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Accuracy of Parameter Estimation in Gibbs Sampling
Under the Two-Parameter Logistic Model

Abstract

The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for
estimation of item and ability parameters under the two-parameter logistic model. Memory
test data were ané.lyzed to illustrate the Gibbs sampling procedure. Simulated data sets were
analyzed using Gibbs sampling and the marginal Bayesian method. The marginal Bayesian
method combined with the expected a posteriori estimation of ability yielded consistently

smaller root mean square errors and better bias results than Gibbs sampling.

Keywords: Bayesian inference, Gibbs sampling, item response theory, Markov chain Monte

Carlo, marginal Bayesian.
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Introduction

For models with several parameters, statistical inference sometimes requires integration over
high-dimensional probability distributions in order to estimate any parameter of interest or
to obtain any particular function of the parameters. One such case is estimation of item

and ability parameters in the context of item response theory (IRT). Except for certain
rather simple problems with highly structured frameworks (e.g., an exponential family
together with conjugate priors in the Bayesian approach), the required integrations may be
analytically nontractable. As is true for many cases in statistics, the marginal density can
be approximated using various techniques (e.g., stan_dard numerical integration, Laplacian
approximation, Edgeworth expansion, importance sampling, Metropolis algorithm; see
Bernardo & Smith, 1994; Leonard & Hsu, 1994). In this paper, we examine the accuracy
of Gibbs sampling, one of the Markov Chain Monte Carlo (MCMC) methods for marginal
density estimation, for estimation of IRT parameters. In particular, we focus on the accuracy
of Gibbs sampling (Geman & Geman, 1984) for estimation of item and ability parameters
under the two-parameter logistic (2PL) model when sample sizes are small.

A number of ways exist for implementing the MCMC method. [For a review, refer
to Bernardo and Smith (1994), Carlin and Louis (1996), and Gelman, Carlin, Stern, and
Rubin (1995).] Metropolis and Ulam (1949), Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953), and Hasting (1970) present a general framework within which Gibbs sampling
(Geman & Geman, 1984) can be considered as a special case. In this regard, Gelfand
and Smith (1990) discuss several different Monte Carlo-based approaches, including Gibbs
sampling, for calculating marginal densities. [See Gilks, Richardson, and Spiegelhalter (1996)
for a recent survey of applications.] Basically Gibbs sampling is applicable for obtaining
parameter estimates for the complicated joint posterior distribution in Bayesian estimation
under IRT (e.g., Mislevy, 1986; Swaminathan & Gifford, 1985; Tsutakawa & Lin, 1986).

A few studies have examined the use of Gibbs sampling under IRT. Albert (1992)
applied G1bbs sampling in the context of IRT to estimate item parameters for the two-
parameter normal ogive model and compared these estimates with those obtained using
maximum likelihood estimation. Baker (1998) has also investigated item parameter recovery
characteristics of Albert’s Gibbs sampling method for item parameter estimation via a
simulation study. Patz and Junker (1997) developed a MCMC method based on the

Metropolis-Hasting algorithm and presented an illustration using the 2PL model.
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MCMC computer programs in the context of IRT have been developed largely only
for specific applications. For example, Albert (1992) used a computer program written in
MATLAB (The MathWorks, Inc., 1996). Baker (1998) developed a specialized FORTRAN
version of Albert’s Gibbs sampling program to estimate item parameters of the two parameter
normal ogive model. Patz and Junker (1997) developed an S-PLUS code (MathSoft,
Inc., 1995). Spiegelhalter, Thomas, Best, and Gilks (1997) have also developed a general
Gibbs sampling computer program BUGS for Bayesian estimation, using the adaptive
rejection sampling algorithm (Gilks & Wild, 1992). The computer program BUGS requires
specification of the complete conditional distributions.

The marginal maximum likelihood (MML) and marginal ABayesian (MB) methods using -
the expectation and maximization (EM) algorithm, as implemented'in the computer program
BILOG (Mislevy & Bock, 1990), have become the standard estimation technique for
obtaining item parameter estimates of IRT. Ability parameters are estimated in those
marginalized solutions using either maximum likelihood (ML), expected a posteriori (EAP),
or maximum a posteriori (MAP) estimation after obtaining the item parameter estimates
and assuming the estimates are true values. The Gibbs sampling procedure approaches the
estimation of item parameters using the joint posterior distribution rather than the marginal
distribution. In Gibbs sampling ability parameters can be estimated either jointly with item
parameters or after obtaining the item parameters. All of the estimation methods should
yield comparable item and ability parameter estimates, when comparable priors are used or
when ignorance or locally uniform priors are used when sample sizes are large. This study
was designed to evaluate the comparability of item and ability parameter estimates using the
9PL model. Specifically, estimation methods implemented in the two computer programs,
BUGS and BILOG, were examined and compared.

