merically, and symbolically, and a grea.er emphasis on applications are a
few of the hallmarks of the calculus reform movement (Roberts, 1996).
Although these changes have received national recognition and widespread
implementation, there is a growing debate regarding the effect of these
changes on students’ knowledge, beliefs, and values. The study reported
here examines the impact of one approach to reform in a second semesicr
calculus course at a large mid-Atlantic university.

Theoretical Framework

The theoretical orientation employed in this study is based on the emer-
gent perspective as described by Cobb and Bauersfeld (1995). This frame-
work strives to coordinate the individual cognitive perspective of
constructivism (von Glasersfeld, 1995) and the sociocultural perspective
based on symbolic interactionism (Blumer, 1969). In this view, the devel-
opment of students’ reasoning and sense-making processes cannot be sepa-
rated from their participation in the specific microculture of the classroom.

A central construct in this perspective is that of sociomathematical
norms. These norms include interactively constituted understandings such
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as what counts as mathematically efficient, mathematically elegant, and
what constitutes an acceptable mathematical justification and explanation.
Such norms are assumed to be reflexively related to the development of
students’ mathematical conceptions, mathematical beliefs and values. In
particular, sociomathematical norms are a useful and clarifying construct
in accounts regarding how students develop intellectual autonomy in math-
ematics (Yackel & Cobb, 1996).

Method

The students were enrolled in two sections of second semester hon-
ors calculus, MATH 2H, at a large state university in the Mid-Atlantic re-
gion. The two sections of the course met at the same time, three times per
week, twice for fifty minutes and once for one hour and fifty minutes. A
professor of mathematics at the university and co-author of the standard
text used for all calculus courses for mathematics and science majors taught
the control section with a traditional lecture approach. He allowed graph-
ing calculators (e.g., the TI-82), but did not integrate them into the course.
Rasmussen taught the experimental section, incorporating use of the TI-92
computer algebra system and alternative instructional strategies compat-
ible with the calculus reform movement.  The instructors used the same
textbook, however the experimental secticn altered the order of topics, be-
ginning with applications of the integral and numerical techniques followed
by standard analytic techniques. This alteration was possible due to the
symbolic computation of the TI-92. While the homework sets were drawn
from the textbook, the experimental section incorporated an additional as-
signment by requiring that students provide justifications for three to five
specified traditional homework problems.

Two students from each class agreed to participate in an individual
interview at the end of the semester. The instructors of the two sections of
the course chose the students based upon the level of articulation shown
during their interactions. The two students, Donald and Aaron, from the
control class are both Caucasian males with A averages in the course. From
the experimental class, one student, Susan, is a Caucasian female with an A
average in the class and the other, Debra, was an Iranian- American female
with a B average in the course.

King observed the experimental section approximately once per week
on varying days, during which she took extensive field notes focusing on
the instructor’s interaction with the students. The final examination was a
uniform test given to all sections of the course, honors and non-honors.
Students in both sections took the exam under uniform conditions at the
same assigned time. A person who taught a section of MATH 2 or MATH
2H graded one problem per page of the test to eliminate instructor bias.

King conducted interviews in a Mathematics building office during
the last week of the semester. Videotaped interviews were about an hour in
duration. The students responded to general questions about their back-
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grounds and the course, then “thought aloud” as they worked several cal-

culus problems on an overhead projector. The problem discussed in this
paper is

Resuits and Discussion

At a macro level, there was no statistical difference in students’ perfor-
mance on the common final examination (p = 0.902). This is significant
since a common concern among some educators is that the use of technol-
ogy, in particular computer algebra systems, will result in loss of proce-
dural ability. As was the case in other studies (e.g., Heid, 1984), students in
the reform-oriented section performed as well as students in the control
class on the final examination where only graphing calculators were al-
lowed.

Even more significant, however, were the resalts from the more in-
depth analysis of the student interviews. This analysis revealed a striking
difference between the nature of the reform-oriented students’ mathemati-
cal justifications and their level of conviction in their answers. In particu-
lar, the two students interviewed from the traditional section looked to the
interviewer for confirmation that their solution was right. The only strat-
egy they had for justifying their answer was to review their previous com-
putations. This strategy proved to be insufficient for one of the students to
find an error in his work. In contrast, the two students from the reform-
oriented section had multiple ways to justify the appropriateness of their
response, including numerical approximations, the TI-92, and graphical
approximations. These multiple strategies provided an opportunity for these
students to find errors in their computations and appeared to give them a
distinctly different personal level of conviction in their responses.

These results suggest that t-.¢ students in the reform-oriented class had
a more conceptual vs. calculational view (Thompson, Philipp, Thompson
& Boyd, 1994) of mathematical justification and were certain of their an-
swers without confirmation from the interviewer. For example, while Aaron,
one of the students in the control class, was working on the problem, he
asked if he was doing the problem correctly and when he finished the prob-
lem he asked the interviewer, “Is this right?” When asked to verify how he
would know that his answer was correct he went through all of the tech-
niques that he had learned and decided he had chosen the correct tech-
nique. This process-of-elimination strategy to justify his results resembles
the problem solving strategies shown by students on story problems (Sowder,
1989). Instead of using a mathematical basis for his explanation and justi-
fication, Aaron based his justifications on authority and on procedures pro-
vided by his instructor and textbook (Voigt, 1996; Yackel & Cobb, 1996).

Aaron then went through a process of “checking his work,” focusing
on the procedures and calculations. He thought that his calculations were
correct, but was still unsure that his final answer was right. His justifica-
tions focused on procedures, leading to our categorization of his view of
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justification as calculational. The other student in the control class also
exhibited this same focus on procedures and calculations. In contrast to
intellectually autonomous students, Yackel and Cobb (1996) describe in-
tellectually heteronomous as students “who rely on the pronouncements of
an authority to know how to act appropriately” (p. 473). The students from
the control section relied on the interviewer, an authority, to decide whether
their solutions were correct.

In contrast, one of the students in the reform-oriented section, Susan,
noted she could use the TI-92 to do the calculation and check her work.
However, she said that the class did not focus on this method and doing the
calculation with the TI-92 was “boring.” Instead, she focused on the con-
cept of the definite integral as area under the curve. Susan was able to
reason about the definite integral as an experientially real mathematical
object, the area under the curve (Yackel & Cobb, 1996). After estimating
the area under the curve, she realized that her previous result was in error
and proceeded to find her computational error. Once she corrected her er-
ror, she was certain that her answer was correct and did not rely upon the
interviewer to confirm or deny the result. This level of student mathemati-
cal autonomy was also observed in Debra. These students *“are aware of,
and draw on, their own intellectual capabilities when making mathemati-
cal decisions and judgments” (Yackel & Cobb, 1996).

In part, we attribute these differences to student-teacher negotiations
regarding what constitutes an acceptable mathematical justification and what
the members of the classroom community should view as mathematically
different solution strategies. In the experimental class, this negotiation pro-
cess occurred at the level of classroom discussion, where the teacher en-
couraged students to make sense of the mathematics and to understand the
mathematics of other students. The teacher reiterated these negotiations
through assessment of homework requiring justifications for certain prob-
lems.

[}
! Conclusion

The construct of sociomathematical norms provides a useful way to
view reform-oriented instruction and the impact of this instruction on stu-
dent knowledge, beliefs, and disposition. Moreover, it is conjectured that
awareness of and explicit attention to the interactive constitution of
sociomathematical norms by college mathematics instructors provides a
means for educators to achieve some of the goals of the calculus reform
movement. Finally, the research reported here illustrates how constructs
such as sociomathematical norms, which were developed through a research
and development project at the elementary school level, cut across content
and grade levels. This generalization enables and establishes a line of com-

munication needed for the successful systemic reform of mathematics edu-
cation at all levels. »
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THE ROLE OF A FORMAL DEFINITION IN NINE
STUDENTS’ CONCEPT IMAGE OF DERIVATIVE
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The purpose of this paper is to explore the relationship between a student’s under-
standing of the concept of derivative and the student’s knowledge of a formal
symbolic definition for derivative. This research is part of a larger study that ex-
amines the evolution of nine students’ understanding of derivative over the coursc
of a nine-month school year. )

Theoretical Framework

For this research a student’s understanding of the concept of derivative
is initially defined by Tall and Vinner’s (1981) notion of concept image,
“the total cognitive structure that is associated with the concept, which
includes all the mental pictures and associated properties and processes”
(p. 152). To give this notion more detail, consider Hiebert and
Carpenter’s (1992) notion that understanding consists of the number and
strength of connections or links that a person has between various nodes
of information. A key to giving a more detailed description of the under-
standing of a particular concept such as derivative is to determine the
nature of the various nodes and links. The work of Sfard (1991, 1992) on
the process-object duality for mathematical concepts provides some of
this detail.

The process-object duality is the notion that each mathematical con-
cept may be considered as both a dynamic process and as a static object.
Sfard’s theory holds that historically and psychologically the process con-
ception is developed first and then consolidated into an object which can
be acted on by another process.

In Sfard’s theory processes are operations on previously established
objects. Each process is reified into an object to be acted on by other pro-
cesses. This forms a chain of process-object transitions.

For this research I note that understanding the concept of derivative
consists of three process-object transitions. The ratio process takes two
objects (two differences or increments such as two lengths or a distance
and a time) and acts by division. The object created by the ratio process, a
slope or velocity or other ratio, is used by the next process, that of taking a
limit. The limit may be envisioned as a process of “passing through” infi-
nitely many of the ratios, getting “closer and closer” to a particular value.
This limiting value in the case of the derivative is the value of the slope at
a point on a curve or the instantaneous velocity. This object, the limit, is
used to define each value of the derivative function. The derivative func-
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tion acts as a process of passing through (possibly) infinitely many input
values and for each determining an output value given by the limit of the
difference quotient at that point. The derivative function may also be viewed
as an object, just as any function may.

I will refer to each of these process-object entities — ratio, limit, and
function — as a layer of the derivative concept. Each layer may be ob-
served in multiple contexts: graphical (slope), verbal description (rate of
change), kinematic (e.g. velocity or acceleration), and symbolic (the sym-
bolic difference quotient definition of derivative). A student’s understand-
ing of the concept of derivative may be seen as a matrix denoting which
layers a student is aware of, in which representations, and the connections
a student sees or does not see between the layers or representations.

One further detail of this structure should be considered here. Suppose
a student has not developed a structural conception of one of the layers.
How can that student consider the next process in the derivative structure
without an object to operate on? One simple solution is to use what Sfard
(1992) calls a pseudostructural conception. A pseudostructural conception
may be thought of as an object with no internal structure. In fact, even for
a person who can conceptualize each layer as both a process and an object,
it 1s often simpler to describe a process by having it operate on a
pseudostructural “object.” _

One example of a pseudostructural conception would be for someone
to think of speed simply as how fast something is traveling without consid-
ering speed as a ratio or quotient of distance over time. Both Confrey and
Smith (1994) and Thompson (1995) report examples of young children
thinking of speed as an object without considering any associated ratio.
Whether or not a person is aware of the ratio involved in the concept of
speed or the limiting process involved in finding the speed at one instant in
time, one may consider the derivative function as a process that gives us
the speed at each point, like a car’s speedometer. For this description a
student can concentrate on the function process and it’s output without, for
the time being, working with the complications of the underlying limit or
ratio processes.

Methodology

The methodology for the larger study is a multiple case study. Each of
the case studies covers one of the nine students in the upper level (BC)
advanced placement calculus class at a suburban high school. The students
will be referred to as Alex, Brad, Carl, Derick, Emest, Frances, Grace,
Helen and Ingrid. All the student except Alex had been enrolled in the same
math and science classes during the 9th through 11th grade years. The stu-
dents also excelled academically in areas other than math and science. Six
of the nine students, Carl, Derick, Grace, Frances, Helen, and Ingrid, were
National Merit Finalists.
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Each if the nine students were interviewed five times during the aca-
demic year. The first, second and fifth interviews provide the most funda-
mental information for the larger study. Each of these interviews asks the
students a diverse enough and complete enough set of questions about the
concept of derivative so that a student’s responses may be taken as an ap-
proximate snapshot of his or her concept image of derivative at that point
in the course. The third and fourth interviews serve more limited purposes.
The third interview examines what aspects of the concept of derivative
come into the discussion of the relationship of derivatives to integrals. The
fourth interview focuses on open-ended questions and problems that are
related specifically to rate of change.

This paper considers results from all the interviews to examine the role
of a formal definition in each of the students’ understanding of the concept
of derivative.

Results

Even though most of the students in this class eventually learned to
state the formal definition, only Helen regularly mentioned the formal defi-
nition as one of her initial response to “What is a derivative?” She also
gave the formal definition as how she would explain the derivative to a
student in a precalculus class. The other students mentioned the formal
definition much more rarely, and then only after they had stated other an-
swers to “What is a derivative?”

In terms of ability to relate the formal definition to other representa-
tions or contexts, by the end of the academic year, the students broke into
three broad categories. The first group each knew the formal definition and
could related it accurately to at least one other representation for the con-
cept of derivative (Alex, Derick, Frances, Helen). The second group had
the formal definition memorized but could not accurately relate it to other
aspects of their understanding of the concept of derivative (Ingrid, Brad,
Grace). The third group refused to memorize the formal definition and could
only guess at inaccurate fragments of it when asked (Carl, Derrick).

The first group had the ability to generate the formal definition itself or
related ratios such as the average needed for the Mean Value Theorem by
remembering a graph or the concept of velocity and using that to recon-
struct the knowledge. In the case of the Mean Value Theorem, each of these
students recalled the graph involved first and were able to construct the
symbolic from the graph and the idea that the slopes are paraliel. The middle
group had memorized many appropriate phrases, but did not always under-
stand the meaning behind them. In particular Ingrid did not seem to be
aware of the notion of ratio involved in the derivative concept. Throughout
the three interviews the students were given multiple opportunities to dem-
onstrate an awareness that the derivative involves a ratio of two quantities.
Each of the other students stated a ratio in a context other than restating the
formal definition. Ingrid never did. Ingrid could stute that the derivative
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represents slope, rate and velocity, but she never mentioned the ratios in-
volved in these quantities. A particularly obvious missed opportunity oc-
curred in the fourth interview when each student was asked to approximate
f’(2) given a table of values for the function with the inputs incrementing
by .1. Each of the otker students in the class were able to estimate the
derivative value by calculating an appropriate ratio. Ingrid was not. She
said, “I feel like I need an equation to find it.” If she had an equation for
the function, she would “take the derivative and plug in 2.” She was un-
able to state how she would find an estimation without an equation. When
prompted with the suggestion of sketching a graph of the points, she did so
but did not think of calculating the slope at a point.

_The final two students stated in their opinion of the formal definition in
interviews. Carl said, “If you have to go with formai definitions, I don’t
know those things. I know my own definition in my head of what they are,
what they do, and I can do problems like that, but when a teacher’s asking
for a formal cefinition, I go crazy.” Ernest said more simply during the
second interview, I never was good at textbook definitions and stuff. ... I
can’t give textbook definitions.” Neither of these two students found the
symbolic formalism of the definition relevant to their understanding of the
concept of derivative.

Discussion

As described above, the ability of the students to relate the formal defi-
nition to other aspects of their understanding of the concept of derivative
varied from an ability to make many connections, io a weakness in making
meaningful connections, to a disinterest in making any such connections.
This variety of responses came from students who had studied calculus and
other mathematics and science subjects together for the past four years.
Hence, one suspects that individual factors such as beliefs and abilities
contributed substantially to these differences.

What was the role of instruction? The teacher for the senior year cal-
culus course, Mr. Forrest, emphasized the relationship between the limit of
the difference quotient definition and a graphical representation with se-
cant lines approaching a tangent line. During a two week period toward the
end of September, Mr. Forrest presented the relationship between the for-
mal definition and its graphical interpretation on the board on three differ-
ent class days. On a fourth day, the limit of the difference quotient was
discussed without the secant line picture. During these two weeks the stu-
dents were assigned homework problems involving computing and esti-
mating derivative values using the full formal definition and just the ratio.
At the end of this period the students took a test on the material and the
questions on the test were discussed in class the following day.

This instruction had some positive effects, but the results were not as
complete as one might hope. One day after the discussion of the test ques-
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tions the students were asked to write what they understood about deriva-
tives at this point that they did not understand from their study of deriva-
tives at the end of their junior year. Five of the students mentioned the
formal definition in some sense. During the next interview several weeks
later, six students were able to state the formal definition correctly. How-
ever, only three students in the second interview were able to correctly
relate the formal definition of derivative to the secant line picture. Two
others could explain that the ratio is the slope without connecting the lim-
iting process. However, three students (Brad, Carl and Emest) still could
not state the formal definition correctly and a fourth student, Ingrid, who
could state it correctly and even included it in her answer to “What is a -
derivative?” could not relate the two.

This study did not attempt to devise or test any other methods to influ-
ence student understanding of the formal defimtion of derivative. How-
ever, two observations may be made concerning the students who best con-
nected the formal definition to other aspects of their understanding of de-
rivative. First, these students had an understanding of the ratio and the lim-
iting processes in a context other than the symbolic, a context such as slope
or velocity. Second, the symbolic notation system had meaning for the stu-
dents outside of the symbols themselves, outside of the knowledge that
f(x) means to plug the x value into the expression for the f function. In
other words, the students were able to use the symbols as a language that
expressed their knowledge in another context.

These observations point to several potential obstacles in student un-
derstancing of the formal definition. First, the students must understanding
the processes underlying the concept of derivative. In this group of nine
students, only Ingrid had not made the connection that a derivative value
could be approximated using a ratio. However, this phenomenon is likely
to be more wide-spread in classes with weaker students. Second, students
must place some value on having a symbolic representation for this ratio.
Both Carl and Emest found such an expression unnecessary. Third, stu-
dents must think of symbolic expressions as having meaning in terms of
their experiences in other contexts.

A question that follows from the attitudes of Carl and Emest is whether,
or to what extent, an understanding of the formal definition is necessary to
the study of calculus. To be even more extreme, one may consider to what
extent understandings of the ratio or limiting processes are necessary to the
study of calculus. Although knowledge of the these processes and the for-
mal definition are certainly needed for a robust understanding of the con-
cept of derivative, many derivative problems may be solved without them.
The pseudostructural knowledge of derivative as the steepness of a func-
tion at a point or the speed at an instant in time combined with efficient
short cuts for taking the derivative such as the chain rule or product rule
allow students to solve many problems without the complications of the
formal derivative or its underlying ratio in other contexts.
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REPRESENTATION AND VISUAL THINKING RELATED
TO DERIVATIVE CONCEPT AT HIGH SCHOOL LEVEL

Patricia E. Balderas-Caias
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This paper reports some findings documented in Balderas (1998). The
main objectives of this investigation were to study high school students’
processes of internal representation while teaching and learning mathematics
(derivative), according to representations generated in graphing calcula-
tors and to design a didactic proposal for differential calculus (high school
level) based on the findings of this research. Research questions of the
study were: (1) how is the mental representation process of related con-
cepts to the derivative concept when graphing calculators are readily ac-
cessible?, and (2) which relations does the student establish between dif-
ferent representations of concepts related to the derivative concept?

The framework of the study was influenced by Goldin and Kaput (1992)
point of view about cognitive integration between two or more representa-
tions of mathematical concepts. A naturalistic paradigm was considered
appropriate for the holistic construction of the classroom reality. The study
took place over a period of three years and involved seven students.

A working hypothesis was that fostering a broad repertoire of schemas
in students promotes the integration between concept images of different
representations. The study included graphic, numerical, algebraic or sym-
bolic, table and text representations. The study variables were the connec-
tions among five representations which are shown by the students when
they soive problems. Two categories were used bidimensional and tridi-
mensional connections. The data analysis used the Propositional Analysis
Model (Campos & Gaspar, 1995) to identify concepts and relations in the
answers’ students.

Some results showed how difficult is to separate the content from the
representation in the answers, and how the behavior of oscillation among
representations in the study are determined by the relations among con-
cepts more than the concepts themselves. Few connections of the symbolic
representations with the other representations were found. Hence teaching
must emphasize the correct use of algebraic language. Results suggests
that in order to promote connections between symbolic representations and
other representations, it is necessary to provide the students with materials
that foster the use of symbolic representations to express ideas. The data
suggested some teaching goals, for example, (1) to achieve that students
progress smocthly and in the right direction towards the integration of dif-
ferent representations and (2) to make necessary efforts to lead teaching in
that direction considering that calculus students need considerable time
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working with several representations of the concepts involved before work-
ing with symbolic algorithms in order to establish relationships between
the concepts. This will help them to develop more powerful representation
systems to solve variation problems.
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CALCULUS STUDENTS’ INTUITION OF DEFINITE
INTEGRAL AND HISTORICAL DEVELOPMENT

OF THE CONCEPT
Bronislav Czamocha Ed Dubinsky
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The goal of our study is to learn about student intuition and under-
standing of a definite integral and to “‘compare” it to the historical develop-
ment of this concept. -

We find striking connections between the intuitions of Calculus stu-
dents at a large mid-western university and those of well known mathema-
ticians in history. There appears to be a deviation of some students’ intui-
tions from those that current teaching practice is trying to develop. Al-
though current teaching practice is mainly focused on the chopping up in-
tuition, students’ understanding, as seen from interviews in our study, in-
cludes both a chopping up and a sweeping out intuition. This finding coin-
cides with the historical development of the concept. Historically,
Archimedes employed the sweeping out and chopping up intuitions simul-
taneously as early as the 3rd century BC. During the 17" century the same
ideas were rediscovered by European intellectuals such us Gregory St.
Vincent, Cavaliery, Ferma, Cauchy, Roberval, Wallis, Pascal, etc.

We will also discuss the question of pedagogical practice in teaching
the concept of the definite integral as directly related to the results of this
particular study.
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COGNITIVE DIFFICULTIES: THE CASE
OF RELATED RATES

David E. Meel
Bowling Green State University
meel @ math.bgsu.edu

This research study qualitatively examined both written and ver-
bal protocols focused on the concepts of function, function composition,
differentiation, and chain rule as well as solving arithmetic, algebra, and
related-rate based word problems. In particular, this study investigated the
difficulties faced by thirteen Calculus 1 students who completed the course
under the same instructor with a grade of at leastaC (3-A’s,7-B’s,and 3
- C’s). Analysis of the participants’ responses revealed many of the same
cognitive obstacles identified by prior research into the content that under-
lies the topic of related rates, especially that of differentiation and func-
tions. In addition, the contextualization of the related rates problems into
word problems is an additional area of contention. This conclusion was
consistent with the results identified by Mestre (1988) and Kieran (1992)
that word problems require students to translate verbal descriptions into
mathematical models and the process of translation can act as a barrier to
students’ comprehension. Besides the translation and modeling aspects of
the topic, another potential obstruction occurs from the required utilization
of functional relationships. This study has found that in solving related rate
problems the visualization of complex dynamical situations is an additional
obstacle to problem solution. In obtaining a solution, students must ma-
nipulate the static model through differentiation and the chain rule to char-
acterize the movement and express the related rates.
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NEW TECHNOLOGIES IN THE TEACHING OF THE
DERIVATIVE TO HIGH SCHOOL STUDENTS

Jorge Peralta Sdmano
Universidad Auténoma del Estado de Morelos
jorgep@hat.ubm.uaem.mx

In the present project we used the Didactic Engineering as investiga-
tion methodology in base to the papers of Artigue (1995), Duady (1995),
and Brusseau (1986) on didactic of mathematics, and those of Zimmermann
and Cunningham on Mathematics visualization (1991). It is shown a pilot
study accomplished with high school students of the ‘Escuela de Técnicos
Laboratoristas’ of the Universidad Auténoma del Estado de Morelos, where
is made an emphasis on the use of new technologies in the teaching of the
mathematics, enforcing and/or learning of the derivative concept, from a
visual point of view.

Exist some attempts to solve the problem to introduce students to
differential calculus and in specific to the derivative concept, this is ob-
served in the textbooks that they have been published recently, which
defer concerning their didactic proposals, since they use the limit concept
as base, until those which not use it. But furthermore, it has the problem of
carrying these proposals in an effective and successful way to the class-
room.

The use of new technologies such as the graphic calculators, comput-
ers, and the development of software applied to the mathematics, it has
given cause for several studies designed in order to carry these technolo-
gies to the classroom with the intention of giving a different approximation
to calculus teaching (Tall, 1989).

Of it previously exposed was outlined the following investigation hy-
pothesis: The use of new technologies in the classroom permits pupil to
visualize and to conceptualize the derivative.

References

Artigue M. et. al. (1995). Ingenieria diddctica en educacion matemadtica.
Grupo Editorial Iberoamerica, Colombia.

Zimmerman W. & Cunngham S. (1991). Editors’ introduction: What is
mathematical visualization?. In Visualization in teaching and learning
mathematics (Simmermann & Cunningham, editors). Mathematical
Association of America, pp.1-8, U.S.A.

Tall D. (1998). Concept images, generic organizers, computers and cur-
riculum change. For the Learning of Mathematics, 9(3), 37-32.

149 9770



ADVANCED MATHEMATICAL THINKING
POSTERS

171

151



THE IMPACT OF COOPERATIVE LEARNING ON STUDENT
ATTITUDES AND SUCCESS IN COLLEGE ALGEBRA

~ Jane Ann Brandsma
North Carolina State University
jabrands @unity.ncsu.edu

In response to recent reform initiatives in mathematics education, the
author implemented a ccoperative learning approach to teaching College
Algebra with her community college students. The instructor assigned stu-
dents to heterogeneous groups which worked together each day and re-
mained intact throughout the quarter. Concept maps, card sorts, pair/share
and jigsaw-type lessons were among the activities and cooperative learn-
ing strategies used. Assessment techniques included classwork and home-
work, journal writing, self- and peer-assessment of participation, individual
and group tests, and a comprehensive final exam.

At both the beginning and end of the quarter, students completed an
attitude survey (DeMarois, McGowen, & Whitkanack, 1996). At the end
of the quarter, students were significantly more likely to disagree that
mathematics is mostly facts and procedures to be memorized, that answers
are either right or wrong, that test problems should be just like homework
problems, and that good mathematics teachers show you the exact way to
answer test questions. They were significai tly more likely to agree with
the statement, “When cuestions are left unanswered in class, I get help
from other students”. Compared with a traditional section of the course
taught by the author at the same time the previous year, the cooperative
learning class had a decrease in attrition rate and an increase in the percent-
age of students completing the course with a C or better.
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EFFECTS OF INSTRUCTION ON STUDENTS’
CONSTRUCTION OF PROOFS: PROSPECTIVE
ELEMENTARY AND SECONDARY TEACHERS

AND THE CASE OF THE ANGLE SUM
IN A TRIANGLE THEOREM

José N. Contreras
- The University of Southern Mississippi
jeontrer@ocean.st.usm.edu

Establishing the validity of mathematical assertions is a central activ-
ity of mathematics. In order for a proposition to be accepted as a math-
ematical truth, it has to pass the test of a proof. But proof is also important
because of its pedagogical nature: some proofs help to explain why a par-
ticular theorem is true. This is the case of the proof of the angle sum in a
triangle theorem (ASTT) that can be stated as follows: the sum of the mea-
sures of the interior angles of a triangle is 180°. Even though the notion of
proof is fundamental in any area of mathematics, it tends to receive more
emphasis in geometry than in algebra, trigonometry, or calculus. However,
little is known about effects of instruction on students’ ability to construct
proofs. The objective of this paper is twofold. First I, will examine elemen-
tary and secondary majors’ ways of proving the ASTT prior to instruction
on the proof of ASTT. Second, I will examine whether teaching the proof
of the ASTT to prospactive elementary and secondary teachers help them
to prove the theorem on a post-test. Both groups of teachers were enrolled
or will be enrolled in their corresponding college geometry courses. As a
pre-test, 13 secondary majors were asked to prove the ASTT. Then they
received instruction on the proof of the ASTT. The teaching of the proof of
the ASTT occurred in a natural context at the time it is proved in the text-
book. As a post-test, the students were asked to prove the ASTT in a formal
test. The analysis of the pretest indicated that only one student had notions
about the proof of the ASTT. However, in the post-test, 3 students provided
a correct proof, 5 provided a partially correct proof, and 5 constructed an
incorrect proof. These findings suggest that instruction had some effects
on students’ knowledge about the proof of ASTT. In addition to correct-
ness, students’ ways of proving were analyzed in terms of types of justifi-
cations provided. Examples will be displayed during the poster presenta-
tion session. Similar procedures will be followed with the elementary ma-
jors in late August and early September. Then, analysis and discussion of
results about elementary majors will be available in October of 1998.
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A CONCEPTUAL GROUNDIN G FOR MATH ANXIETY

Kelly M. Costner
The Ohio State University
costner.| @osu.edu

Math anxiety is one of a number of affective constructs that lack con-
ceptual grounding. This project presents a framework for conceptualizing
math anxiety by means of a pilot project exploring the construct in indi-
viduals studying higher levels of mathematics (e.g., mathematics majors
and pre- and inservice mathematics teachers).

Data sources for the pilot study included two interviews, a classroom
observation, a document analysis, and a grounded survey. Analysis using
NUD*IST software suggested three common themes that can be seen as
factors of math anxiety in individuals in higher mathematics: mathematics
test anxiety (the most prominent component), comparison/competition with
others, and mathematics teaching anxiety. These results suggest an expanded
definition of math anxiety that includes anxiety in math-capable individu-
als, and has implications for the exploration of anxiety management.

These data support a conceptual framework for math anxiety based on
Fennema’s (1989) generic model for research on affect in mathematics learn-
ing. Fennema’s model accounts for both affective and cognitive outcomes
from mathematics learning activities and processes. The model’s applica-
tion to the study of math anxiety fills a long-standing void in conceptualiz-
ing this research by adding the cognitive component. The modified version
of Fennema’s model accounts for the three factors suggested by the data in
the pilot study, and shows how the factors work in concert to produce math
anxiety.
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TEACHER CHANGE IN A REFORM
CALCULUS CURRICULUM:
LIMITS AND CONTINUITY

Thomas B. Fox
Ball State University
tfox@bsu.edu

A case study of teacher change in practice and beliefs during the first-
year implementation of a reform calculus curriculum was constructed. One
teacher’s practices during her implementation of the reform curriculum
were compared to her previous instruction in a more traditional curricu-
lum. Her practice in the key calculus content areas of limits and continuity
were studied. Classroom observations, interviews, and written document
data were collected to construct the case study. The primary data analysis
technique used was grounded theory.

Comparing the teacher’s treatment of limits in both curricula, signifi-
cant differences were noted. In the traditional curriculum, the teacher fo-
cused on teaching procedures for finding the limits of a wide variety of
functions. In her implementation of the reform calculus curriculum, her
instruction was much more focused. She taught students enough about lim-
its so that they could find the derivative of a function using the limit-based
definition of the derivative. Geometric interpretations of the limit were also
studied by examining the limit of functions both at a specific point in its
domain and as x went to infinity. Technology was used extensively by her
in the reform curriculum.

The teacher’s instruction related to continuity revealed similarities and
differences in both curricula. She always emphasized an informal defini-
tion of continuity. In the reform text, she omitted the formal definition of
continuity at a point because of time constraints, and continuity was stud-
ied in the context of differentiability. In the previous year, it was not exam-
ined in any meaningful context.
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VISUALIZATION OF DIFFERENTIAL EQUATIONS USING

GRAPHIC BEHAVIORS
Miguel Solis Esquinca Francisco Cordero Osorio
msolis@mail.cinvestav.mx fcordero@mail.cinvestav.mx
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We reported an experience carried out with university students and
offered preliminary resuits of the project presented in PME-NA XIX. The
theoretical perspective of mental constructions which are invariant in the
construction of the mathematical knowledge was used and included ac-
tions, processes, objects and schemas. We found an argument in the graphs
of functions that we have called behavior of tendencies. This has epistemo-
logical status and could be considered as a category of the knowledge of
Calculus. It deals with the construction of a functional frame in the sense of
establishing relationships between processes and objects through meaning
(Cordero, In press). We designed and applied mathematical situations in
order to interview 10 university students. The mathematical content dealt
with first order linear differential equations with constant coefficients. There
were notions involved in the situation such as variation, graphic behaviors,
recognition of patterns and relationships between functions. As for the in-
volved concepts we have found graph of a function, transformation of func-
tions, slope of a curve, derivative, limit of a function, asymptote of a func-
tion and integral. Students worked with the equation:

y’(x) + y(x) = F(x), when F(x) = 0, F(x) =k, and F(x) = x.

We identified strategies of local type, global type, and a synthesis of
both types. The students that could synthesize the two kinds of strategies
were abie to recognize patterns as well. These students recognized the term
F(x) of the equation as a fundamental part of the solution; they recognized
the graph of the solution observing the graphic behaviors of the solution
and related it with the graphic behavior of the term F(x). In the functional
frame, we observed students generating ideas in order to model and simu-
late situation that involve differential equations.
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WHAT KIND OF NOTATION DO CHILDRENl USE
TO EXPRESS ALGEBRAIC THINKING?

Carol W. Bellisio Carolyn A. Maher
Rutgers University Rutgers Universit
Jbellisio@aol.com carolynmaher@worldnet.att.net

A seventh grade class of students has been given numerous mathematical chal-
lenges throughout their school careers and have been videotaped and studied as
they worked on problems, discussed their ideas and searched for the words and
notations to justify their solutions. This paper examines their thinking and notation
as they work to identify a rule that demonstrates the relationship between a set of
ordered pairs of numbers.

The purpose of this paper is to examine early algebraic thinking in
seventh grade students as they work in small groups to define a rule that
demonstrates the relationship between a set of ordered pairs of numbers.

Theoretical Framework

For many students, algebra is a stumbling block to the study of higher
mathematics. The difficulty emerges in the transition from the study of
concrete arithmetic to the study of more abstract algebra. Davis (1964) has
encouraged activities with younger children that might promote algebraic
thinking early on as they are engaged in arithmetic investigations. He and
others have maintained that students need time to build up an understand-
ing of these concepts before their formai study of algebra in eighth or ninth
grade (Davis, 1985; Speiser & Walter, 1997). This research is based on the
view that elementary age students are capable of exploring algebraic ideas.
The ongoing research suggests that there are important benefits when inte-
grating activities that could introduce children to algebraic thinking before
beginning the formal study of algebra.

Consistent with this position is the premise that the student actively
engage in inquiries that promote transitions from arithmetic to algebraic
thinking. Promoting investigative settings requires classroom organizations
in which the students are encouraged to share their ideas, to challenge each
other about them, and to explain and justify their solutions (Davis & Mabher,
1990; Maher, 1998). The conditions necessary to make this happen must
be set up by the classroom teacher.

' This research is supported in part by a grant from the National Science Founda-
tion #MDR-9053597 to Rutgers, the State University of New Jersey. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National
Science Foundation.
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Davis (1984) suggested that in thinking about a mathematical prob-
lem, a person cycles through a number of steps. A representation is first
built for the new data. The person then tries to connect this representation
with previous, relevant knowledge. A mapping is made between the data
representation and the knowledge representation. As the student is trying
to make the mapping, he checks the validity and adds more knowledge.
This new mapping is then used to solve or try to solve the problem. This
sequence, or part of it, is cycled through many times before the learner
solves the problem (Davis, Maher & Martino, 1992).

Methods and Procedures

The students described in this paper were in a seventh grade class in a
school in which researchers worked with teachers to integrate algebraic
activities into the regular curriculum. This report will focus on the stu-
dents’ thinking on the third day of a three- day inquiry in which students
were challenged in “Guess My Rule” activities. The students had, in previ-
ous years, worked on similar problems and they were familiar with the use
of “box-triangle” notation to represent variables (see Davis, 1964). The
students were given tables of values for box and triangle and were asked to
write the rule that demonstrated the relationship between the variables. The
students were then asked to write the inverse rule, the statement that would
show how to get the box value, if the triangle value were known. The regu-
lar classroom teacher led the session. She began by reviewing the problem
that had been given to the students at the end of the previous class. There
were 13 students who were organized into three groups. Group 1 consisted
of Bobby, Michele I, Amy-Lynn and Magda; Group 2, of Stephanie, Romina,
Brian, Ankur, Michelle, and Jeff; and Group 3, of Michael, Sarah, and An-
gela.

Data Source

The classroom session was videotaped using a single video camera.
Videotapes, student papers and researcher notes provided the data for this
study. The videotape data was transcribed and verified for accuracy by
graduate student researchers. The videotapes, transcriptions, student pa-
pers and notes were then discussed and evaluated by several researchers.
Videotape data allows the careful study of the students’ language as they
work on the given problem. This is important because, in many instances,
the students are able to explain their rule but have difficulty in writing it.

Further, researchers are able to see the order in which students write their
notation.

Results

The following table of values was given to the students at the begin-

ning of class:
[
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0 A Each group produced a rule to describe the relation-
] 1 ship:
9 -8 Group 1. Bobby immediately saw a relationship between
1 0 the numbers. Others in his group followed his idea and
) -1 were able to write it using words, but were unabie to
) B write a rule using the symbols box and triangle. He ex-
plained his idea using the two pairs of fractions: (1/2, 1/
2) and (1/3, 2/3).
Bobby: Two minus one is cne; keep the two. Three minus two
is one; keep the three.
Mich: Then what’s the rule?
Bobby: The denominator minus the numerator.

Michele wrote: Rule is Demonidter [sic] - the numerator =

Numeraterater [sic] of triangle and denominator stays
the same.

The teacher suggested that Michele use a box value of two-sevenths to
explain her rule.

Mich: Seven minus two equals five and then you just put the
seven so it’s just like this.
Michele wrote: 2/7 7-2 =5/7

About ten minutes later Bobby overheard other students talking, and
he wrote in notation form what he had heard.

Bobby: They have a good one, listen. Box minus one and
switch from positive to negative.
Bobby wrote: -1 (+/-)=A

The other three members inhis group did not accept this rule. A teacher
comment indicated to the students that they had the right idea and the
students continued to pursue their original thinking.

Mich: Wel, that’s not like what we’re doing and she [teacher]
said we’re on the right track.

Group 2. Students in Group 2 saw a different relationship between the num-
bers but had difficulty at first with the notation to describe their idea.

Jeff: If it’s positive you subtract one and that number turns
into a negative. Subtract one and add a negative.
Romina: So a negative five would be a positive six. A positive

five would be a negative six.
No one questioned the correctness of Romina’s second example.

Jeff: Then switch from what it is to the other thing.

Steph: Positive to negative, negative to positive.

Romina wrote: [ - 1 and switch from positive to negative or negative
to positive = A .
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When a graduate student asked the group to try and write an equation,
Ankur wrote:

(O-DHx-1=A

The students checked out this equation with several values from the
chart.

Class Sharing. After the students had worked in small groups for about
twenty-five minutes, they shared their solutions with each other. They
checked each other’s rules to see whether the rules worked. Students in
Group 3 demonstrated their rule first. Angela wrote:

(O-1H-1=A

Although Angela wrote -1 Sarah indicated verbally that the box minus
one should be multiplied by the negative one. The classroom teacher then
intervened by placing parentheses around the negative one. Group 1 gave
several examples to show their rule but explained that they could not write
it. Michele attempted to write it using three variables but was not success-
ful. Group 2 stated that their soluticn was the same as that of Group 3.

The teacher then presented her rule and the students checked that it
worked. The rule was:

1-O=A

The students were challenged to justify and explain why these rules,
which appeared different, could both work. Initially, the students were un-
aware that the rules were equivalent. However, as they worked to explain
and support their ideas, they developed a justification for the equivalence
of the two rules.

Rschr: How do you get from your rule to her [teacher’s] rule?

Sarah: If you switched the box and the one, like in the first piece but
kept the minus sign there?

Tchr:  Let’s go back to a property, all right? How about this? [ She
wrote “distribute.”]

Amy: Negative one times box is negative one box, negative box, and
then negative one times negative one is one, so it’s plus one
equals the triangle.

The classroom teacher then asked them what property allowed them to
show that minus box plus one was the same as one minus box, and a stu-
dent named the commutative property. The students agreed that their rule
was the same as the teacher’s rule.

Conclusions

During this one class session there was a movement from students hav-
ing an idea that they first verbalized, then expressed in words, and finally
wrote using the symbols box and triangle. The power of the box-triangle
notation, which was extensively used by the Madison Project in the 1960's
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(Davis, 1964), was demonstrated later in the class when one of the students
filled in the boxes and triangles in his equation with numbers to demon-
strate the veracity of his rule. During the class, the students were interested
in the solutions of the others and wanted to check the accuracy of their
solutions. Teacher intervention challenged them to go further with their
thinking and that led them to look for the equivalence of the rules they
wrote. We are finding that children are able to deal successfully with alge-
braic ideas before the formal study of algebra. These data contribute to the
growing research that suggests that children’s generalization is originally
expressed in ordinary language, and that with carefully designed activities
and guidance, students can build algebraic ideas. Providing tools to help
students in their movement to algebraic reasoning is essential.
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EFFECTS OF ALGEBRA INSTRUCTION ON THE
RECOGNITION OF THE MATHEMATICAL
STRUCTURES OF WORD PROBLEMS

Emily D.F. McFadden
e.mcfadden @pop.comap.com

This study investigated the relationship between the formal study of algebra and
the recognition of the mathematical structures of word problems. Forty-onc pre-
algebra students and 75 algebra students participated in a Problem Solving Task
and a Card Sorting Task. The results indicated that pre-algebra subjects recognized
the mathematical structures of problems significantly more often than did algebra
subjects. Algebra subjects appeared to have “pscudostructural conceptions™ as
described by Sfard and Linchevski (1994). There also appeared to be two stages of
structure recognition. Subjects at the procedural stage described the structures of
problems using their solution paths. Subjects at the structural stage described the
structures of problems with equations or generalized statecments.

Understanding how individuals organize problem information and the
procedures they apply to that information is of interest to both cognitive
psychologists and mathematics educators. Mathematics researchers and
cognitive psychologists describe a two-stage model of problem solving that
consists of a representation stage and a solution stage. These two stages
have also been called the “problem comprehension process” and the “equa-
tion solving process” (Chaiklin, 1989; Hayes, 1981; Kintsch & Greeno,
1985; Mayer, 1982; Reed, 1987; Schoenfeld, 1985).

In the representation stage, the problem solver reads the problem, forms
an initial representation that includes the information to be discovered in
the problem and the information relevant to reach that goal, organizes the
relationships in this information into mental representations, and repre-
sents the mental relationships as expressions, equations or inequalities. These
mental representations that are formed are referred to as schemata (Hinsley,
Hayes, & Simon, 1977; Marshall, 1995; Mayer, 1980;. The schemata de-
scribe the parts of the problem that the solver considers significant. These
schematic relations constitute a problem solver’s understanding of a prob-
lem.

In the solution stage of problem solving, the problem solver applies
operations on the schemata developed in the first stage. This involves sub-
stituting given values into formulas, or transforming the information, ex-
pressions, equations or inequalities in the first stage, in order to produce a
solution. The problem solver continues to apply operations and procedures
until a goal is achieved that is acceptable to the problem solver.

The main idea behind this model is that problem solvers interpret the
information in word problems in terms of schematic relationships that have
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associated procedures for operating on the relationships. Successful prob-
lem solving depends on being able to form appropriate schemata and being
able to apply those schemata across a range of related problems (Krutetskii,
1976; Mayer, 1982; Schoenfeld & Herrmann, 1982; Silver 1977, 1981).
These schemata or representations formed by successful problem solvers
in the first stage of problem solving consist of the mathematical or formal
structure of the problem.

' Recognizing that problems have similar mathematical structures is
extremely important in problem solving. When problem solvers are faced
with a problem that they do not know how to solve, but they can detect the
mathematical structure of the problem and recognize that the new problem
shares the same mathematical structure as another problem previously solved
successfully, they may be able to apply the solution path for the known
problem to the new problem.

The purpose of this study was to determine if the formal study of alge-
bra facilitates recognition of the underlying mathematical structures of word
problems. This study compared pre-algebra and algebra students’ recogni-
tion of the mathematical relatedness among word problems in order to an-
swer the following questions:

1. Are there differences in the problem attributes, context and struc-
ture, used by pre-algebra and algebra subjects to classify problems
as mathematically similar? If so, what are those differences?

2. Are there differences between criteria used by pre-algebra and al-
gebra subjects to classify problems as mathematically similar? If
so, what are those differences?

3. Isthere arelationship between classifying word problems as simi-
lar by problem attributes and subjects’ abilities to solve those prob-
lems successfully?

4. Do subjects who use algebraic strategies to solve problems, clas-
sify problems as mathematically similar by structure and solve the
problems successfully?

Method

The sample for this study consisted of 41 sixth grade students enrolled
in a pre-algebra course, and 41 seventh grade and 34 eighih grade students
enrolled in an Algebra I course. A Problem Solving Task (PST) and a Card
Sorting Task (CST) were used to gather data related to the four research
questions. The PST contained nine mathematical word problems that were
chosen so that each problem had the same mathematical structure as two
other problems and the same context as two other problems. The set of
problems formed a 3x3 matrix so that no two problems shared both at-
tributes of mathematical structure and context (see Table 1). On the PST,
subjects were instructed to solve each problem and to write in words the
steps they followed to solve the problem.
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Table 1. Problem Solving Task Items by Structure and Context

A= g =7
O +A=S O+A=S O +A=R
O-A=T MO +NA=T A+0=S
0+0 =T

O = Distance  |.Carl | Altravel?
and Al left school by | 8. Sam and Joc were | 6- Jason, Robert, and
bike at the same time. | racing around a track. | Peter were each
At the end of 45 At the end of 55 rowing a boat across a
minutes, Carl had minutes, they ran a river. After 45
traveled 2 miles combined total of 14 | minutes, Jason and
farther than Al. miles. If Joe had run | Robert had rowed a
Together they traveled | twice as farand Sam | combined total of 10
a total of 12 miles. had run three times as | miles, Robert and
How many miles did | far, the sum of their | Peter had rowed a

distances would be 36 | combined total of 13
miles. How many miles, and Jason and
miles did Sam run? | Peter had rowed a
combined total of 11
miles. How many
mites-did-Jasonrow?
old is Lucy? Mike?

Age 4. The sum of Annic’s | 2. The sum of Mike's | 9. The sum of Adam’s
and Lucy’s ages is 60. | and Nancy's ages is and Betty’s ages is 55.
Annie is 10 years 30. If Mike were five | The sum of Betty's
older than Lucy. How | times older than he is | and Carla’s ages is 75.

now and Nancy were | The sum of Adam’s
three times older than | and Carla’s ages is 70.
she is now, the sum of | How old is Adam?
their ages would be
100. How old is

at Music World? -

Moncy 7. A tube of tooth- 5. Tim is trying to 3. A mother and her
paste and a bottle of | remember the cost of | son and daughter
shampoo together cost | a cassette tape at went shopping.
$8.00. The shampoo | Music World. He Together the mother
costs $1.00 more than | remembers that he and son spent a total
the toothpaste. How | paid $21 for one of $65. The son and
much does the cassette and one CD. | daughter together
toothpaste cost? He also remembers spent $28. The mother

that he paid $72 for and daughter together
four casscttes and spent $53. How much
three CDs. How much | did the mother spend?
does one cassette cost
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The CST consisted of the same nine problems from the PST. At the
completion of the PST, subjects were given the CST. Subjects were di-
rected to sort the nine problems into groups by placing problems they per-
ceived as “like each other mathematically” in the same group and to de-
scribe the ways in which the problems in each group were alike.