Theoretical Framework
Marginalized Solutions

Consider binary responses to a test with n items by each of N examinees. A response of
examinee i to item j is represented by a random variable Y;;, wherei = 1(1)N and j = 1(1)n.
The probability of a correct response of examinee i to item j is given by P(Yj; = 1[6;, &) = Py
and the probability. of an inéorrect response is given by P(Y;; = 016;,§) = 1—-F; = Qij»

where 6; is ability and &; is the vector of item parameters.



For examinee 4, there is an observed vector of dichotomously scored item responses

of length n, Y; = (Ya, ..., Yin)'- Under the assumption of conditional independence, the
probability of Y; given 9; and the vector of all item parameters, & = (£1,-- - ,€n)', s

(yw”é- H PU‘JQl Y (1)

The marginal probability of obtaining the response vector Y; for examinee ¢ sampled from a
given population is

p(Yile) = [ p(¥:l6s,E)p(6:)d6: @)
where p(6;) is the population distribution of 6;. Without loss of generality, we can assume
that the 6; are independent and identically distributed as standard normal, §; ~ N(0,1). This
assumption may be relaxed as the ability distribution can also be empirically characterized
(Bock & Aitkin, 1981). The marginal probability of Y; can be .approximated with any
specified degree of precision by Gaussian quadrature formulas (Stroud & Secrest, 1966).

The marginal probability of obtaining the N x n response matrix Y is given by

p(Y§) = HPYK—J@W) (3)

where [(£]Y) can be regarded as a function of £ given the data Y. In MML, the marginal
likelihood is maximized to obtain maximum likelihood estimates of item parameters (Bock
& Aitkin, 1981; Bock & Lieberman, 1970).

Bayes’ theorem tells us that the marginal posterior probability distribution for £ given
the data, Y, is proportional to the product of the marginal likelihood for £ given Y and the
prior distribution of £&. That is,

_ p(Y1€)p(€)
p@W%——;@T—«KﬂWMQ, (4)

where o denotes proportionality. The marginal likelihood function represents the informa-
tion obtained about £ from the data. In this way, the data modify our prior knowledge
of £. A prior distribution represents what is known about unknown parameters before the
data are obtained. Prior knowledge or even relative ignorance can be represented by such a
distribution. In MB estimation of item parameters, the marginal posterior is maximized to
obtain Bayes modal estimates of item parameters (see Mislevy, 1986).

Point estimates of ability parameters do not arise during the course of the marginalized

estimation of item parameters. They are calculated after the item parameters are estimated
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assuming the obtained item parameters are true values. Three methods are generally
available; ML, EAP (i.e., posterior mean), and MAP (i.e., posterior mode) (Bock & Aitkin,
1981; Bock & Mislevy, 1982).

Joint Estimation Procedures

Birnbaum (1968) and Lord (1980) describe the estimation of the § and & by joint

maximization of the likelihood function

p(Y10,€) = H HP 0:)Y5Q;(6:)' Y = 1(6,€]Y), (5)
i=1j=
where 6 = (6,,...,0x)". In implementation of joint maximum likelihood (JML) estimation

(see Lord, 1986 for a comparison of marginalized and joint estimation methods), the item
parameter estimation part for maximizing L(€Y, é) and the ability parameter estimation part
for maximizing 1(8]Y, ) are iterated until a stable set of maximum likelihood estimates of
item and ability parameters are obtained.

Extending the idea of joint maximization, Swaminathan and Gifford (1982, 1985, 1986)
suggested that 6 and £ can be estimated by joint maximization with respect to the parameters

of the posterior density

p(6,€]Y) = p(y'i;f}’)’("’ &) o 106, €1¥)p(6,€), (6)

where p(8, £) is the prior density of the parameters 6 and £. This procedure is joint Bayesian
(JB) estimation. Under the assumption that priors of 8 and & are independently distributed
with probability density functions p(f) and p(£), the item parameter estimation part
maximizing [(€|Y, 6)p(€), and the ability parameter estimation part maximizing [(6]Y, €)p(8)

are iterated to obtain stable Bayes modal estimates of item and ability parameters.

Gibbs Sampling

The main feature of MCMC methods is to obtain a sample of parameter values from the
posterior density (Tanner, 1996). The sample of parameter values then can be used to
estimate some functions or moments (e.g., mean and variance) of the posterior density of
the parameter of interest. In the IRT estimation propedures via MML, MB, JML, or JB noted
above, however, the task is to obtain modes of the likelihood function or of the posterior

distribution.



The Gibbs sampling algorithm is as follows (Gelfand & Smith, 1990; Tanner, 1996).
First, instead of using 6 and ¢, let w be a vector of parameters with & elements. Suppose
that the full or complete conditional distributions, p(wilw;,Y), where i = 1(1)k and j # 4,
are available for sampling. That is, samples may be generated by some method given values
of the appropriate conditioning random variables. Then given an arbitrary set of starting

values, w§°’,. . ,w,(co), the algorithm proceeds as follows:

Draw wgl) from p(wllwéo), ... ,w,(co), Y),

Draw wgl) from p(w2|w§1),'w§°),. .. ,w,(co), Y),

Draw w,(cl) from p(wklwgl), o 7wl(cl—)17Y)7
Draw wgz) from p(wllwgl), e ,w,(cl), )

Draw wgz) from p(w2|w§2’,w§”, e ,w;(cl),Y),

Draw w,(f) from p(wklwgz), e ’wl(cz—)lvy)’
Draw wgt“) from p(wllwg), . ,w,(ct),Y),
~ Draw wgt“) from p(wglwgt“),wé‘), ... ,w,(f),Y),
Draw w{" from plwelw!Y, ... LW Y),
The vectors w@, . .., w®, ... are a realization of a Markov chain with a transition probability

from w(® to wlt*?) given by

k
p(w(t),w(t+l)) = Hp(wl(t+l)‘wJ('t)’j > l’w§t+1)’j < l’ Y) (7)
=1

The joint distribution of w® converges geometrically to the posterior distribution p(w|Y’)
as t — oo (Geman & Geman, 1984, Bernardo & Smith, 1994). In particular, w,(t) tends to
be distributed as a random quantity whose density is p(w;|Y"). Now suppose that there exist
m replications of the ¢ iterations. For large t, the replicates wg), e ,w§f,1 are approximately

a random sample from p(w;|Y). If we make m reasonably large, then an estimate, p(wi|Y’),



can be obtained either as a kernel density estimate derived from the replicates or as
PlwiY) = Zp wilwlp,j #1,Y). (8)

In the context of IRT, Gibbs sampling attempts to sample sets of parameters from the
joint posterior density p(f,£|Y). Inferences with regard to parameters can then be made
using the sampled parameters. Note that inference for both @ and £ can be made from the

Gibbs sampling procedure.
An Example

Steps for Gibbs Sampling

The following example is presented using the 10-item memory test data for 40 examinees from
Thissen (1982) (see Table 1). Model parameters were estimated by Gibbs sampling using
the computer program BUGS (Spiegelhalter et al., 1997). These same data were analyzed
under the Rasch model in Thissen (1982).

Insert Table 1 about here

Gibbs sampling uses the following four basic steps (cf. Spiegelhalter, Best, et al., 1996):

1. Full conditional distributions and sampling methods for unobserved parameters must

be specified.
2. Starting values must be provided.
3. Output must be monitored.

4. Summary statistics (e.g., estimates and standard errors) for quantities of interest must

be calculated.

Discussion of the four steps involved are presented in detail below. In addition,
comparisons with the results from the marginalized methods (e.g., MB and MML) as

implemented in the computer program BILOG (Mislevy & Bock, 1990) are presented.
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Model Specifications

The model speciﬁcations are used as input to the BUGS computer program. In the memory
test data set, the item responses Y;; are independent, conditional on their parameters P;.
For examinee ¢ and item j, each Fj; is a function of the ability parameter 6;, the item
discrimination parameter «;, and the item difficulty parameter §; under the 2PL. The 6;
are assumed to be independently drawn from a standard normal distribution for scaling
purposes. Figure 1 shows a directed acyclic graph (see Lauritzen, Dawid, Larsen, & Leimer,
1990; Whittaker, 1990; Spiegelhalter, Dawid, Lauritzen, & Cowell, 1993) based on these
assumptions. A; and (; are used in Figure 1 instead of o; and f; (see Equation 11). The
model can be seen as directed because each link between nodes is represented as an arrow.
The model can also be seen as acyclic because it is impossible to return to a node after leaving.
It is only possible to proceed by following the directions of the arrows. Each variable or
quantity in the model appears as a node in the graph, and directed links correspond to direct
dependencies as specified above. The solid arrow denotes the probabilistic dependency, while
dashed arrows indicate functional or deterministic relationships. The rectangle designates

observed data, and circles represent unknown quantities.