Results and Conclusions

Findings of this study revealed that 1) pre-algebra subjects grouped
problems by structure significantly more often than did algebra subjects
(p<.05); 2) algebra subjects grouped problems by context significantly more
often than did pre-algebra subjects (p<.05); 3) all but one algebra subject
and only two pre-algebra subjects used algebraic strategies to solve the
problems; 4) there was no significant relationship between use of algebraic
strategies and recognition of the mathematical structures of problems; and
5) there was a significant positive relationship between the use of algebraic
strategies and the ability to solve problems successfully (p<.0001). Taken
together, these findings suggest that use of non-algebraic strategies con-
tributed to the recognition of the mathematical structures of problems,
whereas use of algebraic strategies, while stiil facilitating successful solu-
tions, appeared to impede subjects’ abilities to recognize structure.

These findings support the findings of Tabachneck, Koedinger, and
Nathan (1994}, and Hall, Kibler, Wenger, and Truxaw (1989) that the use
of algebraic strategies result in more errors of conceptualizing relation-
ships in problems than in manipulating symbols. These researchers sug-
gest that an algebraic strategy can be applied almost “mechanically” to the
solution of many problems. Once the relations in the problem are repre-
sented symbolically, computations and manipulations can be performed
without connection or understanding of the situation of the problem. Thus,
use of an algebraic strategy can lead to a correct solution but does not
require recognition of structure. With informal strategies, such as guess-
and-check, problem solvers do not distance themselves from the relation-
ships of the problem, and. for this reason, conceptual errors are often less
likely to occur.

Since a strong relationship existed between the use of algebraic strate-
gies and the ability to solve problems successfully, and yet there was no
significant relationship between use of algebraic strategies and recognition
of the mathematical strictures of problems, algebra subjects in this study
could be considered to have, what Sfard and Linchevski (1994) call,
“pseudostructural conceptions” of the language of algebra. That is, if alge-
bra students do not understand the structural aspects of algebra, then they
learn to manipulate symbols that have no meaning for them. Thus, algebra
students may successfully solve numerous algebra problems using alge-
braic symbols, and appear to understand the language of algebra, but may
not have made the transition to the structural perspective of algebra.
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Other findings of the study revealed differences in the criteria used by
pre-algebra and algebra subjects to classify problems as mathematically
similar. Reasons given by subjects to classify problems as similar on the
CST were placed into one of four categories: 1) mathematical structure, 2)
problem context, 3) solution strategy, and 4) solution path (the algorithm
or steps used to solve the problem). Comparisons of the number of reasons
belonging to each of the four categories of criteria revealed that: 1) algebra
subjects used criteria belonging to the category of problem context signifi-
cantly more often than did pre-algebra subjects (p<.001); and 2) pre-alge-
bra subjects used criteria related to their solution strategies and solution
paths significantly more often than did algebra subjects (p<.001).

Kieran (1990, 1992), Sfard and Linchevski (1994), and Sfard (1991)
claim that the transition from arithmetic to algebra involves a procedural-
structural evolution. Procedural refers to arithmetic operations carried out
on numbers to yield numbers. Structural refers to forming algebraic equa-
tions or expressions, and then performing operations upon those equations
or expressions, but not upon numbers. The fact that pre-algebra subjects
used criteria related to their procedures in order to group problems more
often than did algebra subjects supports their theory that prior to experi-
encing algebra, students focus on the procedures and operations necessary
for finding correct solutions and are therefore at a procedural stage of prob-
lem solving.

In addition to the differences in criteria used by subjects to group prob-
lems as similar on the CST, there were also differences in subjects’ descrip-
tions of the mathematical structures of problems. The mathematical struc-
tures of problems can be described in one of three ways: with equations,
with generalized statements, or with solution paths (Goldin, 1984). Sub-
jects in the present study used all three ways of describing the structures of
problems. These findings contribute additional information to the proce-
dural-structural theories of Kieran (1990, 1992), Sfard and Linchevski
(1994), and Sfard (1991), and suggest the existence of two stages of struc-
ture recognition. That is, subjects who described the structures of problems
using their solution paths were at a procedural stage of structure recogni-
tion. Likewise, subjects who described the structures of problems with equa-
tions or generalized statements were at a structural stage of structure rec-
ognition. Since ail algebra subjects, who grouped problems together by
mathematical structure, described the structures of problems with equa-
tions and generalized statements, they were considered to be at the struc-
tural stage of structure recognition. Since pre-algebra subjects, who grouped
problems together by mathematical structure, described the structures of
problems using all three ways, some of these pre-algebra subjects were
considered to.be at the procedural stage of structure recognition and others
at the structural stage of structure recognition.

The fact that pre-algebra subjects used generalized statements as well
as solution paths to describe the mathematical structures of problems con-

-« 1Rw 170



curs with findings of Chartoff (1976). He found that a large number of pre-
algebra subjects rated two problems as extremely similar based on the fact
that the same algorithm was used to solve the problems. Likewise, he found
that if pre-algebra subjects were presented with two problems in which one
was a generalized form of the other, then the subjects aiso rated the two
problems as extremely similar. The fact that some pre-algebra subjects could
be found at the structural stage of structure recognition in both the present
study and Chartoff’s study contributes evidence that there may be students
who progress to the structural stage of problem solving without experienc-
ing instruction in formal algebra. Further research that requires subjects to
participate in tasks like the CST is needed in order to get a more detailed

profile of students’ abilities to recognize and describe the mathernatical
structures of problems.
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New, problem-centered curricula provide quite different introductions to algebra
than traditional courses based on symbolic manipulation. However, we know very
little about what students learn from these new curricula. This paper reports a pilot
study of the algebraic skills and understandings that one class of 8th grade students
developed from work with one problem-centered, middle school curriculum, The
Connected Mathematics Project. Results indicate that most students (1) had a solid
grasp of linear relationships, (2) could distinguish linear from non-linear
relationships, (3) used graphing calculators extensively to compute, analyze, and

represent relationships, and (4) could relate symbolic expressions back to problem
contexts.

In the United States no mathematical topic or course is currently
more fluid and controversial than algebra. Whether the focus is curricu-
lum, teaching, assessment, student learning, or policy, common ground is
scarce and questions far outnumber answers. Algebra is widely seen as
essential for both college-bound and work-bound students; some have
called it the new civil right (Moses, 1993). But access to algebra is
problematic (Silver, 1997). Traditional Algebra I is widely considered
conceptually inconsistent, unnecessarily restrictive of students’ math-
ematical growth and development, and narrowly focused on bare symbol
manipulation. Reformers have instead emphasized access to algebraic
ideas (Silver, 1997), K-12 development (NCTM, 1997), and broader
conceptualizations of content (Kaput, 1995; NCTM, 1997). But these
reforms have been recently challenged by critics, often for the absence of
skill development. What is most needed (yet generally lacking) in this
fluid and contentious context are assessments of the algebra knowledge
and skills that students take away from different reform curricula.

The study described here was an initial step to assess the understand-
ings of algebra that middle school students learn in one problem-centered,
Standards-based middle school curriculum, The Connected Mathematics
Project (CMP) (Lappan, Fey, Fitzgerald, Friel, Phillips, 1995). These ma-
terials include a substantial strand of algebraic content in the 7th and 8th
grades. Students learn about different families of functional relationships
(primarily, linear, exponential, and quadratic) in solving contextualized
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problems using a variety of tools (esp. graphing calculators) and represen-
tations. We developed four interview problems that (1) were grounded in
quantitative or social interactional contexts, (2) involved both linear and
non-linear families of functions, and (3) tapped key mathematical concepts,
e.g., equivalence. We used these problems in interviews with pairs of stu-
dents from one 8th grade CMP classroom. The middle school was a pilot
site for the development of CMP, the students had three years of experi-
ence with the curriculum, and the classroom teacher was experienced and
knowledgeable of the 8th grade content.

The Assessment Probiems

We present our four interview problems in slightly edited form. Each
presented an algebraic expression(s) or equation(s) for students to interpret
and reason from. Two involved linear relationships and expressions. The
Equivalent Expressions problem asked students to judge the equivalence
of three linear expressions, two of which represented common manipula-
tion errors.

Your group is trying to find expressions equivalent tc 2(5 + 3x). Don

thinks 2(8x) is equivalent. Cathy thinks 10 + 3x is equivalent. They

look to you for help.

Are their expressions equivalent to 2(5 + 3x)? How will you decide?

How would you explain your reasoning tc them in a convincing way?

Can you think of a context (problem) that you could model with 2(5 +
3x) or an expression equivalent to 2(5 + 3x)?

What does the variable x represent? What does the expression repre-
sent?

The Trip Costs problem presented a linear equation (representing cost
as a function of number of participants) and posed a series of interpretation
and computation tasks.

The total cost of taking some students on a trip is given by C = 150 +
10N, where C = total cost in dollars and N = number of students.

If the total cost was $520, many students went on the trip?
Describe at least two ways to figure that out.

What do the numbers in the equation (150 and 10) mean in this con-
text?

Suppose another company charged the students according to equation,

C =25N. Which plan should you use if you want to keep costs down?

Could the cost equation, C =-150 + 10N, make sense in this situation?

The other two problems involved non-linear relationships. The Popu-

lations problem asked students to compare the growth of animal popula-
tions modeled by linear, exponential, and quadratic equations.

The growth patterns of three species of animals are given by P1 = 10,000

+ 5x (Species 1), P2 = 10(2x) (Species 2), and P3 = 700 + 10x2 (Spe-
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cies 3). P represents the number of animals of each species after x years.

Describe the growth pattern of each species. How do they differ? Pick
two species.

Could the populations of these species be equal after some number of
years?
Explain how you would decide.

The School Pool problem presented a diagram of a pool with an ex-
pression for its area and asked students to match terms in the expression to
sections of the pool.

Your school is building a pool, part indoors and part outdoors. The

plan for the indoor part of the pool is shown below. The end is shaped

as a half-circle, and the rest of the indoor part is a rectangle. The exact

dimensions have not been set but the area of the whole pool is given by

the expression: Tx%/2 + 6x? + x? = nx¥4.

Which part of the expression represents the area of the indoor part of
the pool?

Which part of the expression represents the area of the outdoor part?

Make a sketch of the outdoor part, including important dimensions.

Is there one or more than one possible shape for the outdoor part? How
would you decide?

The Students

We interviewed 16 of the 24 students in one 8th grade CMP class on
three consecutive days in the middle of May. This group represented all
students (but one) who consented to participate in the interviews. This middle
school (School 1) did not track by ability, so the class included a range of
student interest and ability in mathematics. After the interviews were com-
plete, we asked the teacher to rate all the students in this class on three
dimensions: (1) pencil & paper computational zability, (2) course grade,
and (3) 9th grade mathematics placement. As Table 1 indicates, the sample
included a range of success in mathematics, with greater participation from
the more successful students.

We also administered the problems to 8th graders in two other middle
schools in an in-class written format (with no interview): Four classes at
School 2 and two classes at School 3. All three schools had full implemen-
tation of the CMP curriculum for 3 or more years, and most students had
three full years of experience with those materials.

The Interview

We paired the students with a partner they were friendly with and inter-
viewed the pair as a team. One member of one pair was absent on both
interview days, so her partner worked the problems alone. Of the remain-
ing 7 pairs, 4 matched two successful students (grades, 9th grade recom-
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Table 1: The Teachers’ Ratings of the Students

Dimension/Rating Interview Whole Class
Computational Ability
Good 5 6
Adequate 8 11
Poor 3 7

Course Grade

A/A- 4 5

B+/B/B- 6 7

C+/C 3 7

D+/D/E 2 5
9th Grade Placement

Geometry 9 10

Algebra 6 14

mendation); 2 pairs matched a successful and a struggling student (crite-
ria); and in | pair both students were struggling. All interviews were audio-
taped for analysis. Students had access to two graphing calculators, blank
paper, graph paper, and rulers.

Results

We were surprised by the students’ competence with these problems.
Six of seven interviewed pairs solved all parts of all four problems; the
7th pair solved Trip Costs and Populations, and most of Equivalent Ex-
pressions. Only the student who worked alone struggled. Trip Costs was
routine for most pairs; Populations and School Pool were more challeng-
ing. The first part of Equivalent Expressions was relatively routine, but
designing a context for the expression was more challenging. The pencil
and paper results from Schools 2 and 3 were consistent with these general
patterns. Success rates ranged from 50 to 67%, with the same relative dif-
ficulty.

Both the interview and pencil & paper results indicated that most stu-
dents had developed solid understandings of linear relationships. They rec-
ognized and described slope/constant rate of change and y-intercept in tabu-
lar, graphical, and symbolic representations and moved easily between them.
For example, with the equation C = 150 + 10N (Trip Costs), students inter-
preted 150 as a fixed or flat cost and 10 as the cost per student and related
these descriptions to the contents of the table and the shape of the graph.
They knew (and used) multiple methods to determine if two different lin-
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ear expressions were equivalent (Equivalent Expressions), including com-
paring their tables or graphs, evaluating the expressions at particular val-
ues, and appealing to symbolic rules, €.g., the Distributive Property. They
discriminated linear from curvilinear relationships (Populations) based on
their symbolic form or rate of increase in tables. They were also able to
generate sensible situations when given a linear expression (Equivalent
Expressions), though the factored form, 2(5 + 3x), was more difficult than
the familiar mx + b form (e.g., 10 + 6x).

The majority -of interviewed students showed a marked preference for
analyzing symbolic expressions using the table function of their graphing
calculators. They entered the expression and examined the pattern of in-
crease in the Y values. Some mentioned and accessed the graph window
but far less often. They used the table function to judge equivalence (Equiva-
lent Expressions, were the Y tables identical or not?); describe rates of
change (Trip Costs and Populations, what did the Ys go up by?); compare
two linear relationships (Trip Costs, 150 + 10N vs. 25N); and solve sys-
tems of equations (Populations, when does P3 catch up to P1?). Signifi-
cantly, most students asserted on Equivalent Expressions that the method
of comparing tables would be the most effective way to convince their
peers that 2(8x) and 10 + 3x were not equivalent to 2(5 + 3x).

The students’ ways of talking about slope and y-intercept provided in-
sight into their understanding of linear relationships. Spontaneous use of
the term, slope, was rare. Instead, students talked about constant rates of
change as what it [the function] goes up by. They knew that the difference
between successive Y values was the coefficient of X in the general form
of the linear equation, y = mx + b. Some students could read and compare
“What it goes up by” directly from linear expressions or equations; others
were more comfortable entering the expressions into their graphing calcu-
lators and examining the change in the tables. Graphical conceptions of
slope, e.g., rise over run, did not generally emerge from work on and dis-
cussions of these problems. Spontaneous references to the y-intercept were
more common, both in the table (the Y-value that corresponds to X =0) and
the equation (the b term). Even more frequently students referred to the y-
intercept as the starting point, a term which had situation, graphical and
tabular meaning. starting point appears a virtual synonym for y-intercept;
what it goes up by, however, may or may be equivalent to the ratio defini-
tion of slope.

Students’ success on the School Pool problem, which involved only
quadratic terms, indicated that they were not derailed by a complex expres-
sion in a non-standard problem. They recalled the formula for the area of a
circle (a 7th grade topic in CMP) and determined that the terms, 6x? and
nx/2 matched the indoor sections. Then they searched for ways to fit the
shapes corresponding to x? and ntx*4 onto the diagram of the indoor part.
This task was made more difficult by some students’ expectation that the
pool should be symmetric along its length. It was an unfortunate feature of
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this problem that students’ sense of possible solutions was influenced by
design aesthetics - a problem we have found difficult to fix.

Next Steps

Buoyed by these positive and intriguing results, we expanded the scope
of our assessment research. We revised and expanded our collection of
problems to 16, ten of which involve linear relationships. We borrowed
and adapted problems from a variety of sources, including items from
TIMSS (the 7th and 8th grade assessment) and NAPE. We also expanded
the number of participating schools and classrooms to include multiple
CMP sites and matched contrast schools (8th grade Algebra’l and Pre-Al-
gebra). We are currently analyzing individual written responses to the prob-
lems collected at these sites in May 1998 and expect to have preliminary
results to report at the conference.
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The analysis presented in this paper focuses on one individual’s reconceptualization
of binomial multiplication from purely procedural to a personally-meaningful
activity grounded in real-world imagery. As such, it illustrates how an approach
that takes students’ informal activity as a starting point can be used to support their
development of conventional algebraic concepts, methods and symbolism.

Purpose

One commonly expressed concern about the current reform effort in
mathematics education is that the emphasis on having students develop
personally-meaningful mathematical concepts might result in their not de-
veloping methods and procedures which are generally taken as important
components of conventional mathematical knowledge. The work of Cobb
and colleagues (Cobb et al., 1991) shows that this concern is unfounded in
the case of primary school arithmetic. Nevertheless, our experience with
middle school and high school teachers indicates that this concern persists,
especially in the case of algebra. In this paper we present one aspect of an
ongoing research project in which we are investigating how to support stu-
dents’ development of meaning for basic concepts in algebra, including
algebraic expressions and operations. The aspect we report here is a set of
three interviews with a single individual that formed the impetus for a sub-
sequent classroom investigation. For a discussion of the classroom research
aspect of the study see Underwood and Yackel (1998).

'Some may question whether or not binomial multiplication is still a relevant com-
ponent of school algebra, given current technology and emphases on conceptual
understanding rather than on skill development. The position we take is that being
able to operatc with algebraic expressions as mathematical objects is foundational
to algebraic reasoning. Consequently, we do not view binomial multiplication as a
skill to be mastered but as an essential aspect of being able to navigate in a math-
ematical environment that encompasses variables, unknowns, and algebraic ex-
pressions as well as numerical expression (Arcavi, 1994).
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The purpose of this paper is to present research that investigated an
approach for developing an understanding of binomial multiplication' and
related concepts that is grounded in the imagery of acting in a realistic
situation.? In this regard, the approach follows the instructional design theory
of Realistic Mathematics Education (RME) (Gravemeijer, 1994) and is
consistent with Streefland’s (1995, 1996) work on integers and comparing
quantities that forms the theoretical foundation for several algebra units in
the Mathematics in Context curriculum (Encyclopedia Britannica, 1997).
Our approach can be contrasted with a common approach to binomial mul-
tiplication in introductory algebra textbooks that is based on an area model
(DeMarios, McGowen, & Whitknack, 1998). In the latter approach, stu-
dents are presented with models that “show” how to represent and interpret
a product of two binomials in terms of the areas of the regions on the visual
model. In the alternative approach, rather than presenting a model for a
student to interpret and explore (Doerr, 1995), the student is engaged in
informal activity, which through a process of progressive mathematiza-
tion, forms the basis for her more formal mathematical activity later on.

Theoretical Framework

The theoretical framework used to guide the study is a version of so-
cial constructivism called the emergent perspective (Cobb & Bauersfeld,
1995). According to this perspective, interactionism and psychological
constructivism are coordinated to account for learning and teaching.
Interactionism is the social perspective that is taken o” communal activity
while psychological constructivism is the perspective that is taken of an
individual’s activity as he or she participates in and contributes to the de-
velopment of communal activity. The emergent perspective is particuiarly
useful to analyze learning that is designed to capitalize on an individual’s
participation in a meaningful realistic scenario.

The emergent perspective is consistent with the RME view of math-
ematical reinvention and vertical mathematizing. According to RME, stu-
dents first develop models of their informal activity that later become mod-
els for more formal mathematical activity. In the process, means of notat-
ing and symbolizing the informal activity are developed. These rec srds
later take on a life of their own and become abstract quantities that can be

? Here we use the term realistic as it is used by mathematics educators at the
Freudenthal Institute in describing Realistic Mathematics Education. In this us-
age, realistic does not necessarily mean a real-world situation but one that students
can imagine participating in. Some aspects of the situation may be fictitious and
quite contrived. The key element is that thinking about how they would act in the
situation suggests how students might proceed in the instructional (mathematics)
tasks posed. This use of the term realistic will be clarified through the example
presented in this paper. The term is not to be confused with the common American
use of real-world or authentic to refer to situations that might be part of one’s
actual experience.
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reasoned with and about. In this way the symbolism and notation, that ap-
pear to be abstract, are not devoid of meaning but are grounded in real-
world imagery of the informal activity from which they emerged.

Methods of Inquiry and Data Sources

The method of inquiry for the research reported here was a one-on-one
teaching experiment (Cobb & Steffe, 1983) that consisted of three inter-
view sessions of approximately two hours each with a novice mathematics
teaching assistant at a midwestern university regional campus. All three
sessions were conducted by one of the researchers. The teaching assistant,
Monique, was teaching an intermediate level algebra course for under-pre-
pared university students. Our initial motivation for meeting with Monique
was to discuss possible instructional methods she might use to help her
students develop an understanding of binomial multiplication. However,
the sessions took on the character of a one-on-one teaching experiment in
that the focus increasingly was on her own understanding rather than on
teaching approaches she might use. Data from the three sessions include
written material produced during each session, detailed notes prepared af-
ter each session, and a video-recording of the third session.

The tasks that formed the basis for the first session were motivated by
an attempt to understand how Monique thought about the traditional area
model for binomial multiplication. In the second session the intention was
to focus on questions posed in a scenario of building and remodeling a
rectangular deck, a scenario that Monique offered at the end of the first
session in response to the researcher’s request for a “story problem” that
she could pose to her class that might be related to binomial multiplication.
However, the major focus of the second session quickly shifted to the con-
cept of area as covering. In the third session tasks were posed in the deck
scenario. In the scenario, as the researcher posed it, a builder uses large
squares of lumber of some specific, but unknown, dimension, as the basis
for building a rectangular deck. He also has access to strips of lumber that
have the same (specific but unknown) length as the squares and have width
that is specified by a known number. For example, he might have a square
of dimensions X units by X units and a strip of lumber X units long and 6
units wide. In addition, he can purchase additional rectangular shapes as
needed to complete his project if he knows their length and width. The
purpose of the scenario was to create a situation in which Monique might
engage in informal activity, namely planning to build or remodel a deck,
which later might form the basis for more formal mathematical reasoning.
That is, her mathematical activity would have an imagistic basis.

Results

In the following we briefly discuss the analysis of the three interviews.
The analysis focuses on Monique’s reconceptualization of binomial multi-
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plication from purely procedural to a personally-meaningful activity
grounded in real-world imagery. The analysis shows that there were sev-
eral critical steps in this process. The first step was the development of a
dynamic rather than a static view of expressions such as X+3. The second
step was the development of a concept of area as covering. The last several
steps involved the shift from thinking about cutting and mounting lumber
to anticipating the result of such activity, and, eventually, to talking about
the dimensions and the areas of regions in her diagrams as though they
were abstract mathematical quantities.

Developing a Dynamic View of Expressions Such as X+3

The most significant insight we gained from the first interview was the
importance of a dynamic view of simple linear expressions in supporting a
basis in imagery for binomial multiplication. At the beginning of the first
interview Monique did not have the flexibility to think of an expression
such as X+3 as a quantity X increased by 3 in the context of a binomial area
model.’> For example, when we asked her to alter a drawing of a square X
units on a side to indicate a region that was X+3 units by X+6 units, she
drew lines within the square and re-labeled the sides as X+3 and X+6. This
was counter to or expectation that she would increase each dimension and
draw a new rectangle by enlarging the square. This static approach taken
by Monique results in a treatment of the area model as a task that involves
assigning areas to existing regions in the diagram. By contrast, a dynamic
view sapports the activity (actual or imagined) of enlarging or decreasing a
square region. The task of recording the results of that activity leads natu-
rally to equating expressions such as (X+3)*( X+6), and X2+3X +6X +18,
since each of these is a different way of indicating the area of the enlarged
region. The importance of this approach is that equality results from the
situation itself, not from formal mathematical operations.

Through a series of questions and tasks posed by the interviewer,
Monique developed the flexibility to think about expressions dynamically
by the end of the first interview. It was at this time that she suggested the
scenario of building and remodeling a deck as one to use with her students
to support a dynamic conceptualization of binomial multiplication.
Monique’s posing of the deck scenario was fortuitous because, not only
did it provide us with a way to frame our subsequent interview questions, it
also has the features that typify RME tasks. As the interviews progressed
we were able to develop the scenario and simultaneously investigate
Monique’s thinking about area, multiplication and algebraic expressions.

* We learned through the interviews that this lack of flexibility was not due to
limited mathematical ability on Monique’s part but rather to limited mathematical
experiences. The interviews were, therefore, of critical importance in helping us

figure out what types of mathematical experiences are useful to promote this type
of flexibility.
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Developing a Concept of Area as Covering

A second critical step for Monique occurred in the second interview
when she developed a concept of area as covering. The significance of this
development is that it involved coming to conceptualize algebraic expres-
sions as composite units (Steffe, 1992). As a result she gained the flexibil-
ity to think of an algebraic expression in a variety of different ways. For
example, she could think of 2X, as comprised of X +X units of one or as two
units of X. 2X was now a quantity for her that she could manipulate and
operate with flexibly. A detailed discussion of the importance of a concept
of an algebraic expression as a composite unit can be found in Underwood
and Yackel (1998). For purposes of this paper, we note that the imagery of
pretending to cover an X by X square with individual square tiles one unit
by one unit was the critical activity that led to Monique’s conceptualization
of an algebraic expression as a composite unit.

Shifting From Informal Activity to Formal Mathematical Reasoning

In the third interview the intent was to explore how the deck scenario
might be extended to foster an imagistic basis for concepts related to bino-
mial multiplication, such as completing the square. To that end, we posed
tasks that involved enlarging a square deck of some specific, but unknown
size (X units by X units) by partitioning a specified strip of material length-
wise into two narrower strips, placing the narrower strips on adjacent sides
of the square deck and adding a rectangular “corner” piece to make the
resulting deck rectangular. Part of the task was to figure out the size of the
additional comer piece that would be needed to complete the deck. Ini-
tially, Monique proceeded by partitioning the additional strip of material
into a number of smaller strips and then drawing them in, one by one, on
either of two adjacent sides of the square. At this stage she was clearly
thinking about cutting and placing strips of lumber and not about the re-
sulting dimensions. For example, one solution she offered was to split an
additional 6 by X strip into three 2 by X strips and place (draw) two of them
on one side of the square and the third on an adjacent side of the square.
She continued with several additional solutions, each time actually carry-
ing out the activity of splitting the additional strip and placing the portions
on two adjacent sides of the square.

A shift in her activity came when she first drew strips (of yet unknown
width) on adjacent sides of the square and only then figured out what widths
she might use to create different rectangular decks. Our interpretation of
her activity is that it represented a shift from imagining the activity of split-
ting the strip and laying down the pieces she created to thinking about how
she wanted to split the strip. She was now anticipating the result of the
activity. She no longer needed to carry it out. By the end of the interview
Monique had made another shift. She was talking about the dimensions
and the areas of the regions in her diagrams as though they were abstract
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mathematical quantities. That is, she had made the shift to more formal
mathematical activity.

The shifts Monique made in the third interview are evidence that the
deck scenario can be extended to provide an imagistic basis for concepts
related to binomial multiplication, such as, completing the square. Further,
it was apparent that through engaging in these activities Monique’s con-
ceptual understanding of multiplication of algebraic expressions was greatly
enhanced. Her level of skill had not increased. She was already skillful in
dealing with algebraic expressions of this type. She now had a conceptual
basis for her understanding, a basis that emerged from the imagery of the
scenario(s) in which the tasks were posed.

Significance

The significance of this research extends beyond the analysis of the
interviews themselves. The study illustrates how an approach that takes
students’ informal activity as its starting point can be used to support their
development of conventional algebraic concepts, such as, binomial multi-
plication. In the process, we address a concern that some express about
inquiry approaches to instruction, namely that an emphasis on developing
personally-meaningful mathematical concepts may result in students not
learning conventional mathematical methods and symbolism.
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ON THE “MEANING” OF MATHEMATICAL
EXPRESSIONS

Bruce L. Sherin
Northwestern University
bsherin@nwu.edu

Tie purpose of this paper is to address the question: What does it mean
to “interpret” a mathematical expression? Intuitively, we might say that to
interpret an equation is to state its “meaning.” If so, the construction of a
theory of meaning for equations would be a significant first step toward
understanding the nature of interpretation. Rather than beginning with an a
priori analysis of equation meaning, I began by looking at students’ inter-
pretive utterances as they occur in the course of problem solving; that is, I
began by looking at students saying, in their own words, what equations
mean. Then I progressed to generalizations concerning equation interpre-
tation and the meaning of equations, as they were evidenced in these utter-
ances.

The conclusions are based on an analysis of a 27-hour video corpus
involving undergraduates enrolled in a third-semester introductory physics
course. Five pairs of subjects participated, and each pair of students worked
together to solve a pre-specified set of physics problems.

The analysis uncovered significant variety in the interpretive utterances
made by students, though there were also clear regularities. Three broad
classes of interpretations were identified. In Narrative interpretations, the
interpretation describes an imaginary process in which some type of change
occurs. For example, the interpretation might describe what would happen
to the value of one quantity if the value of another quantity was increased.
In Static interpretations, an equation is taken as describing a static physical
situation. Finally, in Special Case interpretations, conclusions are drawn
for cases in which the values of the quantities that appear are somehow
restricted. This includes interpretations in which a limiting or extreme case
is considered. :

This investigation of interpretive utterances permits some generaliza-
tions about the nature of equation “meaning.” The most important of these
generalizations is that equation meaning, as realized in interpretive utter-
ances, is not a simple function of the symbols that appear in the equation.
Instead, interpretation appears to involve the building of a larger meaning-
ful framework (e.g., involving an imaginary process) and embedding the
equation in that framework.
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PRECALCULUS STUDENTS’ INTUITIONS ABOUT THE
CONCEPT OF SLOPE

Sheryl L. Stump
Ball State University
sstump@wp.bsu.edu

This study examined precalculus students’ intuitions about slope. Two
categories of mathematical intuitions, as described by Fischbein (1987),
were considered in this investigation: primary intuitions based on normal
everyday experience and secondary intuitions developed by educational
intervention. The research framework considered slope not as an isolated
concept, but as a conceptual field (Vergnaud, 1983). From a conceptual
point of view, slope is related to ratio, rate, angle, measure, and linear func-
tion. Situations involving slope include graphs, equations, formulas, physical
structures, and functional situations.

Students in two high school precalculus classes used bicycles to inves-
tigate the relationship between pedal revolutions and wheel revolutions for
various gears. Later, 22 students from these classes participated in indi-
vidual interviews. The interview protocol contained a variety of situations
involving the concept of slope, including the bicycle situation.

Four students explained how to determine the relative steepness of ski
ramps. Eleven students correctly matched three numbers (slopes) with three
ski ramp models, and six students correctly described the meaning of the
numbers. Two students correctly explained the meaning of “7% grade.”
Eight students correctly interpreted the meaning of the slope of the graph
of pedal rotations versus wheel rotations. Three students determined the
slope of a graph of number of tickets sold versus profit, and ten students
correctly interpreted the meaning of the slope.

Table 1. Test Results of Homework Project that Paired Volunteers and Al-
gebra 1B Students.
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Fifteen students used the word “angle” to describe slope. Eight stu-

dents mentioned “rise over run” or a similar description of slope. Three
students quoted a formula for slope.
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EFFECTS OF HOMEWORK PARTNERS ON
ALGEBRA ACHIEVEMENT

Ann R. Crawford Sandra Johnston
University of NC at Wilmington West Brunswick High School
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Edna H. Mory
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Past research has found completion of homework to be an aiterable vari-
able that can enhance learning. Likewise, high achievement of Japanese
youth in mathematics has been attributed to intense efforts in extramural
tutoring and study per week. Kaplan (1997) discussed successful use of home-
work partners in an 8th grade algebra classroom in a private school to en-
courage homework completion. Students discussed homework over the phone
with their partner. From teacher observation, Kaplan noted that the students
demonstrated improved completion rates, higher quality of homework, and
improved confidence in problem solving.

This project investigated the effects of homework partners to encourage
homework completion with low achieving students in an algebra IB class in
a rural high school. Student volunteers were paired with a homework part-
ner to discuss difficulties with homework or past class work over the tele-
phone. Data were collected to compare completion rates and effects on
achievement for callers and non callers. Baseline data for homework comple-
tion and test scores were recorded before the intervention. For ten weeks,
homework partners were implemented with the experimental group tele-
phoning their partner two to three times during the week to discuss difficul-
ties. In addition, the Math Attitude Scale was given to the students and par-
ticipants were interviewed. Preliminary project results show that homework
partners had a positive effect on homework completion rates and class test
scores for the callers.
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TWO COLLEGE STUDENTS’ UNDERSTANDINGS
OF THE VARIABLES IN LINEAR INEQUALITY:
INSIGHTS AND IMPLICATIONS
FOR INSTRUCTION

Carole P. Sokolowski
Merrimack College
csokolowski@merrimack.edu

Inordinately high undergraduate enrollment in secondary-level alge-
bra courses is evidence of college students’ problems with understanding
and using algebraic variables. Inequalities form a particularly rich context
in which to study the concept of the variable as it is understood by under-
graduate students, who have had years of experience with school algebra.
Variables in inequalities are manipulated as they are when solving equa-
tions; variables in inequalities usually represent sets of numbers, however,
which make them similar to variables in functions.

This study investigated six college students’ conceptions of variabie in
linear inequality. Prose, symbolic, and graphical versions of linear inequal-
ity problems were presented in unstructured problem solving interviews,
providing subjects with multiple contexts in which to reveal their under-
standing. Kiichemann’s (1981) six uses of the variable were used to cat-
egorize subjects’ use of variables in inequalities.

Two of the six case studies will be described in this poster session.
Both subjects exhibited difficulty with algebra, but in very different ways.
Subject One demonstrated a conception of the variable as an evaluated
unknown, a reluctance to work with symbolic variables, and a strong sense
of inequality reiationships. By contrast, Subject Two revealed that he viewed
the variable primarily as an object to be manipulated, was adept at using
the rules of algebra, but appeared unable to make sense of the inequality
relationships in the problems. Insights gained from the analyses of these
subjects’ uses and interpretations of variables in inequalities and implica-
tions for instruction with respect to the teaching and learning of inequali-
ties will be presented.
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THE EFFECTS OF STAFF DEVELOPMENT FOCUSED ON
ASSESSMENT PRACTICES

Daniel J. Brahier
Bowling Green State University
brahier@bgnet.bgsu.edu

Two inservice projects, funded by the Eisenhower Program for Mathematics and
Science, were conducted in 1996 and 1997 with approximately 100 teachers in the
Midwest. After each group had a full year of staff development, teachers showed
significant gains in their knowledge and use of several assessment strategics. Long-
term follow-up rescarch data showed that tcachers continued to implement new
assessment techniques in their classes and were much more likely to do so if they
had a colleague in the building or district who was also involved in the project and
committed to change. The results suggest that a team approach to staff development
may be most effective. '

The literature contains a great deal of insight regarding teacher change,
including interesting parallels that can be drawn between the reform efforts
of the National Council of Teachers of Mathematics in recent years and
those of others across disciplines in the past. One might have a tendency,
for example, to describe the NCTM Standards as a rebirth of the New Math
of the 1960’s. The assumption, then, is that the Standards will “come and
£0,” just as New Math came and went. However, Cuban (1993) stated that
reform efforts of the 1950’s and 1960’s were poorly-planned, noting that
“materials were published and placed in the hands of teachers who . . . had
little time to understand what was demanded by the novel materials or . . .
to practice their use” (p. 4). Indeed, time appears to be a factor that influ-
ences the potential of significantly changing educational practices. Fullan
(1982) said that innovators must assume that it takes two to three years for
any significant changes to occur in education and that implementation shouid
be gradual, placing early efforts on small scales.

Any changes in assessment, classroom strategies, or curriculum in-
volve the attempt to change the belief system of teachers in the classroom
(Ames, 1992; Cohen & Ball, 1990; Fullar, 1982). These changes not only
require time, but they also assume that local educational leaders will de-
velop a plan that represents a process of change (Fullan, 1982) and persua-
sion of the teachers that reform will actually benefit them and their stu-
dents (Cuban, 1993). Goodlad (1984) has recommended a long-term, col-
laborative approach between classroom teachers and institutions of higher
learning. Interestingly, National Science Foundation grants, as well as
Eisenhower grants, have stipulations that the teacher training must be long-
term and involve follow-up sessions. The “one shot” inservice for a district
has simply not proven effective, nor have university summer workshops
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for teachers or district staff development days, because they generally lack
congruence with the total effort of the district on making any long-term
changes (Fullan, 1982). Finally, we must realize that, as Fullan (1982) noted,
not all teachers are even interested in changing at all. Even when they rec-
ognize the benefits of educational innovations in student learning, they may
still resist for a variety of reasons, not the least of which is that teachers
tend to teach as they were taught (Goodlad, 1984). For example, many
teachers who were presented with a new framework for teaching math-
ematics in California and were extensively inserviced still did not change
their teaching styles (Cohen & Ball, 1990). _

The NCTM Standards documents have emphasized the relationship
between curriculum, assessment, and teaching. Essentially, it is difficult —
if not, impossible — to change one of these three elements without chang-
ing the others. Therefore, a teacher who has tried to change teaching meth-
odologies to be congruent with the Standards may also be in a position to
recognize the shortcomings of traditional forms of assessment. Two
Eisenhower-funded projects in the Midwest, ASPECT in 1996 and ASPEN
in 1997, were designed to assist teachers in making connections between
curriculum, assessment, and teaching, and to place assessment at the focal
point of change. Raymond’s model (1997) suggested that teacher educa-
tion programs can influence teacher beliefs which, in turn, significantly
affect teaching practices. These projects were directed at changing teacher
beliefs about mathematics while using the lens of assessment.

Method

Participants in ASPECT and ASPEN were pre-tested in March of 1996
and 1997, respectively, prior to their involvement in the projects. They
were asked to express their opinions about assessment, their understanding
of a variety of forms of assessment, and the degree to which they were
using those strategies. During the Spring sessions, participants wrote jour-
nal entries about the program and the progress they had made in rethinking
their classroom practices, as suggested by Burk and Littleton (1995). Dur-
ing the Summer intensive sessions, participants were interviewed in small
groups and asked a variety of questions regarding the effectiveness of the
program and the degree to which they had changed their practices as a
result. In the Fall sessions, the participants were, again, surveyed and asked
many of the same questions they had been asked in the Spring. Further-
more, the project evaluator made site visits to classrooms of ASPEN par-
ticipants in January of 1998 to compare the changes teachers reported on
surveys to what is actually happening in their classrooms. Similarly, two
ASPECT participants were visited and interviewed as a two-year follow-
up on the program’s effectiveness.

Since most of the survey questions were answered through the use of a
Likert Scale, the quantifiable data were used to run t-tests to determine
whether or not knowledge about and use of alternative assessment strate-
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gies had statistically shown a change. Furthermore, open-ended responses
to survey questions, observations, and transcribed interview data were used
to qualitatively examine the effectiveness of the program and the changes
in beliefs and practices of ASPECT and ASPEN participants. Triangula-
tion of quantitative survey data, qualitative survey data, journal entries,
and interview data was used to provide a consistent “big picture” of the
change process, as recommended by Patton (1990).

Results

The study involved exploration of five research questions, as listed
below. The major findings for each question are described:

(a) How did the participants’ knowledge about and use of authentic
forms of assessment change as a result of their participation in the project?

Many of the participants stated that they were aware of the “new” as-
sessment strategies available to teachers prior to the inservice experiences
but were not comfortable with implementing the changes until having more
extensive experiences with these methods. Table 1 shows the changes in

knowledge level and use of alternative assessment strategies for each of
the projects.

Table 1

Survey Data On Changes in Knowledge Level and Use of Various Assess-
ment Strategies

ASPECT (1996) ASPEN (1997)

Assessment Knowledge Use  Knowledge Use

Strategy (t-value)  (t-value) (t-value) (t-value)
Portfolios 577 * 4.26 * 6.36 * 3.76 *
Journaling 4.63 * 4.96 * 7.74 * 713 *
Investigations 2.13%* 0.68 7.08 * 6.11 *
Open-Ended Questions 293 * 293 % 4.87* 3.16*
Interviews 596 * 3.14 * 7.24 * 8.95 *
Formal Observations 241 * -1.46 6.90 * 3.65*
Rubric Scoring 6.03 * 5.69 * 6.23 * 8.27 *
Writing 6.58 * 3.86 * 6.14 * 443 *
Performance Tasks 0.000 -0.90 418 * 0.86

Standardized Tests -0.24 0.78 -3.08 * -0.45

Multiple Choice Tests -1.00 0.85 -2.54 * -3.84 *
Competency Tests 0.50 0.78 -0.17 -0.27 *
Appropriate Internet Use N/A N/A 5.14 * 413 *
Appropriate Calculator Use N/A N/A 5.14* 272*

* significant 2-tailed t-value



The data indicate that both of the projects have been highly-successful
in not only raising teacher understanding of various assessment practices
but also in convincing participants to implement these strategies. The sta-
tistical values indicate that the ASPEN project was, overall, more success-
ful. A major reason for this finding is that, overall, ASPEN participants
entered into the project with a much lower level of understanding of as-
sessment than did the ASPECT teachers; thus, their changes appear more
significant.

(b) Besides instructing teachers on “how to” use alternative forms

of assessment, what other effects did the projects have on the partici-
pants?

It is often thought that teachers change their assessment practices in an
attempt to keep up with changes already made in curriculum and teaching.
But the data from this study appears to show that some teachers, through
direct experiences, “bought into” authentic forms of assessment first, and
then they began to change instructional strategies to align with their assess-
ments. They realized that “teaching to the test” was a good idea, provided
that the test was a goal worth working toward. Therefore, the changes in
assessment practices, for some, was the tool that brought about change in
their classroom practices. It suggests another way to reform the thinking of
classroom teachers—by beginning with a look at assessment and working
backwards to instruction.

(c) What were the key factors that convinced teachers that they needed
to rethink and/or change their assessment and teaching practices?

Teachers appeared to feel the need to change after experiencing worth-
while teaching and assessment episodes, first-hand, through the Spring and
Summer sessions. The inservice strategy of giving participants experiences
first and working back to the theory behind them appeared to be powerful,
and much more so than a *“traditional course” in which theory precedes
discussions of practical classroom examples. In surveys and interviews,
participants repeatedly spoke of the power of field testing assessment. Fol-
low-up site visits with participants showed that continued field-testing and
sharing with colleagues have accounted for several long-term changes in
teaching practices. For example, two years after completion of ASPECT,
“Rose” shared how her assessment strategies have evolved over time, not-
ing that portfolio assessment was highly-successful in her first year but
much less so in her next. She went on to explain that had her second year
been her first experience with portfolios, she would have dropped them

from her assessment plan, but earlier successes convinced her to hold on to
the strategy.

(d) What measurable long-term effects did the project have on AS-
PECT participants, now two vears from beginning their participation?

The most significant long-term effect observed thus far from ASPECT
teachers has been their willingness and ability to bring about change in
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other teachers. Several participants in the project have made presentations
at staff meetings, as well as state-level and regional conferences. Others
have been involved in making presentations and serving on the instruc-
tional team for subsequent projects such as ASPEN. A third grade teacher
from ASPECT worked on the implementation of innovative assessment
strategies with the Kindergarten teacher in her building and “brought the
teacher along” in the process. In fact, the Kindergarten teacher — never a
direct participant in the assessment project — became a presenter in the
ASPEN program in 1997. Site visits and interviews with ASPECT teachers
also indicate a wealth of diverse assessment practices that are being imple-
mented. Teachers and their students have constructed rubrics for class pre-
sentations, journal entries, homework assignments, and open-ended ques-
tions and have repeatedly modified them over time.

(e) What consisiencies and inconsistencies can be noted in the mea-

sured effects of ASPECT, as compared to ASPEN, which can inform the
development of Phase Il in 1998?

Data collected from both projects indicate that the most significant
changes in teachers appear to be in those schools in which more than one
teacher participated in the project. A teacher who works with another per-
son from the building or district forms a support network that translates
into more marked changes in assessment strategies. In interviews, two teach-
ers from ASPECT and six teachers from ASPEN revealed a feeling of sup-
port and the need for a sounding board in the building when others from the
project could be consulted. As a result of this finding, the Phase III pro-
gram in 1998 had an applicant requirement of signing up as a “team” of
two of more teachers from the same building or district. Teachers in the
latest project will continually collaborate with teaching peers to implement
and self-assess new teaching and assessment techniques.

Discussion and Conclusions

Research on teacher change by Cooney, Badger, and Wilson (1993)
showed that teachers will only use rich assessment tasks if the tasks are
consistent with the teachers’ beliefs about the nature of mathematics and if
they acknowledge the task’s usefulness in measuring understanding. Con-
sequently, it is important that teacher inservice programs focusing on as-
sessment involve participants in doing significant mathematical tasks and
discussing the nature of mathematics while considering assessment alter-
natives. Both ASPECT and ASPEN were focused on changing participant
beliefs and demonstrating the power of using alternative assessment strat-
egies and, as a result, appear to have been very successful. Also, as
Meisenheimer (1996) pointed-out, a key to long-term success for teacher
inservice programs is providing opportunities for teachers to network and
to share successes and challenges with colleagues. The assessment projects

described in this paper emphasized this networking, and long-term effects
have resulted.
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Research questions which have yet to be answered about these projects
center around the achievement of students in the classroom. Ideally, if as-
sessment practices change with teacher beliefs, then students enrolled in
classes with inquiry-based teaching methods should outperform peers in
more traditional classrooms. However, research data has yet to be collected

on the achievement of students in classes taught by ASPEN and ASPECT
teachers.
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CASE STUDIES OF PRESERVICE ELEMENTARY
TEACHERS’ DEVELOPMENT IN
MATHEMATICS ASSESSMENT
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This paper reports findings from a study of the development of preservice
clementary teachers beliefs about and knowledge of mathematics assessment and
their interpretations of assessment standards. The primary objective was to document
preservice teachers’ conversations about mathematics assessment as they engaged
in alternative assessment practices and a variety of activities related to the purposes
and standards of mathematics assessment. Focusing on one pair of participants
within a larger study afforded the opportunity to capture moments of development
as two preservice teachers came to new realizations and clarifications about
mathematics assessment.

A changing definition of mathemaiics assessment continues to unfold
(Kulm, 1990; Webb, 1993) and is stimulating a closer look at mathematics
classroom practices (Moon & Schulman, 1995; Stenmark, 1991). Educa-
tors have agreed that good mathematics assessment practices ought to en-
hance learning, as well as reflect important mathematics, and provide co-
herent feedback. Consequently, assessment has moved beyond standard
tests and homework to include student writing, classroom observations,
portfolio assessment, formal and informal student self-assessment, and
performance assessment tasks (Moon & Schulman, 1995). Because these
types of alternative assessment practices are often difficult to evaluate in
the form of a grade, there is a growing emphasis on the development of
analytic and holistic scoring rubrics designed to appraise student perfor-
mance via a myriad of assessment tasks (Stenmark, 1991). Teachers must
be exposed to alternative assessment practices and to issues related to the
implementation and communication of results of alternative assessment
(Cain, et al, 1994). Accordingly, it is imperative to introduce preservice
teachers to alternative assessment practices in mathematics and challenge
them to reflect on the purposes of mathematics assessment and how to
design assessment practices that reflect instructional goals.