Insert Figure 1 about here

We use the following definitions: Let v be-a node in the graph, and V be the set of all
nodes. A parent of v is defined as any node with an arrow extending from it and pointing to
v. A descendant of v is defined as any node on a direct path beginning from v. For identifying
parents and descendants, deterministic links should be combined so that, for example, the
parent of Y;; is P;;. It is assumed in Figure 1 that, for any node v, if we know the value of
its parents, then no other nodes would be informative concerning v except descendants of v.

~ Lauritzen et al. (1990) indicated that, in a full probability model, the directed acyclic
graph model is equivalent to assuming that the joint distribution of all the random quantities
is fully specified in terms of the conditional distribution of each node given its parents. That
is, '

P(V) = [[ P(v|parents[v]), (9)

veV
where P(-) denotes a probability distribution. This factorization not only allows extremely

complex models to be built up from local components, but also provides an efficient basis
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for the implementation of MCMC methods (Spiegelhalter, Best, et al., 1996).

~ Gibbs sampling via the BUGS computer program works by iteratively drawing samples
from the full conditional distributions of unobserved nodes in Figure 1 using the adaptive
rejection sampling algorithm (Gilks, 1996; Gilks & Wild, 1992). For any node v, the
remaining nodes are denoted by V —v. It follows that the full conditional distribution,

P(v|V — v), has the form

P@|V —-v) « P(v,V—v)

x P(v|parentfy]) []  P(w|parentsfw]). (10)
wechildren{v)

The proportionality constant, which is a function of the remaining r‘lodes, ensures that the
distribution is a probability function that integrates to unity.

To analyze the memory test data, we begin by specifying the forms of the parent and child
relationships in Figure 1. Under the 2PL model, the probability that examinee 7 responds
correctly to item j is assumed to follow a logistic function parameterized by the examinee’s
latent ability 6;, the item discrimination parameter, ¢, and the item difficulty parameter, §;.
For estimation purposes, we use the form a;j(0; — B;) = Aibi + (s where the slope parameter
)A; = @ and the intercept parameter (; = —a;f;. Hence,

1 1

T+ expl—o;(0: — B;)] 1 +exp[—(3;6i + )] (1)

Pij =
Since Y;; are Bernoulli with parameter P;, we can define
Y;; ~ Bernoulli(F;) (12)

and
loglt(P,,) = /\j0,- + Cj' (13)

To complete the specification of a full probability model for the BUGS computer program,
prior distributions of the nodes without parents (i.e., 6;, A, and ¢;) also need to be specified.
We can define these priors in several different ways. We can impose priors on A;j and (; using
a hierarchical Bayes approach (e.g., Swaminathan & Gifford, 1985; Kim, Cohen, Baker,
Subkoviak, & Leonard, 1994) or, if it is preferred that the priors not be toé influential,
uninformative priors could be imposed. Alternatively, it may also be useful to include

external information in the form of fairly informative prior distributions. According to
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Spiegelhalter, Best, et al. (1996), it is important to avoid causal use of standard improper
priors in MCMC modeling, since these may result in improper posterior distributions.

Following Spiegelhalter, Thomas, et al. (1996), two prior distributions were chosen for
the memory test analyses: (1) A; ~ N(0,1) with Aj > 0 and ¢; ~ N(0,100%) and (2)
| Aj ~ N(0,10%) with A; > 0 and (5 ~ N(0,100%). An example input file for BUGS is given
in the Appendix.

Starting Values

The choice of starting values (e.g., w®) is not generally that critical as the Gibbs sampler
(and most other MCMC algorithms as well) should be run long enough to be sufficiently
updated from its initial states. It is useful, however, to perform a number of runs using
different starting values to verify that the final results are not sensitive to the choice of
starting values (Gelman, 1996). Raftery (1996) indicated that extreme starting values could
lead to a very long burn-in or stabilization process.

In this example, three runs were performed using the memory test data with three sets
of starting values for ); and j, j = 1(1)10. The starting values for the item parameters are
given in Table 2. The first run started at values considered plausible in the light of the usual
range of item parameters. The second run and the third represented substantial deviations
in initial values. In particular, the second run was intended to represent a situation in which
there was a possibility that items were highly discriminating, and the third run represented
an opposite assumption. The priors used in the three runs were the same; A; ~ N(0, 1) with
Aj > 0and ¢~ N(O, 1002).

Insert Table 2 about here

" Each of the three runs consisted of 10,000 iterations. Results for A\, and (, are presented
in Figure 2. The computer program CODA (Best, Cowles, & Vines, 1997) was used to obtain
these graphs. The top two plots in Figure 2 contain the graphical summaries of the Gibbs
sampler for A;. The top left plot shows the trace of the sampled values of A, .for the three -
runs. Results for all three runs show that the A, generated by the Gibbs sampler quickly
settled down regardless of the starting values. The top right graph shows the kernel density
plot of the three pooled runs of 30,000 values for ;. The variability among the ); values
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generated by the Gibbs sampler seems to be lafge, possibly due to the small sample size.

The distribution looks like a truncated normal form due to the positive constraints on ;.

Insert Figure 2 about here

The bottom two plots contain graphical summaries of the Gibbs sampler for ;. The
bottom left plot shows the trace of the sampled values of ¢; for all three runs. The {
generated by the Gibbs sampler quickly settled down regardless of the starting values. The
bottom right graph shows the kernel density plot of the three pooled runs of 30,000 values
for ¢;. The variability of the A, values seems to be large. The sampled values seem to be
concentrated around —2, and the sample values seem to follow a normal distribution.

The results for other item parameter estimates were very similar to those for A; and (;.
Overall, the starting values appear to not have affected the final results. Useful starting
values for IRT problems can be found from the noniterative minimum logit chi-square
estimation solution (Baker, 1987) or from values based on Jensema (1976) and Urry (1974)
as employed in BILOG. Use of “good” starting values, such as from the above methods,
can avoid the time delay required by a lengthy starting period. Our experience with these
starting values indicates A; =1 and (; =0 will work sufficiently well for applications under
the 2PL. In subsequent analyses, therefore, the values, Aj = 1 and ¢; = 0, were used as

starting values.

Output Monitoring

A critical issue for MCMC methods including Gibbs sampling is how to determine when one
can safely stop sampling and use the results to estimate characteristics of the distributions
of the parameters of interest. In this regard, the values for the unknown quantities generated
by the Gibbs sampler can be graphically and statistically summarized to check mixing and
convergence. The method proposed by Gelman and Rubin (1992) is one of the most popular
for monitoring Gibbs sampling. [Cowles and Carlin (1996) presented a comparative review
of convergence diagnostics for MCMC algorithms.] '
We illustrate here the use of Gelman and Rubin (1992) statistics on three 10,000 iteration
runs. Details of the Gelman and Rubin method are given by Gelman (1996). Each 10,000
iteration run required about 10 minutes on a Pentium 90 megahertz computer. Monitoring

was done using the suite of S-functions called CODA (Best et al., 1997). Figure 3a shows
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the trace lines of the sampled values of )\ and ¢ for the two runs. The plots in Figure
33 indicate that the three runs yielded similar values. Gelman-Rubin statistics (i.e., shrink
factors) are plotted in Figure 3b for A, and (3. For both parameters, the medians were

stabilized after roughly 500 iterations and definitely after about 5,000 iterations.

Insert Figures 3a and 3b about here

For each parameter, the Gelman-Rubin statistics estimate the reduction in the pooled
estimate of variance if the runs were continued indefinitely. The Gelman-Rubin statistics
should be near 1 in order to be reasonably assured that convergence has occurred. The
median for )\, in the example was 1.00 and the 97.5 percentage point was 1.00. The median
for ¢, was 1.00 and the 97.5 percentage point was 1.00. These values indicated that reasonable
convergence was realized for these parameters.

The Gelman-Rubin statistics can be calculated sequentially as the runs proceed, and
plotted as in Figure 3b. These plots as well as other plots for A; and (; suggest the first
1,000 iterations of each run be discarded and the remaining samples be pooled. We used

5,000 iterations as burn-in and the subsequent 5,000 iterations for estimating.