Methods of Inquiry

Within a larger investigation (Raymond, 1996), eight preservice teach-
ers volunteered to participate in a more in-depth documentation of their
development. All participants were seniors enrolled in a one-semester math-
ematics methods course at a midwestern university in the semester just
prior to student teaching. The eight volunteer preservice teachers were paired
and videotaped while engrossed in the four paired activities, followed by

interviews.
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The four assessment activities they encountered included (a) distin-
guishing between “closed” and “open” mathematical tasks, (b) identifying
children’s computations errors, (c) scoring children’s mathematical prob-
lem solving via analytic and holistic scoring rubrics, and (d) conducting
peer portfolio review conferences. The primary purpose of all of these tasks
was to stimulate discussion and reflection on issues related to mathematics
teaching, learning, and assessment. Upon completion of a task, the researcher
joined each pair, eliciting a videotaped conversation “ibout the activity they
had just addressed.

Anocther revealing source of data was an assignment in which the
preservice teachers individually designed a mathematics assessment instru-
ment and discussed the extent to which this assessment tool met the stan-
dards set forth by the mathematics education community. Discussions dur-
ing the final interviews with preservice teachers centered on a reflective
“look back” at the various experiences throughout the study, identifying
the task that most challenged or affirmed their beliefs about mathematics
assessment.

Data and Results

Herein, 1 provide a subset of data from two paired volunteer partici-
pants: Marissa and Sharon. Data presentation is framed around: (a) a brief
description of each participant and her beliefs about mathematics assess-
ment, (b) a description of the assessment tool developed by each partici-
pant and her interpretations of the NCTM assessment standards as they
relate to her assessment tool, and (c) excerpts from the pair’s conversations
as they engaged in two of the four assessment tasks.

About Sharon. Sharon, was a senior completing a college degree in
four years at age 22, and also was a single mother of two young children.
She liked mathematics and had very clear- cut opinions, expressing, / be-
lieve the purpose of mathematics assessment is to make sure the students
are understanding what you are teaching. Mathematics is a staple of life.
you have to know how to do it. She had a very simplistic view of the rela-
tionship between mathematics assessment and instruction, claiming, to learn
it [math] or teach it you must assess yourself and your class to see what
works and what does not. If you never assessed your class you might never
know that for the past three weeks no one has understoed a single thing
you have said. This last statement hints at a somewhat teacher as teller
view of teaching and a view of assessment as something that comes after
the teaching.

On the initial beliefs survey, Sharon indicated that she was unsure
whether students could assess their own mathematical learning. However,
oddly enough, when asked to design a mathematics assessment plan or
instrument that she believed would be useful in the mathematics class-
room, Sharon created a “Student Self Check List” which included these
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writing prompts: How did you approach the problem? Was it hard or easy?
Why? What did you try that didn't work? What pictures or models worked?
What is this similar to that you have done in the past? What did you like or
dislike about this problem? What did you learn? What are you overall feel-
ings about the problem? In her critique of this instrument regarding the
extent to which she believed it met the characteristics of good mathemat-
ics assessment as outlined in the working draft of the Assessment Stan-
dards Sharon reported, '

This type of assessment reflects what the student feels to be IMPOR-
TANT MATHEMATICS. It can ENHANCE LEARNING by [their] reflect-

ing on it. It gives the student a chance :0 be EGUAL by explaining
themselves. If the students tell the truth it becomes a VALID source of
information.

Sharon’s interpretation reveals a suspicion regarding the validity of
student self assessment. Class discussions that ensued after this assign-
ment ultimately led preservice teachers to conclude that assessment tech-
niques cannot necessarily meet all of the standards all of the time. How-
ever, they expressed that a teacher should consider the six standards when
attempting to design and implement alternative assessment practices. They
further concluded that one should question whether or not a particular as-
sessment practice is appropriate for a given situation, asking, for example,
What can you learn about what students know from student self assess-
ment?

About Marissa. Marissa, age 23, was a married student who liked
mathematics and was working toward a mathematics minor. Marissa be-
lieved that the primary purpose of assessment was to find out what stu-
dents know as well as what they do not know. She also believed that as-
sessment evaluated the effectiveness of teachers. She expressed that math-
ematics assessment and the teaching and learning of mathematics should
be parallel inevery way. She stated, Whenever there is teaching, there should
be assessment of how well the information was presented, which students
understood the teaching, and [whether] the information being conveyed
was the information learned. She further commented, Withour assessment,
there is no proof of teaching or learning.

Underlying her statements about the import~nce of assessment were
some clear messages about her views of teaching and leamning, particularly
her view that learning took place when information was conveyed and pre-
sented. On her initial beliefs survey, Marissa had strongly disagreed with
the notion that the student’s primary role in mathematics class was to listen
to and learn procedures explained by the teacher. Thus, what she indicated
initially on her survey, which was consistent with what the majority of her
peers claimed, does not seem consistent with her related statements about
relationships between teaching, learning, and assessment.
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In her assessment assignment, Marissa, like Sharon, chose to focus on
student self-assessment. She believed that self-assessment, done well, would
meet all of the NCTM assessment standards. Marissa explained about the
Standards in this way:

Consistency. What better way to assess students’ understanding
than to ask them. Students are also not shy in expressing a teach-
ers’ shortcomings when given the opportunity. By giving self-as-
sessments, students are able to freely express what they have learned
and what F [the teacher] have failed to teach them.

Openness. By letting every students assess the learning process,
and preferably discuss the results in a whole class setting, the stu-
dents are able to rationalize their assessment of themselves so [
[the teacher] am not the master of all evaluation.

Equity. By letting each student fill out [his] own assessment, [each
will] have an equal opportunity to express [his] beliefs.
Important mathematics. With self-assessments students have the
opportunity to express what they believe the important mathemat-
ics is. If their beliefs differ from the teacher’s, then this knowledge
allows a chance to review concept goals.

Enhance learning. Students can express what learning needs to
be enhanced.

Above, when discussing self-assessment, Marissa again revealed be-
liefs that were aligned more with the teacher-as-teller and less with the
teacher-as-guide viewpoint. Yet, according to her initial beliefs survey,
Marissa indicated that she held the opposite belief. Data showed that like
Marissa, five of the other eight volunteer participants, when put in the po-
sition of discussing a very focused topic such as how to assess a students’
knowledge about a particular mathematics topic, revealed more traditional
beliefs than they may have wanted to admit to, or may have been aware of,
when taking the beliefs survey. This finding runs parallel to those in stud-
ies that focused on examining consistency between teachers’ beliefs and
instruction (e.g., Raymond, 1997).

Mathematics Assessment Tasks

When asked what assessment task made the most lasting impression
on them, Sharon claimed that having to score elementary students’ prob-
lem-solving work using two different scoring rubrics ... opened my eyes to
the complexities of mathematics assessment. Marissa, on the other hand,
thought the activity of interpreting students’ computation errors ... was neat
because we were kind of reversing roles. Instead of students trying to fig-
ure out what the teacher was thinking, [ was trying to see what students
were thinking.

When assessing student problem solving using scoring rubrics, the pair
encountered many situations in which they did not know how to score the
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student’s work. Too often, children did not show enough work in order for
the pair to ascertain whether or not they really understood the problem or
had a plan to solve the problem. Sharon was a particularly adamant about
students showing sufficient work. At one point, when looking at a third-
grader’s solution to a process problem, Marissa expressed that even though
the student did not have the right answer, since he attempted some plan,
He should get full points for [demonstrating] understanding. Sharon re-
torted, How can he have complete understanding if he didn't do it right?
The body language of frustration demonstrated on the videotape revealed
that the pair was uncomfortable in scoring students’ work using analytic or
holistic scoring rubrics.

After the task, when asked which rubric they preferred and why, both
stated in unison, the analytic scale. Sharon explained that it was more cut
and dry ... either you got it or you didn't get it. When probed about the
holistic scale, Marissa said, /t was unclear,  mean, sometimes I didn’t know
what score to give them. Plus, if it was shorter it would be easier. When 1
suggested that they could devise a scoring rubric tailored-made to a spe-
cific problem, Sharon adamantly objected saying, Who would have time to
do that? When I asked them by which scale they would rather have their
own problem solving assessed, they chose the holistic scale because it al-
lowed for a more generous distribution of points. Thus, when put in the
role of the student, they feit one way. When trying to think from the teacher’s
perspective, they had different goals. They actually smiled when they real-
ized from their responses how students and teachers approach the same
situation from different vantage points.

During a task of identifying computation errors, Sharon and Marissa
were able to find the errors, but often had difficulty putting the error into
appropriate terms. For example, when describing an error in a student’s
division work, they could not recall which number should be referred to as
the dividend and which as the quotient (both agreed on the divisor). What
stood out in their conversations was their realization of the significant role
regrouping plays in computations. They were struck by the number of pro-
cedural errors that stemmed from a conceptual misunderstanding of re-
grouping. They noted this in several cases where students added, subtracted,
or multiplied whole numbers. At the end, Marissa concluded, They really
can't understand computations right if they don't know what carrying and
borrowing is to begin with. After having engaged in this activity, Marissa
truly realized the challenges of teaching a child something as simple as
adding or subtracting.

Concluding Remarks

This limited report of a large body of research begins to depict
preservice teachers’ thinking as they develop from students to teachers who
must confront mathematics teaching, learning, and assessment issues on a
daily basis. The study suggests value in providing preservice teachers a
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forum for discussing and engaging in alternative assessment practices. Left
to interpretation, many of the goals of mathematics assessment reform may
be lost to preservice teachers. Examination of beliefs and knowledge of
mathematics assessment practices stimulated preservice teachers to reflect
on the undeniable links between mathematics assessment and instruction
(Cooney et al., 1993).
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A research-based method of assessing and documenting students’ knowledge in
early mathematics is outlined and used to report advancements of 91 first-graders
in a Mathematics Recovery implementation involving 15 teachers and 13 elementary
schools in North and South Carolina. Participants were selected because of their
low attainment on an initial assessment, and were given daily, individualized
teaching sessions of 30 minutes’ duration for 10 to 12 weeks, and a final assessment.
Project teachers participated in an on-going professional development program.
Analysis of videotaped assessments included determination of participants’
advancements in terms of three aspects: (a) early arithmetical strategies; (b) numeral
identification; and (c) facility with the forward number word sequence. Participants’
advancements are compared with objectives from a relevant state mathematics
framework. Sixty-three participants (69%) exceeded curriculum expectations, five
(6%) met expectations and 23 (25%) did not. Results are comparable with earlier
implementations providing a further strong endorsement of the program.

This paper: (a) describes a novel, research-based method of assessing
and documenting student knowledge and progress in early years mathemat-
ics (1.e. K-2); (b) uses the method in (a) to report results from a large-scale
research and development project; and (c) compares the levels of knowl-
edge attained by participating first-graders with levels specified by a rel-
evant state curriculum. The method referred to in (a) above has its origins
in the constructivist teaching experiment methodology developed by Steffe
and collaborators (e.g. Steffe, Cobb, & von Glasersfeld, 1988). The method
allows for: (a) documenting in detail, longitudinal development of students’
arithmetical knowledge; (b) qualitative comparisons among students’ ar-
ithmetical knowledge; and (c) comparisons both for one student and among
students of developments of different aspects of arithmetical knowledge.
Until 1992, this method had been used in several research projects (e.g.
Wright, 1994a) but had not been used by teachers. In 1992, the method was
adapted from its research orientation for use by teachers, and in the last six
years, has been used by hundreds of teachers in Australia and the United
States, and also by teachers in the UK. The adaptation of the method oc-
curred as part of a four-year applied research and development project (e.g.
Wright, 1994b; Wright, Stanger, Cowper, & Dyson, 1996), known as Math-
ematics Recovery, which focused on the development of a specialist teach-
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ing program with the goal of identification and advancement of first-grad-
ers who are judged to be low-attainers in mathematics. As well, the method
forms the basis of a systemic, classroom-based project in Australia, involv-
ing several hundred schools which has been judged to be successful in
terms of teachers’ development (Bobis, 1996; Bobis & Gould, 1998;) and
students’ learning (Stewart, Wright, & Gould, 1998). A basic goal of both
the classroom-based project and Mathematics Recovery is for teachers to
better understand children’s mathematical strategies and their development
from less sophisticated to more sophisticated strategies. Both projects uti-
lize a framework for early arithmetical learning (Wright, 1998) which in-
corporates the assessment method which is the focus of this paper.

The 1995-96 implementation of Mathematics Recovery. In 1995-96, the
Mathematics Recovery project operated with 15 teachers and 91 partici-
pants in 13 elementary schools, in North and South Carolina. In each school,
the project operated for approximately 18 weeks during each half of the
school year. In the initial four weeks of each 18-week period and in the
final two or three weeks, project teachers completed individualized inter-
view-based assessments with participants and counterparts. Mathematics
Recovery teaching cycles commenced after the initial assessment period.
Students were instructed individually for 30 minutes daily, for up to four
days per week, over a period of eight to twelve weeks. Project teachers
undertook the first phase of the Mathematics Recovery professional devel-
opment program prior to commencing teaching cycles. After the initial weeks
these teachers attended on-going professional development meetings held
every second week.

Initial and final assessments. Each of the 91 participants was adminis-
tered an initial and final assessment which focused on several aspects of
students’ arithmetical knowledge including: (a) early arithmetical strate-
gies; (b) facility with forward number word sequences (FNWSs); and (c)
numeral identification. The assessment included simple additive and sub-
tractive tasks involving screened and unscreened collections, saying FNWSs,
stating the number word before or after a given number word, and identify-
ing 1-, 2-, and 3-digit numerals. Each assessment was videotaped for sub-
sequent analysis. The analysis results in a detailed profile of the student’s
current arithmetical knowledge and includes determination of a level for
each of the three aspects of early arithmetical knowledge.

Curriculum expectations in terms of these three aspects. Curriculum
expectations for first graders in this study were based on objectives speci-
fied in a relevant state mathematics framework (Draft mathematics cur-
riculumrevision, 1998). Four first-grade objectives have particular relevance



for this study: (a) find sums and differences using counting strategies such
as counting on and counting back; (b) rote count by ones to 100; (c) iden-
tify one more; and (d) read numerals to 100. For the purposes of this study,
a student who meets objective (a) is regarded as being at Stage 3 on the
model of Early Arithmetical Strategies. Similarly, meeting objectives (b)
and (c) is regarded as being at Level 4 on the model of FNWSs, and meet-
ing objective (d) is regarded as being at Level 3 on the model of Numeral
Identification. A student who is at Stage 3, Level 4 (on FNWSs) and Level

3 (on Numeral Identification) is regarded as having met curriculum expec-
tations.

Results and Discussion

Table 1 shows project results in terms of the model of early arithmeti-
cal strategies. Each row total shows the number of participants who, at the
time of their initial assessment, were at a given stage, e.g. 63 of the 91 were
initially at Stage 1. In each row, the cells show the numbers of participants

for a given initial stage, who were at a given stage on their final assess-
ment.

Advancements in arithmetical strategies. Fifty of the 63 participants
who were initially assessed at Stage 1 reached Stages 3 or 4 by the end of
the program. They had advanced from being counters of perceptual unit
items to counters of abstract unit items (Steffe, von Glasersfeld,
Richards, & Cobb, 1983). Seventy-five (82%) of the 91 participants
advanced to at least Stage 3. As well, at the initial assessment, 90 of the
91 participants had not reached Stage 3 and thus were not performing at
expected curriculum levels, and moreover, the majority of the partici-
pants (69%) were assessed initially at Stage 1.

Table 1

Numbers and Percentages of Students Initially at Stage 0,1, 2, or Who Were
at Stage 1, 2, 3, 4 or 5 in Their Final Assessment.

Number of Students who reached a given stage

Initial

Stage 1 2 3 4 5 Total

0 1 (25%) O 3 (75%) O _ 0 4 (100%)
1 3(5%) 10(16%) 34 (54%) 16 (25%) O 63 (100%)
2 0 2 (9%) 10(43%) 10(43%) 1(5%) 23 (100%)
3 0 0 1 (100%) 0 0 1 (100%)
Total 4 12 48 26 1 91
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Initial FNWS and Numeral Identification levels of participants
initially assessed at Stage 1. Table 2 shows for 63 participants who
attained Stage 1 at their initial assessment, the numbers attaining initial
FNWS and Numeral Identification levels. Forty-three of the 63 partici-
pants attained neither FNWS Level 3 nor Numeral Identification Level 1
and thus were below levels of attainment for the end of the Kindergarten
year (Stewart, Wright, & Gould, 1998), i.e. facility with the number word
sequence and knowledge of numerals up to ten.

Advancements of participants finally assessed at Stage 3. Table 3
shows for 48 participants who attained Stage 3 at their final assessment,
the numbers attaining final FNWS and Numeral Identification levels.
Thirty-six of these participants exceeded expected curriculum levels for
first grade in terms of FNWS and Numeral Identification levels and five
attained the expected levels.

Advancements of participants finally assessed at Stage 4. Table 4
shows for 26 participants who attained Stage 4 at their final assessment,
the numbers attaining final FNWS and Numeral Identification levels. All
26 attained FNWS Level 5, 24 attained Numeral Identification Level 4
and two Level 3. An additional participant attained Stage 5, FNWS Level
5 and Numeral Identification Level 4. All of these 27 participants far
exceeded expected first grade curriculum levels on these three aspects.

Conclusion

The 91 participants in this Mathematics Recovery implementation
clearly were low-attainers, since the majority of them were initially as-
sessed at Stage 1 (the Stage of perceptual counting) and 43 of the 91 (47%)

Table 2

Numbers of the 63 Participants Initially Assessed at Stage
1 Who Were at Given FNWS and Numeral Identification
Levels in Their Final Assessment.

Numeral Identification Level

FNWS 0 1 2 3 4 Total
Level

1 4 10 1 1 0 16

2 5 9 2 0 0 16

3 2 16 3 4 0 25

4 0 0 1 4 ] 6

5 0 0 0 0 0 0

Totalll 35 7 9 1 63
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initially had levels of arithmetical knowledge more typical of Kindergarten
than first grade students. As can be gleaned from Tables 6 and 7, in the final
assessment, 63 participants (69%) exceeded curriculum expectations for
first-grade, five (6%) attained curriculum expectations and 23 (25%) had
not attained curriculum expectations on at least one aspect. Similar results
were reported by Wright et. al. (1996) who found that, by and large, Math-
ematics Recovery participants made significantly greater advancements than
did counterparts of similar initial levels, and that the vast majority of par-
ticipants made advancements across all three aspects of arithmetical knowl-
edge. The results of the 1995-96 implementation of Mathematics Recov-
ery are comparable with the 1992, 1993 and 1994 results from Australia
(Wright et al., 1994; 1995; 1996), and provide further evidence to support
the viability of the program.

Table 3.

Numbers of the 48 Participants Initially Assessed at Stage 3
Who Were at Given FNWS and Numeral Idertlﬁcatlon Lev-
els in Their Final Assessment.

Numeral Identification Level

FNWS 0 1 2 3 4 Total
Level
3 0 ] 0 4 0 5
4 0 0 0 5 4 9
5 0 ] ] 7 25 34
Total 0 2 1 16 29 48
Table 4

Numbers of the 26 Participants finally Assessed at Stage 4
Who Were at Given FNWS and Numeral Identification Lev-
els in Their Final Assessment.

Numeral Identification Level

FNWS 0 1 2 3 4 Total
Level ~
4 O 0 0 0 0 0
5 0 0 0 2 24 26
TotalO 0 0 2 24 26
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STUDENT ATTITUDES TOWARD MATHEMATICS: A
COMPARISON OF STUDENTS IN REF l()RM AND
CONVENTIONAL CLASSES

Lesley Wagner Mary Shafer
University of Wisconsin-Madison ~ University of Wisconsin-Madison
Irwagner@students.wisc.edu mcshafer@macc.wisc.edu

Jon Davis
University of Wisconsin-Madison
jondavis @students.wisc.edu

As part of a longitudinal/cross-sectional study of the impact of a re-
form-based middle school mathematics curriculum on mathematical knowl-
edge, understanding, attitudes, and performance, an attitude inventory was
developed and administered to approximately 1500 students in grades 5i7
who studied either a reform-based or conventional curriculum. This paper
explores the results of the initial administration of the attitude inventory.

Statements about mathematics and students beliefs about themselves
as learners of mathematics were organized into five subscales: effort to
learn mathematics, confidence in one’s abilities, interest in mathematics,
usefulness of mathematics, and communication of mathematical ideas. The
initial administration of the attitude inventory yielded no significant differ-
ences in the means of the two groups with respect to the usefulness of
mathematics, effort to learn mathematics and communication of mathemati-
cal ideas. However, significant differences (based on independent samples
t-test) favoring the group studying conventional curricula were noted in
the interest and confidence subscales.

The attitude inventory was administered again to both groups after stu-
dents had been using the reform curriculum for one year with various lev-
els of implementation. These data have yet to be analyzed. We anticipate
that over time, stronger agreement with the items on the scale will be evi-
dent in the group using the reform curriculum.

“This rescarch is supported in part by the National Science Foundation #REC-
9553889. The views expressed here are those of the authors and do not necessarily
reflect the views of the funding agency.
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PRELIMINARY RESULTS OF AN ASSESSMENT USING
NAEP AND TIMSS MATHEMATICS ITEMS FOR

]
PROGRAM EVALUATION
David C. Webb Thomas A. Romberg
University of Wisconsin-Madison  University of Wisconsin-Madison
dcwebb@students.wisc.edu romberg @macc.wisc.edu

As part of a longitudinal, cross-sectional study of the impact of Math-
ematics in Context, a reform-based middle grades curriculum, four differ-
ent instruments were used to assess various aspects of student understand-
ing of mathematics. The external assessment system discussed in this pa-
per was designed to measure student performance on selected eighth-grade
multiple-choice and constructed-response items from the 1992 NAEP, the
1996 NAEP and the TIMSS. The results discussed here are from the pilot
administration of this assessment.

The external assessment system is composed of four separate assess-
ments for grades 5 — 8. Each assessment contains twenty-eight items evenly
divided among four strands: number, geometry and measurement, algebra
and patterns, and statistics and probability. In order to examine growth
over time sixteen items of moderate difficulty were repeated on each test.
Ten classes (265 students) in nine different schools participated in a pilot
study of these tests. Three of the nine schools serve students from large
urban school districts.

Results from the pilot administration of this assessment suggest that
many fifth and sixth grade students are able to successfully respond to eighth-
grade public release items of moderate difficulty (percent of students re-
sponding correctly [p-value] > 50). Despite the call for districts and schools
to use NAEP and TIMSS items to evaluate their instructional programs,
our preliminary results indicate that these items may be limited in their use
as benchmarks for eighth grade mathematics performance.

"This rescarch is supported in part by the National Science Foundation #REC-
9553889. The views expressed here are those of the authors and do not necessarily
reflect the views of the funding agency.
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A JOURNEY THROUGH THE HISTORY OF THE IEA
AND INTERNATIONAL MATHEMATICS STUDIES

James P. Dildine
University of Illinois Urbana-Champaign
jdildine @uiuc.edu

The Third International Mathematics and Science Study (TIMSS) sup-
ported by the IEA continues the tradition of cross-national educational com-
parisons started in the late 1950s.

This poster presentation is a journey through the history of the Interna-
tional Association of the Evaluation of Educational Achievement (IEA)
and the international studies that were carried out. This history is presented
with a focus on the surveys of the IEA that were intended to provide a
cross-national examination of mathematics curricula. International studies
of education have influenced and continue 0 influence policy changes in
US education. Reactions to the TIMSS results are indicative of reactions to
previous IEA mathematics studies.

This presentation offers important insights into the history that pre-
empted the TIMSS and the questions that arose as a result of international
mathematics education comparisons. The issues that surround the TIMSS
are not unique; they have been discussed with each incantation of the IEA
studies. Questions that arise from the TIMSS results are better viewed
through a lens of previous experiences and discussions. This presentation
explores those previous experiences and the events that led to the TIMSS.
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INTERDISCIPLINARY PROJECTS TO ASSESS
UNDERSTANDING AND GROWTH

Kathleen G. Snook
United States Military Academy
ak7056 @exmail.usma.edu

Researchers have been investigating Advanced Mathematical Think-
ing in terms of both mathematical thinking that is advanced in nature and
thinking about advanced mathematics. In Snook (1997), I investigated cal-
culus students’ understanding of the concept of the derivative and called
for further investigation into methods of authentic assessment of advanced
mathematics students’ understanding. I have put this research into practice
and incorporated various methods of authentic assessment in the calculus
course at the United States Military Academy (USMA).

Within the Calculus course at USMA instructors use a wide variety of
assessment tools including problem solving, quizzes, mini computer exer-
cises, essays, portfolios, exams and interdisciplinary projects. Each of these
tools assists instructors in assessing students’ procedural and conceptual
understanding of topics in the course. Although initially intended to pro-
vide students with an applied problem solving experience, the interdisci-
plinary projects now serve as a valuable vehicle to authentically assess
student understanding and growth on several levels.

Students submit written reports documenting their project solutions. |
Instructors require students to integrate analytic, graphic, numeric and ver-
bal support in their solution presentations and analyses. The project assess-
ment rubric incorporates both written and numeric evaluations of the project
submission, as well as written feedback in four areas of student growth:
mathematical modeling, communicating mathematics, mathematical rea-
soning, and scientific computing.
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THE DUALISTIC NATURE OF SCHOOL

MATHEMATICS DISCOURSE
Dominic D. Peressini Eric J. Knuth
University of Colorado at Boulder ~ University of Colorado at Boulder
dominic.peressini@colorado.edu eric.knuth@colorado.edu

The purpose of this paper is to describe a theoretical framework for analyzing
mathematics education discourse. The framework—grounded in the ideas of Soviet
semioticians Mikhail Bakhtin and Yuri Lotman—has guided our exploration of
the nature and role of discourse in the professional development of mathematics
teachers and in these teachers’ high school mathematics classrooms. We also discuss
how this framework provides a lens for examining the relationship between different
functionings of school mathematics discourse and students’ understandings of
mathematics. In addition, implications for future research are presented.

The role of discourse, although always a central factor in education
and learning (for example, consider the role of discourse in Socrates’ teach-
ings), is receiving increased attention as educators strive to better under-
stand the variety of factors that lead to increased learning in classrooms.
Indeed, scholars argue for—and reform initiatives underscore—the impor-
tance of teachers and students engaging in reflective discourse of various
kinds (Cobb, Boufi, McClain, & Whitenack, 1997; Hiebert, 1992; Lampert,
1990; National Council of Teachers of Mathematics, 1991) and research
examining different issues central to these arguments and initiatives has
provided a variety of insights related to classroom discourse (cf. Bauersfeld,
1995; Pimm, 1987; Yackel & Cobb, 1996). Recognizing the significance
of discourse in mathematics learning, and embracing Davis’ (1997) argu-
ment “that an attentiveness to how mathematics teachers listen [and talk]
may be a worthwhile route to pursue as we seek to understand and, conse-
quently, to help teachers better understand their practice” (p. 356), we be-
gan to explore how we could frame our own research on the role of dis-
course in mathematics classrooms (see Peressini & Knuth, 1998). Conse-
quently, we have turned to the work of Mikhail Bakhtin to help us make
sense of the different functionings of discourse that we have identified in
secondary school mathematics and to assist us in unpacking the relation-
ship between the functioning of discourse and students’ understandings of
mathematics. For the remainder of this article we present a theoretical frame-
work for examining discourse in mathematics education.

The Dualistic Functioning of Discourse: A Theoretical Framework

Any true understanding is dialogic in nature—Voloshinov, 1973,
p. 102.

Situating ourselves in the perspective that students’ development of
understanding takes place through their participation in the social interac-
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tions of the classroom—a context in which discourse is a critical compo-
nent—we draw upon Bakhtin’s notion of dialogicality (or multivoicedness)
to examine discourse in school mathematics classrooms. According to
Bakhtin, understanding results only through the interanimation of voices,
that is, when the voice of a listener comes into contact with and confronts
the voice of the speaker (Werstch, 1991)."! Such contact requires the lis-
tener to take an active and responsive attitude toward the speaker’s utter-
ance rather than simply duplicating it (Bakhtin, 1986). “For each word of
the utterance that we are in process of understanding, we, as it were, lay
down a set of our own answering words. The greater their number and
weight, the deeper and more substantial our understanding will be”
(Voloshinov, 1973, p. 102). However, the degree of interanimation of
voices—and thus the understanding developed—may differ depending upon
the nature of discourse in which the interlocutors engage.

According to Bakhtin (1986), discourse can be characterized—in terms
of speech genres—by the nature of its utterances: “We speak only in defi-
nite speech genres, that is, all our utterances have definite and relatively
stable typical forms of construction of the whole” (p. 78). Elaborating fur-
ther, Bakhtin (1986) states:

A speech genre is not a form of language, but a typical form of utter-

. ance; as such the genre also includes a certain typical kind of expres-
sion that inheres in it. . . . Genres correspond to typical situations of
speech communication, typical themes, and, consequently, also to par-
ticular contacts between the meanings of words [and between voices]
(p. 87).

In examining the nature of discourse, Bakhtin differentiated between
different types of speech genres in terms of the degree to which one voice
can come into contact with and interantmate another (Wertsch, 1991).
Lotman (1988), recognizing the significance of Bakhtin’s criterion, argues
that all texts—a text being any semiotic corpus (e.g., a verbal utterance, a
written script, a picture)—are distinguished by two very different func-
tions: to convey meaning and to generate meaning.? “The first function

'Voice is “‘the speaking personality, the speaking consciousness™ (Bakhtin, 1981,
p. 434) and may include both internal as well as external voices. In addition, the
multivoicedness of an utterance can refer to more than just the voices of the speaker
and listener: “Our speech, that is, all our utterances (including creative works), is
filled with others’ words, varying degrees of otherness or varying degrees of “our-
own-ness’” (Bakhtin, 1986, p. 89). For our purposes in this paper, we restrict our
cxamination of voices within classroom discourse to the speaker’s and listener’s
voices.

* Although Lotman did not provide specific terminology with which to distin-
guish these types of discourse, Wertsch (1991) did, using the terms “univocal”™
and “dialogic,” respectively, to represent these two functions; we use the terms
in a similar fashion.
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[i.e., univocal] is fulfilled best when the codes of the speaker and the lis-
tener most completely coincide and, consequently, when the text has the
maximum degree of univocality” (Lotman, 1988, p. 34). Accordingly, speech
genres oriented toward serving a univocal function limit the degree of
interanimation of voices.

A focus on the univocal function (i.e., on information transmission) is
associated with minimal contact between voices and with a quite re-
stricted way in which this contact can occur. One voice functions to
send information and another functions to receive it (although in ac-
cordance with Bakhtin’s account of understanding, this receiving voice
can never be entirely passive). In speech genres organized around the
univocal function of text, then, there is little room for the receiving
voice to-question, challenge or otherwise influence the sending voice
(Wertsch & Smolka, 1995, p. 80).

The discourse in school mathematics classrooms has been tradition-
ally dominated by the univocal function of text and is representative of a
particular type of speech genre—an authoritative speech genre. More spe-
cifically, as it is described in the research literature, discourse takes on an
authoritative role when teachers use their speech to transmit mathematics
information to their students. Further, if students want to participate in the
social interactions, they must follow the teacher’s direction, and to partici-
pate successfully, they must solve the problems as expected by the teacher
rather than articulating their own understanding (Voigt, 1995). Bakhtin
(1981) describes the nature of discourse within an authoritative speech genre:
“The authoritative word demands that we acknowledge it, that we make it
our own; it binds us, quite independent of any power it might have to per-
suade us internally; we encounter it with its authority fused to it” (p. 342).
Consequently, within the speech genre of traditional school mathematics,
it is unlikely that students’ voices will question, challenge, or otherwise
influence (i.e., interanimate) the teacher’s voice.

In contrast, speech genres that are grounded in the dialogic functioning
of discourse (i.e., Lotman’s second function)—the type of discourse that is
called for in current mathematics education reform recommendations—
can be viewed as generators of meaning rather than as conveyors of a static
message. Lotman (1988) delineates the operationalization of discourse that
is more dialogic in nature:

The second function of a text is to generate new meanings. In this re-
spect a text ceases to be a passive link in conveying some constant
information between input (sender) and output (receiver). Whereas in
the first case a difference between the message at the input and that at
the output of an information circuit can occur only as a result of a
defect in the communications channel, and is to be attributed to the
technical imperfections of this system, in the second case such a differ-
ence is the very essence of a text’s function as a “thinking device.”
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What from the first standpoint is a defect, from the second is a norm,
and vice versa (p. 36).

In adopting a social constructivist perspective, advocates for the cur-
rent mathematics reform movement, in effect call for discourse in math-
ematics classrooms that is more dialogic in nature as they encourage teach-
ers to become more like facilitators and students to take an active role in
the learning of mathematics. Indeed, the discourse embodied in visions—
and in the enactment—of reform-based mathematics education are of a
more democratic speech genre where teachers and students engage in dis-
course that reflects a give-and-take process where everyone in the class-
room is seen as having a responsibility to contribute to discussions as they
explore mathematical topics.

Speech genres grounded primarily in the dialogic function of text as-
sume that each voice will take the utterances of other as thinking de-
vices. Instead of viewing others’ utterances as static, untransformable
packages of information to be received and perhaps “stored,” they are
viewed as providing one move in a form of negotiation and meaning
generation. In general, the possibilities for voices to come into contact
are much greater and much richer in the case for the dialogic function
of text than for the univocal function. Instead of being viewed as con-
tainers of information to be transmitted, received and stored, utterances
are viewed as open to challenge, interanimation and transformation
(Wertsch & Smolka, 1995, p.80).

At the heart of reform-based mathematics instruction is the hope that
the accompanying pedagogical approaches and strategies will lead to stu-
dents acquiring a deep conceptual understanding of the mathematics being
studied. In a similar fashion, the essence of dialogic discourse is to arrive at
a true understanding of the topic being discussed. Again, this understand-
ing is achieved as speaker and listener strive to negotiate the speech of one
another so that it fits with and extends each individual’s already existing
knowledge.

Thus each of the distinguishable significative elements of an utterance
and the entire utterance as a whole entity are translated in our minds
into another, active and responsive, context. Any true understanding is
dialogic in nature. Understanding is to utterance as one line of a dia-
logue is to the next. Understanding strives to match the speaker’s word
with a counter word. Only in understanding a word in a foreign tongue
is the attempt made to match it with the “same” word in one’s own
language (Voloshinov, 1973, p. 102).

As we have begun to use this theory of the functional dualism of dis-
course to frame our research on the nature of discourse and communication
in school mathematics, we have come to realize that the distinction be-
tween univocal and dialogic discourse is at times difficult to discern. In-
deed, in any social interaction (mediated through discourse) each individual
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must decipher text and generate his or her own meaning of that text. Hence,
all discourse is to some degree both dialogic and univocal; in a sense, it is
helpful to think of discourse being more or less dialogic or univocal in
nature. As we have continued to apply the dimensions of our theoretical
framework, we have found that most text, however, is characterized prima-
rily by one of these functions. Wertsch & Smolka (1995) concur with this
finding as they suggest that “speech genres can be distinguished into gen-
eral categories on the basis of the extent to which the univocal function or
the dialogic function is foregrounded” (p. 80). We have often looked to the
speaker’s intent—in employing a particular type of discourse to transfer
meaning or generate new meaning—to determine which functioning was
more prevalent. We also examined the listener’s intent in making sense of
classroom discourse in a similar fashion.

Conclusion and Future Directions

Based on our experience thus far in examining the dualistic nature of
discourse in mathematics education, we recognize the need for students
and teachers to engage in more dialogic discourse as they explore math-
ematics in their classrooms. This recognition comes from our grounding in
the social aspect of learning and the expectation that students will acquire
a deeper understanding of mathematics when they use their own utterances,
as well as those of their peers and teacher, as thinking devices that are
closely examined and adapted to their unique understandings of mathemat-
ics. We are, however, beginning to position ourselves in a fashion similar
to Thompson (1995)—in which he challenges the widespread assumption
that “exposition [a form of univocal discourse] is an unacceptable teaching
method” (p. 123)—as we acknowledge the importance of both univocal
and dialogic discourse and search for an appropriate balance between the
two. In fact, this balance to some extent is unavoidable as almost all text
contains aspects of both univocal and dialogic functioning (as we discussed
above). Indeed, as we continue to focus on the functional dualism of text,
we have concluded that all dialogic text must contain some univocal func-
tioning in order for clear communication to take place. Most of the second-
ary mathematics classroom instruction that we have observed, however,
was more univocal in nature and we see the need to assist teachers in fos-
tering discourse that is more dialogic in nature.

With respect to the functional dualism framework that we have been
using to guide our research, we are pleased with the structure and direction
it has offered, the insights it has revealed, and the possibilities it offers for
future research. Thus far, this framework has guided our exploration of the
nature and role of discourse in the professional development of mathemat-
ics teachers and in these teachers’ high-school mathematics classrooms. As
we carefully listened to the voices of mathematics teachers and their stu-
dents, we have recognized the functional dualism of text and observed first-
hand how that text shaped the social interactions among the teacher(s) and
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students. Future research should continue to explore the social nature of
this discourse and how individuals’ goals, intents, and motivations come
into contact and overlap in the realm of mathematics classrooms. A focus
on voice, as we have theorized it using functional dualism, allows us to do
precisely this since Bakhtin’s conception of voice “is concerned with the
broader issues of a speaking subject’s perspective, conceptual horizon, in-
tention, and world view” (Werstch, 1991, p. 51). And most importantly, as
we continue to explore these broader social issues related to discourse in
the context of mathematics education, we must always maintain a focus on
how classroom discourse influences students’ and teachers’ understand-
ings of mathematics.
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EXAMINING TEACHER AND CLASSROOM SUPPORTS
FOR STUDENT INVENTION

Elizabeth S. Senger
Auburmn University, Aubum, AL
sengees @mail.auburn.edu

The case study of a rural third-grade teacher’s classroom during mathematics
instruction revealed students actively inventing their own procedures to solve
problems, and the teacher using questioning as an instructional technique. Students
applied original thought and deep reasoning to the problem situations presented by
the teacher. Without access to the traditional multiplication algorithm, they used a
variety of problem-solving strategies. A double focus of the analysis became
necessary: (a) the kinds of strategies the children used, and (b) the number and
types of questions the teacher asked, as well as the quality of her dialogues with
the students. The findings included several environmental factors that encouraged
student invention: persistent teacher questioning, fair-dealing, power-sharing,
withholding traditional algorithms, and the use of contextually familiar problems.
The teacher’s comfort level in regard to the meaning of the mathematics content
. was found to contribute to the style and format of the lesson.

When teachers’ beliefs abe.i teaching mathematics begin to move from
traditional to constructivist frames, they tend to experiment with new prac-
tices in their own classrooms (Thompson, 1992; Fennema, Franke, Car-
penter, Levi, Jacobs, & Empson, 1996). Research on children inventing
their own novel solutions to problems suggests students gain a deeper math-
ematical understanding and number sense (Fuson, Wearne, Hiebert, Hu-
man, Olivier, Carpenter, & Fennema, 1997; Clark and Kamii, 1996; Car-
penter, Franke, Jacobs, Fennema, & Empson, 1998). Students who were
allowed to construct their own mental representations (von Glasersfeld,
1983), developed mathematical understandings and connections not found
in students who were in teaching-by-telling classrooms (Hiebert & Car-
penter, 1992). Where children reflect on their own internal logical order-
ing, the classroom can be viewed as a social context in which mathematical
knowledge is negotiated and constructed. In the absence of a known solu-
tion procedure, children have to apply a good deal of “original thought or
deep reasoning” (Silver & Kilpatrick, 1989, p. 179). Teachers who have
such expectations of students organize learning situations in order to capi-
talize on the different modes of thinking children bring to the mathematics
classroom. This research examines the conditions which supported students’
inventiveness, creative strategies, and informal mathematical knowledge
in an elementary school classroom. The purpose of this paper was to exam-
ine the setting conducive to the students inventing their own strategies to
solve problems from two perspectives: (a) the quantity and types of ques-
tions the teacher asked and (b) the manner in which the mathematics in-
struction was conducted.
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Method

This paper uses case study methods to report on Ms. Carpenter, a 26-
year-old third-grade teacher, and her efforts to build mathematical struc-
tures in learners in her classroom using discourse and problem solving.
Thirty hours of observation and interview tapes from ten classroom math-
ematics lessons taught by Ms. Carpenter were collected, transcribed, and
analyzed using systematic ethnographic methods (Gumperz, 1981; Lofland,
1984). Analyses produced using grounded methods were triangulated with
the two teachers with dissentions discussed to the point of agreement.

Discussion
General Description of the Lessons

The ten lessons observed contained different mathematical topics with
the content varying naturally as planned by the teacher and without inter-
ference from the researcher. All the lessons had a problem-solving aspect
to them (with the exception of lesson 2) and began with a contextual story
problem involving the students themselves and some goodie that they were
to increase, exchange, multiply, and/or divide. After the whole-class intro-
duction, students worked either in smali groups, pairs, or individually on
the problem as Ms. Carpenter moved around asking questions and chal-
lenging initial results. After several minutes, she would draw the whole
class’ attention to the overhead screen and accept solutions from around
the room demanding that all students understand each other’s answers, and
asking the class if they agreed. Ms. Carpenter continually asked for “dif-
ferent” ways of solving the problems while involving the class members in
each response with questions like, “Do you see what she did?” Even when
student-invented procedures were long and tedious, such as 20 added 35
times, she would write down every number and go through each step with
the child demonstrating it aloud to the others. In other lessons such as chang-
ing decimal numbers to fractions, she would give a contextual situation to
assist the children’s understanding, such as a certain number of cars in a
parking lot of a hundred spaces. Ms. Carpenter displayed an intensity in
getting her students to think through to reasonable conclusions, asking prob-
ing questions in succession until they did. Yet the atmosphere was comfort-
able with students choosing their own partners, where they wanted to work,
their own materials, and how they wanted to solve the problems. There was
a mutual respect with rarely a discipline problem.

Typical Student Inventions

Ms. Carpenter gave her students the following problem to solve: “There
are 18 second-grade classes and 17 third-grade classes in our school. Some
classes have 20 students, some classes have 21 students, and some classes
have 22 students. No class has more than 22 children. If Ms. Lindsey wants
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to buy every student an ice cream cone, how many does Ms. Lindsey need?”

The class worked on the problem the entire mathematics period in a
whole-class, small-group, whole-class format. Afterwards, she asked her
students if the problem she gave them was hard. Most thought it was and
gave the following reasons: (a) “there was too much to add,” (b) “we don’t
know how to multiply two digits times two digits yet,” and (c) “we don’t
know exactly how many students there were in each class.”

Although most saw the problem as difficult, most didn’t seem to have
difficulty dealing with the intensive quantity definition of multiplication
where the situation deals with a quantity within a quantity. Mildred be-
came an exception to this when she initially added 17+18+20+21+22, but
her group convinced her that 96 would not be enough ice cream cones for
the whole school. Aithough Mildred may not have understood the inten-
sive quantity definition of multiplication embedded in the problem (num-
ber of classes times the number of students in each class), the highly con-
textual nature of the problem as well as the social nature of the task led her
to think informally about the problem differently. Tina found 22, 35 times
to be too difficult, so relying on her concept of commutativity, “just turned
it around” to 35, 22 times and added. Ms. Carpenter, however was not
satisfied with this and asked the class how the problem could be worked on
a practical level that way. The students’ original thinking included:

I. Incorrect Additive-Thinking Strategy —student added the numerals
depicted in the problem without regard to intensity or function
(Mildred).

2. Counting-By Strategy —(a) student counted by ones through a dia-
gram (picture, concrete aid) the (other factor) number of times, (b)
student counted by a number other than one through a diagram the
other factor number of times (Bethany’s Group).

3. Repeated-Addition Strategy —student made an addition problem of
one factor added the other factor number of times (class majority).

4. Running-Total Strategy —student used repeated addition strategy
in a binary method—adding two numbers, getting a sum, adding a
third, getting a sum, etc. till the number of one factor was added
the other factor number of times (Dean).

5. Commutative Strategy —student reversed the factors in order to make
a simpler/shorter repeated addition problem (Tina).

6. Distributive Strategy —(a) student split one factor into 10’s and 1,
multiplied each by the other factor, and added the two products
(Ben), (b) student split one factor according to the context of the
problem (Carol), (c) student split the factor most conducive to sim-
plifying the problem.

7. Incorrect Algorithmic-Thinking Strategy —the student manipulated
symbols to generate the traditional algorithm without knowledge
of it, and without regard to the underlying structure of the problem
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(Janet). From the richness of the students’ thinking, I analyzed the
data further to discover factors conducive to student invention.

Results
Questioning as a Teaching Method

Although teachers generally use questioning throughout their lessons,
Ms. Carpenter’s use of this manner of discourse extended beyond the tradi-
tional in both the quantity and quality of the questions asked. The number
of questions from the ten transcribed video tapes were counted, labeled by
type, sorted and tabulated (See Table 1). The types of questions Ms. Car-
penter asked emerged from the data into categories by function. They in-
cluded: (a) reasoning questions where the objective was thinking and com-
ing to logical conclusions (““The problem was 80, eight times, can anybody
tell me where she got 50 and 30?7), (b) clarification questions (“What do
we know?”), (c) computation questions where the teacher begins an equa-
tion and expects the class to fill in the answer (**8x8 is—7”), (d) manage-
ment questions (“Do we have enough beans for all the groups?”), (e) redi-
rect questions or ways to lead the thinking in a different direction (“If this
rod is adollar, how can this cube be a dollar?”), (f) sharing questions (“Amy,
how did you do it?”’)

Conclusion

A constructivist and phenomenological classroom atmosphere appeared
salient and integral to the student invention episodes. Such an environment
included several characteristics.

. Ms. Carpenter persistently questioned and probed student responses
to find their levels of understanding, not just of procedures, but of
the meaning of the operations and the children’s number sense.

2. Her fair-dealing manner in accepting all correct solutions equally
and recognizing all solutions as products of student thought earned
her the respect of her students.

3. Her shared power and authority with the students in regard to the
content and flow of the lesson gave students the academic freedom
to pursue their own questions as well as hers.

4. She was extremely honest in her reactions to the student’s responses
offering counter examples to incorrect responses and accepting all
in a matter-of-fact manner without hyperbole.

S. She considered herself a learner too.

6. Ms. Carpenter withheld the traditional symbolic algorithm until
the children could make sense of the ideas using various other forms
of representation.

7. She provided stories to give a familiar context to the mathematics.

.
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Table 1. Types of Questions Asked

Ob.1 Ob.2 ObJ3 Ob4  ObsS Ob.6 Ob.7 Ob.8 Ob.9 Ob. 10 Total

I. Reasoning 31% 11% 40% 30% 27% 20%- 31% 29% 38% 20% 28%

I1. Clarifying 17% 43% 16% 33% 32% 47 % 35% 30% 26% 42% 32%
II1. Computation 10% 28% 01% 00% 03 % 07 % 02% 05 % 049 09% 06%
IV. Management 03% 07% 05% 04% 03% 01% 01% 07 % 01% 08% 04%
V. Redirect 16% 11% 17% 26% 17% 17% 14% 11% 08% 07 % 14%
VI. Sharing 23% 00% .N_Qa 07 % 18% 08% 17% 18% 23% 14% 16%
Total 100 109 100 100 100 100 100 100 100 160 100

<47
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8. Ms. Carpenter emphasized children’s reasoning and thinking by
building on the children’s own number sense and probing for dif-
ferences in students’ thought processes.

How did Ms Carpenter get to be the teacher described here? The data
reveal not only direct insights, but provide grounds for building theory
(Strauss & Corbin, 1990). Based on the data and analysis, I discovered a
triangular or three way “pull” on Ms. Carpenter’s mathematics teaching.

1. She had a passion for understanding the unique ways the students
“invent” the content by coming up with their own ways of dealing
with numbers.

2. She exhibited a risk-taking attitude within the discomfort she ex-
perienced with her own understanding level of the content.

3. She continually built her own self-confidence, first from outside
support and progressively from her past successes with interactive
classroom discussions at a deep understanding level of mathemat-
ics.

These findings raise further questions for teachers, researchers, and
everyone interested in the progress of mathematics education. Such case
studies push our own thinking beyond assumptions and “easy solutions” to
the complexity and realities of active leaming communities.
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TRACING CHILDREN’S CONSTRUCTION OF

FRACTIONAL EQUIVALENCE
Elena P. Steencken Carolyn A. Maher
Rutgers University Rutgers University
steencke @rci.rutgers.edu cmaher@rci.rutgers.edu

Algorithms associated with operations involving fractions usually become a large
part of the mathematics curriculum in grades 5 and 6. Our interest is to explore the
extent students can discover fraction ideas before they are formally introduced in
schools. This report is a portion of a study centering on a one-year teaching
experiment with 24 fourth grade children and focusing on one student, Meredith,
and her “discovery” of equivalent fractions. She had built Cuisenaire rod models
to compare fractions, discovered the equivalent idea, and reported her findings.

This paper will also report on the ensuing discussion by the class on what Meredith
had found.

Objective

The purpose of this paper ts twofold: (1) to identify the origin of the
idea of equivalent fractions among children engaged in investigations ex-
ploring fractions, and (2) to describe the conversations of other classmates
as they considered the idea of equivalent fractions.

Theoretical Framework

Difficulties children have in attaining a clear meaning and understand-
ing of ideas about fractions have been documented extensively (Streefland
1991; Behr, Lesh, Post, Silver, 1983; Alston, Davis, Maher, Martino, 1994).
Children who were not taught rules, but rather invented their own ‘clever
calculations’, demonstrated, according to Streefland (1991), greater under-
standing of mathematical concepts. Watson, Campbell and Collis (1993)
investigated common fraction problems in students from kindergarten to
grade 10. They suggested that students, taught through a symbolic apprcach,
with ikonic experiences (use of images, reality, experience) are limited in
their understanding. Maher (1998) indicated that learning is derived from,
and builds upon, prior experiences and that students’ mental images gener-
ated by these experiences can be utilized later in building powerful repre-
sentations of mathematical ideas.

Certain conditions seem necessary to promote students’ deep under-
standing of mathematical ideas. Davis (1997) included among these condi-
tions the establishment of alternative learning environments in which chil-
dren become active participants in experiential learning. Maher (1998) in-
cluded conditions that develop a culture in which students are expected to
support and represent their ideas, and discuss the ideas of others - condi-
tions that nurture the exchange of ideas. It is therefore useful to try to iden-



tify children’s representations and trace the movement of mathematical ideas
within a classroom by carefully attending to student discourse.

Cobb, Boufi, McClain, and Whitenack (1997) give theoretical impor-
tance to mathematical or reflective discourse, suggesting a relationship
between classroom discussions and children’s mathematical development.
When children listen carefully to their classmates, they have the opportu-
nity to question, amend, validate or reject the ideas of others. Similarly, our
listening carefully to children’s conversations can offer insights into the
mathematical representations that children build. In this report, we follow
the mathematical ideas introduced by a particular child, Meredith, into the
classroom community.

Background

A Rutgers University teacher-development partnership with a subur-
ban New Jersey K-4 school district provided ongoing collaboration be-
tween researchers and teachers' (Maher, Martino, Davis, 1994). This alli-
ance included mathematical explorations by the teachers, examination of
student thinking, and pursuit of alternative pedagogical approaches to sup-
port children’s serious engagement in doing mathematics. Teachers were
involved in bimonthly workshops and summer institutes; they invited
teacher/researchers into their classrooms to work with students. One out-

growth of this partnership was a one-year teaching experiment in a fourth
grade classroom.

Setting

Twenty-four heterogeneously grouped fourth graders participated
in mathematical investigations involving fraction ideas. Each of the 50 ses-
sions was scheduled for extended time - ranging from 60 to 80 minutes. A
teacher/researcher [T/R] led the sessions. Another researcher [R] and the
classroom teacher [CT] acted as observers and passive participants in the
sessions: they were instructed to refrain from imposing their ideas on stu-
dents. However, they were encouraged to provide feedback from their ob-
servations and discussions with the children. Classroom organization was
the responsibility of the teacher, who usually seated the students in pairs.
The teacher/researcher began each session by posing a problem task, or
continuing to explore a previously posed task - asking students to explain
and describe their progress or difficulties. After a few sessions, children’s
comfort levels were apparent in their eagerness to discuss their ideas.

"This work was supported by grant MDR 9053597 from the National Science Foun-
dation and by grant 93-992022-8001 from the NJ Department of Higher Educa-
tion. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views of-the
National Science Foundation or the NJ Department of Higher Education.
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Meredith, whose discovery is reported in this paper, wrote in her journal
(9/21/93), “Rutgers really worked us hard because every time someone
came up with an answer Rutgers would say: ‘convince us’. So we did.”

Analysis

Data for this report came from the seventh classroom session, October
4, 1993, which was videotaped using 3 cameras. The research team studied
videotape data as the basis for planning subsequent sessions. The T/R role
was designed to eli¢it student response. Format for analysis is described in
greater detail in Maher and Martino (1996) and in Maher, Pantozzi, Martino,
Steencken & Deming (1996a). Our intent was to identify those events that
indicated insight into the development of ideas, interesting wrong leaps, or
particular obstacles seeming to interfere with progress in the development
of an idea. This report will focus on a particular critical event, Meredith’s
“discovery” of equivalent fractions. Once the event was identified, three
strands of inquiry were explored: (1) The nature of Meredith’s representa-
tion and its development; (2) how Meredith’s idea was received by the

community; and (3) how her idea traveled after it was shared.

Results: Meredith’s Discovery

Meredith and her partner responded to the task of solving a fraction
comparison problem, “Which is bigger, one half or two thirds and by how
much? by building identical Cuisenaire rod models (See Model 1 in Figure
1). Challenged by T/R, they explored whether other rod models of differ-
ent lengths would support their claim that two thirds is bigger than one half

LG LG 0 R
R R R DG DG

W W W W P P P
DG WWiwWwww|wiwwww
R R [ R

R

Model 1 Model 2

Key: The models above refer to Cuisenaire rods.
Each symbol refers to color and length.
W = white (1 cm), R =red (2 cm), LG = light green (3 cm)
P = purple (4 cm), DG = dark green (6 cm), O = orange (10 cm)

Figure 1. Cuisenaire™ Rod Models
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by one sixth. Meredith built Model 2 (See Figure 1). In reporting her find-
ings to R, Meredith was asked to explain why both solutions worked. In
doing so, she developed an argument to justify the equivalent relationship.
Referring to the models she built, Meredith explained that two thirds is
_bigger than one half by two twelfths (Model 2) and that two thirds is bigger
than one half by one sixth (Model 1). Questioning Meredith about her re-
sults, R probed explicitly for other number names.

R: That’s interesting. Could we call the difference between the
two thirds and the one half in this model [Model 2] another
number name besides two twelfths?

Meredith: Um, yeah, well, maybe...

R: You said two of those little white ones were two twelfths, right?

Meredith responded by placing 6 red rods below the train of 12 white rods
and then a red rod above two of the train of 12 white rods.

Meredith: Yeah, and maybe since two of these little white ones equals up
' to one of these [She puts 1 red rod on top of 2 white rods in the
train, showing that 1 red rod is the same length as a train of 2

white rods.] Or it’s one fifth, oh, I mean one sixth.

R: Okay. That’s interesting, that’s kind of interesting. So if you
then used the reds to describe the difference, you can call this
one sixth, the difference.

Meredith:  Uh humm.

R: And over here [Model 1] one of the whites you say is one
sixth?

Meredith: Yeah.

Meredith’s Explanation Is Challenged

During a class discussion, Meredith joined 3 girls at the overhead pro-
jector. The girls’ had built two models similar to those in Figure 1. The
girls’ models differed in that their rods were not in the same row order and
model 2 did not include the 12 white rods. Meredith began by placing 12
white rods beneath the red rods of the girls’ model. Michael objected.

Michael:  No, they can’t do that [Rising from his seat] because the, the
two thirds are bigger than a half by a red. So they can’t use
those whites to show it.

The teacher asked Michael if he had found two thirds to be bigger than one
half. He responded affirmatively and was then asked how much bigger.

Michael:  [Impatiently] By one sixth.
Meredith: Or, or two twelfths.

Michael:  [Shaking his head in disagreement] No.
Other children echoed Michael and responded ““no”. The teacher then asked
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Meredith for her answer from Model 2. Meredith reaffirmed her original
response of two twelfths and again some classmates disagreed. Michael
voiced his objection, with Eric’s support.

Michael:

Eric:
Michael:
Eric:

T:
Meredith:
T:

Eric:

Yeah, but then she would have to call the two whites together
one sixth.

Yeah, exactly.

She’s calling the whites - one white, one sixth.
Yeah, she said.

She’s calling one white one sixth?

No, I’'m not, I'm calling it one iwelfth.

She’s calling one white one twelfth.

Yeah, but see just the two whites together. That’s right, it would
be two twelfths. But you have to combine them. You can’t call
them, you can call them separately, but you can also call them
combined and if you combine them it would be a, a, one sixth.

Michael shook his head in dissent. A student suggested that there are two

answers.
Michael:

Eric:

{Simultaneously with Ericj No, they’re the same [emphasis in
tone] answer.

No, they’re the exact same thing, except she, she took the red
and divided it into half, she divided it into halves, into haif and
called, and called each half one twelfth. They’re the exact same
answer except they’re just in two parts. '

Eric’s Response to Meredith’s Idea

On the overhead projector, Meredith built a model with one red rod as
the base and placed two white rods directly above it.

Eric:

Eric:

And she’s calling a white rod one twelfth and the other white
rod one twelfth and the red is really one sixth. Well, when she
calls them two twelfths, the two twelfths are actually just two
white rods put together to equal a red, so it should be really,
it’s really one sixth. Because two whites, two whites...and it’s
one sixth, it’s one sixth.

All those things, are they true?

Yeah. But I don’t really think you could call, call them two
twelfths because two twelfths equal exactly to the same size as
one sixth. Well, if you want to [emphasis in tone] you could
call them, I guess. But I think it would be easier just to call
them one sixth cause you wouldn’t want to exactly call them
one twelfth and another twelifth. I'd just call them one sixth.
Therefore I think you just really call them one sixth.
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Conclusions/Implications

Meredith’s discovery of equivalent fractions contributes to a growing
body of knowledge that shows children can do important mathematics in
very natural ways. For this to happen, they need the freedom to explore and
to talk about their ideas (Kamii, 1985; Maher and Martino, 1996). Meredith’s
discovery was openly discussed and debated in the classroom, and Meredith
had the opportunity to respond to the challenges posed and support her
ideas. Creating classroom conditions that promote opportunities for stu-
dents to build meaningful mathematics is a serious challenge.
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ANALYSIS OF A COMPUTER-MEDIATED
DIALOGIC DISCOURSE ON
AN OPEN-ENDED TASK

Sergei Abramovich
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This paper is concerned with the analysis of a computer-mediated dialogic discourse
(i.e., a discourse based on a direct interaction of two or more individuals in a
computer environment) on an open-cnded task in a classroom of elementary
mathematics teachers. This type of classroom interaction was unique in the sense
that from the outset, a solution (answer) to the task was not known to an instructor.
Rather, a solution was gradually constructed through a group collective-
comprehension activity. How does the scaffolding of such activity by an instructor
take place?

The paper suggests that using the midwife metaphor (Pélva, 1981) helps
to extend the notion of scaffolding to an open-ended task in which exper-
tise in providing qualified assistance to a learner does not presuppose an a
priori knowledge of an answer (solution). In such intellectual milieu, the
vertical relationship between an expert and novice makes a half-turn about
a task as the former assumes a new role becoming a partner in advance-
ment for the latter. This shift in emphasis of construing a teacher’s role in
problem solving discourse appears to be a crucial component of any exper-
tise required to provide such advanced scaffolding process. As the paper
demonstrates, it includes the teacher’s ability to control frustration from
unfit guessing and support promising avenues of cognitive efforts as stu-
dents are encouraged to analyze, comment, and defend each other’s utter-
ances that structure a dialogic discourse on a task with an unknown answer.

In particular such discourse occurred during the author’s work with
elementary teachers in a computerized setting in which interactive elec-
tronic tables were used as mediational means in search of a solution to the
following problem: How many subgrids of an n-cells grid constitute its
whole number percentage part, provided that shape and location of a subgrid
is not important? This discourse was transcribed and then the utterances of
the participants were analyzed. The analysis shows that whereas inductive
and demonstrative phases of a solution appear to be within the teachers’
zone of proximal development, the scaffolding of these phases varies sig-
nificantly in terms of the level of the assistance required.

Reference

Polya, G. (1981). Mathematical discovery: On understanding, learning,
and teaching problem solving (Combined edition). New York: Wiley.



THE NATURE OF MATHEMATICAL DISCOURSE IN A
PROSPECTIVE TEACHER’S CLASSROOM
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This investigation explores the nature of mathematical discourse in a
prospective middle school mathematics teacher’s classroom as a window
into her construction of pedagogical content knowledge. Vygotsky’s socio-
cultural perspective provides a theoretical framework for the place of dis-
course in an individual’s development. He maintained that one’s higher
mental functioning originates socially, between people, and is mediated
through psychological tools such as language. It was our premise that, as
the prospective teacher engages in the activity of teaching, he or she is also
subject to this social formation of mind.

Data were collected during Mary Ann’s (pseudonym) student teaching
semester through weekly classroom observations and teaching episode in-
terviews. Written artifacts (e.g., journal reflections, lesson plans) were col-
lected as well. Classroom discourse data were analyzed for patterns (see
e.g., Wood, 1995) as well as a univocal or dialogic function of speakers’
utterances (see, e.g., Lotman, 1988). Results indicate that early classroom
interactions mediated Mary Ann’s languaging toward a more univocal para-
digm of giving information as she funneled students’ thinking. Her subse-
quent efforts to promote dialogic interactions with students generated a
tension that positioned students as mediators of her practice. This under-
scores the need to extensively guide prospective teachers during their field
experiences. Moreover, the primitive nature of early classroom interactions
suggests that prospective teachers may need to explore ways to cultivate
meaningful discourse in undergraduate settings prior to student teaching.
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THE EFFECT OF A REFORM-BASED ClURRICULUM
ON CLASSROOM NORMS
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The purpose of this paper is to compare and contrast the classroom
norms of teachers who are implementing a reform-based middle school
curriculum, Mathematics in Context (MiC), with teachers who are using
conventional curricula. The main source of data for this paper comes from
an observation scale used in a longitudinal/cross-sectional study of the
impact of MiC currently in progress.

The observation scale consists cf twelve items in two categories: class-
room events (e.g., conceptual understanding of mathematical ideas) and
pupil pursuits (e.g., substantive conversation between students in class).
Each item is numerically ranked on a scale of 1 —~4 or 1 — 3 and is sup-
. ported by evidence consisting of dialogue or other information from the
observed classroom. For example, on the item measuring students’ expla-
nation of solution strategies, a rating of “1” denotes a classroom where
students rarely discuss their solutions to problems whereas a rating of “3”
describes a classroom in which students are frequently justifying their ap-
proach to a problem and explaining their thinking.

Significant differences (on an independent samples t-test) were found
between MiC teacher> and Non-MiC teachers on 8 out of 12 items. The
results, however, indicate room for improvement for both groups of teach-
ers. Significant differences were also found between the average number
of years of teaching experience of MiC teachers (11.21 years) and Non-
MiC teachers (6.4 years). Hence, the curriculum as well as teacher experi-
ence appear to affect classroom norms.

! This research is supported in part by the National Science Foundation #REC-
9553889. The views expressed here are those of the authors and do not necessarily
reflect the views of the funding agency.
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JUSTIFICATIONS, ARGUMENTATIONS, AND SENSE
MAKING IN PRESERVICE ELEMENTARY
TEACHERS IN A CONSTRUCTIVIST
CLASSROOM

Anne Larson Quinn
Edinboro University of PA
quinna@edinboro.edu

Quinn (1997) presents a detailed case study of how preservice elemen-
tary teachers made sense of and justified their mathematical ideas before,
during, and after a four-month-long constructivist course. Data included
pre- and post-interviews with 13 preservice teachers in (a) three content
areas (probability, number theory, and geometry), (b) small and large group
discussions during the course, and (c¢) individual journal reactions. Over
800 arguments were analyzed.

Quantitative research showed that the preservice teachers’ average level
of reasoning increased from the pre- to the post-interview: from 1.96 to
3.90 in probability, from 2.77 to 3.56 in ramber theory, and from 2.50 to
3.77 in geometry. The teachers went fron: being convinced by a few ex-
amples to being able to make a variety of sophisticated arguments, includ-
ing theoretical discussions of probabilities, informal versions of mathemati-
cal induction and proof by cases, and deductive geometric arguments. Quali-
tative research demonstrated the norms and practices that were established
during this course. Teachers came to value and construct proofs, stopped
relying on external authority, intertwined their justifications with their ex-
planations, internalized the roles of an idea generator and an idea evalua-
tor, expected others to also conform to the norms that were being estab-
lished, and developed new beliefs about the nature of mathematics.
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EXAMINING ZONES OF DISCOURSE IN THE
PROSPECTIVE MATHEMATICS

TEACHERS’ CLASSROOM
Maria L. Blanton Susan L. Westbrook
University of Massachusetts North Carolina State University
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mblanton @umassd.edu

In mathematics teacher education, interest in discourse has grown be-
yond the practices of experienced classroom teachers to include that of
prospective teachers (Blanton, Berenson, & Norwood, 1998). In this study,
we have invoked Valsiner’s zone theory (1987) to examine the learning
environment that two prospective mathematics teachers established through
classroom discourse. Valsiner expanded Vygotsky’s notion of the zone of
proximal development to include two additional zones of interaction—the
zone of free movement (ZFM) and the zone of promoted action (ZPA). As
structures through which the adult constrains or promotes the child’s think-
ing and acting, the ZFM and ZPA interactively generate the environment in
which the child develops. Westbrook, Carter, and Smith (1997) have sug-
gested the use of this multiple zone theory to describe the complex interac-
tions that occur in the student teacher’s development.

We have considered what mathematical thinking the student teacher
promotes through discourse and how discourse patterns constrain the de-
velopment of students’ mathematical thinking. Qualitative analysis of class-
room discourse data suggested that a student teacher’s actions of funneling
students’ thinking through leading questions was reflected in a restricted
ZFM and a ZPA organized around the teacher’s thinking. Such patterns of
discourse appeared to promote verbalizations that provided the illusion of
sense-making, yet established cognitive boundaries in the classroom.
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THE ROLE OF DISCOURSE: AN ANALYSIS OF THE
PROBLEM SOLVING BEHAVIORS AND ACHIEVEMENT
OF STUDENTS IN COOPERATIVE

LEARNING GROUPS
Patrick Mwerinde Chnstine L. Ebert
University of Delaware University of Delaware
mwerinde @ math.udel.edu cebert@math.udel.edu

Cooperative-learning strategies have been credited with the promotion
of critical thinking, higher-level thinking, and improved problem-solving
ability of students. Current research that examines behaviors that occur
during group problem-solving sessions seems to indicate that groups en-
gage in behaviors that are similar to these exhibited by expert mathemati-
cians when they solve problems (Artz and Newman, 1990; Schoenfeld,
1987): that is, they engage in monitoring their own thoughts, the thoughts
of their peers, and the status of the problem-solving process. Researchers
who have studied cooperative learning at the college level generally have
found that students learn just as well as in more traditional classes and
often develop improved attitudes toward each other and mathematics.

In this study, we not only examined that problem-solving behaviors,
strategies, and achievement of college students assigned to cooperative
learning groups, but particularly focused on the nature of the discourse
associated with the particular problem-solving behaviors of persistence and
a willingness to explore alternative strategies. The subjects chosen for this
study consisted of 108 students enrolled in four instructional units of Col-
lege Algebra and Statistics at a major state university. Two control groups
and two experimental groups were randomly selected. Throughout the se-
mester, problem-solving behaviors, strategies, and achievement were as-
sessed through four tasks which focused on the connections between the
mathematical actions and processes and the mathematical concepts. Each
of the four tasks were videotaped and audiotaped.

The results indicate that those students in the cooperative learning groups
engaged in a type of mathematical discourse that would allow them to form
connections between graphical and algebraic representations. In particular
they were significantly more willing than their control-group counterparts
to continue the discussion until they could 1) determine the graphical fea-
ture that indicated when the two objects would be worth $0 and 2) why
determine setting the equations equal to zero was related to determining
this graphical feature. Specifically the transcripts reveal persistence and a
willingness to listen to all proposed solutions. These findings provide con-
vergent evidence concerning the nature of discourse related to important
problem-solving behaviors of persistence and a willingness to explore al-

1SR



S LT

Y TP O IR I DT

ternative solutions as well as suggesting the types of group activities which
may facilitate higher-level thinking and improved problem-solving ability.
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EXPLANATION AND DISCOURSE IN 9TH GRADE

MATHEMATICS CLASSES
Elaine Simmt : Florence Glanfield
University of Alberta University of Saskatchewan
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The Teaching Practices Project involved eight case researchers observ-
ing and interviewing 15 different grade nine mathematics teachers who
taught in schools that have a history of strong student performance on pro-
vincial achievement tests. The researchers found that rather than simply
focusing on skill development or on problem solving or on concept devel-
opment, many of ths teachers in this study were adept at balancing these
factors in their instruction. In particular, one of the striking features of the
instruction was that explanations were used as a tool for facilitating math-
ematical discourse; but at the same time, it was observed that classroom
discourse facilitated the development of mathematical explanations. While
an explanation may be the “heart of any teaching episode’ (Leinhardt, 1988)
many researchers have demonstrated that discourse is at the heart of learn-
ing. In some of the classes observed teachers did most of the explaining,
while in other classes students did most of the explaining but in both situ-
-ations students were observed to be actively participating in the discourse.
It was evident, in the classes we observed, that teachers were very good at
providing tasks which encouraged both discourse and explanation. In this
poster we offer illustrations, taken from classroom observations, of the re-
cursive way in which explanations facilitate mathematical discourse and
mathematical discourse facilitates mathematical explanations.
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CHANGES IN CLASSROOM DISCOURSE:
SNAPSHOTS OF TWO TEACHERS
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The role of communication in developing childrens’ mathematical
thinking has gained considerable attention in recent years (National Coun-
cil of Teachers of Mathematics, 1996). Mathematics educators maintain
that classroom discourse centered around mathematical reasoning and sense-
making allows teachers to stimulate students’ thinking and reflect on stu-
dents’ understanding. By actively listening to students’ ideas and sugges-
tions, teachers show that they value students’ contributions (Davis, 1997).

The purpose of this study was to examine how two third-grade
teachers transformed their classroom practices as a result of their involve-
ment in a teacher enhancement project. In particular, the study examined
how the teachers used questioning and listening techniques as a means of
exploring their students’ mathematical knowledge and engaging them in
mathematics lessons.

Qualitative data were collected from audio-taped classroom obser-
vations before and during the teacher enhancement, teachers’ journals, and
semi-structured interviews. The results from the study showed that both
teachers changed the focus of their discourse from the correct answer to
how students arrived at their answers. However, the degree of change var-
ied among the two teachers. The study also showed that asking challenging
questions and listening to students’ answers and solution strategies are not
enough to bring about significant change in classroom discourse and op-
portunities for students to learn mathematics. Teachers must also interpret
students’ responses as indicators of their levels of understanding and adjust
instruction accordingly.
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EPISTEMOLOGICAL AND COGNITIVE ASPECTS OF
THE LINK BETWEEN THE CONCEPTUALAND THE
ALGORITHMIC IN THE TEACHING OF
INTEGRAL CALCULUS
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Cinvestav-IPN. Conacyt. México
gmunoz@ mail.cinvestav.mx

The research problem we are going to deal with consists in analyz-
ing the separatign between the conceptual and the algorithmic aspects in
the teaching of integral calculus. That is, the students are taught procedures
to calculate integrals using integration methods only through drill exer-
cises, and in a way separate from the conceptual part. It is only when they
see the “applications”, they study some notions related to integration. What
are the causes of this? Is this rupture provoked by the teaching in which the
student is involved? Does this rupture exist in the construction of the knowl-
edge? We have an evidence for the relationship between the conceptual
and the algorithmic in the construction of knowledge: There is a very close
relationship between the notion of Prediction and the instrument of predic-
tion, Taylor’s series (Cantoral, 1990). So the question is, how to generate
the link between the Conceptual and the Algorithmic in the teaching of
integral calculus. For that, we analyze the following: a)The way with which
we teach in order to generate the link. For that, we need to identify the
cognitive mechanisms that act in the relationship t “tween the conceptual
and the algorithmic. b)The nature of the knowledge of teaching in order to
generate the link. For instance, the notions of Prediction, Accumulation
and making constant of the variable will play a main role.

One of the results of our research is: In order to create the link
between the conceptual and the algorithmic in the teaching of integral cal-
culus, we need, as a condition, to start a discussion about integration with a
problem that allows thinking about integration. What are this type of prob-
lems? After reviewing some historical, epistemological and cognitive studies
(Cantoral, 1990; Cordero, 1994; Piaget y Garcia, 1994) we determined, in
a certain manner, the types of problems that allow thinking about integra-
tion; summarizing: They are the specific problems that are derived from
the variation or change phenomena. These specific problems don’t refer to
the causes of the variation phenomenon (why they vary), but how much
they vary once we know how the phenomenon (dF(t)/dt) varies. That is, we
ask questions about the law that quantifies (the unknown quantity E(t) that
has a functiunal relationship with the variables in question) the phenom-
enon of variation. The configuration of this law depends on whether the
initial conditions of the specific problem is given or not. Where is our re-
search directed toward? To identify the genesis of the notions and rules that
were mentioned before, when the student confronts with a problem situa-
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tion. The method of clinical interviews will be used. All this, with the ob-
jective of identifying the cognitive mechanisms that act in the relationship
between the conceptual and the algorithmic in integral calculus.
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DOUBLE TRIAD LEVELS OF PIAGET AND GARCIA IN

SCHEMA DEVELOPMENT
Bernadette Baker Laurel Cooley
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Maria Trigueros
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The Triad levels of Piaget and Garcia (Intra, Inter, and Trans) were
used to analyze the levels of development of students’ calculus graphing
schema based on their work on a non-routine calculus problem. Because
the single triad levels used in other RUMEC research did not prove satis-
factory to explain the development, the double triad levels related to prop-
erties and intervals was hypothesized and proved useful in explaining the
students’ calculus graphing schema development.

The calculus graphing schema is defined by a combination of the stu-
dents’ level of development in understanding the concepts of derivative,
limits and continuity, as well as their precalculus ideas. The development
of the calculus graphing schema can be described in terms of the level of
understanding of all these concepts. A genetic decomposition of the calcu-
lus graphing schema should contain the genetic decompositior. of the con-
cept of function, limit, continuity and derivative as well as the description
of the relationship between them. After analysis of the data, a model was
constructed for the development of the schema in terms of Piaget and
Garcia’s triad. This “triad of schema development” was used to describe
the students’ levels of the calculus graphing schema.

The data showed that there were two important components of the prob-
lem that demanded explanation: students were not only struggling with the
conditions on the function, but also with the coordination of these condi-
tions across the intervals of the domain. It became clear that the model
needed should involve the development of two different schema; one for
the intervals and another for the properties.

On the one hand, students were observed at differing levels in the abil-
ity to coordinate the properties of the graph as given by the conditions. On
the other hand, students were also observed at differing levels in the ability
to coordinate the graph properties of the function across contiguous inter-
vals of its domain. The development of the calculus graphing schema can
be described by the interaction of these two schemas, so a two dimensional
triad was used to represent the data. The two schemas that manifested them-
selves in the data were named the “Condition-Property Schema” and the
“Domain-Interval Schema”. Descriptions of the three levels of each schema
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as well as the double levels of the calculus graphing schema are included.
Evidence of student development at eight of the nine pessibie levels of the
double triad were found among the 41 students in this study.
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GRAPHING OF DISCRETE FUNCTIONS
VERSUS CONTINUOUS FUNCTIONS:

A CASESTUDY
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In a general project carried out during several years, we have detected,
mainly using questionnaires, the types of difficulties high school teachers
of mathematics have on the construction of functions. We found in these
studies that those teachers have a strong tendency to think in continuous
functions expressed by one formula. In this paper we are interested in ex-
ploring the students’ conception of the concept of function when they are
beginniiz their studies at the university level. Precisely, we were inter-
ested in exploring, via an interview, a student’s mathematical idea about a
problem, found also in teachers who 1) related the continuous function
expressed with one formula and 2) had difficulties in constructing a model
related to the student’s conception of function. In the interview the student
could mobilize a given task through an external representation. The paper
concludes with the discussion of a teaching approach.

Introduction

In studies carried out with teachers of high school mathematics, it was
found (Hitt, 1994, 1998) that when the teachers worked problems that in-
volved the construction of functions, they showed a strong tendency through
the appearance of consistent errors to consider the concept of function as
being associated to the idea of continuous function expressed with one
formula. This is consistent with an historical analysis in which the history
of intuitive mathematics ideas of the XVIII and XIX centuries gave origin
to the definitions and treatments or procedures similar to those used by
teachers of mathematics today (see Hitt, 1994, pp. 10-14).

In this study we are interested in analyzing the same problem, but now,
our subject will be a student selected from a regular precalculus course
class. What ideas are generated by the students about the concept of func-
tion during the normal process of teaching? Particularly, our iniention is to
document the conception one student had of the function concept and to
construct a model of his ideas to understand his mathematical knowledge
related to this concept. The student is an average student who has com-
pleted his first university year.
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Methodology (Clinical Interview)

We selected an average student (grade B in algebra and B in precalcu-
lus, 19 years old) who was in the first year at university. In the precalculus
course the teacher used the book, Precalculus with Graphing and Problem
Solving (Smith, 1993). In general the presentation of different representa-
tions of the functions in the functions chapters (pp. 67-96) is summarized
in Table 1.

Table 1.
Presentation of different representations of function in precalculus text
Type of Representation
Set of
Examples of Verbal Algebraic Ordered
Functions Rule Table Expression Graph Mapping Pairs
Discrete one two one one several one
Continuous
(one algebraic none none several several one one
expression)

Continuous (more
than one none none none several  one one
algebraic expression)

Discontinuous

. . none none several several none none
(rational functions)

The book stresses the recognition of shapes (graphs) of continuous func-
tions. There are no specific tasks related to the conversion from the graphic
register of representation to the algebraic one. It is clear that the book shows
the discrete functions only at the beginning of the chapter to make the do-
main and range of the function explicit using the idea of mapping and then
suddenly the mapping is abandoned.

At the end of the precalculus course, the students were asked to work
the problems of the book (45 to 54, pp. 75-76). The students, in particular
JR (we will name him this), had been shown when solving the following
task with paper and pencil, a continuous curve when converting a table
(r(x) = Price of 1 Ib. of round steak) to a graphic. The curve was drawn

passing through the origin (0,0). Does it have any interpretation in our con-
text?
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The student was then asked to re-solve the same exercise, but this time
via an interview. The intention of the interviewer was to provoke a conflict
within the student with the idea that the student could feel he was in a
contradictory situation and by this approach the interviewer would know
about the student’s cognitive obstacle in more depth. That is to say, the
interviewer’s intention through the interview was trying to make the stu-
dent conscious that he was in a contradictory situation without saying it
directly, rather the contrary. On the one hand, we were expecting the stu-
dent in a contradictory situation to feel an uneasiness provoking a crucial
reaction through a functional accommodation of his scheme (in Steffe sense,
1991, p.183) and the possible construction of new knowledge. In the con-
text of a semiotic system of representations, Hitt (1998) states that: “Un-
derstanding the concept implies coherent articulation of the different rep-
resentations [of the concept] which come into play during problem solv-
ing.” On the other hand, we also were interested in the construction of a
model related to the student’s idea of functions.

The student was asked to explain all the work he was doing. The prob-
lem that provided the data for the study was:

- Use the accompanying table (see Table 2), which reflects the pur-
chasing power of the dollar from October 1944 to October 1984.
Let x represent the year, let the domain be the set {1944, 1954,
1964, 1974, 1984}, and let r(x) = Price of 1 Ib. of round steak;
s(x) = Price of a 5-1b bag of sugar; b(x) = Price of a loaf of bread;
c(x) = Price of 1 lb. of coffee; e(x) = Price of a dozen eggs;
m(x) = Price of 1/2 gal. of milk; g(x) = Price of 1 gal. of gasoline.

Find: r(1954); m(1954); g(1944); ... ;( g(1944+40) - g(1944))/40.
Graph the function r.

Table 2.

Reflection of the purchasing power of the dollar from October 1944 to
October, 1984.

Year
1944 1954 1964 1974 1984

Roundsteak (11b) $.45 $.92 $1.07 $1.78 $2.15
Sugar (5-1b bag) 34 52 59  2.08 1.49

Bread (loaf) .09 17 21 36  1.29
Coffee (1 1b.) 30 1.10 82 131 269
Eggs (1 dozen) .64 .60 57 B84 1.15
Milk (1/2 gal) 29 45 48 18  1.08
Gasoline (1 gal) 21 .29 .30 S3 0 1.10
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Interview and Comments

Through the interview JR (the student) showed abilities and difficul-
ties to recognize the functions. In the algebraic representation he had not
difficulties. He recognized the functions, he said, “because of the format
f(x).” He calculated different values of the function using the table and
mapping the variables “year” and “price.” An important moment in the
interview was when JR was asked to graph the function r. JR identified the
domain and the range, graphed the points, and suddenly joined the points
with a continuous curve.

Interviewer: Why do you join the lines [points]? What reason can you
give to join the lines [points]?

JR: Err ... to... as I was told to graph.

Interviewer: Graph, what?

JR: The function r(x).

Interviewer: The function.

JR: Er, if we do not join the points what we get... a little pile

of points that is not going to give a graph.

The student recognized the tabular representation as a function but not
the discrete graphic representation. Soine researchers and teachers con-
sider the use of tables necessary in a learning process. However, regularly,
the teaching process induces the use of a table, graphing point by point
and, finally, the students are told to join the points (obviously with a con-
tinuous curve). But, in the teaching process, do the examples used with
tables have implicitly a sense related to a discrete function and not to a
continuous one? Is the student’s cognitive obstacle a product of the way
teaching is carried out? Do the students consider a discrete graph of a func-
tion as a representation of a function? In this context, Markovits, Eylon,
and Bruckheimer (1986, p. 22) state that: “‘Only one student [of 400] drew
the graph of the following function correctly f :{natural numbers} £ {natu-
ral numbers}; f(x) = 3.”

Interviewer: Forexample you have this table (see

Table 3. . Table 3). Can we consider that as a

Table referenced in function?

interview with JR. JR: It could be yes... Yes, because you

gave an x value and obtained y.

X1y Interviewer: Look, if we have, for example, some-
316 thing like this (see Figure 1).
619 JR: Do Iinclude this segment? [he points
7115 at the horizontal segment]

Interviewer: The two segments.
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yA JR: Mmm, as a function?
—_— Interviewer: As a function.

e JR: No.

X Interviewer: What is your idea of func-
tion?
JR: The graph of the function
Figure 1. Figure referenced has to be continuous... or
in interview with JR two segments do not make

a sole function.

It seems that for this student the graphic representation has to be con-
tinuous and the function must be expressed by one algebraic expression.
Most of the students develop a pseudo-structural conception (Sfard, 1992,
pp. 75-76). Sfard states: “...some students would insist that a discontinu-
ous curve represents several functions rather than one. ... The frequently
observed inability to build a reasonable bridge between algebraic and graphic
representations of functions.” It seems we detected the same behavior with
JR.

Discussion

The difficulties demonstrated by this student might not be a product of
emphasizing an algebraic approach; instead the visual method used in teach-
ing may emphasize the graphic representations of continuous functions
expressed by one algebraic expression.

The student recognized the tables as representations of functions but
failed to identify discrete graphs as representations of functions. For the
student, the graphic representation of a function must be a continuous one
and expressed by one formula. The student is competent in identifying the
significant units in the construction of a graph: Domain, Range and
G, = {(x,r(x)} | x € D}, but he has a concept image (in Vinner’s sense,
1983, p. 293) related to continuous functions. During the teaching process
carried out with JR since he was learning about functions for the first time
using tables and graphing, the student was told to join the points; surely,
the functions he was working with were continuous functions. Therefore,
the teaching process has generated a cognitive obstacle in this student.

In studies carried out with teachers of mathematics, the teachers have
the same concept image related to the idea of function-continuity as JR,
and the books emphasize the same idea. Could the student be able to iso-
late the ideas of the function and the continuity by himself? It seems that
we need to emphasize the teaching of functions showing more examples of
discrete functions and their graphs. New tendencies in precalculus text-
books show there are more examples using discrete variables (see Connally,
Hughes-Hallet, & Glkeason, 1997).

The results show that it is urgent to work on the construction of a learn-
ing environment where the students can construct functions with certain
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properties where they are implicitly obligated to find discontinuous func-
tions and/or functions expressed by more than one formula. For example:
Construct three different functions with the same property, that |fx)| =2
to all x real; or, construct three different functions with the same property,
that f(f(x)) = | to all x real. The 1dea is that in this learning environment in
a multiple systems of representation context, we would like to provoke a
different thought from one related to the construction of a discontinuous
function and by means of two or more algebraic expressions.
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PERCEPTION OF GRAPHS AND EQUATIONS OF
FUNCTIONS AND THEIR RELATIONSHIPS IN
- ATECHNOLOGY-ENHANCED COLLEGE
ALGEBRA COURSE

Armando M. Martinez-Cruz
Northern Arizona University
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We seck a better understanding of student integration of function ideas. We report
college-algebra student perception of two function representations (graph and
cquation) and their relationships when graphing technology is available. Three
students were sclected for case studics of these ideas during summer 1997. We
built an individual network of function ideas. Networks suggest that these students’
function ideas were extremely weak, unrelated and contradictory. Affective factors
and course naturc might explain this. Terminal courses in mathcmatics greatly
influence the way students retain and integrate the content. Also, a summer college
algebra course provides few opportunities to intcgrate math idcas. Networks suggest
student early integration of function ideas.

Curricular importance of functions has attracted the attention of the
mathematics education community (Tall, 1992). Studies on function
conceptualization report poor student (Dreyfus & Vinner, 1989) and pro-
spective teacher (Even, 1989) understanding. They: (1) see functions as
equations without an awareness of domain and range; or as graphs which
are expected to be continuous, familiar or regular; and (2) use familiar
procedures (the vertical line test) or formulas to identify functions. Stu-
dents can grasp these ideas without relating them even though they repre-
sent the same object. Lack of relationships among function ideas may be
useful to the learner for dealing with some problems, but it can be an ob-
stacle to construct a formal function notion (Herscovics, 1989). Conversely
integration of function ideas can help students in many ways. Students can
gain a better understanding of the concept, move across its different repre-
sentations and begin formalizing it. Graphing technology use in math courses
provides alternative ways to teach the subject; visualizing algebraic varia-
tions with a graphing calculator favors the establishment of relationships
between different function representations (Dunham & Dick, 1994).

Our research fits in this context. Previously we investigated s.udents’
knowledge of functions in a high-school precalculus course enhanced with
graphing calculators. Three function conceptualizations appeared in those
students (Martinez-Cruz, 1993). A network of function ideas for each stu-
dent was built to represent their relationships. Understanding how students
integrate knowledge can be a fruitful area in mathematics teaching. Per-
ceiving understanding as interconnected knowledge (networks) suggests
the critical importance of relating new knowledge that is the object of in-
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struction to the existing knowledge that the learner brings to instruction
(Carpenter & Fennema, 1991). We still know little about student under-
standing of these ideas and the way they relate them (Bright & Hoeffner,
1993).

This report is part of a larger project aimed to contribute to function
teaching and learning with technology. In this study we aim to gain a better
understanding of two particular representations (graphs and equations), the
kinds of relationships used to connect them, and how such connections
take place when graphing calculators enhance the mathematics content.
We conducted this research at the college level during summer 1997.

Theoretical Framework

The 1993 theoretical framework incorporated historical (Kleiner, 1989)
and psychological contributions (processes and objects) (Sfard, 1989) to
function development; concept image and concept definition (Dreyfus &
Vinner, 1989); and multiple representations. A result of that research was
individual function networks for each of the seven participants. Networks
were grouped as three models (graphs, equations, and unique correspon-
dence) and helped us to improve our original framework, which we used
here. We accept a constructivist view on mathematics knowledge.

The Study and Its Methodology

A college algebra course (taught by a mathematician) enhanced with
graphing calculators in a Southwestern university was the context of this
study. Three students were selected using purposive sampling (Lincoln &
Guba, 1985) for case studies of their function knowledge and representa-
tions. Our research questions were:

(1) What is the knowledge that these students have of the graphic rep-

resentation of functions (graphs)?

(2) What is the knowledge that these students have of the algebraic

representation of functions (equations)?

(3) Whatkind of relationships do these students establish between these

two representations?

Since students’ ideas change over time, we relied on the interpretivist
tradition of ethnographic research, for it provides methodologies for study-
ing the evolution of change in math teaching and learning. Collection of
data for each case study :nvolved four interviews, daily classroom obser-
vations, practice tests developed by the author, in-class testing materials
and office-hour interactions. Criteria related to the trustworthiness of the
study (credibility, transferability, dependability, and confirmability) were
also considered (Lincoln & Guba, 1985).

Interviews provided the most useful information to sketch students’
thinking. Four protocols were developed for the study. Items emerged from
the cascading design of the study. Pertinent function literature was con-
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sulted. Items asked about the relationship between equations and functions
and between graphs and functions, to decide if a given graph was a func-
tion, or to provide function examples. Functions involved typically appear
in a college algebra course. A domain analysis (Spradley, 1979) and a cod-
ing paradigm (Lincoln & Guba, 1985) of tests and materials identified re-
lationships (or lack thereof) of function representations (graphs and equa-
tions) that students associated with the function concept. Those relation-
ships were used to build a network of relationships between these two rep-
resentations. Function ideas of one participant, Zafu, are given.

Zafu’s Ideas About Functions

Zafu’s function ideas in the beginning were mainly as a graph, which
included the vertical line test (VLT). A one to one function is when you can
pass a straight line through only one point of a line. He could not explain
why the method worked. His familiarity with the VLT helped him to estab-
lish a relationship between functions and graphs, graphs of a line may be
use[d] to determine if a line is a one to one function, two to one function,
etc. He tended to mix the VLT with the horizontal line test (HLT). He was
familiar with the phrases one to one function and two to one function but
could not explain what they meant. Maybe his familiarity with them, the
VLT and the HLT, created an obstacle to understanding the VLT. This con-
fusion characterized his application of the VLT throughout the study. If
given two parabolas (one horizontal and the other vertical) he could not
decide which one was a function. Sometimes he applied both tests and
other times he applied only one.

Zafu also held an algebraic image of functions that emerged to a lesser
extent at the beginning. His first algebraic example of functions was f(x) =
Ax* + Bx?+ Cx (A, B, and C the coefficients). His function ideas relied on
familiarity and procedures:

Well, I also remember that you need to perform like a vertical
or horizontal line test and I don’t remember whether it’s one or the
other or both. And that. You know. It can’t be a parabola or a circle
because of that, you have your vertical, all the vertical line test.
But I can’t really tell you what a function is....[Later he said]
Uhmmmm. [thinking without writing anything]. I can think of ex-
amples. I can’t really [give a definition, writing f(x)] words, like x
can be, squared or it could be y [Writing = (x2 + y)]. It’s just a
procedure that you decide, you know, or somebody makes up a
math problem.

The action procedure appeared as a test for an algebraic expression to
be a function: :

Just, something. [(x)’ +y] is a procedure that you’re doing to
the, [thinking] any, any numbers I guess.

L2192R9



Zafu did not see that the expression y = (x* + y) leads to 0 = y* and
relied on authority: f(x) = (x)*is an example of a function because [his]
teacher said so last week[laughing].

Zafu’s ldeas About Graphs

At the beginning of the study, Zafu thought of graphs as a visual repre-
sentation of an equation of a line. This included many ideas. A graph is a
visual representation, it doesn’t need to be a graph. A visual representation
included figurés, while a graph was a curve (to which he referred as a line
sometimes). He related graphs and equations: a graph is a (visual) repre-
sentation of an equation. His ideas of graphs and function included the
VLT as previously discussed. He showed several ideas about graphs (in-
cluding recognition of familiar shapes, and vocabulary such as increasing
and decreasing graphs, and maxima and minima). For a cubic-like graph
he would say the following.

Well it might be two connecting parabolas. It might be a sine
curve. Maybe sine and parabolas are related. I have no idea. That’s
a guess on my part. Each one of those points has a vertex. Possibly
[there are two parabolas here]. That’s all I know.

He remembered the idea of a function being increasing, but could not
tell if the function in that graph was increasing—he needed an equation. |
can’t tell you by looking at the graph. I can’t. If you give the equation and
ask me if this equation is increasing, I might be able to say. He identified
maximum and minimum of the graph. He could not indicate the domain
and it seems he was thinking instead of the interval solution to an inequal-
ity. He had difficulties reading information from graphs, particularly when
solving equations such as f(x) = constant. He reversed x and y constantly
but was able to find the answer later.

Zafu’s Ideas About Equations

Zafu had a two-fold conceptualization of equations in the beginning.
First, as an equality. A math problem containing an equal sign. Second, as
a problem to be solved. He thought equations and functions were related
for the function of a variable may be set equal to a math problem. This
function of a variable referred to f(x), function f of the variable x. Since all
his function examples were given as function of a variable equal an equa-
tion (math problem), he saw a relationship between functions and equa-
tions. He knew functions were given by equations, like f(x) =y, function
of x. His perception of a function as a shredding machine, communicated a
procedural conception, since machines give you an output. The equation
was this shredding. However, with this function idea he could not decide if
f(x) = x* + 7x = 3 was a function. Perhaps he had not come to equate
functions and equations. He knew that equations provided information about

functions:
$
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The kind of information that I get, that equations tell about
functions was that, their shape and relative size. [I mean by shape.]
Well, like if you give me an equation that no matter what variables
you plug in for x and y, you always get a parabola. So that’s shape.
[Other shapes?] Circle, yeah, uh, was there any other shapes? 1
don’t remember. A line. [Relative size included location, domain
and maybe scale.] Yeah, because we’re plugging in. And also their
relative location, because we’re plugging in any variable that we
want to choose, uh, for x and y, just that it’1l be close to the origin,
just so that we can graph it and make it easy for us to see it. We
don’t know like what values of the units are. It’s just miles {laugh-
ing]. [It’s just the numbers that you would plug in.]