BUGS and BILOG Parameter Estimates

The posterior mean of the Gibbs sampler was obtained for each parameter. Two different
sets of prior distributions for item parameters were employed in the BUGS runs. The
first set employed an informative prior on A; ~ N (0,1) and an uninformative prior on
¢; ~ N(0,100%). In addition, a constraint was imposed on the ranges of A; to allow
only positive values (i.e., A; > 0). The prior distribution for A; limits possible values.
Gibbs sampling-informative (GS-I) indicates this informative prior for A;. The second set
employed two uninformative prior distributions, A; ~ N(0, 102) with the constraint A; > 0
and ¢; ~ N(0,100%). This second set of priors is Gibbs sampling-uninformative (GS-U).
For BILOG runs, two procedures were used: MB./EAP (i.e, marginal Bayesian item
parameter estimation with expected a posteriori ability estimation) and MML/ML (i.e,
marginal maximum likelihood item parameter estimation with maximum likelihood ability
estimation). The default prior in BILOG for the estimation of item parameters in the 2PL
is only on the item discrimination parameter as p(loga;) = N (ulogaj,oﬁ,g o,j) = N(0,.5%).
Default options of BILOG yield MB/EAP. For MML/ML, no prior distributions were used

12
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(although, technically speaking, the marginalization required the standard normal prior for

ability).

Insert Tables 3 and 4 about here

The information in Table 3 indicates that the four estimation methods yielded somewhat
different item parameter estimates. Differences between estimates from Gibbs sampling with
in.formative'priors and marginal Bayesian were relatively small, indicating the estimates from
the methods were comparable. Both Gibbs sampling with uninformative priors and marginal
maximum likelihood yielded very unstable item parameter estimates.

The ability estimates and the standard errors from the memory test are presented in
Table 4. The maximum likelihood method after MML estimation of item parameters yielded
several unstable estimates. GS-I, GS-U, and MB/EAP yielded relatively similar results.
Recall that normal priors were used in those three Bayes methods of ability estimation.

It is important to note that the posterior interval from Gibbs sampling can be constructed
not from the normal based method using the standard errors but from the sampled values.
Figure 4 shows the trace lines of the 5,000 sampled values of A; and ¢; for the Gibbs sampling-
informative. The kernel density plots can also be found in Figure 4. Since the distribution
of the sampled values of A; looks like a truncated normal form, it is also of interest to obtain
the posterior interval directly from the sampled values. The 95% posterior intervals of the
GS-I and MB are presented in Table 5. Table 6 presents the ability estimates and the 95%
posterior intervals. It is important to notice that GS-I may yield different ability estimates

for examinees who had the same response pattern (e.g., examinees 1 to 5).

Insert Figure 4 and Tables 5 and 6 about here

Method

Simulation Conditions

Although the example presented above is informative, it does not provide enough information
with regard to comparative characteristics of item and ability parameter estimates of Gibbs
sampling. A standard method for examining such characteristics is based on studies of

parameter recovery employing simulated data (e.g., Hulin, Lissak, & Drasgow, 1982; Yen,
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1983). Hence, data were simulated under the following conditions; the number of examinees
(N = 50,100, 200) and the number of items (n = 10,20, 40). Due to the small sample sizes,
informative priors were employed in the two estimation methods. The sample sizes and the
test lengths were selected to emulate a situation in which estimation procedures and priors
might have some impact upon item parameter estimates (e.g., Harwell & Janosky, 1991).
Sample size and test length were completely crossed to yield nine conditions.

For the Gibbs sampling procedure, an informative prior was used: A; ~ N(0,1) with the
constraint A; > 0 and ¢; ~ N(0, 100?). For MB estimation via BILOG the default priors
were used with EAP estimation of ability. We denote these two methods as Gibbs sampling

and marginal Bayesian (MB) estimation.

Data Generation

Ttem response vectors were generated via the computer program GENIRV (Baker, 1982) for
the 2PL model. The generating parameters for item discrimination were distributed with
mean 1.00 and variance .09 (i.e., standard deviation .3), and the underlying item difficulty
parameters were distributed normal with mean 0 and variance 1. Item discrimination and
item difficulty parameters for the 10-, 20-, and 40-item tests are presented in Tables 7,
8, and 9, respectively. Item discrimination and difficulty parameters were not correlated.
The distribution of the underlying ability parameters distribution was normal (0, 1) and,
consequently, matched to the distribution of item difficulty. One hundred replications were
generated for each of the sample size and test length conditions. Nine hundred GENIRV

runs were needed to obtain the data sets for the study.