Further description of the relationships between equations and graphs
were found later. Zafu expressed equations and graphs were related since
lines can be represented as equations. Equations may produce lines on
graphs. He did not know if equations might not produce lines. He recog-
nized y and f(x) are identical. This let him solve other problems. He also
understood what the slope was and could find it from equations and graphs.
He seemed to have mastered straight lines (even constant) but had difficul-
ties with quadratic functions particularly when given the graph. He had an
idea of what every coefficient meant but this knowledge was memorized
and never understood. He could not represent graphically what he expressed
verbally: he had to build a table to graph a parabola instead of using trans-
formations of graphs (which he seemed to have mastered). At the end his
knowledge of quadratic equations declined to the point of not remember-
ing them. He did not have problems solving a system of two linear equa-

tions with the calculator, but had problems interpreting the solution graphi-
cally.

Zafu’s Understanding of the Relationship Between Functions,
Equations and Graphs

From this study data, Zafu perceived functions given as equations and
therefore could be graphed. The vertical line test provided a connection

between graphs and functions (see Figure 1). His function examples in-
cluded familiar equations and graphs.

Conclusions

Informal data suggest that affective factors (such as whether the alge-
bra course was a math terminal course) greatly influenced the way students
retained and integrated the content. Students in the course appeared very
little motivated to assimilate ideas; here the weakness of their function
network was affected by their motivation. Additionally, a summer course
provides few opportunities to integrate those ideas. However, the networks
built provide an insight on how integration of function ideas occur. Graph-
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Figure 1. A college algebra student’s network
of graphs, equations, and their relationships.

ing technology might help students to establish more connections between
different representations of function. For this to be accomplished math-
ematics courses need to be revised to use technology as a real tool.
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We discuss the activities of two Sth grade boys working together dur-
ing two days of mathematics class, on a problem of representing a motion
along a linear path. Over the two days, the boys represent the motion in
three different mathematical environments: at the blackboard using a table
of positions and stepsizes over time; at the computer using a computer
simulation of two people walking; and at their desks moving Cuisenaire
rods along a meter stick. In this paper we ask the question: “How does one
describe and grasp others’ experiences”. In attempting to answer this ques-
tion, we find that it is essential to understand experience as simultaneously
individual, social, and physical; and to be aware that what we see in stu-
dents’ experiences is necessarily related to what we come to see in our-
selves.

Theoretical Framework

Theories in mathematics education often distinguish themselves by their
focus of study. While often combining elements of several perspectives at
once, some tend to highlight mental structures (Steffe, von Glasersfeld,
Richards, & Cobb, 1983), others socio-cultural environments (Walkerdine,
1988), and others the interaction with representational objects (Kaput, 1991).
Some of the current debates center on whether the field should make comple-
mentary use of differing points of view (Cobb, Yackel, & Wood, 1992;
Bauersfeld, 1992) or make a choice among them (Lerman, 1996). Rather
than supplementing one focus with another or making a choice among pre-
defined possibilities, we attempt in this paper to describe students’ experi-
ences in a classroom, recognizing that: 1) Experiences are simultaneously
individual, social, and physical (Goodwin, 1993; Ochs, Jacoby, & Gonzales,
1994; Meira, 1995) and that 2) What we see in students’ experiences is
necessarily related to what we come to see in ourselves (Confrey, 1991;

* Throughout these Investigations, the word “trip” was used to refer to a
linear motion made by one or two actors, in which speed might vary.

* The tree marked the end of the trip.

* In the curriculum and in our conversations with students, we avoided
using the language of racing or winning in reference to these simulta-
neous trips, but students often began using it on their own.
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Ball, 1996). This raises the question: How does one describe and grasp
others’ experiences? In this paper, we do not provide general answers to
this question, but instead grapple with it by attending closely to what two
students, Norman and Luke, actually say and do, and how we come to
understand it.

We will trace how, for example, the boys’ individual ways of counting,
short conversations among themselves and with the teacher, and the ma-
nipulation of physical objects all influence how they see, talk, and act within
three different mathematical environments. We will also describe how try-
ing to understand what the boys were doing affected our own understand-
ings of the mathematics curricuium the boys were engaged with. In this
paper, we will describe Norman and Luke’s experiences in these math-
ematics class sessions by focusing on three aspects of their experience: 1)
The sense of purpose, or the boys’ diverse and changing understandings of
what they are supposed to do; 2) The development of narratives, or the
ways Norman and Luke tell stories about situations that change over time,
and link these stories together; and 3) The sense of time, or how the boys
constitute a sense of time in their work with situations that change over
time. We propose these aspects not as general ways of understanding class-
room experience, but as ways of grounding our analysis of these particular
classroom experiences, and linking them to more general aspects of human
experience.

The Study

This paper reports on results of a classroom study of Sth grade students
learning about the mathematics of motion and growth in a public school
classroom in East Boston, MA, where a four-week unit of the NSF-spon-
sored elementary math curriculum, Investigations in Number, Data and
Space: Patterns of Change: Tables and Graphs®©, written by three of the
authors of this paper, was pilot-tested. The curriculum unit consists of three
investigations of change over time in situations of motion and growth. In
Investigation 1, students collected data about time and the position of a
student walking along a straight line marked on the classroom floor. In
Investigation 2, students used the Trips© software environment to enact
walking trips for a boy and a girl character walking along parallel paths
on the computer screen, and did similar trips with Cuisenaire Rods moved
along the two sides of a meter stick. Finally, in Investigation 3, students
learned about different modes of growth of two-dimensional patterns of
colored tiles. During these Investigations, we videotaped daily in math class,
and conducted individual and group clinical interviews with a small group
of students, including the two boys described in this presentation. We met
weekly to discuss the curriculum and data with the two teachers who pi-
loted this curriculum.

After the pilot testing was completed and the curriculum revised sev-
eral times, we continued the analysis of video-tapes, meeting weekly to
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discuss video episodes, and compiling detailed descriptions of every class
sesston. Through discussions of episodes that were surprising and confus-
ing to us, we found several classroom episodes which taught us a great
deal, and for this analysis we decided to focus on episodes including the
experience of two boys, Norman and Luke, during the second and third
days of Investigation 2. Investigation 2 began with a session in which the
students were introduced to two new environments: the Trips© software
and the Cuisenaire rods and meter sticks activity. In the Trips© software,
students chose the step size and start position of boy and girl characters,
who then walked along a track on the computer screen, and whiose trip was
recorded in a table window and a graph window. In the Cuisenaire rods
activity, students worked in pairs, each student with a Cuisenaire rod of a
certain size, his step size. On the first day of this Investigation, the teacher
introduced the two new environments, and students experimented with them.
On the second day of this investigation, students were asked to make up a
trip for a boy and a girl (by specifying starting positions and step sizes), to
satisfy the following motion story: “The girl gets to the tree way ahead of
the boy.” Students were then asked to act out the trip using the Cuisenaire
rods and meter stick, and to make a table of position over time for their trip.
Later students used the Trips© software to make trips according to this and
other Motion Stories.

While this analysis is done with the background of our experience of
analyzing over eight weeks of classes in two different schools, we have
done a detailed analysis of two days of Investigation 2, and we can de-
scribe in this paper a few moments out of this time, which are moments
that help to illustrate larger issues about the experience of being a learner
of mathematics. We have selected two moments from the class sessions to
give the reader a sense of the work of the boys, and to illustrate the three
aspects of the boys’ experiences. Both moments occur about halfway through
the third class of Investigation 2, after the boys have had two days of expe-
rience using the software and the Cuisenaire rods and meter stick for mak-
ing trips. In the first moment, the boys discuss a trip that they have just
made by moving the Cuisenaire rods along a meter stick, and where their
conflicting senses of purpose are highlighted. In the second moment, which
occurs about 10 minutes later, Tracey Wright and Luke tell stories about
motion based on a table of numbers on the blackboard. In our analysis of
this conversation, we will highlight the aspects of development of narra-
tives and the sense of time. Through the analysis of both moments, we

hope to provide a glimpse of the boys’ experience in this mathematics class-
room.

Moment 1: “I won.”

Norman and Luke have just made a trip with the Cuisenaire rods, each
taking a rod and flipping it over itself to take “steps” on each side of the
meter stick. Norman, who has the role of the girl, has reached the end of the
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meter stick first, and the following conversation ensued:
Norman: I won.
Luke:  How?

Norman: The girl gets way ahead of the boy. Do you remember number 1
[Motion Story 1]?

Norman and Luke had two different purposes for this activity with the -
Cuisenaire rods. Norman’s purpose was to make a trip which would satisfy
the criterion of Motion Story 1: “ The girl gets to the tree way ahead of the
boy.”, which is what the boys were instructed to do. Luke, on the other
hand, constantly checked the table of numbers on the blackboard while he
took his trip, and moved his Cuisenaire rods in accord with it, which, if
Norman had also followed the table, would have led to Luke reaching the
end first. Norman and Luke, however, were each focused on their own
motions: each moved his own Cuisenaire rod down the meter stick, en-
gaged with his own goal and the physical objects, until Norman reached
the end and Luke recognized that the trip he had envisioned had not oc-
curred.

When Luke asks Norman how he won, Norman responds by the pur-
pose of his activity, as opposed to describing the specific moves he made,
such as taking a 7 cm. Cuisenaire rod when Luke took only a 4 cm. rod. If
Luke is surprised that Norman reached the end first, it is because he does
not share Norman’s purpose of making a trip where Norman, playing the
role of the girl, reaches the end first. Many different things contributed to
Luke’s sense of the purpose of this activity: the table of numbers on the
blackboard, which was written as an example of a trip, but which became
for Luke a guide to how to move; Luke’s desire to “win” no matter what,
which we saw throughout these class sessions; and no doubt other factors.

Moment 2: “Right now she’s losing.”

Luke and Norman are planning a trip to do with the Trips© software,
and Luke says that the girl is supposed to win in this trip (to satisfy Motion
Story 1: The girl gets to the tree way ahead of the boy.). Yet when Tracey
asks him what his plan for the computer trip is, Luke points to the table
written on the board, which describes a trip in which the girl would not
win, and which is the same table he used in Moment 1. This leads to the
following discussion. A portion of this table is reproduced below (See Table
1):

Tracey: Right now the girl’s at 31 and the boy’s at 33, so why is the girl
gonna win? Right ncw she’s losing.

Luke:  No she ain’t.

Tracey: She’s not gonna win like this?

Luke:  No, because from the 10 [points to the girl position 10] through
the 25 she was leading [Tracey: yeah] but, and, and, from the 9
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Table 1.
Partial table from blackboard.

Boy Boy Girl Girl
Step Pos. Step Pos.

Time Size JSize
4 4 5 3 10
5 4 9 3 13
6 4 13 3 16
7 4 17 319
8 4 21 3 21
9 4 25 3 24
10 4 29 3 27
1 4 33 3 30

through the 25 [boy positions], I was, like, going slow. But,
from the 25, like, from the bottom, I was, like, going faster,
[Tracey: yeah] and she was goin’ — and he was like goin’ —
slower [Tracey: right].

One of the first things that is surprising about this moment is that Luke
can enter into this conversation with Tracey about an imaginary trip taken
by a boy and a girl, based only on numbers written in a table. Luke’s story-
telling involved naming the actors in the story. He calls one of the actors
“she”, perhaps referring to the imaginary girl who moves according to the
table, or to the girl represented on the computer software. He calls the other
actor “I”, placing himself in the story of the table, because he had moved
according to the table, taking the role of the boy, when he moved his Cui-
senaire rods down the meter stick. Another part of Luke’s story is the time.
When Tracey begins this conversation, she calls the last moment repre-
sented on the table “now”, which allows her to create a story about the
motions of the boy and the girl: ** Right now, she’s losing”, in which the
present, future, and past are defined. Luke takes on Tracey’s use of time by
using the past tense to refer to everything that came before 11 seconds:
“she was leading”, “I was, like, going slow”. Without a sense of when
“now” is in a story, it is difficult to describe events, as one must choose
some verb tense in which to describe things that happened, are happening,
or will happen.

Conclusions

In Moment 1, we see an example of an experience that has elements of
the individual, social, and physical. The boys work individually on their
trips along the meter stick, with completely different purposes in mind, but
are forced to negotiate about their purposes when one of them reaches the
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end first, and “wins”. It is possible for them to work toward separate goals,
because each boy controls his own Cuisenaire rods, and can move inde-
pendently down the meter stick, unlike in the software environment where
the boy and girl characters move together. The individual, social, and physi-
cal elements are inextricable in this example and throughout these class
sessions. We believe that seeing mathematical experience as necessarily
individual, social, and physical all at once is a step toward grasping the
complexity inherent in this and all human experience.

Our own emerging understanding of Norman and Luke’s mathemati-
cal experience is grounded in our gradual noticing of how the same trip
enacted in the different environments involves different questions and ways
of acting. While using the Cuisenaire rods, one can ask, “Where are you
now?”, because at any moment both boys have reached a certain position
on the ruler by flipping the rods. In Moment 2 we see that while using a
table of numbers, one must define when “now” is, because the table repre-
sents in one place events that took place at many different times. One must
also define “who” is moving according to the table, because the same table
of numbers could be used to represent different actors, as we saw when
Luke put himself into the story he told about the table. In this way Luke
used his story about the table to link the Cuisenaire rods environment, where
he was in charge of moving, to this static table of numbers describing the
trip taken by an imaginary boy and girl. Thus, while we came to under-
stand the differences between the different environments, and the math-
ematical value of these differences, which we had been led to “forget” by
our own education, we watched the boys develop ways of linking the envi-
ronments together. '
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UNSPECIFIED THINGS, SIGNS, AND ‘NATURAL
OBJECTS’: TOWARDS A PHENOMENOLOGICAL
HERMENEUTIC OF GRAPHING

Wolff-Michael Roth
University of Victoria
mroth@uvic.ca

Over the past decade, there have been an increasing number of ethnographic studies
that document the pivotal roles and functions of representation practices in science
(e.g., Lynch & Woolgar, 1990). Among the representations, graphs are quintessential
because they (a) constitute the best tools to represent covariation between continuous
measures and (b) are useful to summarize large amounts of data in economical
ways (Roth, 1996; Roth & McGinn, 1997, 1998). Although graphing is typically
listed among the handful of skills biologists want university students to develop,
graduates from university science programs seem to be ill-prepared to engage in
scientific representation practices (Roth, McGinn, & Bowen, 1998). The present
study was conducted to construct better understandings of the interpretation practices
related to graphs among university students and professional scientists.

In the scientific community, the isomorphic relation between math-
ematics (including graphs) and the world appears to be taken for granted
(Lynch, 1991). The psychological literature similarly treats graphs as signs
that have unproblematic and unambiguous referents in the world (e.g., the
literature review by Leinhardt et al., 1990) despite several studies that
showed the considerable cognitive work involved constructing relations
between marks on paper and natural phenomena (e.g., Roth & Bowen, in
press). Our research findings fall in line with those studies that document
the considerable work involved in interpretation. Even scientists do not
treat most graphs as unproblematic indices to scientific phenomena. In fact,
many of our scientists’ interpretations and graph-related activities would
have to be categorized as wrong and inappropriate in classical frameworks
of analysis.

My study takes as its theoretical starting point a conception of cogni-
tion based in a theory of (social) practice which emphasizes the dialectic of
phenomenological experience in a world that is always and already shot
through with meaning. In the course of our individual experiences, we also
develop unique interpretive horizons. In any situation, when researchers
observe individuals in some task, such as interpreting graphs, we therefore
have to ask at least two questions. First, to what extent has the individual
participated in the practices that are used as (implicit) references for fram-
ing the analysis? Second, what is the individual’s ontology relative to task
and task elements? That is, rather than taking the nature of the task and task
elements as given, we have to find out what the task and task elements lock
like to the individual. The fundamental attitude taken here is therefore, that
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respondents act in worlds that makes sense to them, and that they make
moves that are allowable in the world as rhey perceive it. If the activities do
not make sense to the observer, if a problem solving move appears “wrong,”
we should assume that the problem lies with the observer who does not
have a good model of the problem solver and her world.

Data Sources

My database includes videotaped interpretations and use of graphs by
45 students enrolled in a second-year university ecology course, 10 stu-
dents in their fifth year of a post-baccalaureate elementary education pro-
gram who major in teaching science, and 15 practicing scientists from the
domains of theoretical and field ecology, forest engineering, and physics.
The graphs we asked our respondents to interpret were taken from the sec-
ond-year ecology course; scientists were also asked to bring and interpret
graphs from their own work. I also draw on materials from a 2-year ethno-
graphic study of field ecologists’ representation practices during data col-
lection and analysis.

From Unspecified Things to Signs and
to ‘Natural Objects’ death rate

AN
In the past, deficit models were used to

account for the “errors” students made
when interpreting graphs (Leinhardt et al.,
1990). For example, students interpreted /s

heights of graphs when they should have birth rate

Rate

interpreted the slopes and vice versa. Inter-
estingly enough, I found similar practices N
among many of our scientists who, for ex-
ample, did not attend to the recursive na- Figure 1. One of the graph
ture of the relationship between density de-  interpretation tasks in this
pendent birth and death rates (b=b[N]; study

d=d[N]) and the density of animal popula- .
tions (N) (Flgure 1). That is, some of our scientists mterpreted b-d<Oas
a situation in which the population goes extinct (which is not true on the
right end of Figure 1) rather than as one in which the population density is
adjusted with a subsequent change in b - d. Furthermore, it was evident that
even experienced scientists perceptually carved the graphs differently and
for each aspect identified, they had to find out whether or not it had any
relevance. Given the training (M.Sc. and Ph.D.) and experience (5+ years
in research) of our scientists, cognitive deficit models are implausible.

Another important finding was that the concems raised by the graphs

and the practices scientists engaged in differed widely. For example, some
field biologists found the population graph (Figure 1) unrealistic and sug-
gested that no sensible interpretation could be given. Others were concerned
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that the graph did not indicate the variations which would be found in real
data and therefore led to incorrect implications. There were differences
between biologists with conservation concerns and those that had manage-
ment concerns. The activities of field biologists also differed considerably
from theoretical ecologists and physicists. The latter were more concerned
with the modeling aspects and with finding other representations that bet-
ter showed the ‘real’ contents of the graph. For example, there were repre-
sentations of the (stable, unstable) equilibrium points (Figure 2.a) or popu-
lation density over time (Figure 2.b) that they derived from the population
graph. ' 4
Finally, rather than saying
) I what a graph means, that is,
’ - elaborating possible ‘natural
phenomena’ as referents
{graph —> ‘natural phenom-
UCN) enon’ }, we in fact documented
- - an ongoing movement from
graphs to possible natural phe-
-1.6 | nomena, and from familiar
0 N 10 natural phenomena to their
graphical representations
{ graph <—> ‘natural phenom-
ool enon’ }. In this dialectic move-
75 R ment. both graph and natural
N, 5 - phenomenon were mutually
. . constituted. As the interpreta-
25 = tion unfolded, our respondents
~ did not relate the graph ‘en
0 | 0 bloc’ to some phenomenon,
0 20 40 but related individual aspects
t of graphs to some phenom-
Figure 2. Representations computer-  €non tosee whether the aspect
generated by one scientist as he inter- 1S 1n fact relevant. For ex-
preted the population graph in Figure 1. ample, they asked, Is the slope
of the birth rate graph or its
height the aspect to be inter-
preted? or Is the maximum of the birth rate (b{N])__ or the maximum of
the difference between birth rate and death (b[N] - d{N])__rate a relevant
quantity?

10 Y

Phenomenological Hermeneutic Model

Given the problems of earlier models of graphing in accounting for our
data, we elaborated a new model which accounts for individual experi-
ence, common practices, familiarity with the referents. Our basic model
(Figure 3) combines semiotic relations between sign (text, graph), refer-
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g ents (or sign content or state of the
p c world), and interpretants (Eco,
1984) and situation semantics

I (Barwise, 1988). Accordingly, there

is a relationship between a state in

the world (propositional content P),

I(= SZ, <o Sn) the sign S standing for it, and the

ways this relation can be elaborated

Figure 3. Semiotic triangle with (interpretant). These relations are
conventional and circumstantial constrained by the social conven-
constraints. tions (r) currently in operation and

by the circumstances (c¢). The propo-
sitional content is therefore constrained by a relation of four parameters
C (S.¢) = P. This content has to be elaborated in some sign system, so that
we get into the familiar circular relationship of all sign systems and the
interpretants include all other ways of expressing the content (S,, S, . . . .
S ). Because of the conventional constraints, r, we can expect that the propo-
sitional-content changes with the practices of the relevant community. Fi-
nally, the circumstances of the sign interpretation (e.g., the historical con-
text of the interpretation, appearance of sign, source, familiarity of inter-
preter) affect the content. For example, when our participants talked us
through the graphs from their own work, these were largely transparent.
That is, rather than talking about the graph, and how its detail refer to and
represent some natural phenomenon, some of our participants talked about
the phenomenon and their personal experiences therein (see also Figure 5).
In one instance, a forest engineer did not engage in explanations such as
“This line means a decline in productivity with increasing logging dis-
tance,” but elaborated extensive narratives about logging, the contexts of
the operations, the machines and techniques involved, etc.

The model in Figure 3 is not suffi-

cient, for in most cases, the graphs as SIP
complete sign objects only emerged C C
from the interpretive activity. Our par- .
ticipants constructed the domain ontol- P S
ogy in the course of their task. Thus,
unlike with a word (e.g., “graph”) where
recognition is instant and where we do I
not have to wonder about its meaning,
a considerable part of the interpretation
sessions were taken up by the construc-
tion of the graph as a material sign that
only in the second instance referred to
something else (the natural object).
Thus, the graphical interpretation is
better described in an expanded model

Figure 4. During graph inter-
pretation, there are two levels
of (often overlapping ) activiry.
The right semiotic triangle
represents the construction of
the graph as sign object, the
left triangle the construction of
the sign content.
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which includes the interpretation of an initially unspecified thing which
becomes a graph, and therefore a sign object with the capacity to refer to
some state (phenomenon) in the world (Figure 4). P’ is the object, the graph
itself; S’ is the depth semantics disclosed by structural analysis; and the
interpretant is the chain of interpretations producable by the community
and incorporated into the dynamics of the graph (Ricceur, .1991). Our par-
ticipants’ interpretive activity is therefore described in the relation:

C,(S;,c) = C,(S! +82+...87.c) = C,(S},c)oC(S?,)o...0C(SP,0)

so that the “composite” interpretation arises from the interaction of the
interpretation of the individual elements. In a particular interpretation, one
element may not constrain the meaning of another (although it should). For
example, in the population graph an element from the ontology may be

S},g = {b - d < 0}, which was frequently interpreted as “the popula-

tion crashes”; this interpretation was often unconstrained by another
element which embodies the recursive nature of the situation

S;Z)g = {AN # 0 = A(b - d) # 0}. My research shows that to

understand each scientist’s interpretation, we had to reconstruct as far as
possible all elements S' of their domain ontologies and how these ele-

ments constrained each other.

Conclusions

Graphs are neither unequivocal, nor constitute sign structures that point
to unique ‘natural objects’ or lead to a coherent set of interpretation prac-
tices. The work reported here provides rich details of the subtle changes in
the ontologies (ensemble of elements perceptually available) of scientists
and science students as they engage in graph interpretation tasks. In the
course of the interpretation work, initially unspecified its are turned into
objects with particular topologies that are said to correspond to specific
features in the world. I theorize this interpretive work as a transition of
graphs from things to signs which come to stand for ‘natural objects’ and a
corresponding double matrix of shifting referents in the semiotic relation
of sign-referent-interpretant. Especially among physicists and theoretical
ecologists, graphs often become ‘natural objects’ in their own right.

This work has interesting implications for studying didactic situations
where practitioners (professors, teaching assistants) “explain” the meaning
of graphs. Here we find that on the instructor side, graphs do not appear in
the explanations but are largely transparent. Instructors talk about phenom-
ena without elaborating the mapping processes, based on a dialectic of fa-
miliar phenomena and representation at hand, which we observe when they
themselves interpret novel graphs (Figure 5). From a student’s perspective,
the instructional situation frequently involves a double problem that they

€93



P S neither know the natural phenom-
enon, nor have they constructed
the graph as sign object. In this
way, we made sense of our previ-
ous results which showed that

Population most students in an ecology class
gets bumped and even science graduates
metoorites (B.Sc.) hav‘e considerable diffi-
, cuities making sense of graphs or
individuals using them in appropriate situa-
get killed tions
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RE-THINKING COVARIATION FROM A QUANTITATIVE
PERSPECTIVE: SIMULTANEOUS CONTINUOUS

VARIATION
Luis A. Saldanha Patrick W. Thompson
Vanderbilt University Vanderbilt University
luis.a.saldanha@ vanderbilt.edu pat.thompson @ vanderbilt.edu

We hypothesize that students’ engagement in tasks which require them to track
two sources of information simultaneously are propitious for their envisioning
graphs as composed of points, each of which record the simultancous statc of two
quantities that covary continuously. We investigated this hypothesis in a teaching
experiment involving one 8th-grade student. Details of the student’s experience
and an analysis of his development are presented.

Confrey and Smith (1994, 1995) explicate a notion of covariation that
entails moving between successive values of one variable and coordinating
this with moving between corresponding successive values of another vari-
able (1994, p.33). They also explain, in a covariation approach, a function
is understood as the juxtaposition of two sequences, each of which is gen-
erated independently through a patiern of data values (1995, p. 67).
Coulombe and Berenson build on these definitions, and on ideas discussed
by Thompson and Thompson (1994b, 1996), to describe a concept of
covariation that entails these properties: (a) the identification of two data
sets, (b) the coordination of two data patterns to form associations between
increasing, decreasing, and constant patterns, (c) the linking of two data
patterns to establish specific connections between data values, and (d) the
generalization of the link to predict unknown data values (p. 88).

Thinking of covariation as the coordination of sequences fits well with
employing tables fo present successive states of a variation. We find it use-
ful to extend this idea, to consider possible imagistic foundations for
someone’s ability tc see covariation. In this regard, our notion of covariation
is of someone holding in mind a sustained image of two quantities values
(magnitudes) simultaneously. It entails coupling the two quantities, so that,
in one’s understanding, a multiplicative object is formed of the two. As a
multiplicative object, one tracks either quantity’s value with the immedi-
ate, explicit, and persistent realization that, at every moment, the other quan-
tity also has a value.

In our theory, images of covariation are developmental. In early devel-
opment one coordinates two quantities values to think of one, then the other,
then the first, then the second, and so on. Later images of covariation entail
understanding time as a continuous quantity, so that, in one’s image, the
two quantities values persist. An operative image of covariation is one in
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which a person imagines both quantities having been tracked for some du-
ration, with the entailing correspondence being an emergent property of
the image (Thompson, 1994a). In the case of continuous covariation, one
understands that if either quantity has different values at different times, it
changed from one to another by assuming all intermediate values.

Purpose and Method of Inquiry

We asked the question, What conceptual operations are involved in
students coming to envision and reason about continuous covariation of
quantities? We hypothesized that students’ engagement with tasks requir-
ing them to track two sources of information simultaneously are propitious
for their envisioning graphs as composed of points, each of which records
the simuitaneous state of two quantities that covary continuously. We elabo-
rated this hypothesis in a teaching experiment invelving one 8th-grade stu-
dent, Shawn.

The teaching experiment covered three sessions. In these sessions Shawn
engaged in a sequence of tasks centered around the activity of tracking and
describing the behavior of the distances between a car and each of two
cities as the car moves along a road (see right side of Figure 1). The bulk of
this report is on the results of the first two sessions.

The activity employed a Geometer’s Sketchpad sketch that allowed
Shawn to simulate the car’s movement by dragging a point with a com-
puter mouse. This sketch allowed Shawn to display, or not, individually or
simultaneously; the car’s distances between it and each city. He could also
chose to display those distances as perpendicular segments (Figure 1). Fi-
nally, the sketch allowed him to display a point of correspondence and its
locus. These latter options, however, were made available to him as in-
struction proceeded (as were others, such as displaying axes or not). They
were unavailable at the outset.

Dist frem A

Figure 1. Two snapshots of car positions. In each snapshot, Distance
from A and Distance from B are each represented by a line segment’s length.
In the snapshot on the right, point P is displayed as the correspondence of
the perpendicular segments representing AC and BC.

BEST CUpy Aval amit
299 2 n



The sequence of tasks was in three phases, each focusing on succes-
sive levels of operativity in images of covariation. We call the phases en-
gagement, move to representation, and move to reflection. Engagement
tasks focused on having Shawn come to understand the setting portrayed
by the sketch and the basic task of tracking distances. Move to Representa-
tion tasks were intended to support Shawn’s internalization of the
covariation. Move to Reflection tasks were intended to have Shawn come
to imagine completed covariation and its emergent properties.

Results and Analyses

Phase 1: Engagement. In the Engagement phase, Shawn was directed
to move the car along the road while watching the distances between the
cities and the car. He was also asked to describe each distance’s behavior in
relation to the car’s position along the road. The vertical segment was vis-
ible while Shawn investigated the behavior of AC; the horizontal segment
was visible while he investigated BC (Figure 1).

Shawn’s observations of AC were at two levels. First, he immediately
noticed the decrease in AC as he moved C (the car) away from one end of
the road, and the ensuing increase in AC as the car passed the point where
AC was smallest. He watched the vertical bar closely while moving C,
referring to its height (and changes in it) interchangeably with the distance
between C and City A. Shawn at first focused only on the distances, not the
rates at which distances changed. After being asked whether AC changed
faster in some places than in others, Shawn focused on the deceleration and
acceleration of AC’s length with respect to the changes in C’s position.
Shawn built up images of this accelerated change by noticing that the varia-
tion in the bar’s height is almost imperceptible for positions of C near where
AC is minimum and that at points farther away (e.g., endpoints) AC changes
more with the same changes in C’s position. His coordinations remained
between changes in the bar’s height and changes in C’s position. This is as
opposed to coordinating changes in AC with changes in C’s distance from
its start.

Shawn’s observations of BC were at the first level; he gave an analo-
gous description of BC’s behavior in terms of the systematic variation of
the horizontal segment.

Shawn then displayed both perpendicular segments simultaneously,
together with a point, P, showing the correspondence of their lengths (see
right side of Figure 1). He tracked the motion of point P as he moved the
car along the road. His tasks were to describe the behavior of point P, and
to say what P and its locus represent. Shawn said of P’s motion, it moves
with the two bars O. It moves along with the X and Y axis. He eventually
wrote the following description:

It shows the car getting closer to the cities as both are decreasing.

At one point the bar indicating City B pauses, meaning the closest

point to City B, as the bar referring to City A keeps declining, be-
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catise it is not yet at the closest point to City A. As I approach City

A the bar pauses, telling me that [ am ciosest to City A, while the

bar referring to City B increases because the distance is increas-

ing and City A is increasing.

Shawn gave this description with no recourse to the GSP sketch. It was
as though he mentally moved the car, watching the variation in AC and BC.
This is consistent with his having internalized the experience into a coher-
ent set of actions and images which he could re-present (von Glasersfeld,
1995; Piaget, 1970).

Shawn struggled to understand the relationship between P and its lo-
cus, however. Underlying his difficulty was some uncertainty as to what P
represented. At first Shawn explained that a location of P is a graphical
representation of the position of the car on the road. He eventually began to
develop a proto-multiplicative view of P, seeing that it’s location combines
the distance between the car and the two cities and represents how far or
close you are to the two cities [...] ‘cause you see both the bars.

Shawn’s initial conception of the locus of P is revealed by his asser-
tions: this [the graph] is where the car’s traveling [...] the road must not be
straight, it must be curved, and the car must be the correspondence point
and the road must be the graph. After being asked if the graph tells the car’s
position on the road, Shawn eventually came to view the graph as the path
of P which marks the distance between the two cities. He arrived at this by
reflecting on the relationship between P’s location and its locus, a process
that involved having to explain what information was given by P’s being in
each of several specific locations.

Phase II: Move to representation. In this phase Shawn was presented
with depictions of various road-city configurations. He was asked (a) to
imagine and to describe the two distances behaviors, (b) to draw a predic-
tion of P’ locus as the car moved along the road. He used the sketch to test
a prediction; we discussed each result.

Imagining and describing the behavior of P were difficult for Shawn.
He required pencil and paper to reflect on the details of how changes in AC

- and BC would affect changes in P’s location. He drew a hypothetical start-
ing position of P and orthogonal arrows to indicate the change in P’s posi-
tion according to changes in AC and BC. By coordinating the values and
changes in AC with those of BC he would deduce, and plot, new positions
of P. He would then decide on the graph’s shape and draw a rough sketch of
it. In this way he was generally able to successfully predicted the locus’
monotonic portions. The concavities he predicted were always opposite
those generated by the sketch. For the first road-cities arrangement, Shawn
was unperturbed by the discrepancy. He downplayed it, saying, So my pre-
diction was pretty accurate but I forgot to leave out that little part there.
When asked why he thought the graph should be arced one way instead of
the other, he stated, All I knew is it was gonna go forward and down. O. 1
didn’t know which way is the arc. In succeeding tasks Shawn became in-
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creasingly concerned about discrepancies between predicted and actual
concavity. The question of how to know the concavity remained an open
one.

Phase III: Move to reflection. In this phase Shawn was presented with
various graphs plotting AC versus BC. His task for each was to explore and
predict possible locations of the two cities relative to the road so that the
car’s movement would produce that graph. Figure 2 shows a graph exam-
ined by Shawn.

Dist from A

O
0 Dist from B

Figure 2. A graph of AC versus BC corresponding to the
completed motion of the car along the road relative to
fixed locations of city A and city B

Shawn identified those points on the graph corresponding to extreme
values of AC and BC and he anchored his descriptions of the variations of
the two distances around these points:

This is always going closer to A, ‘cause it’s always going down {...]
This seems to be the closest point to B then it starts going right, back up
[...] You’re farthest from A and closest to A at the extremes of the graph.
So figuring it’s at the extremes of the road too, at the end of the road [...]
The closest point to B must be in the middle of the closest point to A and
the farthest one from A.

Thus, Shawn’s images were of the completed variation of each of AC
and BC individually. Coordinating each quantity’s variation with its ex-
treme values allowed him to deduce plausible locations for each city. In
this way he was able to construct a corresponding road-cities arrangement,

apparently without imagery of AC and BC explicitly covarying simulta-
neously.



Conclusions

The results of this study lead us to believe that understanding graphs as
representing a continuum of states of covarying quantities is nontrivial and
should not be taken for granted. Shawn’s predominant imagery is consis-
tent with his having developed a level of operativity at which he could
intricately coordinate images of two individually varying quantities. There
was also suggestion of his developing images of their sustained simultane-
ity, one that did not explicitly entail a conception of tight coupling so that
one variation is not imagined without the other. Seeing graphs as intended
here seems to require having tight coupling as a central feature of one’s
imagery.
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NOTATION AND LANGUAGE: OBSTACLES FOR
UNDERGRADUATE STUDENTS’
CONCEPT DEVELOPMENT

Marilyn P. Carlson
Arizona State University
carison@math.la.asu.edu

A broad assessment of undergraduate students’ function understandings was
conducted by administrating a written exam and performing follow-up interviews
with 60 precalculus students and 60 second semester calculus students. Results
revealed that both groups of students had difficulty interpreting algebraic function
notation. In fact, their inability to interpret the meaning of algebraic symbols was
frequently the major obstacle in formulating their responses.

The precalculus students in this study were unable to accurately deter-
mine the solution(s) of f(x) = g(x), given the graphs of f and g. They did not
recognize that f(x) refers to the “y-value”, representing the vertical dis-
tance of the graph from the x-axis, and did not appear to recognize that
“solving” an equation involves finding the x-value(s) where the y-values
(heights) of the graphs are equal. Although some students were able to
provide the correct answer to this question, even these were unable to pro-
vide a logical explanation for their solutions. They referenced f(x) as “f
times x”’, and indicated that solving f(x) = g(x) involved “finding where the
graphs cross”.

When prompted to determine graphically what was represented by the
expression F(EQ \f(x + y,2)), given a quadratic function F, most of the
second semester calculus students had difficulty. They did not recognize _
EQ \f(x + y,2) as the average of two inputs. When asked to graphically
represent EQ \f(F(x) + F(y),2), these students were unable to generate words
to describe these symbols and were ineffective in discussing the graphic
representation of this expression.

The students in this study had difficulty referencmg and mterpretmg
symbols in the context of a problem. Rather than struggle to “make sense”
of mathematical notation, these students appeared content to work with
superficial understandings. Only when confronted with more complex prob-
lems did many of their superficial understandings become apparent, sug-
gesting that students need to encounter problems that promote their ability
to verbalize using the language of functions.
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SIXTH GRADERS EXPLORE LINEAR AND
NONLINEAR FUNCTIONS

Mindy Kalchman
University of Toronto
mkalchman@oise.utoronto.ca

A group of sixth grade students (n=10) were introduced to the concept of functicn
using a context-oriented, computer supported curriculum. Specific difficulties that
older students have been reported to encounter with this topic were addressed.
These included (1) understanding the notion of a variable (e.g., Collis, 1975), (2)
understanding the notion of a contingency relationship between two quantitative
variables (Piaget, Grize, Szeminska, & Bang, 1977), and (3) recognizing
equivalency among the different representations of a function (e.g., Artigue, 1992).

The context of a walkathon was used to introduce students to func-
tions. This context was chosen because children are familiar with money
and distance as variable quantities, and understand that the money one earns
in a walkathon depends on the distance traveled. Students invented differ-
ent rules of sponsorship, and worked on identifying the characteristics of
these rules in their graphic, tabular, and algebraic forms. Next, using spread-
sheet technology, students explored how the different representations of a
function are connected. This technology allowed students to see the alge-
braic, graphic, and tabular forms of a function simultaneously, and to wit-
ness the automatic effect that varying a parameter in one representation has
on the others.

Pre- and post-instructional interviews were conducted. Students were
asked a set of questions which were designed to measure (1) prefunction
skills, (2) a basic understanding of the function concept, including the no-
tion of a contingency relationship and the many ways of representing it,
and (3) advanced functional reasoning. Overall, students improved signifi-
cantly. The majority of children were successful on items related to
prefunctional and basic functional understanding, but were not as success-
ful on items requiring advanced functional reasoning.

A qualitative look at students’ responses to individual items was also
undertaken and showed that following instruction, students had at least a
preliminary understanding of the concept of variable and of the notion of a
contingency relationship. They also had developed flexibility in represent-
ing a function, and could recognize equivalency among the different repre-
sentations.
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PROCESS, STRUCTURAL, AND ENTITY COGNITION
OF LINEAR FUNCTIONS IN A GRAPHING
TECHNOLOGY ENVIRONMENT

Francine Cabral Roy Jon Davis
University of Wisconsin Madison University of Wisconsin Madison
fmroy @ students.wisc.edu jondavis @students.wisc.edu

Much of the research on the leaming of functions addresses dual con-
ceptions of functions as process (procedural) or object (structural). The
purpose of this study was to analyze student cognition of functions in a
technology based graphical environment through a process/object lens. Our
choice to study the graphical representation is shaped by the explosive
growth of graphing technology (Steen, 1990; Dugdale, 1993; Dunham &
Dick, 1994) and the lack of empirical evidence to support the claim
(Goldenberg, Lewis, & O’Keefe, 1992; Kieran, 1992; Sfard, 1991) that
graphs encourage structural (object) understanding.

The participants in this study (n=12) were enrolled in a remedial col-
lege algebra course. After conducting a two hour lesson on the use of the
CBL technology to create distance versus time linear graphs, students were
interviewed about a set of tasks situated in the Hiker program context. To
analyze structural understanding, the tasks required graphical translations
based on (a) a change in starting position (vertical translation), (b) a change
in speed (angular translation), and (c) a time delay in starting (horizontal
translation). :

All interviews were video-taped and transcribed. Using ethnographic
techniques (Emerson, Fretz, & Shaw, 1995), the data was coded for gen-
eral themes and then recoded for more local themes. The final recoding
distinguished our definitions of process and structural graphical understand-
ing as well as identified an alternative entity student understanding of the
graph as an iconic figure. Only three students exhibited consistent struc-
tural understanding across tasks. The rest of the students’ process/struc-
tural/entity notions were task dependent. In addition, the distribution of
process, structural, and entity explanations differed among tasks.
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DIFFICULTY OF HIGH SCHOOL STUDENTS
UNDERSTANDING THE DIFFERENCE BETWEEN
DRAW-POINT AND PAIR-POINT

Claudia Acuna S.
Depto. Matematica Educativa
cacuna@mail.cinvestav.mx

Most high school students have already had some experience in
plotting points to draw a straight line, usually with success. But these expe-
riences do not make them aware of the differences when the point is on the
plane like a pencil mark and when its main role is of an object linked to a
pair of numbers. Goldenberg (1988) said that: “Young children have more
difficulty coordinating two independent characteristics of an object than in
centering their attention on one of them”, in our case the points that belong
to horizontal or veriical planes have powerful visual images. Our research
examined the: transformations between graphical, algebraic and natural lan-
guage representations when students know how to plot in the plane. Three
groups of high school students (n1= 87;n2=87; n3=77) were asked: What
common characteristics do all the points have on the shadow zone? Stu-
dents were shown the graphs pictured in Figure 1. Pair-point explanations
were given in 1°, natural language indications in 2° and graphic representa-
tions in 3°. Table 1 presents the students’ results

Reference

Goldenberg, E.P. (1988). Mathematics, metaphors and human factors:
mathematical, technical and pedagogicalchallenges in the educational use

of graphical representations of functions. Journal of Mathematical Behav-
ior. 7, 135-173.
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Table 1.

Student Results
negatives negatives negatives  others y<-4
positives  negatives y<-n
positives y<n
1° 21.8% 5.7% 5.8% 31% 19.5%
2° 31% 10.3% 8% 28.8% 16%
3° 5.5% 0 0 31.1% 36.3%

With 7.8% that take x like y in C6; Absent C2, 14.9%; C3, 4.5%; and C6, 16.9%

C3
b
o

314



PRESERVICE ELEMENTARY TEACHERS’ USE OF
FUNCTION REPRESENTATIONS IN ANALYZING
DATA SETS IN SCIENCE CONTEXTS

Anita H. Bowman B. Gray Bowman
High Point University High Point University
abowman@acme.highpoint.edu

The purpose of this study is to determine changes in function represen-
tations used by preservice elementary teachers when engaged in the task of
writing conclusions based on tables of scientific data. Data set homework
assignments were presented — at the beginning of the course, at approxi-
mately the midway point, and at the end of the course — to each of 26
preservice teachers enrolled in a sophomore-level physical science course.
Each teacher analyzed, in randomly assigned order, data for the following
functional relationships: (a) air pressure inside a soccer ball versus its re-
bound height; (b) angle of inclined plane versus time required for a toy car
to travel the set distance; and (c) amount of hydrochloric acid added to a
galvanic cell versus the voltage reading for the cell. In each case subjects
were asked to write conclusions based on the given data set, explain fully
their thinking in reaching that conclusion, and turn in all their written work.

Between the first two data set assignments, subjects completed 7 labo-
ratory activities in which they were taught to analyze data by hand-graph-
ing the data set, and, if approximately linear, (a) drawing the best-fit-by-
eye straight line, (b) writing the equation in y = mx + b form, and (c) writ-
ing a quantitative conclusion based on the equation. That is, they were lead
to consider each of the data sets in terms of five functional representations:
situation, table, graph, equation. and verbal description. Between the sec-
ond and third data set assignments, subjects were taught to analyze data
sets by linear regression analysis using TI-85 calculators.

Analysis of subjects’ responses for homework assignments was based
on function representations used. Results for the initial data set assignment
indicate that subjects began with a strong dependence on tabular represen-
tations. There were subsequent shifts to use of graphical (15%, 46%, 46%)
and equation (0%, 42%, 38%) representations, but, surprisingly, no increase
in quantitative (versus qualitative) conclusions (35%, 23, 31 %). The fairly
nominal transfer of learning from laboratory situations to data set home-
work assignments might be serious cause for concern about how these sub-
jects, in the future, will teach their elementary school students to make
sense of functional data.
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FIRST YEAR ALGEBRA STUDENTS’ DEVELOPMENT
OF THE CONSTRUCT OF COVARIATION

Wendy N. Coulombe Sarah B. Berenson
North Carolina State University North Carolina State University
" wendy.coulombe berenson@unity.ncsu.edu

@ PenchantResearch.com

To better understand the ideas about functions that beginning algebra
students bring to the classroom, eight first year algebra students were inter-
viewed about their intuitive knowledge of covariation. The concept of
covariation is based on the idea of change, that is, how changes in one
quantity relate to changes in another. For example, when considering an
increasing quantity, students use ideas of covariation to determinre if an-
other quantity is increasing, decreasing, or remaining constant. This study
asserted that the concept of covariation entails (a) the identification of two
data patterns, (b) the coordination of two data patterns to form associations
between increasing, decreasing, and constant patterns, (c) the linking of
two data patterns to establish specific connections between data values,
and (d) the generalization of the link to predict unknown data values.

Given problem settings which require understanding of the relation-
ship and change of two variables, we assert that students’ ideas tend to
evolve through three levels of thinking. We labeled these categories naive
thinking, transitional thinking, and extended thinking. At first, students think
in terms of procedures and formulas, and their view of function is prima-
rily based on naive conceptions about slope. Next, as students’ understand-
ing of covariation begins to emerge, they are able to vary two quantities
simultaneously and think in terms of patterns of covariation. Finally, when
they extend their thinking, students are able to recognize the particular re-
lationships that link covarying quantities.

The study of functions, appropriately introduced, can serve as « bridge
from arithmetic thinking to algebraic thinking. The covariation perspective
is an informal approach to the function concept that can leverage students’
intuitive knowledge to help them make the connections necessary for mean-
ingful learning of algebra.
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SOME DIFFICULTIES FOUND IN THE LEARNING
OF CONTINUOUS FUNCTIONS IN FIRST YEAR
UNIVERSITY STUDENTS OF ENGINEERING

Hectqr Lara-Chavez
Unidad de Matematica Educativa
ICE-UAEM, ITZ

First year engineering students’ notions of continuous function were
explored during university instruction (n=45). According to Hitt (In Press)
and others, the problems that students experience when learning a concept
are related to difficulties, errors, obstacles, and the lack of articulation be-
tween representations of the concept. The obstacles, difficulties and errors
may be related to the primitive conceptions of the students, pedagogy em-
ployed to teach them, to the perceptions of the students, or to the way in
which they learn. This study of the difficulties was conducted during the
semester of September 1997 to February 1998 with students from two
universities in Mexico. The study was based on a series of two question-
naires about continuity of functions. We explored students’ ideas in several
semiotic systems of representation: in graphical, numerical, algebraic and
natural (or verbal) representations. The students’ difficulties appeared re-
lated to: a) concept of variable, b) perceiving no distinction between equa-
tion and function, c) concept of function, d) translations between semiotic
systems of representation, e) operations with functions , f) notion of limit.
[t seems these difficulties were due to a mix of beliefs and poor teaching.

Reference

Hitt, F. (In Press). Difficulties in the articulation of different representa-
tions linked to the concept of function. Journal of Mathematical Be-
havior.
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ANALYZING CHILDREN’S LENGTH STRATEGIES
WITH TWO-DIMENSIONAL TASKS: WHAT

COUNTS FOR LENGTH?
Jeffrey E. Barrett Douglas H. Clements
Illinois State University State University of New York
jbarrett@math.ilstu.edu at Buffalo

clements@acsu.buffalo.edu

Children coordinate their numerical and spatial knowledge whenever they measure
space in two-dimensions. In this teaching experiment, fourth-graders measured
and described general cases of polygons that satisfied specific constraints for
perimeter or side length. Findings suggest that the transition between uni-
dimensional and bi-dimensional geometric contexts requires extensive coordination
operations involving numerical and spatial knowledge structures if children are to
establish robust structures lirking length, perimeter and area concepts. The progress
of one child is examined in context to elaborate on the ways he restructured his
strategic knowledge of length to incorporate measures of perimeter. Conclusions

regarding instructional sequencing are given, along with suggestions for continuing
investigation.

Curriculum in geometry typically assumes that children can learn to
distinguish area from perimeter by fourth grade, although national tests
have indicated otherwise (Lindquist & Kouba, 1989) . As noted by Kamii,
many educators suggest that children usually confuse area and perimeter
concepts, leading to erroneous responses on both types of task. Kamii
counters that children make errors on tasks involving area because of their
inability to abstract area from linear measures of space; children cannot
understand area until they gain the abstract notion of area as a continuous
‘band’ or matrix of one-dimensional lines (1996) . Even the measure of
linear quantity along a line segment is problematic for many children
younger than twelve years; children who have not developed iterative strat-
egies are inclined to count items rather than sub-segments, overlap or gap
their iterative operations, and miscount the endpoints, especially with ruler
markings (Boulton-Lewis, Wilss, & Mutch, 1996; Cannon, 1992) . Thus,
perimeter tasks, like area tasks, may demand extensive coordination of
linear operations (Barrett & Clements, 1996) . We argue here that opera-
tions for measuring perimeter cannot be interpreted as counting operations
within a single dimension, but as a coordination of one-dimensional ob-
jects within two-dimensional space.

Methodology

This paper is part of a wider study of children’s understanding of length
concepts; we carried out a comprehensive teaching experiment with four
children during the Spring of 1997 (Barrett, 1998) . These children repre-
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sented distinct strategies for length and measurement. We sought to char-
acterize the mathematics of the children themselves, attempting to make
sense of their strategies and progress from within their own collection of
concepts and practices (Steffe & Thompson, in press) . Our analysis was
two-fold, involving an on-going negotiation between the mathematical
thinking of the subjects and our developing models for their geometrical
thinking. We employed a framework developed by Clements et. al. (1997)
and a set of constructs that derived from a pilot study (Barrett & Clements,
1996) . We focused intensively on negotiations, conflicting meanings and
growth as indicators of developing abstraction through increasingly con-
nected representational structures.

Setting a Context for Alex’s Story

Anna, Alex, Natasha and Paul exhibited four distinctive strategies for
length. We employed a set of three strategy levels to analyze their work
(Clements, 1997) . Alex moved from an early level 2 strategy to a more
advanced level 2, verging on the use of level 3 strategies near the end of the
study. We begin our account of Alex’ developmental “growth spurt” by
summarizing the changes in the other three. First, Anna, understood length
by direct, visual, gross comparison, and sometimes by making inexact cor-
respondence between her counting sequence and the number of visibie
markers along an object. Anna eventually came to depend less on direct
comparison, reflecting instead on her motor activity. Paul, in contrast, un-
derstood length by a formalistic and abstract process: he projected concep-
tual units of units in one- and two-dimensional settings. He combined and
decomposed linear figures by constructing and monitoring connections
between one-dimensional and two-dimensional units of measure. Alex and
Natasha tended to express length as the number of perceptual markers
counted along an object. They counted pseudo-units for length. While Alex
often employed visual guessing and did not establish consistent counts be-
tween parts and whole for polygons, Natasha was more consistent in her
use of hash marks for length and perimeter. In particular, Natasha was able
to establish a careful correspondence along a single dimension, but not
along a two-dimensional path, whereas Alex usually failed to establish such
correspondence. We sought to understand Alex’ attempts to resolve pertur-
bations he met while trying to coordinate his counting sequences along
one-dimension with his active re-presentation of two-dimensional perim-
eter tasks.

Counting discrete items along an object: An inadequate strategy

In the first session Alex measured length along an object by pointing to
the visible markers sub-dividing it; he counted along a plastic straw 48 cm
in length, marked at 2 cm intervals with small notches cut from its surface.
The interviewer suggested that the straw was 24 long, showing him a way
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of sectioning off first one part of the straw by bending it at the first notch,

and then three, bending it at the third notch. Then he asked Alex to find the
length:

Alex: One, two, three, ..., twenty-two, twenty-three.
Int.: Okay. and you are touching what?

Alex: The holes.

Int.: And you are counting what?

Alex: How much there are.

Int.: How much what? 23 or 24 what?

Alex: That there’s a length.

Alex believed he had found the length by counting the number of holes
along the edge of the plastic straw. Initially, he appeared to take the holes
as components of length along the straw. Alex did not appear to operate on
a conceptual image of units of length. His way of marking length did not
include the generalization that would have led him to point finally to the
end of the straw: he aiways stopped at the last hole, failing to count the last
interval along the straw. However, later during that same interview, Alex
drew a rectangular figure that he marked by making both hash marks and
dots, placing a dot in between each set of hash marks, 24 dots in all around
the perimeter of the rectangular figure. The dots corresponded exactly with
the partitions created by the hash marks. Thus, by the end of the first inter-
view Alex was able to discriminate between marks that delimited subdivi-
sions along a continuous line segment (indicated by the hash marks) and
the subdivided portions of the line segment (indicated by the dots). None-
theless, Alex persisted in stating that the straw was 23 long, and not 24.

Apparently Alex allowed a disjointedness between his perceptual im-
ages for length and his conceptual notions for iterative counting operations
on lengthi tasks, much in the same way that the children in Fischbein’s
study could at once explain that a geometric ‘point’ might not constitute
length or area in one context, yet attribute length to that point in a different
figural context (1993) . Alex needed an operational model for connecting
one-dimensional line segments into a perimeter.

Abstracting a ‘wrapping’ metaphor for perimeter: putting fringe on
arug

By now, Alex had used tiles in two different ways by this time during
the teaching experiment, both to find length and distance across a band of
tiles, and as a way of covering a two-dimensional region. During the third
session, Alex combined his existing scheme for length with a ‘wrapping’
scheme: the interviewer asked him to consider how many “tiles” worth of
fringe one would have if they were to wrap fringe around a rectangular-
shaped rug in that room (the rug was roughly 2 tiles wide and three tiles
long). He eventually found that it would require about 10 tiles worth of
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string. Later, the interviewer asked him to imagine placing fringe material
around a rug that would be seven tiles by six tiles on its sides. Alex looked
down at the pattern of floor tiles. He started to walk and count aloud as
before, taking four steps in the first four tiles, but stopped:

Int.: Tell me about the perimeter of this rug. How much fringe
do you need to buy for this rug?
Alex: [starts to walk around it, taking four steps inside the tiles

but suddenly he stops, pauses, and begins talking:] 14, 12,

...[inaudible words here] 6 and 61s 12 7and 71s 14
10 and 101s 20 plus 4 plus 2 is 6, its 26.
Int. You got 26?
Alex: Yeah.

He was beginning to depend on arithmetic schemes for numbers: he
began trying to compose perimeter by summing two pair of equivalent
values, based on symmetries (e.g. ‘S and S is 10”). While this spontaneous .
reorganization led him to stop walking around the physical perimeter (the
rectangular figure in the tile floor), as the interviewer, I could not yet be
sure of what kind of length units he intended. I supposed his invention of
an arithmetic solution was not yet integrated into his figurative perception
of the floor tile pattern. So I asked him about his meaning for “units”. He
offered a tentative response that it was “26 tiles”. At this point he used
large sweeping motions of his arms to point out entire rows and columns of
tiles in the floor along the four edges:

Int.: What does 26 mean here?

Alex: Twenty-six tiles?

Int.: Are there 26 square tiles? where are they?

Alex: Seven across here [sweeping his hands along one edge],

and six across there, [sweeping his hands along the next edge] and 7 across
there . . . '

At the time, I believed he was referring to the literal tiles, both and
columns of tiles (suggesting an area unit). His hand-sweeping motion to-
ward rows and columns of tiles confirmed this belief.

As he stood looking at the tile floor and trying to describe how the 26
tiles could make up the perimeter of the rectangle pattern, I asked him once
more to identify the 26 tiles. I expected that he would either count each
comner tile once and find only 22 tiles, or count outside the figure and find
30 tiles. He began to reflect on his own actions and on his efforts to coordi-
nate four sides:

Int.: So show me the 26 tiles. Where are they? Can you step in one at
a time and show me all 26?

[Alex walked around two sides and counted aloud up to 13, but seemed
concermned. He halted immediately after stepping through the second side
of the figure. I asked him to start over for the camera:]
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Alex: One, 2, 3,4, 5, 6,7, [7 is the corner tile. He turns the cor
ner, and says:] 8, but, no, it can’t be, (with unusual vocal
emphasis) [pausing]

Int.: What do you mean?

Alex: Because you gotta add an extra tile, or use it again.
Int.: Tell me?

Alex: ‘Cause I already used this tile and I gotta use it again.
Int.: Why?

Alex: Because I will not get six unless I do.

Alex paused. He was still counting the corner tile as one unit of length,
and so by the time he reached the final tile on this second side (6 tiles long),
he had only counted on by five, reaching twelve, but he said “thirteen”. His
hesitation was apparently based on reaching 13 unexpectedly.

Discussion

Alex was ready to re-organize his tile counting scheme for length, but
only when his scheme kept him from counting around corners; he wanted
to count the corner tile twice now, but lacked an effective justification for
his new scheme. He needed a conceptual scheme to fit this context; Alex
was still constrained by his one-dimensional concept of perimeter, follow-
ing from his use of arithmetic operations as connectors to extend his one-
dimensional measures of length into the two-dimensional world of perim-
eters and polygons. Kamii (1996) suggests the need for children to distin-
guish between discrete quantities of square tiles and continuous regions,
and of distinguishing between uni-dimensional thinking and bi-dimensional
thinking respecting area tasks. Such discrimination may also be required
for perimeter tasks. Cannon (1992) distinguished between counting dis-
crete symbols directly as items in a collection and counting symbols indi-
rectly as subdivisions along a continuous dimension . We argue here that
the operations necessary for measuring perimeter cannot be interpreted as
counting along a given dimension, but as a coordination of one-dimen-
sional-objects through a second dimension.

All four children in the study were distracted by the perceptual sa-
lience of the notches on the straw, and by the square tile images; they
struggled to isolate length along edges in these complex settings (Steffe,
1991) . For example, Alex learned, through the course of these sessions, to
differentiate between abstract definitions (which Fischbein terms *“concep-
tual geometric knowledge™) and figural-graphic images (which Fischbein
terms “figural geometric knowledge”). When he met crises, like when his
arithmetic knowledge led him to question his counting of just 12 tiles along
two edges that he expected to sum to 13, Alex’s abstract numerical notions
took precedence over his figural images, a finding consistent with work by
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Ferrari (1992) . This account of Alex’s work supports the generalization
that children who integrate their conceptual and figural-imagistic knowl-
edge resolve perturbations more easily than those who do not (Clements,
1997) . '

How do children learn to distinguish between continuous and discrete
quantity? In this study, Alex often tried to coordinate his experienced it-
erations along a linear object and the reified markers along that object sym-
bolizing a previous movement through continuous space. Whenever these
two sequences did not correspond exactly, there was a perturbation involv-
ing the symbolized unit (a continuous unit) and the symbolic item (a dis-
crete item). Alex was forced to distinguish between parts of a continuous
quantity (the un-segmented linear object) and the delimiters used to parti-
tion that quantity (the hash marks) (Steffe, 1991) . The question, *“what are
children counting for length?” still needs to be addressed in further detail.
The question can be posed more generally: “*how does one count a continu-
ous quantity?” Ultimately, measurement operations appear to undergird
children’s knowledge of quantity and counting.
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HOW HAS MEASUREMENT BEEN TAUGHT IN MEXICO?

Mariana Saiz
Cinvestav IPN Mexico
msaiz@correo.ajusco.upn.mx

The structure, organization and contents related to measurement in the primary
school curriculum have changed along time. An analysis of the textbooks used in
school in Mexico at this level, in the last hundred years, offer us a view of the
modifications and the coincidences of these models. The identification of seven

stages that correspond to different models of teaching mcasurement is a result of
this review. '

Irtroduction

This work is inscribed in the larger research project named Teacher’s
Thinking About Volume and its Teaching.' The method selected for devel-
oping the research is the local theoretical models theory (Filloy, 1993).
This is an observation theory that gives structure to a global project. For
this purpose it integrates four theoretical components -formal competence
models, cognitive processes models, communication processes models and
teaching models -, this paper exposes the advances performed around an
aspect of the latter one.

The teaching models component requires the proposal of a volume’s
teaching pattern, suitable to the goals of the global project. In order to at-
tain this aim the execution of different tasks 1s necessary, one of them is
reported in this paper. The analysis of other proposals for volume’s teach-
ing must be analyzed too. The results of the research presented here reflect
the volume’s educational tradition, an important aspect to consider when
working with teacher’s thinking and beliefs. Furthermore, in the same sense,
it is important to take in account the teaching model the professor or future
professor was taught with.

The construction of the different components is enriched by and gives
place to conceptual nets. In them it is possible to distinguish the different
elements that interfere in the observed mathematical ideas teaching. These
nets take in account the results of the mentioned tasks, as well as the differ-
ent aspects of the concept in question from a mathematical point of view
(which has to do with the formal competence component). Also, they con-
sider the cognitive processes that occur in the subject when leaming vol-
ume (which can be obtained from the cognitive processes models). In the
textbooks analysis, the formal competence models component has taken

''This project is directed to the attainment of the Ph. D. degrec in the Educational
Mathematics department of Cinvestav [IPN MExico under the gudance of Ph. D.
Olimpia Figueras.
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an important role by means of the didactical phenomenology of volume
proposed and performed by Hans Freudenthal (1983).

Teaching models in the Mexican textbooks (1898-1998)

The analysis of the textbooks used in Mexico gave as result the identi-
fication of seven stages, according to teaching patterns distinguished, the
place occupied by measurement in the textbook, the proposed activities
and the posed questions.

The changes observed from stage to stage are a consequence of
educational reforms related to alterations in the paradigms of educational
investigation as well as to political modifications in the history of Mexico.

It is important to comment that the Mexican Constitution contemplates
education in its structure. The third constitutional article regulates educa-
tion. The considered period limits in this work, coincide with moments in
which changes to this article took place, some others correspond to modifi-
cations in the structure of the country’s educational system established in
educational reforms. Almost half of the period of time considered in this
study has been an unstable one in Mexican’s history. At each stage, a brief
description of the historical moment is included.

From 1898 to 1929

In this stage the primary instruction was not official, the regulations of
the time established the existence of something called “rudimentary in-
struction” that lasted two or three years (Ornelas, 1997). It is interesting to
stand out that at the beginning of this stage the Decimal Metric System was
recently adopted in Mexico as the official measurement system.

The textbooks for the primary instruction are all titled Arithmetic, many
of them do not specify to which level they correspond. There exist text-
books called Geometry but they seem dedicated to older pupils, so the former
ones are the only considered here.

In these books there is no chapter or section dedicated to measuring as
an activity, in some of them there isn’t even a chapter dedicated to mea-
surement systems. In case there is one, it appears at the end of the book,
with no previous work or definition. In most of the cases, this chapter re-
duces to a table presenting the measurement units and their equivalencies.
Probably this is due to the fact that the new metric system was being intro-
duced. Although some books have no reference to measurement, all of them
include problems with data in denominated number forms, such as 5 liters,
20 kilometers and so on (Pape-Carpentier, 1883). Some authors present the
measurement system as an application of arithmetic. Such is the case of a
textbook which states “We have considered the numerical quantity as an
abstract subject, now we are going to study it from a practical point of view
or as refereed to another unity” (Echeagaray Allen, 1899, p. 54).
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From 1930 to 1945

After the Cristiada, Mexico affronted a critical moment. An economi-
cal crisis affected the country, there were strikes all over the Mexican terri-
tory. Mexican historians censider that President Calles decided to offer
more education for the people and, at the same time distract the attention
from other requests (Omelas, 1997). As a consequence,-about 1934 the
third Constitutional Article suffered an important modification: education
is declared Socialist. The structure of basic school was also modified. It
was stated that primary school would last six years divided into two blocks,
the first four years for the elementary primary and the latter two for the
secondary (Ornelas, 1997).

In some textbooks of the time, references about the convenience of
encouraging children to measure distances, weight objects and similar ones
are found. Some of them recommend that lessons should not be restricted
to the classroom areas, others propose to make estimations. The variety of
activities proposed is wide but some of them were never used before and
will never be used again until the most recent stages. For instance, in
Pichardo’s (1930) mathematics textbook, children are asked to measure
the schoolyard, a realistic situation is profited to introduce the decameter
and a sequence of activities directed to the deduction of the rectangle area
formula is included.

Spanish Professor Mart Alpera’s book (1933), which includes Arith-
metic, Geometry and Manual Labor, is used in this period. In the last sec-
tion of the third grade book, to make a paving is proposed (an activity
recommended by Hans Freudenthal about 1983 and never mentioned in
the Mexican textbooks until 1994). It is interesting to point at the fact that,
editions date of this book corresponds to the II Spanish Republic times,
which instituted the Normal Spanish Schools in an advanced position with
other similar centers in Europe, at the same height than the German inno-
vations (Sierra and Rico, 1996, p.45).

A third example at this stage is an arithmetic textbook by Kempinsky
(1938) which is a translation from German. As its contemporaries, the rec-
ommendation to look for situations in the daily experience of children is
present. In these books measurement is not left to the end of the book. It is
exposed in a section or group of lessons, dedicating some pages to each
one (length, area, volume, capacity and weight).

From 1945 to 1960

This period coincides with one more rectification to the text of the
third constitutional article. The statement that education is socialist disap-
pears, instead there is a principles declaration in the sense that the aim of
education is to develop all faculties of the human being, to encourage love
to the homeland and the international solidarity’s conscience of indepen-
dence and justice (Ornelas 1997).
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In comparison with the previous stages, the amount of text in each
lesson is reduced. Didactical ideas such as making children measure and
the recommendation to relate measuring activities to daily tasks continue
to be used. The exercises proposed have the aim of giving sense to mea-
surement. Regression in some aspects is perceived when comparing with
the former stage. For example estimation, manual labzrs related to mea-
surement and the usage of non-conventional units do not appear in these
books. Measurement topics are presented one behind the other in a block
of lessons, following the order length, area, volume, capacity and weight.

Presenting all the multiples and submultiples of the principal unit in each
case.

From 1960 to 1971

The fourth stage is a very important one in the Mexican history. The
country goes through a period of stability. In 1960 the first edition of the
Gratuitous Textbooks appeared. From that time on, the Ministry of Educa-
tion (Secretaria de EducaciUn P blica ) has edited, and freely distributed,
the textbooks to be used in all the country’s primary schools.

The textbooks of the sixties show advances in the didactical approach.
All the units and equivalencies, which formerly were given in a lesson or
block of lessons, are now distributed throughout the six years of primary
education. The approximation to measure is made gradually. In the first
grade they work only with some of the principal units of measure, such as
meter and liter. Area is approached until the third grade. In spite of this
improvement, measuring is always performed and presented using the con-
ventional measurement system. The books are not homogeneous, neither
by grade nor the whole series from the first to the sixth level. In each text-
book some topics are presented using affective situations that involve chil-
dren in its usage and learning, while others are not. For instance, in the
third grade book (Caballero y VillaseOor, 1960) a section of lessons dedi-
cated to measurement is included. For length and area an affective situa-
tion is posed at the beginning of the respective lesson. The case of volume,
capacity and weight is different. For volume the lesson initiates defining
the one meter side cube as the unity of volume measurements and then its
multiples and submultiples.

From 1972-1980

The books edited by the government in 1972 were recommended to a
commission of mathematicians. Although none of them had experience as
primary level teaching, the result is a collection of books that reflect most
of the paradigms on educational investigation of that time. In fact, this
stage coincides with the institutionalization of educational mathematics
research, and is a consequence of the failure of the sr-called Modern Math-
ematics (Hitt, 1994). Mathematical ideas are presented in a practical con-
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text, like a mean to solve realistic problems. “They are not exposed as
consummated facts but introduced with the intention that children will dis-
cover them” (Imaz, 1972, p. 8). Measurement’s treatment reflects this aim
very well. Before asking children to measure with standard units, the tasks
proposed invite children to meditate about measurement, to make com-
parisons of length, area, volume, capacity and weight. All these activities
may be performed with non standard units or using a direct comparison
without numbers. The presentation of the standard measure system is sub-
ordinated to the proposal of problems and activities that show the necessity
of counting with a conventional unit.

Besides these considerations, new elements appear such as using a bal-
ance to compare areas or the archimedean principle for measuring vol-

umes. Estimation is recommended and used along the books for all kind of
measurement.

From 1980 to 1993

In the previous period, textbooks were recommended to a group of
specialists in mathematics. In fact, all the textbooks of the seventies were
recommended to the different subjects’ specialists. Teachers were not taken
in account in this reform (Omelas, 1997). Many of them were not prepared
for the proposal included in the books. This situation caused a rejection
from a sector in the Mexican Educational System. In order to diminish this
antagonism, the Educational Ministry promotes, in 1980, a new reform. A
group of basic level teachers initiate the task of developing a new series of
books. The textbooks are integrated. Subjects are not separated in Natural
Sciences, Language, Social Sciences, and Mathematics, as had always been.
In these two textbooks the references to measuring are scarce. The third
grade’s textbook is modified in some lessons but it is essentially the same
of the previous version. Textbooks from fourth to sixth levels are exactly
the same used in the seventies. This situation produces a lack of continuity
from the first two levels to the rest of them.

From 1993 to our times

In the scholar year 1993-1594 the new primary curriculum goes into
effect. A new edition of the Gratuitous Textbook series is presented. The
proposal of the new primary curriculum, shaped in the new plans and pro-
grams, 1s to develop the ability to learn permanently and with indepen-
dence (SEP, 1994). _

The Mathematics textbooks show important innovations. Problems
solution is the mathematical learning motive (SEP, 1994). The idea of re-
lating mathematical contents is deeply exploited. So it is the presentation
of each subject in a realistic context. Lessons pretend children to extend
their level of competence, in the mathematical structures included in the
curriculum, as they advance in their way through school.
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For measurement, most of Freudenthal’s and other specialists’ recom-
mendations for the attainment of mental objects such as length, area and
volume are present. Comparing the amount of material related, for example
to volume, between these books and the former ones, a diminution is de-
tected. The different units, multiples and submultiples appear only when
they are needed. Many of them are never presented. This loss is compen-
sated with the great variety of activities and tasks proposed.

While the amount of formulae diminishes (in opposition to the previ-
ous stages) every-perimeter, area or volume formula that appears in a les-
son has been deduced. The rectangle area formula is applied to obtain that
of the triangle, and both of them are used to obtain those of a lot of quadri-
laterals. In the sixth grade the formula for the circle area is intuitively ob-
tained by approximations of the circumscribed polygons using triangles.

For volume, the only formulae that appear are those for the cube and
rectangular prisms, in the sixth grade, and each of them is motivated by a
lot of previous work that relates linear dimensions with cubic units.

In these books, measuring topics are not presented in the usual order
(length, area, volume, capacity and weight) measurement in one or two
dimensions is treated in parallel with the rest of the topics so a volume or
weight activity may be encountered before some others for length or area.
Measurement is spread all along each level textbook. There is not a series
of lessons for these topics, in fact, lessons in the sixth grade book integrate

various mathematical ideas from different axis such as fractions, measur-
ing, probability or so.

Conclusions

Measuring teaching models vary along a century of Mexican educa-
tion. These variations are grouped in seven stages. The amount of units and
formulae presented diminish from stage to stage. The amount of activities
proposed by the textbooks for each measurement topic increase from stage
to stage. Although some ideas, such as inviting children to perform mea-
surements, present realistic situations, work out of the classroom and some
others are made explicit by some authors in all stages, not always they are
reflected in the textbooks. With the exception of the period 1980-1992, this
situation i1s improved from stage to stage.
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UNDERSTANDING ANGLES FROM THE PERSPECTIVE
OF A HIGH SCHOOL CEREBRAL PALSY STUDENT

Kenneth L. Shaw Paul Durden
Florida State University Mosley High School
kshaw@mail.pc.fsu.edu bay414] @interoz.com

This paper examines how a high school cerebral student understands angles and
angle properties. A case study during the one semester course was used to analyze
her work. Results indicate that at least three factors impacted her learning and
understanding of angles: orientation (layout of the angles themselves), dynamics
(movement of angles or sides of angles), and the lengths of the sides of the angle.
The use of technology, particularly The Geometer’s Sketchpad was a great aide in
assisting the student to understand the angle properties.

Participant

Amanda is 16 years old and has a moderate form of spastic cerebral
palsy. Due to her muscles being permanently contracted, Amanda’s move-
ments are rigid and somewhat spasmodic. She has taken physical therapy
treatments to improve her muscle control. As a result, she is capable of
walking short distances with the aid of a walker. However, while at school,
she travels about in her motorized wheelchair. Amanda has a delightful and
positive attitude and cherished the time we spent with her. Her goal in the
research project was to have people better understand her and her disabil-
ity, “I just want people to be more educated about it, and I want people to
realize that we are just like everybody else; we are normal people; we can
learn. We are smart” (Shaw, Durden, & Baker, 1998, p. 204).

Seventy to eighty percent of all cerebral palsy cases fall into the cat-
egory of spastic cerebral palsy (Borowitz, 1995). Close to a half million
people in the United States have cerebral palsy and each year, about 5,000
babies and infants are diagnosed with cerebral palsy (United Cerebral Palsy
Association, 1996). A third of these children will be moderately or severely
impaired, a third mildly intellectually impaired, and a third will be intellec-
tually normal. Amanda falls in the latter category, being intellectually nor-
mal.

Theoretical Framework

Due to the paucity of research on geometry leaming by cerebral palsy
students, we had to expand our examination of articles to those written
about how cerebral palsy students learn mathematics in general. Magne
(1994) made the connection that students with poor motor skills will often
exhibit poor retention when it comes to mathematics. Since cerebral palsy
affects every person differently, the retention problems will certainly be
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proportional to the extent of the brain damage of the student. Magne goes
on to suggest that manipulatives, high visual tools, and individual instruc-
tion should be a high priority to maximize the learming of disabled stu-
dents. Corneliussen, Lund, and Nilsen (1989) also provide helpful recom-
mendations for coping with learning disabilities often seen in children with
cerebral palsy: (a) Emphasize individualized instruction and pacing, (b)
make the instructional environment as distraction free as possible, (c) sub-
divide the instructional activities into smaller activities, and (d) provide
individualized instruction.

Thomson (1993) concludes from his study that computers can meet the
needs of the cerebral palsy student. The computer would provide the stu-
dent a way to be in control of their own work, express themselves adequately,
and be independent.

Methods

Since a close examination of Amanda’s understanding of angles was
required, a case study method was chosen. During the semester geometry
course, approximately 10 interviews were conducted with Amanda. Amanda
always had her laptop computer with The Geometer’s Sketchpad (Jackiw,
1995) software. The interviews were centered around geometry tasks in
which she utilized the computer to assist her in her response. Amanda’s
occupational therapist was also interviewed to assist us in understanding
Amanda and cerebral palsy. The therapist, who had worked with Amanda
for several years and who has worked with more than 100 cerebral palsy
students in her 21 years of being a licensed occupational therapist, sat with
us during one of the interviews with Amanda and provided her expertise on
why Amanda responded the way she did. Each interview was recorded and
transcribed. At the beginning of the study, the interviews were very gen-
eral, but as the study progressed, the interviews became focused on her
understanding of angles. Throughout the study, her computer sketches were
used to assist us in determining her understanding of angles. The sketches
were ones that she created independently in class, on homework, and dur-
ing the interviews.

Results

The results center around three main findings: orientation, dynamics,
and side length of an angle. These three factors influence how Amanda
views angles. Below are brief examples of how these categories impacted
Amanda’s learning. '

Orientation

It’s just that I have this picture of all those angles, and I can’t see them
very well because of my visual perception. And to me, if it’s not straight
up, if iU’s turned a different way, I can’t tell a 90-degree angle. (March 5,
1997)
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This quote is indicative of the problem Amanda had with orientation.
If the sides of a right angle are oriented horizontally and vertically, then
Amanda can easily identify the angle as a right angle. However, if one
rotates the angle a quarter-turn around the vertex, Amanda has great diffi-
culty identifying the angle measure by visual inspection. Where orienta-
tion for the two authors was not a problem, it was a tremendous challenge
for us that recurred throughout the study. We were challenged and had a
strong desire to see what Amanda saw. We metaphorically wanted to view
the world through Amanda’s eyes.

Amanda was able to use The Geometer’s Sketchpad to assist her in
measuring the angles. She realized that the way she viewed things was not
always the way they were. This was frustrating to her. One example was
when she estimated an angle measure to be close to 60 degrees, but when
using The Geometer's Sketchpad she realized it was 90 degrees. As time
went along, she became more confident that the measures found using The
Geometer's Sketchpad were accurate, “When I measure it [an angle], [ know
that’s how it has to be.” When asked if she still saw a figure differently
even after she measured the angles using the computer, she replied, “Yes, it
still looks wrong, but measuring helps me believe what it’s supposed to
be.” Amanda’s visual skills are very poor and are not consistent. The tech-
nology built her confidence and allowed her to demonstrate with consis-
tency concepts such as similarity and congruency.

Dynamics

Dynamics refer to moving an angle or part of an angle on the computer
screen. The Geometer's Sketchpad is designed so students can easily modify
figures by dragging points or segments. In probing Amanda’s perspective
of angles, we asked her to tell us when the line segment EF would be
perpendicular to segment CD (see Figure 1). The instructor then moved
point E from right to left rather slowly. As E moved from right to left,
points G and H moved along segments CD and AB respectively while F
remained fixed. Amanda found this task difficult.

I: Can you tell me when they look the same? (The instructor moved E
from right to left, approaching and passing perpendicular.)

A: Which ones?

I. These ... (Once
E again the instructor
/ points to the angles

C G D EGD and EGC.)
/ A:Tcan’tseeit. .. .1
A H B don’t know. ...I'm
F/ sorry. (Amanda

seems very frus-
Figure 1. Amanda’s Difficulty With Dynamics trated.)
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I: No, that’s fine; we need to know that you can’t see it. . . . Does it
help to change the colors of the lines?

A: Alittle I think.

I:  Well what about these angles now? (The same linear pair at the top
of the sketch, EGD and EGC.)

A: This one and this one . . . ? (Amanda indicates the angles but does
not respond)

I: Can you drag the point so they look the same to you?

A: (Amanda tries) I can’t tell.

We soon realized that Amanda had great difficulty with the movement
of the figure. It was only after we removed segments AB and FG and moved
E from right to left slowly, stopping intermittently for about five seconds,
that she was able to visually process the information and be able to state
with some degree of confidence and accuracy when EG became perpen-
dicular to CD (see Figure 2). Two points we learned. One is that the figure
must be simple. The segment AB added a level of complexity and caused
the visual processing to be overwhelming. With the software, it was easy in
the future for Amanda to hide the ex-
traneous data so she could focus on the E
desired task. Additionally, we learned
that the dynamics cause visual process- C

ing problems for Amanda. She needed G D
time to process each action in still- Fi 5 Minimisi
mode to grasp the information. igure 2. Minimizing the

Visual Distraction
Side Length of an Angle

Another problem surfaced with how Amanda viewed angles. It had to
do with the angle side length.

I: Isthere something about those
longer lines that make the fig- B D
ure [see Figure 3] look differ-
ent to you?

A: Yes, it’s hard when this one is
long [pointing to BC] and this
one is short [pointing to AC]. . C
.. Jtdoesn’tlook like all of the A
angle is there. It looks like this
one is bigger [angle DCB] but
I know it’s not.

On several occasions she mentioned the angle where the side lengths
were longer made the angle bigger. Amanda’s visualization of this and simi-
lar figures was so influential in her thinking that it appeared to overpower
the facts of the figure. Labeled an “uncontrollable image” (Presmeg, 1992),

Figure 3. Angle Side Lenghts



the image was so vivid it caused Amanda to be blinded by other important
elements of the problem.
Discussion

Although our goal was to see what Amanda saw, view geometry through
Amanda’s eyes, we believe we have only received a glimpse of how she
viewed geometry. We now better understand how multiple visual compo-
nents cause undo distractions, how dynamics blur understanding while
proper processing time aides in understanding, and how side lengths of
angles affected Amanda’s estimations of angle measures. Amanda remarked
how she enjoyed using the technology, “I like using the computer in geom-
etry because the figures I construct can look pretty, like other students.”
The technology was a necessary and valuable aid in contributing to
Amanda’s success in high school geometry.
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ANALYZING STUDENTS’ LEARNING IN SOCIAL
CONTEXT: A STUDENT LEARNS TO MEASURE

Michelle Stephan
Vanderbilt University
michelle.l.stephan@ vanderbilt.edu

The purpose of this paper is to provide an account for one student’s learning as it
occurred in the social context of the classroom. This paper provides examples
taken from a four-month classroom teaching experiment in order to illustrate the
view that students learn as they participate in and contribute to cmerging
mathematical practices. The focus of the classroom teaching experiment was on
the development of an instructional sequence intended to support students’
construction of persor.ally-meaningful ways to reason about mcasurcment.

In recent years, researchers have shown that learning involves social
and cultural aspects (cf. Lave, 1988; Rogoff, 1990; Saxe, 1991). Thus, the
view that learning occurs in a socially-situated context is increasingly com-
mon. Despite different perspectives on the role of social and culturai pro-
cesses in learning, most researchers in this area agree that students’ devel-
opment cannot be adequately explained in cognitive terms alone. In our
view, learning is both an individual construction and a process of
enculturation (Cobb and Yackel, 1996). This perspective, called the emer-
gent perspective, allows us to view individual students’ mathematical de-
velopment as participation in the taken-as-shared mathematical practices
of a classroom community. The purpose of this paper then is to use the
findings from a case study to describe the mathematical development of
one student as she participated in the mathematical practices of a class-
room community.

Setting

The first-grade classroom that was the subject of this study was one of
four first-grade classrooms at a private school in Nashville. The class con-
sisted of 16 children, 7 girls and 9 boys. The teacher was an active member
of the research team' and continually worked at developing a teaching
practice consistent with the reform guidelines of the NCTM Professional
Standards for Teaching Mathematics (1991). The data for this study was
collected during a teaching experiment which lasted from February to June

' Throughout this paper I will speak in third person when referring to specific
details concerning the first-grade tcaching experiment. In these cases it is impor-
tant to acknowledge the research: Paul Cobb, Beth Estes, Kay McClain, Maggic
McGatha, Beth Petty and myself. Erna Yackel and Koeno Gravemeijer also col-
laborated on this project but did not participate on a daily basis.
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1996. One objective of this teaching experiment was to design and enact an
instructional sequence focusing on measuring. The instructional intent of
the measurement sequence was formulated such that measuring was an
activity in which students were mentally acting on space. Further, we hoped
that the number that results from iterating a measurement unit for the last
time would signify not simply the last iteration itself but rather the result of
the accumulation of the distances iterated (cf. Thompson & Thompson,
1996). The two students who appear in this paper were followed through-
out the teaching experiment on a daily basis. Every whole-class and rar-
geted small-group discussion was video-recorded.

Classroom Mathematical Practices

The notion of a classroom mathematical practice has been discussed in
several papers (e.g., Bowers, Cobb, & McClain, in press; Cobb and Yackel,
1996; Yackel, 1997). Classroom mathematical practices are the taken-as-
shared ways in which a classroom community comes to reason and com-
municate mathematically. These communal practices are established as stu-
dents explain and justify their solution methods and often involve symbol-
izing. One indication that a mathematical practice has become taken-as-
shared in the classroom community is that certain mathematical interpreta-
tions have become beyond justification (Yackel, 1997). The relationship
between mathematical practices and individual students’ mathematical in-
terpretations is seen as reflexive. Individual students’ development is ana-
Iyzed in terms of their participation in the emerging, communal mathematical
practices. Further, students are seen to contribute to the evolution of the
classroom mathematical practices as they reorganize their activity. In the
remainder of this paper, I draw one example from a larger case study to
illustrate an analysis of one student’s learning that is cast in terms of par-
ticipation in mathematical practices.

Results

On the 11th day of the instructional sequence?, the teacher posed prob-
lems in the context of a smurf village. Students were asked to pretend they
were smurfs and use a bag of food cans (i.e., Unifix cubes) to find how
long various items around the smurf village (classroom) were. The taken-

> The first 10 days of the instructional sequence consisted of an introduction to the
notion of measuring by engaging students in pacing activities. Students paced the
lengths of items to find their measure and subsequently traced five feet on paper to
form a footstrip. Two mathematical practices emerged as students engaged in these
activities. Due to the shortness of this paper, I draw my example from episodes
that occurred 11 days after the sequence began. For a more detailed analysis sce
Stephan (1998) and Stephan, Cobb, Gravemeijer, & McClain (1998).



as-shared interpretation of measuring items in the classroom involved fill-
ing the length of an item with a bar or rod of cubes that stretched the length
of the item and then counting the cubes. The teacher suggested using a
more efficient measuring device: a bar of 10 cubes/food cans which they
named a smurf bar. Instructional activities with the smurf bar included having
students find the lengths of various items around the room and cutting pieces
~of paper signifying different-sized wooden boards for building a smurf
house.

The mathematical practice that became interactively constituted as the
students engaged in the instructional activities above concerned measuring
by iterating a bar of 10. The teacher and researchers typically focused whole-
class discussions on the results of measuring with the smurf bar. For ex-
ample, if a student was finding the length of a table by iterating the smurf
barend to end and counting “10, 20, 30, 33,” we asked the student “Where
is 33?” or “Can you show how long something 33 cans is?”’ We posed these
types of question for two reasons. First, we were trying to encourage ex-
planations that focused on students’ interpretations of their measuring ac-
tivity with the smurf bar/food cans rather than focusing on simply an ob-
servable method of iterating. Second, we were trying to support students’
interpretations of measuring as an accumulation of distance. In other words,
when students had completed a third iteration and uttered “30,” some stu-
dents may have reasoned that 30 signified the space filled by the 30th cube
rather than the space filled by 30 cubes. It was therefore important to us
that this issue become an explicit topic of whole-class discussion. As stu-
dents participated in these types of discussions, it became taken-as-shared
that “the whole 33,” for instance, signified the space extending from the
beginning of the st cube to the end of the 33rd cube (i.e., an accumulation
of distance interpretation).

It is important to note that this taken-as-shared understanding was ex-
plicitly negotiated during whole-class discussions. Initially, several students
reasoned that “20” signified the /0 cans comprising the second iteration
and that the 10 cans in the 2nd iteration would be counted 21, 22, 23, ...”.
However, as students discussed alternative mathematical interpretations, it
became taken-as-shared that the result of iterating a bar of 10 signified an
accumulation of distance. Further, it became taken-as-shared that physi-
cally iterating along the spatial extent of an item created a partitioned, whole
space. The account of the taken-as-shared mathematical meanings given
above serves to document the immediate social situation in which students
were acting. No claims are being made in the above analysis about how
any individual is reasoning; rather, the analysis documents the taken-as-
shared mathematical interpretations of the community. In the remainder of
the analysis, I use the mathematical practice as backdrop against which to
explain one student’s, Meagan, mathematicai learning.

As Meagan initially participated in these conversations, measuring, for
her, appeared to be dependent on the act of placing the bar of 10. For ex-
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ample, on the 14th day of the instructional sequence, the students were
asked to measure with a bar of 10 cubes for the first time. The teacher
asked the students to work in pairs and to measure items in the classroom.
Using a smurf bar for the first time, Meagan began measuring the height of
an animal cage. She placed one end of the smurf bar at the bottom of the
cage and said, “10.” She iterated the bar end to end along the height of the
cage and counted “10, 20.” She placed the bar a third time and counted
“30” even though the third iteration of the smurf bar extended past the top
of the cage. Then, she counted the cubes within this placement “31, 32,
33.” It seemed that for Meagan, measuring was dependent upon the place-
ment of th2 bar of 10. For Meagan, counting “30” as she placed the smurf
bar for a third time meant that the cubes within that iteration should be
counted “31, 32, 33, ...” This way of participating in the third mathemati-
cal practice indicated that Meagan was not coordinating measuring with
the bar of 10 with measuring with individual cubes of which the bar was
composed. In other words, iterating with the bar of 10 did not signify a
curtailment of measuring with individual cubes.

Her partner, Nancy, indicated that she disagreed with Meagan’s mea-
surement and remeasured the height of the cage by counting as follows:
(iterates the bar once) “10,” (iterates the bar a second time) “11, 12, 13,. .,
20,” (iterates the bar a third time) *“21, 22, 23.” It appeared that for Nancy,
iterating the bar of 10 signified the space filled by cubes thus far as can be
seen when she counted by single cubes to justify her method of measuring.
Further, when asked where “20” was, for example, Nancy indicated the
space from the beginning of the 1st cube to the end of the 20th cube. This
suggests that the result of measuring signified an accumulation of distance
for Nancy. Although Meagan accepted Nancy’s measurement, she contin-
ued to measure in the manner she had before.

During the subsequent whole-class discussion, Nancy and Meagan
measured the length of the white board at the front of the classroom as the
teacher used a pen to mark the end of each iteration and wrote numerals to
record how many cans they had iterated thus far. Further, as they measured,
a researcher asked questions such as “Where is the 207" Nancy answered
these questions by pointing to the space beginning from the edge of the
board to the numeral 20. The mathematically significant issue that became
the topic of whole-class discussion involved describing what each number
word meant in terms of the amount of space/individual cubes that had been
filled/iterated. We conjectured that this type of discussion was important in
that the conversation dealt with what measuring signified, the quantities
specified while measuring, rather than with only how to meusure (i.e., how
to count cubes). Although Meagan did not overtly participate in this ex-
change, she seemed to reorganize her prior participation as indicated by
her activity cn the following day.

The next day, measuring seemed to signify the accumulation of dis-
tance for both Nancy and Meagan. During a whole-class episode, Alice
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and Chris demonstrated where they would cut a piece of adding machine
tape (signifying the length of a wooden board to be used to build a smurf
house) so that it measured 23 cans. They iterated the smurf bar once and
said “10,” iterated it a second time and said “20,” and then iterated it a third
time and counted individual cubes “21, 22, 23” from the end of the second
iteration. Edward challenged their explanation by arguing that they had
really only measured 13 [sic]. He then described his method by iterating
the bar three times saying “10, 20, 30” and then counting “31, 32, 33”
-within the third iteration (as Meagan had done the day before). A discus-
sion then ensued in which Alice counted individual cubes by is to show
Edward and others that two iterations signified the distance covered by 20
single cubes. Then, she counted three more cubes from 20 to show 23.
Thus, the mathematically significant issue that had emerged as a topic of
conversation involved counting the number of individual cubes that were
accumulating as the bar of 10 was iterated (coordinating measuring with a
bar of 10 with measuring with single cubes). Meagan explained that she
did it a different way than the others but said that she needed the teacher’s
help. She iterated a smurf bar while the teacher marked the beginning and
end of each iteration with a piece of masking tape. The researcher stopped
her after two iterations and asked her how many cans would fit in the spaces
she had marked. She answered that 20 cans would fit in the total space
marked by the two iterations thus far and counted up three more cans to
mark 23.

This episode is significant for two reasons. First, Meagan seemed to
have reorganized her prior activity as she participated in the conversations
with her partner and in the whole-class discussions during the last two
class periods. In the context of the preceding whole-class discussion, iter-
ating the rod of 10 twice signified the accumulation of space covered by 20
cubes. Another way to say this is that the number word *“20 signified a
composite unit, an entity or an amount of space covered by 20 cubes rather
than the space covered by the 20th cube. A second reason this episode is
significant is that it brings to the fore the role of symbolizing in Meagan’s
activity. Meagan asked for the teacher’s help in making a record of her
measuring activity. As she reasoned with these symbols, Meagan inter-
preted the result of each iteration as an accumulation of space filled by
cans. Further, when reasoning with such symbols, she coordinated measur-
ing by iterating a bar of 10 and measuring by iterating single cubes. Thus,
as she participated in the prior conversations in which mathematically sig-
nificant issues arose, she developed relatively powerful ways of reasoning
with symbols. When she did reason with symbols, Meagan coordinated
measuring with a bar of 10 and measuring by iterating single cubes. How-
ever, when Meagan did not reason with symbols, she did not make such a
coordination. This points to the significant role that reasoning with sym-
bols played in Meagan’s measurement activity. Further, in participating in
these and other whole-class discussions in this way, Meagan contributed to
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the constitution of the third mathematical practice. In other words, her rea-
soning with symbols was an act of participation in the emerging math-
ematical practice and constituted not only her learning but also a contribu-
tion to the taken-as-shared practices of the community.

Conclusion

In this paper, I presented one example to illustrate the view that stu-
dents’ learn as they participate in and contribute to emerging mathematical
practices. Although the example mainly focused on Meagan, it is clear that
both Meagan and Nancy participated in and contributed to the math prac-
tice in different ways. The mathematical practice, as well as whole class
discussions were described in order to document the social context in which
Meagan and others were participating. An analysis that focuses only on the
development of students, as opposed to one that locates students’ learning
in social context, would have described only the cognitive reorganizations
Meagan made (merely as a consequence of social interactions). In contrast,
the analysis in this paper gives equal importance to social and psychologi-
cal processes by describing students’ learning as participation in mathemati-
cal practices.
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REEXAMINING THE VAN HIELE MODEL OF
GEOMETRIC THOUGHT THROUGHA

VYGOTSKIAN LENS
Laura Brader-Araje Tracie Yarbrough
University of North Carolina, University of North Carolina,
Chapel Hill Chapel Hill
Ibrader@mindspring.com tyarbrou@email.unc.edu

Because the van Hiele model and Vygotskian theory are still relatively
new to American educators, an examination of the two theories will en-
hance the understanding of each. The purpose of this presentation is to
examine the van Hiele Model of Geometric Thought through a Vygotskian
lens. Doing so facititates a deeper understanding of the van Hiele Model
and reveals opportunities to refine the model’s structure.

Analysis of the van Hiele Model is grounded in Vygotskian theory;
specifically, the Vygo:skian concepts to be applied include the zone of proxi-
mal development, mediated learning through both tool and sign use, and
both inter/intrapsychological planes. Vygotskian theory holds the notion
that learning is social. Just as the zo-ped emphasizes the importance of
more capable peers, mediated learning refers to utilizing other forms of
assistance. Knowledge that is constructed within oneself occurs on the
intrapyschological plane and is enhanced by social interaction, whereas
knowiedge exchanges between individuals take place on the
interpsychological plane.

In the examination of the van Hiele Model of Geometric Thought, these
components of Vygotskian theory add to the understanding of the psycho-
logical processes used to learn and grapple with geometry. By applying
Vygotskian theory to the van Hiele model, strengths as well as deficiencies
of the model are revealed. This in turn improves current understandings of
learning and teaching geometry in particular, and mathematics more gen-
erally.

One goal of the International Group for the Psychology of Mathemat-
ics Education is te address psychological aspects of learning and teaching
mathematics. This presentation addresses this goal in that Vygotskian theory
contributes to an improved understanding of the psychology of social learn-
ing, the van Hiele Model of Geometric Thought provides specific direction
(for both teachers and students) in the teaching of mathematics, and the
marriage of the two provides an impetus for a better mathematics educa-
tion for all.
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ASSESSING GEOMETRIC UNDERSTANDING IN
MATHEMATICALLY TALENTED MIDDLE

SCHOOL STUDENTS
Marguerite M. Mason Sara Delano Moore
College of William and Mary University of Kentucky
mmmaso @facstaff.wm.edu sdmoor! @ukcc.uky.edu

The population in this study consists of 120 mathematically talented
rising 7th, 8th, and 9th graders who had not taken a formal course in ge-
ometry. All 120 subjects completed the CDASSGP van Hiele test (Usiskin,
1982). In addition, 64 randomly selected students were interviewed indi-
vidually for 30-45 minutes using an abbreviated version of Mayberry’s
(1981) tasks. Based on the CDASSGP test data, 35.8% of these students
did not “fit the model”, in contrast to the 12% which Usiskin (1982) found.
Even though they were younger than Senk’s high school students, they
exhibited higher van Hiele levels. Using the probabilities developed by
Senk (1989), 70% of the mathematically talented students had van Hiele
levels 2 or greater and so have a probability greater than .75 of proof writ-
ing success after a year long course.

Analysis of clinical interviews confirmed that, like regular students,
these individuals did not demonstrate the same level of thinking in all
areas of geometry included in the school program. Many of the subjects
had not been exposed to or did not remember what the critical defining
attributes of various figures were, and they tended to look for similarities
and differences in figures to deduce these attributes. Once they had estab-
lished a definition, correct or incorrect, most reasoned consistently from
it. In general, the students were capable of handling inclusion relation-
ships if they had suitable definitions of the elements involved. The sub-
jects showed strength in deductive reasoning, but not formal proof con-
structions.

It appears that geometric understanding in gifted students depends on
a student’s van Hiele level, logical reasoning ability, and amount and quality
of basic geometric knowledge. A thorough assessment of geometry readi-
ness should include an assessments of the student’s van Hiele level, logi-
cal rzasoning ability (e.g., as demonstrated by SAT scores), and geometric
knowledge.
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SIMILARITY, CONGRUENCE, AND ANGLES WITHIN

CLOSED FIGURES
Sara Delano Moore Marguerite M. Mason
University of Kentucky College of William and Mary
sdmoorl @ukcc.uky.edu mmmaso @facstaff.wm.edu

The purpose of this study is to examine 80 middle school students’
understanding of similarity and congruence in open and closed figures.

The closed figure questions were: B
A ABC is similar to ADEF. .
How long is DE? A (N C
12 cm
How do you know?
What is the size of <EDF? A
How do you know? D&6em F
ABCD is a square. BD is a diagonal. D C
Name an angle congruent to <ABD.
How do you know?
A B

The open figure questions included showing two parallel lines cut by a
transversal with the students naming 2 angles congruent to a given interior
angle and justifying their choices. Students were asked to estimate the size
of 3 angles which were the same size and orientation of <ABC in #1 and
<BCD and <ABD in #2. They were also asked to define congruent, similar,
and angle.

How long is DE? Sixty-five of the students reasoned between the 2
figures, most using multiplicative thinking (4 students used additive think-
ing, 2 used visual estimation). The remaining 7 students who responded
just estimated the length of DE.

What is the size of <EDF? Only 42.5% gave the size of <EDF in de-
grees (40% of the students reported the size of <EDF in centimeters). When
estimating the size of an angle not in a closed figure, only 6 of these stu-
dents gave answers in inches or centimeters. Thirty-three percent of the
students answering 60° appeared to be using the mathematical properties
of similar triangles. Students’ responses varied in method (e.g., estimation)
and solution. Their methods can be summarized as follows:

Comparisons
— 1
Between Figures Within ADEF
fio  Alao U . R LIS —1
60° 30° < estimation < estimation perimeter < sides other
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Congruency. Of the 47 students who defined congruent correctly, 13
used the fact that the two angles were the same. Twenty students, defin-
ing congruent as “the same”, used a definition of “opposite” or “mirror
image” in the square problem. Among students providing an incorrect
definition, 9 defined congruent as “opposite” or “mirror image”. Six of
the 13 students providing no definition of congruence also suggested a
notion of opposite or mirror image.
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SOLVING GEOMETRIC PROBLEMS WHOSE
SOLUTION IS NOT UNIQUE: THE CASE OF
PROSPECTIVE SECONDARY TEACHERS
AND THE CONCEPTS OF TANGENTS
AND CiRCLES

José N. Contreras
The University of Southern Mississippi
jcontrer@ocean.st.usm.edu

Problem solving is a multidimensional process. On one dimension,
problems can be categorized as problems that can be solved using one,
two, or multiple strategies. On another dimension, problems can be catego-
rized as routine problems, problems similar to others, or novelty problems.
On a still another dimension, problems can be categorized as problems
whose solution is unique, problems with no solution, and problems whose
solution is not unigue. Some of these categorizations depend on the prob-
lem solver’s perspective and they are not mutually exclusive or exhaustive.

In this paper I examine 14 prospective secondary mathematics teach-
ers’ solutions to geometric problems whose solution is not unique in the
context of tangents and circles. The participants were enrolled in a college
geometry course and were asked to provide the complete solution to two
problems. The first problem asked them to draw two tangent circles, and
the second problem was: Given two circles, construct as many common
tangents to the circles as possible. All the participants had access to com-
pass and straightedge. They were also asked not to erase any failed at-
tempt. Regarding the first problem, 13 students drew only the case of ex-
ternally tangent circles. Only one student failed to draw two tangent circles.
Regarding the second problem, only two students considered the cases in
which it is possible to draw 0, 2, 3, 4 or an infinite number of common
tangents. However, one of these students answered the question of how
many tangents can be constructed but he did not construct or draw the
tangents for each separate case. The other cases considered were: 4 com-
mon tangents (6 students), 2 common tangents (four students), four and
three common tangents (1 student). Only one student drew an incorrect
diagram and none of the students considered the case of one common tan-
gent to the two circles. It is worth to note that none of the students consid-
ered the meaning of constructing a geometric object. In addition, some
students made drawings that were somewhat sketchy and lacked precision.
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THE LEARNING OF CONCEPTS OF STOCHASTIC
IMPLIED IN THE BINOMIAL DISTRIBUTION
BY MEANS OF THE USE OF DIFFERENT
REPRESENTATIONS AND CONTEXTS

Jesus Colin Miranda
Escuela Superior de Ingenieria Mecénica y Eléctrica del I.PN. -México

This study refers how students of probability use and interpret representations (as
conceptual models, Steinbring, 1989) and contexts (in teaching situations: urns,
" coins, Galton board), in the learning of concepts of stochastics implied in the
binomial disiribution.

Introduction

At the Escuela Superior de Ingenieria Mecénica y Eléctrica del .P.N. —
México, a high rate of irregularity has been observed in the learning of
stochastics, particularly in the learning of binomial distribution and its
concepts involved.

Traditional teaching of school mathematics (including stochastics) gen-
erally begins with the definition of the concept expressed with a math-
ematical sign. The above-mentioned can be observed in some text books
(Miller, I. and Freund, J. E., 1985; Meyer, P. L., 1973; Esparza, S. 1987,
among others). Starting from such a definition, in most of the texts, it is
exemplified and it is put operatively in game in particular situations.

However, from an epistemological view, Steinbring (1984, 1989, 1991)
outlines that the concept is not identical to the sign nor to the object, but
rather is gradually constituted in the subject as a result of recurrent interac-
tion among them in progressive levels of abstraction of such interaction,
and by contrasting these two characterizations, the students will be aware
of the fact that concept is not identical to its definition. That is, it can only
have implicit definitions of concepts, definitions that represent the rela-
tionship between the sign level, and the object level as an open relationship
to development. The above-mentioned, is represented by means of an epis-
temological triangle: object - sign - concept.

Steinbring (1989) distinguishes three epistemological levels of stochas-
tic knowledge. For the structure of the content of probability and statistics,
he considers concepts, methods and diagrams. For students’ context of learn-
ing, he takes into consideration representation means, activities and tasks.
For example, student uses pie charts, histograms, column graphs, stem and
leaf displays, etc., in classroom and at home to visualize empirical and
theoretical distributions. For teaching process, he refers to the planning,
organization, guidance, modification, improvement, support and develop-
ment of the process by the professor. He adds that “...if one intends to teach
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stochastic concepts, methods and diagrams as mathematical techniques for
build up a coherent theory, then the random character and specific nature
of probability is very quickly lost. Stochastics degenerates to a collection
of nules and recipes with no explanation” (p. 204). He also affirms that
since “... stochastic is not only the subject matter new to the curriculum,
but it is a type that is completely different from school mathematics. ... it is
essential to develop different perspectives and interpretations of mathematics
when teaching probability and statistic” (p. 205).

Considering the cpresentation aspect, concepts are not directly acces-
sible to perception, or to an immediate intuitive experience (Duval, 1993).
This is, the acquisition of the concept is not achieved directly, but rather it
goes by intermediary non discursive representations (p. 63). Thus, Duval
(1994) points out the importance of the semiotic character of the represen-
tations, as well as, the diversity of representation registrations for a given
situation or the coordination among them. These include figures, Cartesian
graphics, symbolic notations, and inevitably the natural language. The re-
source to several registrations seems a necessary condition so that 1) the
mathematical objects are not confused with their representations and 2) so
that they are recognized in each one of them. This way, by means of the
comprehension of the representations (semiosis) the comprehension of the
concept is achieved (noésis).

Heitele (1975) made an analysis that takes into account results of psy-
chological investigations of the development regarding stochastic ideas,
adults’ failures in stochastic situations, and the history of the probability.
He proposed a spiral curriculum of the stochastic that goes from a intuitive
plane to a formal plane (of iconic-active activities to symbolic representa-
tions), whose organizing principles are the fundamental ideas (from an epis-
temological and pragmatic point of view). “... those ideas which provide
the individual on each level of his development, with explanatory models
which are as efficient as possible and which differ on the various cognitive
levels, not in a structural way, but only by tleir linguistic form and their
levels of elaboration” (Heitele, 1975, p. 188). And he adds “The usefulness

of such a model can only be shown by using it in the teaching at all levels”.
(p. 203)

Design

An exploratory study was carried out with two groups of students’ in

their fifth engineering semester, 52 in total, of the shift vespertine (21 year
olds) at ESIME - IPN.

Didactic strategy. Twenty-eight students of the GROUP 5C2V were taught
binomial distribution, according to traditional teaching method, that is to
say, following presentation in text books. The solved examples were taken
from the same books. The other group (24 students of the GROUP 5C5V)
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were taught binomial distribution by means of a didactic activity designed
in four stages: Galton board (vertical and tilted) and the urn model; Pascal
triangle, rule product-sum and triangle of possibilities; and binomial distri-
bution. '

Procedure. Questionnaire 1 with 16 probiems was applied to students of
both groups before teaching process, and a Questionnaire 2 with 10 prob-
lems was applied after the process. The Questionnaire 1 contains problems
that concern to binomial probability distribution as: sample space, stochas-
tic variable, combinatorics (combinations and permutations with and with-
out substitution), as well as isomorphic problems (in none of them is re-
quested to calculate probabilities). Questionnaire 2 contains some prob-
lems (five of combinatorics and two more are asked to calculate probabili-
ties) of Questionnaire 1 and refers to concepts like measure of probability,
sample space, stochastic variable, combinatorics, the addition rule of prob-
abilities, independence, equidistribution and symmetry. The last of them
corresponds to the binomial distribution.

Examples of problems. (1. C1). We have five men and four women. How
many different couples can be formed a) of men?, b) of women?, ¢) mixed?,
d) in general? Explain (use diagrams, some representation) and justify the
answer. (2. C1). The are five green marbles and four blue in a bag. Two of
them are extracted at the same time. How many different cases may occur
in which: a) both are green?, b) both are blue?, ¢) one of each color comes
out? Explain and justify the answer (use diagrams, some representation).
(3. C2). There are five green marbles and four blue marbles in a bag. Two
of them are extracted at the same time, at random. Which is it the probabil-
ity that a2 green one and a biue one come out? Explain and justify the
answer (use diagrams, some representation).

Analysis. Problems were selected taking into account concepts, the way to
present them in different contexts (isomorphism) and the type of problem.
For answers, solution strategies, correction of answer, errors (conceptual,
operative and symbolic) and types of representations used by students were
taken into account. In this first exploration natural language was mainly
used as representation register in each enunciated problem.

Results

The understanding involved of concepts in binomial by students was
investigated through answers given in Questionnaires | and 2. In Table 1
(total and percentages) shows a summary resuits obtained from the appli-
cation of both Questionnaires. As for the operative aspect, students whom
the binomial distribution in traditional form was taught, used symbolic rep-
resentation register, and obtained a higher percentage (17.85%) of correct
answers in the problem that involves binomial (problem }]0), that those of
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the other group (16.66%). However, these last ones showed a vast diversity
of strategies and use of correct representations (tree diagrams, Pascal tri-
angles) (50%) that the first ones (32.11%). Approximately the same num-
ber of isomorphic problems were identified by both groups of students,.
This suggests that if one poses activities which allows teaching articulates
a variation of representation registers (natural language, figure, symbolic.
notation: triangle of Pascal, triangle of possibilities) and contexts (Galton
board, urns, for example), this will lead to 2 major possibility in the con-
ceptual construction.

Table 1 '
Questionnaire Resuits by Group

Group 5C2V Group 5C5V

. BEFORE AFTER BEFORE AFTER

PROBLEMS ForM. RepR. Form. REPR. ForM. ReEpr. ForM. Repr.
8.- 1. 3 } 2 2 4 1 6 6
11.- 3. 0 0 2 1 0 0 2 2
9.- 4. 0 15 16 4 0 4 14 7
12. - 6. 0 3 11 4 0 1 8 4
10. - 2. 0 0 9 1 0 0 6 2
13.- 5. 1 0 g8 11 0 0 10 7
15.- 7. 0 0 16 7 1 0 5 9
16.- 8. 0 0 15 7 0 0 6 4
9. 0 1 0 1
10 S 9 4 12

Note. FORM. = Correct Formula, REPR. = Correct Representaton

Table 2
Questionnaire Results (Percentages)

Group SC2V (28 Students) Group 5C5V (24 Students)
BEFORE AFTER BEFORE AFTER
PROBLEMS ForM. RepR. Form. REPR. ForM. REPR.  ForM. Repr.

8- 1. 1071 357 7.14 7.14 1666 4.16 250 250

1. - 3. 0 0 7.14 357 O 0 833 833
9.- 4. 0 5357 57.14 1428 0 16.66 58.33 29.16
12.- 6. 0 1071 3928 1428 O 4.16 33.33 16.66
10. - 2. 0 0 32.14 357 O 0 250 833
13.- 5. 357 O 28.57 3928 O 0 41.16 29.16
15.- 7. 0 0 57.14-250 416 O 375 315
16.- 8. 0 0 53.57 25.0 0 0 250 16.66

9. 0 3.57 0 4.16

10. 17.86 32.14 16.66 50.0
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COMPARING DATA SETS: HOW DO STUDENTS
INTERPRET INFORMATION DISPLAYED
USING BOX PLOTS?

Susan N. Friel
University of North Carolina at Chapel Hill
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The need to develop an understanding of statistical inference is an important
component of statistics education (NCTM, 1989). In the middle grades, exploring
students’ ability to compare two or more data sets of the same or different sizes
provides beginning work with statistical inference. Different kinds of graphs may
be used as tools for data comparison. The purpose of this study was to lcok at what
sense eighth grade students’ made with respect to comparing two or more data sets
using box plots as a representational tool.

Purpose of Study

The need to develop an understanding of statistical inference is an im-
portant component of statistics education (NCTM, 1989). There are a num-
ber of places in the statistics curriculum where the idea of statistical infer-
ence may be introduced, for example by using summary statistics such as
the mean and range to compare data sets or looking at relationships be-
tween two variables using correlation. For middle grades students (NCTM,
1989), it seems sensible that comparing two or more data sets engages
them tn a kind of statistical reasoning that is more sophisticated than that
involved in simply describing a distribution. Lehrer and Romberg (1996),
among others state that it mmay be natural for students want to make com-
parisons of two or more groups (e.g., boys with girls, one grade level with
another).

Children’s understanding of the processes involved in comparing groups
of data appears to have received little attention. Gal and Wagner (1992)
found that when students were asked to visually compare two data sets that
are displayed using side-by-side picture or bar graphs, they used a variety
of strategies to make comparisons including determining summaries of the
data in each group (e.g., identifying means), finding totals of the data val-
ues in each group, and other strategies such as arguing that the data are
more spread out in ore group than the other. When such comparisons in-
volve data sets that do not have the same numbers of data values and are
displayed as side-by-side picture or bar graphs, students may argue that it
is not possible to make comparisons because of differing sample sizes.

Both box plots (box-and-whisker plots) and stem plots (stem-and-leaf
plots) also may be used to compare more than one data set (Graham, 1987;
Landwehr & Watkins, 1986). Using a back-to-back stem plot permits com-
parison of two data sets while any number of parallel box plots may be
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used to compare multiple data sets. Box plots highlight only a few impor-
tant features of the data; because most of the data ““disappear,” both the
shape of the distribution and the actual data values cannot be clearly iden-
tified. When the number of data values in data sets to be compared are
different, box plots “hide” this difference, showing a five-number sum-
mary for each set of data.

The purpose of this study was to look at what sense eighth grade stu-
dents’ made of comparing two or more data sets using box plots as a repre-
sentational tool. This paper looks at one particular problem that involved in
making comparisons which among Ms. Choy’s three class periods and their

respective scores on the same quiz (Figure 1) as displayed using parallel
box plots.

Quiz Scores

-1 First Period

] -

Second Period

1 Third Period

r T 1 T 1 1
50 60 70 80 90 100

Figure 1. (Lappan, et. al., 1998, p. 76) Ms. Choy wants to analyze the
achievement of her eighth grade classes on a quiz. These box plots repre-
sent the quiz scores of Ms. Choy’s first-period, second-period, and third-
period classes. Questions asked are included in text of paper.

Research

During Fall, 1997, a study was conducted to look at the ways students
reason about comparisons of data sets and about topics related to sampling;
the former is the focus of this paper. Fifty students were involved in the
study, distributed between two eighth grades in a private middle school
located in a southern urban area. The students were generally higher achiev-
ing, with little cultural or ethnic diversity present.

Pre- and post-tests which included looking as students’ understanding
of concepts related to visual comparison of data sets using bar graphs were
administered. An instructional unit (Lappan, et. al., 1998) focused on com-
paring data using box plots and on a variety of activities exploring sam-
pling was taught by each the two teachers over a period of eight weeks,
beginning in mid-October and ending in December. Selected written as-
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signments were collected throughout the instructional unit, and several les-
sons were observed for purposes of understanding student thinking. A sample
of students (3 from each class) also participated in interviews focused on
content currently being studied at various times throughout the unit. These
students were selected based on teacher recommendations concerning ability
to be verbal, on willingness to be interviewed, and on responses made on
the pre-test.

The results reported in this paper focus on the final interview with
the six students. In that interview, an end-of-unit task (Figure 1) provided
in the curriculum materials was used in an interview format to probe stu-
dent reasoning about making comparisons of data sets using box piots.

Curcio’s (1987) three components of graph comprehension were used
as an organizing framework for designing the interview:

1. Reading the data involves “lifting” the information from the
printed page to answer explicit questions for which the obvious
answer is right there in the graph. .

Reading between the data includes the interpretation and inte-
gration of information that is presented in a graph.

3. Reading beyond the data involves extending, predicting, or in-

ferring from the representation to answer implicit questions. The

-reader gives an answer that requires prior knowledge about a ques-
tion that is at least related to the graph.

The first two components focus on elementary levels of questioning
that involve data extraction. The latter component is tied to questioning
that involves not only interpreting a graph but utilizing the graph to assess
realistic implications from the data (Pereira-Mendoza, 1995).

This study was not designed to assess a particular instructional model
or curriculum. Rather, the author reasoned that taking a “snapshot” of what
students knew about this topic without instruction would not be as produc-
tive as trying to assess what students knew after having an opportunity to
gain some experience with the process of statistical investigation and with
some of the key concepts related to comparing data sets. These students
had not been exposed to the use of box plots prior to the instructional unit.

o]

Results

The results are organized using the questioning framework (Curcio,
1987) as it was designed to help students attend first to the data as dis-
played through the representations and then to interpretation of these data.

Read the Datia Questions

¢ What are the minimum and maximum values and the median for first

period?
360
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All six students had no difficulty with this question; some also identi-
fied the lower and upper quartiles:

For the first period class, the minimum seems lie at 59 or 60. The first
quartile is about 66. The median is...78. The fourth quartile [She was
identifying the third quartile value but referring to the fourth quartile
interval] is about 85 and then the maximum is about 91 or 92.

Kead Between the Data Questions

* Suppose there are 24 students in the class. How many had scores in the
interval of the minimum value to the median for first period? '

* How many had scores that fell in the box (including the quartiles) of
the box plot for first period?

* Do you think there are any outliers in the period three scores? Explain
your thinking.

All students had little difficulty with the first two questions. They ei-
ther discussed their reasoning in light of the fact that the box plot is divided
up into four sections evenly, or into sections of 25% here, 25% here,... and
so on. One student referred to 1/4 of the data being in each interval.

With respect to outliers, all but one student agreed that there would be
outliers in the data for period three. They recalled that there was some
formula we were given using 1 1/2 times the difference between the first
and third quartiles. Four of the six students were able to estimate possible
outliers by visualizing movement of 1 1/2 times the box length above or
below the quartiles; one student indicated that he needed to know the val-
ues for the first and third quartiles. One student did not recall outliers as a
concept when questioned.

Read Beyond the Data Questions

« Which group do you think did better on the quiz (comparing period
one with period three; comparing period two with period three)? Ex-
plain your thinking.

* If you were Ms. Choy, which of your classes would you think was
most successful on the quiz? Explain your thinking.

Comparing the first and third periods involves acknowledging that the
minimum, maximum, and median values are the same. The first and third
quartiles differ in their interval widths; students needed to make sense of
this in terms of which class did better. Three students said that third period
did better. They offered reasons such as third period being compact, more
consistent. This means that like you have several of one number or several
of a couple numbers. With first period, the box is a lot wider which means
you could have numbers that ranged any where between those two spots
(1.e., quartiles). The remaining students felt that the two periods did about
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the same (2 students) or that first period did better (1 student). These stu-
dents focused on pairing the 5 numbers across box plots; the discrepancies
in terms of the first and third quartiles not both being higher or lower or the
same was perplexing. They had to reason about how the distribution of the
data might look in the box. The possibilities of higher and lower scores in
first period were offered as reasons for why either first period did better or
both did about the same.

Comparing the second and third periods may be easier in that the me-
dian for second period is quite a bit higher than that for third period. All six
students agreed that second period did better than third period, although
their reasoning was different. For one student, her only reason was that the
median was higher. Other students (2) compared percent intervals:

The second period [did better] due to the fact that...I’'m going to
make a general siatement here which is the whole reason box plots
are useful...is because 50% of the second period did better than
75% of the third period.

Others focused on other aspects of the displays:

Second period because...the third quartile’s way ahead, the
median’s way ahead ...the median is a lot higher and the third
quartile is sort of almost where the maximum is because they have
so many of their scores placed on the higher end of the range of
scores.

Comparing the three periods, students built on their earlier reasoning;
all identified second period as having done better, each using an extension
of earlier reasoning for comparing second and third periods. So, the one
student again said, Because the median is higher. Students who addressed
percents noted, But 50% of the second period has done better than 75% of
the first and third periods. Students who looked at the spread of scores
continued with this focus,

I think that second period did the best than the third and first pe-
riod just because they have so many of their scores placed on the
higher end of the range of scores.

Only one student focused on the scale of the plots, adding to her evalu-
ation,

And then I'd say, on the whole, the classes did fairly well because
they all...it definitely...even the lowest point...was above 50 and
most of them...50% in fact...50% to 75% were above 75 [the score].

Conclusions

The purpose of this study was to look at what sense eighth grade
students’ made with respect to comparing two or more data sets using box
plots as a representational tool. Of particular interest is the third category
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of questions involving reading beyond the data. In making comparisons
using box plots, it appears that some students focus on reading the data as
they attempt to pair the respective five numbers (maximum, minimum,
median, and first and third quartiles) across box plots and use these com-
parisons to make decisions about which class did better. When this strategy
did not work, these students (with the exception of one student) were able
to modify their reasoning to look between the data and discuss the possible
distributions of data within intervals of the box plot. The other students
seemed te focus on between the data information, either adapting their lan-
guage to the usefulness of box plots by noting 25%, 50% or 75% intervals
of the data or to commenting on the spread of the scores and the clustering
of scores at the higher end of a plot when compared to other plots.

With the increasing inclusion of statistics content across the K-12 cur-
riculum, it is possible to begin to explore the development of thinking in
this area. What has been discussed in this paper begins to focus this discus-
sion on statistical inference and the role of box plots as a tool for making
comparisons as one of the reasons for conducting statistical investigations.
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Based on a synthesis of the literature and observations of young stu-
dents over a year, a framework for assessing statistical thinking was for-
mulated and validated. For each of the four major constructs of this frame-
work — reading data displays, organizing and reducing data, displaying
data, and analyzing and interpreting data — four levels of thinking were
identified which reflected a continuum from idiosyncratic to analytical rea-
soning. The framework was vaiidated through case study data obtained
from 12 students, four from each of grades 1 through 3. Results suggest
that while the framework produces a unified picture of children’s statisti-
cal thinking, there is static in the system which generates inconsistencies
among construct level, especially reading data dlsplays The framework
has implications for classroom instruction.

Reform documents such as those of the National Council of Teachers
of Mathematics (1989) reflect the increasing importance of data handling
at all levels of the school curriculum. This increased emphasis has created
the need for research on statistical learning, especially in the elementary
grades, where there has been a tendency to focus merely on graphing rather
than on broader aspects of data handling (Shaughnessy, Garfield & Greer,
1996). Although some elements of students’ statistical learning have been
investigated in areas such as data organization (Mokros & Russell, 1995)
and graph comprehension (Curcio, 1987; Friel, Bright, & Curcio 1997),
the research on students’ statistical learning is emergent rather than well
established. This is evident in the fact that research has not generated a
framework for describing students’ statistical thinking as has been the case
in mathematical topics such as whole numbers (Moser & Carpenter, 1984).

Through observation and insights into students’ thinking in various
statistical tasks, this study seeks to (a) develop an initial framework for
describing and predicting how students think in statistical situations, (b)
generate assessment protocols based on the initial framework, and (c) vali-
date the framework using the assessment protocol.



Theoretical Perspectives

The initial framework (available from the authors) is based on our year-
long observations of students’ statistical thinking and previous research
(Curcio, 1987; Friel, Bright, & Curcio, 1997; Mokros & Russell, 1995). It
incorporates four key constructs: reading data displays, organizing and re-
ducing data, displaying data, and analyzing and interpreting data that have
been adapted from four data handling concepts identified by Shaughnessy,
Garfield, & Greer (1996). Reading data displays involves describing repre-
sentations of data, identifying information stated in a display, and recog-
nizing connections between different displays of the same data . Organiz-
ing and reducing data incorporates mental actions such as ordering, group-
ing, and summarizing data. It also involves describing data by representa-
tive or typical measures such as mean, median, mode, and range. Display-
ing data incorporates constructing representations that exhibit different or-
ganizations of the data. Analyzing data involves recognizing trends and
patterns in the data, and making inferences, interpretations, and predic-
tions from the data. This construct includes what Curcio (1987) refers to as
reading between the data and reading beyond the data (p. 384).

Our framework hypothesizes that students’ thinking can be described
across four levels for each of the four constructs. Level 1 is associated with
idiosyncratic thinking; level 2 is seen to be transitional between qualitative
and quantitative thinking; level 3 involves the use of informal quantitative
thinking; and level 4 incorporates analytical and numerical reasoning about
data. These levels are consistent with cognitive research (e.g., Biggs &
Collis, 1991) that recognizes different levels in the complexity of students’
thinking.

Method

Students in grades 1 through 3 from a midwestern school formed the
population for this study. Twelve target students, four from each of the
three grades, were purposefully selected from this population. Based on
teacher assessment of student achievement records, two students were se-
lected from the middle 50% and one from both the lower and upper quartiles
of each grade level.

The process used to validate the framework was similar to that used in
an earlier study (Jones, Langrall, Thomnton, & Mogill, 1997). It involved
four components: (a) interviewing and analyzing target students’ responses
to the Statistical Thinking Protocol; (b) examining the stability of target
student’s thinking over the four constructs; and (c) 1lluminating the distin-
guishing characteristics of each thinking level. Qualitative analysis was
used to address all three parts of the validation.

The major source of data was children’s responses to the Statistical
Thinking Protocol. This protocol was administered to each target student
near the beginning of the school year by a member of the research team.
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The protocol was based on the framework and comprised three major tasks,
each of which contained open-ended questions followed by series of probes.
Eight questions were associated with reading data displays (R), nine with
organizing and reducing data (O), three with displaying data (D), and 15
with analyzing and interpreting data (A). Sample questions for one of these
major tasks, Sam’s Friends, are presented in Figure 1. Each question is
labeled R, O, D, or A according to which framework construct it assesses.
Students’ responses were audiotaped and transcribed, and student artifacts
such as drawings and graphs were collected.

The double coding procedure described by Miles and Huberman (1994)
was used to code the transcripts. Initially, two of the researchers indepen-
dently coded all items of each student’s interview protocol. Using the frame-
work descriptors as criteria, items were coded according to construct and
level of thinking exhibited by the student. These codings classified by con-
struct were then used to determine the dominant (modal) statistical think-
ing level for each student on each of the four constructs. Agreement was
reached on the coding of 40 levels out of 48, that is 83 percent. Variations
were clarified until agreement was reached for each student on all four
constructs. During the coding process described above, the researchers used
a data reduction approach (Miles & Huberman, 1994) to discern key think-

ing patterns exhibited by students at each level of the framework and across
all four constructs.

Results and Discussion

The profiles in Figure 2 show the levels of statistical thinking for each
of the 12 target students by grade level. Level 1 thinking was exhibitec by
three of the four students at each of the first and second grade levels, while
all of the grade 3 students showed thinking that was indicative of level 2.
Although there is growth in children’s statistical thinking across the three
grades, this is largely a feature of the higher levels of thinking shown by
grade 3 students. Even so, none of the grade 3 students demonstrated thinking
that went beyond level 2. It is also clear that students’ thinking across the
four constructs was not completely stable. For example, grade 2 students’
levels of thinking on reading data displays were generally higher than those
on the other three constructs. These observations suggest that while the
framework produces a unified picture of students’ statistical thinking, there
is static in the system which generates inconsistencies with respect to think-
ing levels across constructs. Some of this static may be eliminated as con-
structs like reading data displays are refined. However, our observations
suggest that these students often regress to idiosyncratic or even mystical
reasoning when they are capable of higher level statistical thinking.

With respect to reading data displays, level 1 students often gave idio-
syncratic responses that had little relevance. For example, in response to
question D1 (Figure 1b), Carlos perceived the bars as representing the
heights of Sam’s friends rather than the number of friends who came to
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Figure 1. Profiles of grade 1 and 2 siudents’ statistical thinking

visit. Students at ieve] 2 were able to make more sense of the data and, in
particular, wcie abie to recognize when two visual displays represented the
same data set. In response to questions on organizing and reducing data,
neither level 1 nor level 2 students were able to deal with the notions of
average or spread in any meaningfui way. Roiis’ response io question Ol
{f1gure 1a) illustrates how one child tried to make sense of the concept of
average. He reasoned 4 because 2 is close to 4, and 3 is close to 4 and 1 is
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Figure 2  Profiles of Students’ Statistical Thinking

close to 4 and 2 is close to 4 and 7 is close to 4. While the reasoning is
inchoate, Boris appeared to look for a balancing number like the mean or
median.

With respect to displaying and analyzing data, students exhibiting level
1 thinking were not able to construct valid visual representations of data,
but did show some ability to read between the data (Curcio, 1987, p. 384).
Jane’s response to question R1 (Figure 1b) on constructing visual repre-
sentations is typical of level | students’ thinking. She drew a pictograph of
baby snakes on top of each other that bore no relation to the original graphs
or the data beyond showing that [some are] more [and some are] less, and
there is one lesser. However, in response to A4 (Figure 1a), Jane appeared
to read between the data: / counted all the Xs and came up with 19.

By way of contrast level 2 students showed some ability to complete
data displays and even to *“read beyond the data” (Curcio, p. 384). For
example on question R1 (Figure 1b), Keith’s response produced a visual
representation that maintained the integrity of the data but used “doors”
instead of Xs. Pointing to each door, Keith said, “That’s where people can
walk in.” In response to AS (Figure la), Candy showed evidence of think-
ing beyond the data. She reasoned that 10 friends would visit Sam each
week because usually | or 2 come each day. This comment referred to her
previous interpretation of average as mostly at least 2 [friends} came on
each day.

One implication arising from these results is that student learning in
data handling may be promoted if teachers were more aware of the range
of students’ statistical thinking. Such awareness might be enhanced through
open-ended questions and probes like those in this study.
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Representations of mathematical ideas and the development of those representations
have been traced for a group of five students who have had the opportunity to
engage in carefully designed investigations over scveral years. As tenth-graders,
the students worked together on a combinatorial task that they first encountered in
the fifth grade. The study revealed that these students retrieved earlier idcas and
images, built upon them, and used their new representations to solve an extension
of the task.

Objective

This research is one component of an on-going longitudinal study of
students’ building of mathematical ideas as they engage in problem-solv-
ing tasks with other students. The study in progress focuses on the devel-
opment of combinatorial and probabilistic reasoning in children, and con-
tinues through high school. A particular group of students who have worked
thoughtfully and collaboratively on meaningful mathematical problems
since grade one were encouraged to make conjectures, develop theories,
and justify their solutions for a variety of mathematical problems.

These students, now in tenth grade, are participating in a Friday after-
school mathematics program. Our interest is to examine whether students
make connections between ideas explored in earlier years and those cur-
rently being considered. Particular questions that are being investigated
include: (1) What is the nature of the original represeniations of the stu-
dents’ mathematical ideas? (2) Does a student’s representation change over
time, and (3) if so, how?

Theoretical Framework

The longitudinal study has made possible a rich collection of data on
chiidren’s thinking in the form of videotapes and student work. This en-
ables us to examine the outcomes of a particular activity within the broader
domain of outcomes of both earlier and later events. By studying a student’s
thinking at various points in time and tracing the development of that think-
ing, it is possible to understand how original ideas were modified. Itis also
possible to study how these :deas were retrieved to solve new problems.
The work of Pirie and Kieren (1992) suggests that students revisit ideas
and refine their conjectures; also, when faced with a new situation, they
“fold back " to an inner level of understanding, reflecting upon and reorga-
nizing their earlier ideas in light of new information.
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Problems involving combinatorics have been shown to be useful for
studying mathematical thinking (Maher & Martino, 1998, 1997, 1996).
These problems afford children the freedom to create their own strategies
and rules. In addition, students benefit from their direct experience with
data and the manipulation of that data as they look for patterns and rela-
tionships. This personal building is an important foundation for the later
study of probability (Kapur, 1970).

Methodology

Subjects: An intense case study of a focus group of five students from
the original study is being conducted (Kiczek, in'progress). The students,
Ankur, Brian, Jeff, Michael and Romina, revisit problems they investigated
in elementary school, followed by appropriate new extensions.

Data: The data for this report come from videotapes of problem solv-
ing sessions in grades five and ten. A task that they originally explored in
the fifth grade (the Pizza Problem) was the first of a series of related inves-
tigations involving combinatorics. The task asked students to determine
the number of different pizzas that could be made when there is the option
of selecting from among four toppings, and then to find a way to convince
each other that they had accounted for all possible choices. This task was
investigated by the students again in grade ten. The current data come
from after-school small group sessions of several hours durat‘on each, while
the earlier data were collected in a classroom setting in which the task and
extensions were given over several days.

Procedures: At least two cameras were used to record each session
Afterwards, a team of researchers studied the tapes, making notes, tran-
scribing, and verifying each transcript. The collection of data includes: (1)
videotapes of students working together; (2) follow-up interviews of indi-
vidual students or groups of students; (3) videotape transcripts; (4) analy-
ses of the transcripts; (5) students’ written work; and (6) researcher notes.
The data are organized as a *“video portfolio” (Maher & Martino, 1996), a
detailed record of what the student says and writes about a problem, the
notation and strategies that are used, the pupil-to-pupil and pupil-to-teacher
talk, and particular successes and frustrations. This “portfolio” provides a
collection of many events that, when viewed chronologically, create a dy-
namic moving picture which telis the story of the development of a par-
ticular idea.

Results

Before the first tenth grade session, the high school students, graduate
students and the teacher/researcher conversed informally while eating piz-
zas brought in as an after-school snack. Some students recalled solving
problems involving pizzas in earlier years. The teacher/researcher asked if
they remembered what they had done and how many pizzas they had found.
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After some discussion, the students reconstructed the original Pizza Prob-
lem and extended it by adding a fifth topping. They then proceeded to
work on the problem.

Solving the Pizza Problen in Grade 5 - Spring 1993. Romina, Michael,
Jeff, Brian and Ankur worked as a group on the Pizza Problem as fifth
graders, although they used a variety of strategies and representations to
produce the sixteen combinations. These included a partial tree diagram,
lists, and an organization that systematically controlled for variables.
Michael drew circles to represent the various pizzas, labeling each with its
toppings. They created codes using letters or abbreviations to represent the
four toppings (for example, pepperoni = pep; m = mushrooms) and also
decided to code for a pizza with no toppings (plain = pl; ¢ = cheese (plain)).
They distinguished between the cases of “whole” (plain or one topping)
" pizzas and “mixed” (two or more toppings) pizzas.

Solving the Pizza Problem in Grade 10 - Fall 1997. In grade ten, Michael
was the first to begin working on the problem. While the other four stu-
dents worked collaboratively, talking aloud about combinations of toppings
and patterns that they were observing, Michael spent at least fifteen min-
utes quietly developing his own solution. Romina, Jeff, Brian and Ankur
began by using a code of letters to represent the different toppings, similar
to the notation used in grade five; however, as the students began to list the
combinations, they switched their notation to the numerals one through
four. Michael, on the other hand, invented a symbolic representation based
on a binary coding scheme. The others decided that if five toppings were
available, thirty different pizzas could be made with at least one topping,
plus one plain cheese pizza, for a total of thirty-one. Michael disagreed
and Ankur challenged him to produce the missing pizza.

Michael: Ithink it’s thirty-two - with that cheese. And without the cheese,
it would be thirty-one. I’ll tell you why.

Ankur:  Mike, tell us the one we’re missing then.

Michael responded by explaining what the zeros and ones meant in his
representation and how they are used to write base ten numbers in base
two.

Michael: Okay, here’s what I think. You know like a binary system we
learned a while ago? Like with the ones and zeros - binary,
right? The ones would mean a topping; zero means no top-
ping. So if you had a four-topping pizza, you have four differ-
ent places; in the binary system, you’d have - the first one would
be just one. The second one would be that (writes 10); that’s
the second number up. You remember what that was? This
was like two, and this was three (writes 11).

Jeff recalled where they had seen this before.
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Jeff: I know exactly what you’re talking about. It’s the thing we
iooked at in Mr. Poe’s [their 8th grade teacher] class; it was
with computers.

Michael continued to relate his coding scheme to the pizza problem.

Michael: Well, you get, I think — I have a thing in my head. It works
out in my head. You’ve got four toppings. This is like four
places of the binary system. It all equals up to fifteen. That’s
the answer for four toppings.

Romina sought clarification about the assignment of meaning for the
zeros and ones. It was Jeff who responded to her question.

Rom:ina: So is the one — is that your topping?

Jeff: Yeah. Each one is a topping. The zeros are no toppings. The
ones are toppings.

Michael then summarized his conclusions; Brian’s “Wow!” indicated
his enthusiasm for Michael’s solution.

Michael: So you go from this number (0001), which is in the binary

“system, it’s one, to this number (1111), which is fifteen, and
that’s how many toppings you have. There’s fifteen different
combinations of ones and zeros if you have fcur different places.

Brian:  Wow!

Michael: Idon’t know how to explain it, but it works out. That’s in my
head — these weird things going on in my head. And if you
have an extra topping, you just add an extra place and that
would be sixteen, that would be thirty-one.

Michael omitted the representation for a plain cheese pizza. However,
by adding one to the fifteen combinations (four toppings) and to the thirty-
one combinations (five toppings), he accounted for all possibilities.

Jeft: And then you add the cheese?

Michael: Plus the cheese would be thirty-two.

With the assistance of the other students, Michael presented his binary
coding scheme to the teacher/researcher, saying, “This is the way I inter-
pret it into the pizza problem.” When the teacher asked questions about
Michael’s solution, the other students were able to respond.

Teacher: Whatis the difference between 1-0-0-0 and 0-1-0-0?

Jeff: Well, that would be the difference between an onion pizza and
a pepperoni pizza.

Jeff then suggested they label each column with the name of a topping.
Michael agreed, noting that a one in a column indicated that pizza had that
particular topping. As an extension, the students were asked to consider
the case where ten toppings were available. While investigating this exten-
sion, the group discovered that a string containing all zeros represented a
plain cheese pizza. Finally, they were asked to generalize to the case of n
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toppings. Eventually they proposed the generalization of 2 n, where n is
the number of topping choices.

Teacher: Okay. So what do you think of this way to do it?

Jeff: I’m impressed.

Brian:  Yeah.

Conclusions/Significance

In the fifth grade problem solving session, the original representations
displayed by the students made use of notation that enabled them to keep
track of their ideas and account for all possibilities to reach a solution. In
the tenth grade session, representations displayed by Romina, Jeff, Brian
and Ankur were similar to those they used earlier. Michael’s representa-
tion, however, was different, drawing from an image he retrieved from his
eighth grade mathematics class. What is significant is how quickly and
easily the students were able to map their ideas into Michael’s representa-
tion and then generalize to solve extensions of the problem.

The interest and enthusiasm of the group of tenth graders was evi-
denced by their willingness to immediately engage in thoughtful math-
ematics, even before the first tenth grade session formally began. Through-
out the episode it can be seen that the students were comfortable with each
other and enjoyed working together. They carefully attended to Michael’s
explanation and they listened and responded to each other’s questions. Itis
apparent that they were pleased with the results of the session and with
their success in solving the problem for the general case. In a subsequent
session, Michael’s binary notation resurfaced as the students applied it to
solve an isomorphic combinatorics problem. The findings support the im-
portance of introducing rich problems to ycung children and previding
opportunities to revisit these problems as students grow older and have
more tools available to build upon their earlier ideas.
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JUSTIFICATIONS TO 5-8 YEARS-OLD STUDENTS’
RESPONSES TO DECISION PROBLEMS

M.en C. Araceli Limén Segovia
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eramon@mail.cinvestav.mx

Results from individual clinical interviews given to 17 students between 5 and 8
years old are presented in this report. These individual interviews refer to problems
regarding decision making. They included the use of materials of a discrete nature
(chips in urns) and of a continuous nature (spinners divided into sections). The
findings allow us to characterize some kinds of response and observe that before
proportional compositions, decision making is very complex to students, even when
the nature of the materials is different. It is not the same with other compositions

before which decision making with materials of a continuous nature is easier for
students.

Introduction

The immediate antecedent of this study was an investigation that con-
sidered the liability of the possible curricular insertion of stochastic thought
processes absent in preschool and elementary school programs (Limon,
1995). Particularly, the report presented here, is part of a project that has
the purpose of analyzing the liability of teaching probability to students 5-
8 years old. The ideas of probability are conceived here as a model that
permits us to study chance assigned to numbers between zero and one.
This analysis will be in qualitative terms in the case of preschool children
or young pupils. _

We first pursued infoi mation about the students: Does the nature of the
aleatory devices (discrete, continuous) have an influence in solving deci-
sion problems? What strategies are used to resolve decision-making prob-

lems? What difficulties are detected in the estimation of probabilities of
events?

Theoretic Elements of Stochastics in Educational Mathematics

Commonly, the 5-8 year old pupil attend our National Educational
System in a preparatory grade in preschool, or, in the first or second grades
in elementary school. The study of the axis of prediction and chance begins
in the third grade, since, according to Piaget, when a child is 8 years or
older he is in the concrete operational stage. The insertion in the curricu-
lum seems to be supported by the thesis of this epistomologist, who, from
his psycogenetic view, came to the conclusion that the idea of chance is
constructed gradually and corresponds to other mental operations (Piaget
& Inhelder, 1951). It is notable that those who developed the study plans
and programs for preschool and elementary school, considered these rel-
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evant contributions of Piaget. However, they did not take into account that
he carried out his research without considering the role of teaching. Ac-
cordingly, some researchers indicate that, through teaching, children can
develop their intuition with respect to concepts of probability (Fischbein,
1975), even as early as the first grade (Falk & Levin, 1980). This develop-
ment can be accomplished by starting from the beginning of prefiguration,
coined by Bruner, which demonstrates the need to promote intuitive under-
standing starting in the elemental levels of teaching when the child cannot
apprehend them in a more elaborated, analytical manner. Heitele (1975)
also defended this argument.

Ahlgren and Garfield (1988) assure us that difficulties concerning the
constitution of the concept of a rational number and the proportional rea-
soning contribute to the difficulty that is present in the development of
correct intuition about the fundamental ideas of probability. This affirma-
tion leaves by the side a qualitative approach towards the chance situa-
tions.

‘ Methodology

The group included 15 elementary school students and 2 preschool
students. We classified the clinical interviews by the type of materials that
were used, of a discreté nature (urns), or of a continuous nature (spinners).
The decision making technique was used in the individual interviews and
this consisted of asking the students to choose one of two urns which in
each case, the proportions of the umns’ contents favored either an impos-
sible outcome or a desired outcome (Fischbein, 1975). Each child was al-
lowed to observe the contents and afterwards to answer the question What
box is it easier to get blue out of without looking? For the spinners they
were asked, In which spinner is it easier for blue to fall ? The justification
of his response was always solicited.

Analysis of Results

Double impossibility. Given two red chips in the left urn and three red
chips in the right urn; and in case of continuous material, two spinners of
the same color (red); 10 of the 17 students were incorrect from the
beginning when a discrete material was used. Upon using the continuous
material, the answers were correct and immediate. Analyzing the justifi-
cations of the children; these are characterized in two ways: Conserva-
tion of the initial double impossibility and centering toward the secure
event. The impossible event is related to the two ums and spinners, since
students justified their response by arguing that blue-colored chips did
not exist. Upon facing an impossible event, some children centered their
attention towards a sure event that was different from the one being
asked. They justified their responses by arguing that it was just as hard to
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get a blue chip out of one urn as it was out of the other, because there
were only red ones.

Double certainty. Given two blue chips in the left urn and three blue
ones in the right urn and the continuous material, two spinners were
blue-colored produced the following results. After carrying out a few
extractions, 10 students decided that they would draw a blue chip. Their
answers were immediate in the continuous material and according to
their justifications, these are characterized in three ways. Conserving
certainty was shown by children who justified that it was just as easy to
choose a blue chip from either because there were only blue ones in both.
Other students supported their answers by arguing that there were blue
chips in the urns. Others centered on what remained after selecting a
chip. Jéssica (7,1) argued that it is easier in 3/3 than in 2/2 because,
when one is taken out, there are two left in both urns. This type of answer
did not show up in the continuous material. Others centered on the
number of chips in the urns with emphasis on the greater or lesser
amounts of chips. This did not show up in the continuous composition.

Certainty-impossibility. Given the left um has two blue chips, and the
right one has two red chips and one red spinner and one blue one, all of
those interviewed choose correctly. We have classified the justifications
in the following three ways. Consideration of certainty without impossi-
bility was evidenced by children who included certainty as well as
impossibility into their argument. This response was observed with both
continuous and discrete materials. Centering on the impossibility was
noted by one of the girls who justified it in this manner:

Ariadne (6,10)
A: [The blue chip is] In the left one.

E: Why?
A: Because you can’t take any out of the right one because there’s
red.

Possibility-certainty. Given that the left urn has one red chip and one
blue chip (possible event), in the right urn there are two blue chips (sure
event), and one spinner has one quarter part blue (possible event), in the
right urn there are two blue chips (sure event), all of the children responded
correctly. They affirmed that it was easier to get blue in the right urn that
the left urn. The majority of the pupils (9 of the 17) demonstrated that they
centered on certainty to justify their decisions, and demonstrated that they
considered that the event was sure:
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Isaim (6,9)

I: [Choose] the right one.

E: Why?

I: Because everything [in the urn] is blue.

In the previous dialogues the justification of the assignment of
greater possibility for the surc composition over the possible. This was
used with both materials. Some students centered on the cardinality.
They justified comparing the cardinality of the blue chips or that of the
blue areas. Only three of those students interviewed considered both
compositions to sustain their decisions. There would be classified as
taking consideration of the certainty and of the possibility of the event.
There were two justifications in particular that explain the obtainment of
possible results with equivocations.

Antonio (6, 10)

A: In the right one.

E: Why?

A: Because there are more. No. Here there is a red one and a blue
one. What if I make a mistake?

Proportionality. In the left urn there is one blue chip and one red chip; in
the right urn, there are two blue chips and two red chips. The spinners used
in this composition were divided into halves and fourths: the spinner on the
left had two quarters colored blue, and the other two colored red, alter-
nately. The spinner on the right was half red and half blue. The least fre-
quency of correct answers was obtained on this composition; out of seven-
teen pupils, five in the discrete case and seven in the continuous selected
the two urns in the initial interviews. Upon analyzing their justifications, it
was found that only two students considered the proportionality of the chips
in their initial interviews. Although the answers given by Ornela and Araceli
are correct, their arguments reveal that for them the existence of chips of
the solicited color, blue, is sufficient reason to assign equal facility for ex-
traction. Their responses indicate a centering on the existence of the blue
color while they responded correctly they did not consider the proportion-
ality of the chips. Some students centered their attention on the quantity of
blue chips or in the magnitude of the blue area, without considering its
proportion in respect to the whole. They assigned greater facility to the urn
that had more blue chips or to the spinner divided in half, just because it
had blue. For these students, it appears they were centering on cardinality.
We detected that only two children (Jéssica and Luis Miguel) justified their
thinking by alluding to the proportionality in the discrete case. To do this,
they transformed the two blue quarters into a half, and in this way iderti-
fied that proportionality existed.
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Inequality of the favorable cases and equality of the possible cases.
Given the left urn has one chip and three red chips, and the right urn has
two red ones and two blue ones, we detected the following types of argu-
ments that support students’ responses: Centering towards the existence of
the blue color, Ariadne claimed that for her the simple existence of the blue
color was reason enough to assign equal chance of extraction. Students
who centered on cardinality assigned greater facility where there were more
chips or to the blue area, without bothering with the amount of red ones.
When students compared the red and blue areas in the left roulette, some
observed that the areas of each color of the roulette was more probable on
the left [alternating quarters].

Ma. José (7,4)
E: Why?
MIJ: Because it has a little piece of red and 2 lot of blue.

Conclusions

This study addresses an interesting problem and presents conclusions
which raise future questions as to why students had more difficulty with
discrete materials and which materials may support student thinking. Of
note was the finding that children had greater difficulty in making deci-
sions when they used discrete materials rather than continuous. As far as
various compositions, it was observed that the double impossibility repre-
sented more difficulty that the double certainty decision [In the composi-
tions of proportionality and inequality in favorable cases with equality in
possible cases]. When some students considered the favorable results, with-
out establishing a relationship between those with the sum of possible re-
sults. This type of justification becomes more evident in dealing with ma-
terials of a discrete nature. We noticed that the proportional composition is
the most difficult one for children independent of the type of material uti-
lized.

Finally, we need to know if in the development of the lesson, the physi-
cal apparatus used can be considered as that which anchors or immobilizes
the knowledge of the subject. We will have to analyze which type of an-
chor serves with the use of diverse aleatory devices or activities and how
these influence the determination of probabilities on behalf of the partici-
pating subjects.
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The purpose of this paper is to describe how one group of students came to reason
about data while developing statistical understandings related to exploratory data
analysis. In doing so, we will present episodes taken from a seventh-grade classroom
in which we conducted a twelve-week teaching experiment. One of the goals of
the teaching experiment was to investigate ways to proactively support middle
school students’ development of statistical reasoning. As part of our efforts we
developed an instructional sequence designed to focus on the “big ideas” in statistics.
This effort also included the development of two computer minitools which we
viewed as integral aspects of the sequence. As such, the computer minitools were
intended to support students’ emerging mathematical notions while providing tools
for data analysis. The purpose of the instructional sequence was then to support
students’ ability to reason logically about ways to structure data in order to make
an argument.

Our purpose in this paper is to describe how one group of students
came to reason about data while developing statistical understandings re-
lated to exploratory data analysis. In doing so, we will present episodes
taken from a seventh-grade classroom in which we conducted a twelve-
week teaching experiment. One of the goals of the teaching experiment
was to investigate ways to proactively support middle school students’ de-
velopment of statistical reasoning. In doing so we developed an instruc-
tional sequence designed to focus on the notion of distribution as one of the
“big ideas” in statistics. As part of our development efforts, we viewed
computer minitools as an integral aspect of the sequence, not technological
“add-ons.” As such, the computer minitools were intended to support stu-
dents’ emerging mathematical notions while providing tools for data analy-
Sis.

Instructional Sequence

As we began to design the instructional sequence to be used in the
seventh-grade classroom, we attempted to identify the “big ideas” in statis-
tics (cf., Hancock, Kaput, & Goldsmith, 1992; Konold, Pollatsek, Well, &
Gagnon, in press; Mokros & Russell, 1995). It was hoped that these themes
would guide the emergence of the sequence and allow us to avoid creating

' The research in this paper was supported by the National Science Foundation
under Grant No. RED-9353587 and by the Office of Educational Research and
Improvement under Grant No. R305A6007.
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a listing of separate, loosely related topics that are typically characteristic
of middle school curricula. In doing so we came to focus on the notion of
distribution. This enabled us to treat notions such as mean, mode, median,
and frequency as well as others such as skewness and spread as character-
istics of distributions. It also ailowed us to view various conventional in-
scriptions such as histograms and box-and-whiskers piots as different ways
of structuring distributions.

As we began mapping out the instructional sequence, we were guided
by the premise that the integration of computer minitools was critical in
supporting our mathematical goals. Students would need ways to organize,
describe, and compare data sets. This could be best facilitated by the use of
the computer. However, in our efforts we tried to avoid creating tools for
analysis that would offer either too much or too little support. This quan-
dary can be best described by the current debate over the role of technolo-
gies in supporting students’ understandings of data and data analysis. This
debate is often cast in terms of what has been defined as expressive and
exploratory computer models (cf. Doerr, 1995). In one of these approaches,
expressive, students are expected to recreate conventional representations
and inscriptions with only an occasional nudging from the teacher. The
approach that we took to designing computer-based tools for data analysis
offers a middle ground between these two extremes. It introduces particu-
lar tools and inscriptions that are designed to fit with students’ current ways
of understanding, but are intended to build toward conventional represen-
tations (Gravemeijer, Cobb, Bowers, & Whitenack, in press).

The instructional sequence developed in the course oi the seventh-grade
teaching experiment involved two computer-based minitools. The first com-
puter minitool was explicitly designed for this instructional phase and pro-
" vided a means for students to manipulate, order, partition, and otherwise
organize small sets of data. Its use in the classroom made it possible for
students to act on data in a relatively direct way that would not have been
possible had we used commercially available tools that offered students a
palate of conventional ways of structuring and organizing data. The first
minitool also contained a value bar that could be dragged into the data and
used to estimate the mean or mark the median. There was also a tool that
could be used to determine the number of data points within a fixed range.
It is interesting to note that the students used both of these tools in ways
that we did not anticipate. -

The second computer tool can be viewed as an immediate successor of
the first. The tool offered a range of ways to structure data. Two of the
options can be viewed as precursors to standard ways of structuring and
inscribing data. These are organizing the data into four equal groups sc that
each group contained one-fourth of the data (precursor to the box-and-
whiskers plot) and organizing data into groups of a fixed interval width so
that each interval spanned the same range on the scale (precursor to the
histogram). However, three other options available to students do not cor-
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respond to standard inscriptions. These involve structuring the data by
(1) making your own groups, (2) partitioning the data into groups of a fixed
size, and (3) partitioning the data into two equal groups. The key point is
that this tool was designed to fit students’ ways of reasoning while taking
big mathematical ideas seriously.

As we worked to outline the sequence, we reasoned that students would
need to encounter situations where they had to develop arguments based
on the issue for which the data was-generated. They would therefore need
to develop ways to analy ze and summarize the data in order to substantiate
their recommendations. As a result, instructional tasks typically involved
students being given one or two sets of data and asked to make a recom-
mendation to a particular person concerning their analysis. However, this
followed an extensive discussion in which students talked through the data
. creation process. The data then had a history and could be investigated.

Classroom Episode

As part of the classroom participation structure, students were expected
to explain and justify their solutions. This was facilitated by the use of a
projection system that allowed students to display their data sets from their
computer and discuss their ways of organizing the data to support their
decision. Irn addition, students were asked to produce written arguments
that then served as the basis for classroom discussions. Students often
changed their initial judgments based on the whole-class discussions. In
this way, the students’ ways of reasoning were constantly being challenged
and modified in light of others’ arguments.

As the sequence progressed, students were also asked to create inscrip-
tions of the data that would serve to support their recommendations. In
doing so they had to reason about ways to provide enough information to
support their argument without reproducing data sets in their entirety. This
initially proved problematic in that students had trouble distancing them-
selves from the classroom and understanding what someone outside their
own investigations would need to know. Their initial attempts were cryptic
and lacked detail. Further, their lack of experience in engaging in math-
ematical argumentation made their discussions about their recommenda-
tions problematic. They typically assumed a great deal on the part of the
listener. The teacher worked to support their development of mathematical
argumentation by often posing as an “outsider” and asking questions from
an uninformed point of view. As the sequence progressed, students began

to develop ways of reasoning and arguing that supported their ability to
engage in data analysis.

Battery Analysis

Early in the sequence, students were asked to analyze the results from
tests on two separate brands of batteries. Before engaging in the analysis of
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the data, the teacher and students talked about the data creation process.
The students discussed ways that batteries might be tested, focusing on the
data that would result from such tests. After an exhaustive discussion, stu-
dents were then asked to compare the test results on ten batteries from each
of two brands to determine which was the “better” battery. Students began
by using the minitool to organize the data. Afterwards, they presented their
arguments in whole-class discussion. Cara was the first student to share her
argument. She began by explaining that she used the range tool to identify
the top ten batteries out of the twenty that were tested. In doing so, she
found that seven of the top ten were Always Ready.

Cara: See, like there is 7 Always Ready, there is like 7 of the Tough
Cell are way back. Sevei out of 10 of the Always Ready are
the longest.

Kip: Good point.
Teacher: Okay. Jane, I’m not sure I understood so could you say it for
me.

Jane: She is saying that seven out of ten of the batteries that lasted
the longest are Always Ready. So these are better ‘cause more
of them lasted longer. '

At this point, Ben raised his hand to say that he did it a different way.

Ben: Car you put the representative value on 80? (The teacher moves
the vertical value bar to 80 on the scale.) Now, see there’s still
[Always Ready batteries] behind 80 but all the Tough Cell is
above 80 and I'd rather have a consistent battery that is going
to give me above 80 hours instead of one I just have to guess.

Teacher: Questions for Ben? Jane?
Jane: Why wouldn’t the Always Ready battery be consistent?
Ben: All your Tough Cells is above 80 but you still have two behind

80 in the Always Ready.
Jane: Yeah, but that’s only two out of ten.
Ben: Yeah, but they only did ten batteries and the two or three will

add up. It wili add up to more bad batteries and all that.

Jane: Only wouldn’t that happen with the Tough Cell batteries?
Ben: The Tough Cell batteries show on the chart that they are all
over 80 so it seems to me they would all be better.

Jane: (nods okay).

Ben appeared to be making an argument based on the fact that all of the
Always Ready batteries lasted at least 80 hours. He had used the value bar
to partition the data by placing the bar at 80. He then reasoned about the
parts of each data-set that were greater than 80. In doing so, he had con-
cluded that Always Ready was the better brand of battery.

At this point, Jen seemed to try to make an argument based on what
both Cara and Ben had offered.
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Jen: I was just gonna say that, well, even though 7 of the 10 longest
lasting batteries are Always Ready that the two lowest are also
Always Ready and if you were using them for something im-
portant you might end up with one of the bad batteries.

Jen had noticed that while Tough Cell had 7 of their 10 batteries in the
top ten, they also had the lowest two batteries. She then reasoned that with
such a wide range you could not depend on Always Ready batteries for
something important.

The students continued to engage in similar investigations using the
first minitool for several weeks. As they worked, many of them frequently
used tiie value bar to partition the data. They would place the bar at a par-
ticular location along the scale and then reason about the number of data
points that appeared above or below. It is important to note that the position
on the scale they used in partitioning the data did not appear to be arbitrary.
For instance, in a task about health care, many placed the bar at age 65,
arguing that they had noted which data were senior citizens. In this way,
they used the bar to create quantitative descriptions of the data.

As the students worked, we continually analyzed the nature of their
activity as we developed and modified tasks. As a result, once students
seemed to be developing ways to organize the data and an understanding of
what is involved in a mathematical argument, we introduced the second
minitool. As previously noted, this tool was designed in a manner similar
to an axis plot. It not only allowed us to eliminate the magnitude bars, but
it also allowed us to increase the number of data points in the sets. These
features supported a shift in the nature of students’ arguments — they be-
gan to focus on characteristics of the distributions instead of the individual
data points. For example, students argued about the location of the hill in
comparing two sets of data, noting a shift in the cluster of data points. They
also began to use the language of a five-point summary (extremes, quartiles,
and median) as they made arguments such as: one-half of this data set is in
the range of three-fourths of the other data set.

Conclusion

We would stress that the purpose of the instructional sequence was not
that students might come to create certain graphs in particular situations or
calculate measures of central tendency correctly. Instead, it was that they
might reason logically about ways to structure data in order to make an
argument. This is a radically different approach to statistics than is typi-
cally introduced in middle schools. As the goal was nor to ensure that all
students could create certain types of graphs, the teacher continued to sup-
port the development of arguments that could be justified to other mem-
bers of the classroom community in terms of reasoning about distributions.
Thus, the focus in discussions was on the meaning that students’ records of
their analysis activity had for them. In addition, students seemed to
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reconceptualize their understanding of what it means to know and do math-
ematics as they compared and contrasted solutions. The crucial norm that
became established was that of explaining and justifying solutions in the
context of the problem being explored.
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This paper documents the analysis of performance assessments conducted in a

seventh-grade classroom. The purpose of the assessments was to obtain baseline

data on students’ current statistical understandings that would then inform future

instructional design decisions in a current research project. The tasks were designed

to provide information about students’ current understandings of (a) the mean and
(b) graphical representations. Students typically viewed the mean as a procedure

that was to be used to summarize a group of numbers regardless of the task situation.

Data analysis for these students meant “doing something with the numbers.”

In our current work, we are refining our approach to instructional de-
sign in the context of students’ development of statistical thinking in sev-
enth and eighth grade. As part of the pilot work, we reviewed the literature
on statistics teaching and learning in order for us to clarify what the “big
ideas” should be in statistics at the middle-school level. There are actually
only a handful of studies available that focus on students’ statistical under-
standings. These studies fall into two categories: (1) studies that examine
students’ understanding of the mean and (2) studies that examine students’
statistical understandings in the context of data analysis. All of the early
research focuses on students’ misunderstandings and misconceptions of
the mean (e.g. Mevarech, 1983; Pollatsek, Lima & Weli, 1981, Strauss &
Bichler, 1988). More recently, researchers have studied how students use
the mean to summarize and compare data sets (e.g., Gal, 1., Rothschild, K.,
& Wagner, D. A., 1990; Mokros and Russell, 1995) These studies empha-
size that traditional instruction may provide students with the appropriate
algorithm for the mean, but leave them with an incomplete conceptual un-
derstanding. An emerging research trend is focusing on studies where stu-
dents are involved in the more complex activity of data analysis (e.g., de
Lange, van Reeuwijk, Burrill, & Romberg, 1993; Hancock, Kaput, & Gold-
smith, 1992; Konold, Pollatsek, Well, & Gagnon, in press; Lehrer & Rom-
berg, 1996). Typically, these studies outline the process by which students

' The analysis reported in this paper was supported by the Office of Educational
Research and Improvement (OERI) under grant number R305A60007. The opin-
ions expressed do not necessarily reflect the views of OERL
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analyzed and reasoned about data in more innovative instructional ap-
proaches. Clearly, the two categories of studies highlight different aspects
of statistics instruction. The first set of studies emphasize the mathematical
content (the mean) and the second set of studies document the mathemati-
cal process involved in data analysis. We believe it is crucial to transcend
this dichotomy between content and process by developing an instructional
approach that focuses simultaneously on data analysis and on mathemati-
cal content.

In the context of data analysis, one alternative for the mathematical
content in statistics is to move beyond simply understanding the mean to
more unifying big ideas. For example, several authors stress the impor-
tance of students coming to view data as an entity as opposed to a coliec-
tion of individual data points (Hancock et al., 1992; Konold et al., in press;
Mokros & Russell, 1995). One idea that helps identify what might be in-
volved in viewing data as entity is that of a space of potential data values.
In particular, we conjecture that students who view data as entity see the
individual data points as located within a space of possible values. As an
example, Hancock et al. document that the students in their study rarely
used the axis plot option of TableTop even though they had used the soft-
ware to conduct data analyses for a year and could explain the meaning of
the icons when shown on axis plots. They suggest that the very thing that
made the axis plot powerful — the fact that it corresponded to a space of
possible values, rather than to a single value — also made it harder to under-
stand. In other words, since the students did not conceptualize the indi-
vidual data points as located in the space of all possible values, the possi-
bility of using an axis plot did not occur to them. A similar analysis holds in
the case of Konold et al.’s observation that the students in their study rarely
used the histogram option of the DataScope software. A histogram involves
structuring the space of all possible data values into equal intervals. These
examples illustrate the importance of a space of potential values as a big
idea in statistics instruction.

A second big idea, closely related to the first, that came to the fore in
our reading of the literature is that of group propensity (Konold et al., in
press). In defining group propensity, Konold et al. refer to the rate of occur-
rence of scme data value within a group that varies across a range of data
values. For example, the data value in question might be that of being a boy
rather than a girl. Unless individual data points are located within a space
of possible data values in which they can take on the values of boy or girl,
the propensity of being aboy cannot be formalized as, say, 65%. As Konold
et al. observe, the possibility of comparing groups in terms of means or
relative frequencies did not occur to the majority of students in their study
when they conducted data analysis. This can be accounted for in terms of
their lack of understanding of the big ideas of a space of potential values
and of group propensity. The development of these two big ideas together
constitute major steps towards understanding the statistical concept of dis-
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tribution and are, therefore, mathematically significant. We have also pointed
out the cruciali role these two big ideas play in data analysis. For us, these
two big ideas would allow classroom research to focus on students’ math-
ematical development as they participate in data analysis activities.

In order to support students’ development of an understanding of data
analysis along with an understanding of the big ideas in statistics, it is im-
portant to develop instructional sequences which (1) build on students’
current understandings and (2) support shifts in their current ways of rea-
soning. As part of our pilot work for our current project, we conducted
classroom performance assessments in order to obtain baseline data on stu-
dents’ current statistical understandings. The assessments were conducted
during the fall semester of 1996 in three sessions of a seventh-grade class.
During the sessions, a former middle-school teacher who was a member of
the research team posed tasks to the students as they worked together in
groups. The tasks were designed to provide information about students’
current understandings of (1) the mean and (2) graphical representations of
data (inscriptions) because these two topics were the focus of the statistics
chapter in the textbook series used by the students in their previous instruc-
tion. By focusing on students’ current ways of reasoning, the subsequent
instructional materials could build from their current knowledge. The pur-
pose of this paper, then, is to document the analysis of these performance
tasks which will then serve to inform subsequent decisions concerning in-
structional development.

Results of Analysis

The general format for the three mathematics class sessions in which
the performance tasks were conducted was a whole-class introduction to
the task, student collaboration in small groups, followed by a whole-class
discussion of their solutions. Students worked in groups composed of from
3 to 6 students with the number of groups varying from task to task. In the
following sections of this paper, we will begin by describing the context of
the task?, the design decisions underlying the task, and our anticipation of
how students would respond to the task. Second, the small-group work is
analyzed in order to highlight the various solution methods. Finally, the
whole-class discussions are analyzed to clarify students’ understandings.

Task 3: Basketball All-Star

In the Basketball All-Star task, students were asked to make a decision
based on a given set of data. We designed this task in an attempt to gain
information on how the students would deal with the issue of variability as
it related to the mean. We anticipated that some groups would reason that

? Due to space restrictions, only onc performance assessment is presented. For a
detailed analysis of all tasks see McGatha, Cobb, and McClain, 1998.
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the data set with the larger mean was the better choice without going back
to the task situation and considering the impact of variability on the deci-
sion in this particular instance. We therefore designed the task so that the
data-set with the larger mean also had the greater variability. For us, then,
the data set with the larger mean would not be the better choice because in
this situation (scoring in basketball) consistency would be more important
when making a decision.

Basketball All-Star. In the Basketball All-Star task shown below, students
were given a listing of the number of points scored by each of two basket-
ball players in each of eight games. They were then asked to decide which

player should be selected to play in the all-star tournament based on these
scores.

One player will be selected from the Meigs basketball team to play in the all-
star tournament. Below is a listing of the points scored by the top two
candidates for the last eight games of the season. Based on this information,
present an argument to support the selection of one of the players.

Player A: 11 31 16 28 27 14 26 15
Player B: 21 17 22 19 18 21 22 20

Figure 1. Basketball All-Star Task

Group work. This task was approached in two distinct ways. The majority
of students, five of eight groups, solved this task by calculating the total or
the mean. The remaining three groups also initially found the mean or the
total, but then they reconsidered the task situation and decided the player
with the higher mean was not the better player for the tournament. For the
five groups who calculated the total or the mean, this task was about total-
ing or averaging the points of each player and determining the winner by
comparing the outcome. Each of these groups selected Player A because he
had the higher total and/or the higher average number of points. For these
groups, the mean provided the best summary of the data regardless of the
situation. If we consider the prior school experiences of these students,
reasoning about the problem in this way seems reasonable. in traditional
school mathematics a group of numbers is often summarized by calculat-
ing the mean.

The other three groups of students initially began the task in the same
way as the groups described above. However, they subsequently selected
Player B even though his total points were lower than Player A. After cal-
culating the total or the mean, these groups went back to the task situation
and decided that the player with the higher mean was not necessarily the
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player that should be sent to the tournament. These discussions will be
elaborated in the next section.

Whole-class discussion. The teacher began the whole-class discussion by
asking students to defend their choice of Player A or Player B as the one to
send to the all-star tournament. The first group to share their thinking ar-
gued for sending Player B.

Student: Our group said that you should send Player B to the tourna-
ment because he has a...even though Player A’s average [sic] is
higher than his, which was only by eight points, he has a
more steady...in his games...his points...they’re more...they’re
not so up and down like Player A’s are...where one day... he

goes from 11 points to 31 points so that’s why we said Player
B.

Only one other group shared their thinking and they argued for sending
Player A to the tournament. However, their argument went beyond their
reasoning about the mean. This group had been challenged by another group
that was sitting at the same table and as a result, expanded their argument.
They created a situation to explain the variability in Player A’s scores and
argued that Player A, in addition to having the higher average, was prob-
ably a “team player.” His low scores (11, 16, 14, 15) indicated that he was
giving the ball to other players and he probably earned high assists in those
games rather than high points. His high scores (31, 28, 27, 26) indicated
that he helped the team out when they were falling behind. This group
continued their support of Player A by creating a situation to downplay
Player B’s consistent scoring. They argued that Player B had scores that
were about the same which indicated that he hud a “personal goal” to achieve
in each game and was not thinking of the team. This group believed the
mean was the best summary of the data sets and the counterargument about
consistency in scoring did not alter their position. In order to defend their
choice of selecting the player with the higher mean, this group appeared to
rely on their knowledge of basketball to create a narrative that would sup-
port their choice of Player A.

Conclusion

In our analysis we found that students typically viewed the mean as a
procedure that was to be used to summarize a group of numbers regardless
of the task situation. Data analysis for these students meant “doing some-
thing with the numbers” which, we conjecture, was grounded in their prior
schoo! mathematics experiences. Similarly, we found that students’ con-
versations about graphical representations highlighted the procedures for
constructing graphs with no attention to what the graph signified and how
that related to the task situation. In order for students to participate in genu-
ine data analysis, it will be necessary to support a shift in students’ current
ways of reasoning towards data analysis as inquiry rather than procedure.
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MIDDLE SCHOOL STUDENTS’ MISUSE OF
THE PHRASE 50-50 CHANCE 1IN
PROBABILITY INSTRUCTION
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Purpose of the Study

The study was part of a larger investigation (Tarr, 1997) which sought
to examine the impact of probability instruction on students’ thinking dur-
ing-, immediately following-, and seven weeks after the instructional pro-
gram. The primary objective of the present study was to determine stu-
dents’ strategies for describing conditional probabilities, and how these strat-
egies — which included the misuse of 50-50 chance — changed as the
result of probability instruction.

Theoretical Framework

The instructional program used in the larger study was based on two
theoretical positions. The first is a pedagogical orientation that acknowl-
edges the importance of teachers’ knowledge of student cognitions (e. g.,
Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Jones, Langrall,
Thornton, & Mogill, 1996; Shulman, 1986) and views teaching as helping
students to construct knowledge through problem solving and engaging in
mathematical discourse (e. g., Cobb, Yackel, & Wood, 1993; Lester, 1989,
Simon, 1995). The second is a cognitive framework that describes and pre-
dicts middle school students’ thinking in conditional probability and inde-
pendence (Tarr & Jones, 1997). This framework was used to generate as-
sessment protocols and to inform all phases of instruction.

Methodology and Data Sources

Twenty-six students from a fifth-grade class were randomly assigned
to one of two instructional groups, and 13 students from a second fifth-
grade class served as a control group. The teacher-researcher used a cogni-
tive framework (Tarr & Jones, 1997) to develop an eight-day instructional
program that comprised a series of problem tasks and key questions, diver-
sified journal prompts, and parallel and extension activities. In using the
problem tasks, the teacher-researcher encouraged classroom discourse and
attempted to foster students’ understanding by listening to their individual
responses, assessing their thinking in relation to the cognitive framework,
and adapting instruction accordingly.

Three mathematically-equivalent forms of an interview protocol were
used to assess students’ cognitions at three points in time: prior to-, imme-
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diately following- and seven weeks after the instructional program. Using
multiple sources of data — audiotaped interview assessments, videotapes,
journals and worksheets of the case study students, and the teacher-
researcher’s journal observations — case study analysis was undertaken to
identify patterns and changes in students’ cognitions during the instruc-
ttonal program and to determine the catalyst for any such changes in proba-
bilistic thinking.

Results of the Study

The instructional program impacted students’ understanding in a sub-
stantial way. In particular, qualitative analyses discerned numerous key
learning patterns among case study students. Compared to baseline assess-
ments in conditional probability, students following instruction were more
likely to make appropriate use of the phrase 50-50 chance in describing
conditional probabilities. In particular, prior to instruction students used
the phrase 50-50 chance inappropriately in two ways. First, they applied
the phrase to probability situations in which all events in the sample space

-were equally likely to occur, and concluded that each event had a 50-50
chance. In addition, when the sample space contained two elements, they
often assumed each outcome had a 50-50 chance, even when the two events
were not equally likely. This latter invalid use of numbers was especially
troublesome when students considered conditional probabilities in with-
out-replacement situations.

Inappropriate use of the 50-50 chance phrase was particularly evident
at the initial assessment as demonstrated by five of six case study students.
Sandra exemplified the problematic use of this phrase in the two aforemen-
tioned ways. Her multiple misuse of the phrase 50-50 chance was apparent
as she predicted the outcome of random experiment in which a class presi-
dent and vice president were to be selected, one after another, from a bag
containing five names: Rick, Maria, Beth, Steve, and YOU. The following
excerpt illustrates Sandra’s two misuses of the 50-50 chance phrase:

I:  After school the principal decides to draw the names out of a bag. Is
it more likely that the class president will be a boy or a girl, or is it
the same chance for—

S: [Interrupts interviewer’s question] ~Same chance.

I:  Why is it the same chance?

S: Because... well... it’s a 50-50 chance because you could be a boy ora
girl...

I:  What about for you, specifically for you?

S:  Well, anybody- you could pick anybody, a boy or a girl, it would be
the same chance [In this case, the sample space comprised two events,
boy and girl, and each, according to Sandra, have the same chance].
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I:

S:
Sandra’s proclivity to regard practically any event as having a 50-50

Is it more likely that your name will be read, is it more likely that
your name will not be read, or is it the same chance?

Knowing my luck, it probably won’t be read!
[Laughs] ...Can you use numbers to work it out?
It would be a 50-50 chance.

What do you mean by that?

Well, Steve could be picked, Beth could be picked, Maria, or Rick,
or maybe me, so... same chance that everyone else would have [She
noted that each element in the sample space has the same chance].
Let’s say that Maria’s name was announced as the class president.
[After Maria’s name was removed, four names (two boys and two
girls) remained in the vag] Now the name of the vice president is
going to be announced next. Is it more likely the vice president will
be a boy or a girl, or is it the same chance for a boy or a girl?

Same chance because there’s two girls and two boys. It’s like a 50-50
chance because a boy could be picked or a girl could be picked [In

this case, she seemed to correctly identify that the probability of each
event was a 50-50 chance].

Compared to the first time, has the chance that your name will be
read changed or is it the same chance as it was before?

Well, it’s the same as before because it’s still the same chance be-
cause anybody ¢ould be picked and you still have a 50-50 chance
that anyone cculd be picked.

Compared to the first time, has the chance that a boy’s name will be
read changed or is it the same as it was before?

It’s the same as before because a girl or a boy could be picked. It’s a
50-50 chance.

Compared to the first time, lias the chance that a girl’s name will be
read changed or is it the same as it was before?

Same... for the same reason.

chance impeded her from realizing that the probabilities of events changed
in the without-replacement situations. In essence, because events always
have a 50-50 chance, then the probabilities of such events essentially never
change because, according to her, they are always 50-50.

Growth in Sandra’s thinking was clearly evident on the post-instruc-

tion assessment as she seemed to carefully monitor the composition of the
sample space. In a paralle] item from the post-instruction assessment, two
group leaders were selected without replacement from a bag containing the
names Colleen, Jack, Roberto, Teresa, and YOU:

I:

Is it more likely the leader of the first group will be a boy or a girl, or
is it the same chance?
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S: Well, since I'm a girl and there’s two other girls, I'd probably say
that it’s more likely to be a girl because there’s only 2 boys and there’s
3 girls because I'm a girl. '

I: Is it more likely your name will be read, it won’t be read, or is it the
same chance?

S: It would be the same chance out of five people. That’s what I would
think, because it’s not like it’s always going to be you that’s going to
be picked out, and it’s the same chance for everybody including you.
It could be Colleen, or maybe Teresa.

Is it a 50-50 chance?

S: Not really because there’s five people so it would be... see, a 50-50
chance means there’s two people, so it would be, like, a 20-20 chance.

I: Let’s say that your teacher draws a name from the bag and announces,
It’s a girl! Has your chance of being named as the first group leader

“changed or is it the same as before?

S: Well, I'd probably say that it’s the same chance for all three of us
because we all have the same chance of getting it. It’d probably be,
like, a 33 and i/3 chance.

I: I’m going to draw the name of the second group leader next. Do you
predict the next group leader will be a boy or a girl?

S: It’s the same chance now because there’s 2 boys and 2 girls.

I: Has the chance that your name will be read changed or is it the same
chance as before?

S: It’s changed because now there was 3 girls, but now there’s two girls
so it’s a 50-50 chance between the boys and the girls.

I: Has the chance that a girl’s name will be read changed or is it the
same chance as it was before?

S: It has changed because now there’s 2 boys and 2 girls and so it’s a
50-50 chance between both of them and before it was like a... Idon’t
know what kind of chance, but (it was) not that. [She seemed unable
to mentally compute the probabilities for the events, girl and boy,
when the sample space contained 3 girls and 2 boys]

Pand
.

Sandra kept track of the composition of the sample space after each
trial as evidenced by her use of the words, before and now. Moreover, she
identified that it was not possible for five different students to each have a
50-50 chance of being named leader of the first group, and determined the
corresponding probability to be 20%, not 50%.

The change in Sandra’s thinking may have been attributed to an in-
structional episode which focused on the probability of drawing a Snickers
from a bag containing 1 Snickers, 2 Butterfinger, and 3 Milky Way candy
bars. More specifically, after candy bars were sampled without replace-
ment the question was posed, At what point does it become a ’50-50 chance’
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for drawing a Snickers? While some students correctly identified that the
bag would have to contain | Snickers and 1 other candy bar, many others
asserted a 50-50 chance was represented when the sample space comprised
1 Milky Way, 1 Butterfinger, and 1 Snickers candy bar. Classroom dis-
course ensued and confronted the misconception that three events can each
have a probability of 50%.

Discussion

The instructional program successfully challenged students’ inappro-
priate use of the phrase 50-50 chance by developing the concept of the
probability of an event and a fundamental principle that the entire sample
space comprises 100% of the probabilities. Indeed, analysis of students’
learning revealed that both concepts were critical to empowering students
to discern when the probabilities of events change. Moreover, by having
students determine the probability of equally-likely events, they were able
to learn the correct meaning of the phrase, 50-50 chance. Finally, evidence
of case study students’ learning during instruction determined that whole-
class discussions were likely catalysts for resolving students’ misuse of the
phrase 50-50 chance. Such problematic use of the phrase was resolved af-
ter students who held these misconceptions were selected to share their
thinking in order to stimulate whole-class discussions.

Conclusion

The pervasive misuse of the phrase 50-50 chance prior to-, and during
probability instruction is a significant finding of the study. Heretofore, re-
search has not documented the inappropriate use of this heuristic in two
distinct ways. Moreover, this study is the first to report how such a miscon-
ception can be resolved through instruction. The rich documentation gen-
erated in this study on case study students’ learning is intended to provide
helpful knowledge of student cognition for both researchers and mathematics
teachers.
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INVESTIGATING KNOWLEDGE STRUCTURES
IN INFERENTIAL STATISTICS

Cengiz Alacact
University of Pittsburgh
ceast2+@pitt.edu

The purpose of this study was to investigate the nature of knowledge
base that can .upport the ability to choose an appropriate statistical tech-
nique for applied research situations. Two types of tasks involving research
scenarios and statistical techniques were used to elicit knowledge from
subjects with different levels of experience and with different specializa-
tions. Subjects were chosen from four groups: statistical consultants (ex-
perts in applied tasks), mathematical statisticians (experts in theoretical
tasks), graduate students in research methods, and in mathematics educa-
tion (novices). Individuals from each group were interviewed using the
repertory grid technique (Kelly, 1955). Subjects were asked to indicate the
similarities and differences (constructs) among groups of research scenarios
and statistical techniques. The themes represented in the constructs were
coded and classified into four types of knowledge; research design, theory,
procedures and nontechnical aspects.

Results showed that although there was no statistically significant dif-
ference between the extensiveness of knowledge used by experts and nov-
ices in any of the task environments. However, differences in the use of
specific types of knowledge were observed. Compared to novices, a big-
ger chunk of the knowledge used by experts was related to features of re-
search design. Also, knowledge used by statistical consultants was found
to be richer in terms of elements related to research design compared to
mathematical statisticians. These results indicate that knowledge of research
design is the most prominent component of a well-developed knowledge
base that can support the ability to select an appropriate statistical tech-
nique for applied research situations. For statistics education, it can be sug-
gested that explicit connections should be made between statistical tech-
niques and the types of research design for which they can be used while
teaching inferential statistics.
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ELEMENTARY SCHOOL TEACHERS’
PRCCEDURAL AND CONCEPTUAL

KNOWLEDGE OF MEDIAN
Lynne M. Gregorio Sarah B. Berenson
North Carolina State University North Carolina State University
JCGregorio@juno.com berenson@unity.ncsu.edu

This study examined elementary school teachers’ content knowledge of median.
The constructivist framework for this study focused on teacher content knowledge,
specifically procedural and conceptual knowledge of median (Hiebert & Lefevre,
1986). An open-ended assessment of statistical content was given to 55 elementary
school teachers as part of Teach-Stat, a professional development workshop (Friel
& Bright, 1996). Teacher responses to three questions relating to median were
examined and teacher profiles were created.

Results indicated that many teachers viewed median as middle. These
data suggested that relating median to middle is the vital first step when
developing procedural and conceptual knowledge of median. Only those
teachers who defined median as middle were able to demonstrate proce-
dural and conceptual knowledge of median on the remaining two assess-
ment questions.

Other views of median included median as midpoint, mean, and mode.
It appeared that teachers were more likely to conceptually equate median
with midpoint than with mean and mode. However, teachers often con-
fused the terms median, mean, and mode. None of the teachers that defined
median as midpoint, mean, or mode were able to demonstrate procedural

and conceptual knowledge of median in the remaining two questions on
the assessment.
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THE PEDAGOGICAL PERSUASIVENESS OF
SIMULATION IN SITUATIONS

OF UNCERTAINTY
George C. Reese
Jesse L. M. Wilkins University of Illinois at Urbana-
Virginia Polytechnic Institute and Champaign
State University g-reese @uiuc.edu
jwilkins@vt.edu

Students of all ages have been found to have misconceptions and
lack sound intuition in situations of uncertainty (e.g., Kahneman, Slovic, &
Tversky, 1982). The NCTM Curriculum and Evaluation Standards state
that in order to overcome these misunderstandings and build sound proba-
bilistic understandings students should be involved in hands-on activities
that model situations of uncertainty and use simulations to determine prob-
abilities and solve problems (NCTM, 1989). However, few studies have
been conducted to investigate the effectiveness of computer simulations in
overcoming probabilistic misconceptions.

This study involved 107 eighth graders and investigated the per-
suasiveness of computer-based Monte Carlo simulations on students’ choice
of strategy for the prcblem known as Monty’s Dilemma. Each student was
presented with the prou;lem as a mock game show. Students were then ei-
ther taught the best szrategy for winning Monty’s Dilemma using tradi-
tional instructional rnethods or directed to investigate the problem using an
interactive computer-based simulation.

Students investigating Monty’s Dilemma through simulation were
subsequently more likely to choose the more statistically sound strategy
for winning (c*(1) = 4.05, p < .05). Although little evidence in the study
suggests that students understood the concepts underlying Monty’s Di-
lemma, results do suggest that computer-based simulations are more per-
suasive than traditional instructional techniques in convincing students to
make statistically sound decisions.
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.CONDITIONAL PROBABILITY AND PRE-SERVICE
TEACHERS: CHARACTERISTICS
OF REASONING

Lisa J. Carnell
High Point University
Icarnell@acme.highpoint.edu

The purpose of the study was to determine characteristics of reasoning
about conditional probability. The study is grounded in Falk’s (1989) analysis
of major difficulties: (1) difficulty defining the conditioning event; (2) dif-
ficulty with the temporal order of the conditioning event and the target
event; and (3) confusing conditionality and causality.

Subjects were 13 pre-service middle grades teachers who had (a) math-
ematics or science as a certification area and (b) correctly identified the
conditioning event and the target event in two screening conditional prob-
ability problems. Each subject was interviewed on 6 conditional probabii-
ity problems, 2 for each misconception. Problems were presented in ran-
dom order. Interviews were taped and transcribed. Transcripts were ana-
lyzed by categorizing subjects’ responses and comparing responses between
problem versions for individual subjects and across problem types.

Over all, no subject was misconception-free, and no subject showed
evidence of a misconception on every problem. Findings from this study
indicate that pre-service middle grades teachers’ reasoning can be gener-
ally characterized as follows:

1. Use of inferred events as conditioning events rather than use of speci-
fied event in the problem.

2. Disregard of the conditioning event when it occurs after the target
event in real time.

Inappropriate use of independence.

4. Inappropriate application of prior knowledge from other content ar-
eas.

5. Use of causal reasoning rather than conditional reasoning.

6. Use of procedures for computation of probabilities in inappropriate
situations.

7. Oversimplifying the problem by failing to use all relevant informa-
tion in the problem.

»
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USE OF COMPUTER-BASE MINITOOLS IN SUPPORTING
THE EMERGENCE OF STATISTICAL MEANING IN
CLASSROOM DISCOURSE

Jose Luis Cortina
Vanderbilt University
jose.l.cortina@ vanderbilt.edu

In this poster session we present two computer-base minitools that were
developed for a 7th grade classroom teaching experiment in the context of
statistics .' The general purpose of the experiment was to bring studenis to
view data sets as entities that are distributed within spaces of possible val-
ues (Cobb, In Press). The minitools were used in 27 of the 34 sessions of
the classroom teaching experiment. In a regular session a problem was
presented to the students that usually related to social or scientific issues.
The class would discuss the relevance of the problem, as well as the differ-
ent procedures that were involved in gathering the data. In small groups,
the students then explored the data with one of the minitools and tried to
reach a conclusion. Finally the teacher and the students, using a computer
projecting system, discussed the different approaches to the problem.

The classroom teaching experiment was designed over a hypothetical
learning trajectory. This was supported by the minitools, through offering
ways of inscribing and organizing data that fitted the evolving taken-as-
shared ways of reasoning of the community. For this reason, the minitools
included options of structuring data that did not necessarily correspond to
conventional inscriptions. The first minitool helped the students conceive
data inscriptions as representations of measured qualities of objects. Fur-
ther, it helped them explore qualitative characteristics of collections of data
points. Building from the first minitool, the second helped the students
analyze data distributions multiplicatively, identify global patterns in the
data, and describe these patterns in quantitative terms (Cobb, In Press).
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INTERPRETING DATA IN REAL-LIFE CONTEXTS

Patricia M. Lamphere
Oklahoma State University
lampher@okway.okstate.edu

Making mathematics meaningful for middle school students involves
incorporating activities which integrate mathematics into real-life applica-
tions. The interpretation of data from a variety of representations reinforces
the connections of mathematics within other disciplines. One area of cross-
curricular content is the study of population density which occurs in middle
school social studies and can be reinforced in mathematics studies of data
analysis and interpretation.

In this study, 40 eighth-grade students responded to a set of questions
which reflected the idea of population density and its representations in
graphical and rule form. One question asked students to draw a graph to
represent the “population density” in one square mile by first identifying a
scale which would be compatible with each of three examples. Analysis of
responses indicate that less than 13% of the students were able to correctly
identify and apply a common scale to each of the drawings. Approximately
18% of the students drew diagrams which correctly utilized the same scale
factor across the examples, but did not identify the scale used. Almost 70%
of the students gave incorrect responses with no consistent scale apparent,
gave no response, or choose a different scale for each of the ¢xamples. A
misunderstanding seems to exist in students’ concept of what scale means
and how it can be applied to represent data in a pictorial form.

For the second question, students were to use information given as a
percentage of the population residing in apartments or single-family dwell-
ings, to identify the community as having a high, medium, or low popula-
tion density, and then arrange in order on a number line the letters repre-
senting the communities from least to greatest amount of land area. Only
5% of the students responded correctly to both questions. Over 50% of the
students responded incorrectly to both questions. Twenty percent of the
students answered the first question correctly, but were unable to complete
the number line portion. Generally, students had difficulties translating one
form of representation to another and making and supporting inferences
about sets of data. These two skills are critical for making decisions in real-
life, everyday situations.
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STUDENT WAYS OF THINKING ABOUT DISTRIBUTIONS

Melissa Mellissinos
San Diego State University
mmelliss @crmse.sdsu.edu

I am conducting a study about college student conceptions of data dis-

tribution using a grounded theory approach (Glaser & Strauss, 1967).
Grounded theory is an empirical approach to generating theory in which
data collection and analysis are intertwined in a single process. So far, the
data (from semi-structured interviews) reveal some interesting patterns in
students ways of thinking about distributions. A few examples are that stu-
dents tend to:

relate what they know about graphs in rectangular coordinates to
graphs of distributions. For example, they tend to believe that a dis-
tribution involves two variables. They also tend to interpret the slopes
of distribution curves.

believe that representations oi disiributions are not vague; distribu-
tions show actual data values, frequencies and categories explicitly.
Representations that hide or collapse information are often not con-
sidered distributions.

think about distributions in terms of their surface features. For ex-
ample, pie charts and histograms are distributions, even when what
they represent i1s not understood.

indicate that in a distribution, something is distributed. (e.g., num-
bers, people, test scores).

apply a non-statistical (everyday or mathematical) meaning to words
that have a specific and different meaning in statistics (e.g., param-
eter, range, distribution).

Although these findings are preliminary, I expect them to appear as prop-

erties of categories in the grounded theory about student conceptions
of distribution that 1 aim to generate.
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