Insert Tables 7, 8, and 9 about here

Item Parameter Estimation

Each of the generated data sets was analyzed via the computer program BILOG (Mislevy
& Bock, 1990) for MB, and via the computer program BUGS (Spiegelhalter et al., 1997) for
Gibbs sampling. For example, the generated item response data set for the first replication
of sample size 50 and test length 10 was analyzed by two different computer runs, on each

for the MB and Gibbs sampling procedures.

14

16



For MB, a lognormal prior on item discrimination with mean 0 and variance .25 i.e.,
log oj ~ N(0,.5%)) was used. This is the default prior specification in BILOG for estimation
of item parameters in the 2PL model. The ability estimates were obtained by EAP
estimation. _

For the Gibbs sampling, an informative prior was used for A; and én uninformative prior
for ¢;. The prior distribution for A; was set to have a normal distribution with mean 0
and variance 1 [i.e., A; ~ N(0,1)] with range restricted to yield positive values of A; (i.e.,
Aj > 0). The prior distributibn for ¢; was ~ N(0, 100%). The prior distribution for A; can
be seen as a half normal distribution or the singly truncated normal distribution (Johnson,
Kotz, & Balakrishnan, 1994). Since );, without the range restriction, was sampled from a
unit normal distribution, then E();) = .798 and Var();) = .363 (standard deviation .603).
The prior distribution for ¢;, however, was similar to the uniform distribution defined on
the entire real line. The priors for MB and Gibbs sampling were ‘similar but not exactly the

same.

Metric Transformation

In parameter recovery studies, such as the present one, comparisons between estimates and
the underlying parameters require that the item parameter estimates obtained from different
calibration runs be placed on a common metric with their underlying parameters (Baker &
Al-Karni, 1991; Yen, 1987). Parameter estimation procedures under IRT yield metrics which
are unique up to a linear transformation. To link both sets of estimates and parameters, it
is necessary to determine the slope and intercept of the equating coefficients required for the
transformation.

The estimates of the item parameters for each of the estimation procedures were placed on
the scale of the true parameters before comparisons were made. The test characteristic curve
method by Stocking and Lord (1983) as implemented in the computer program EQUATE
(Baker, 1993) was used.

Evaluation Criteria

The evaluation of accuracy in this study involved three criteria: root mean square error
(RMSE), bias, and correlation between estimates and parameters. The RMSE is the square

root of the average of the squared differences between estimated and true values. For item
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discrimination, for example, the RMSE of item j is {(1 /R) TR (&jx — a,-)2}1/2, where R is
the total number of replications (i.e, R = 100).

It is also useful to examine the bias, B, between the expected value of the estimates and
the corresponding parameter. The bias of the item discrimination estimates, for example,
is given as By, = E(&;k) — a;, where the expectation is with regard to k¥ = 1(1)R. This

estimate of bias was obtained for both parameters in the model across the 100 replications.

Results
RMSEs for Item Parameters

RMSEs for item parameters of the 10-, 20-, and 40-item tests are reported in Tables 10, 11,

and 12, respectively. As sample size increased, RMSEs for both item parameters decreased.

Insert Tables 10, 11, and 12 about here

The average RMSEs of the 10-, 20-, and 40-item tests are reported in Tables 13, 14, and
15, respectively. The'patterns of the RMSE results were consistent across all tables. RMSE

results are also presented graphically in Figures 5, 6, and 7.

Insert Tables 13, 14, and 15, and Figures 5, 6, and 7 about here

In Gibbs sampling, the RMSEs for item discrimination increased as the values of
discrimination parameters increased. For MB, items with a; = .73 and ¢; = 1.00 yielded
somewhat smaller RMSEs. Overall, MB consistently yielded smaller RMDSs than did Gibbs
sampling. For item difficulty, the two extreme item difficulties 3; = —1.83 and B; = 1.83
yielded larger RMSEs for both MB and Gibbs sampling. MB also yielded consistently smaller
RMSEs for item difficulty for all conditions.

Bias Results for Item Parameters

The bias statistics for item discrimination and difficulty, presented in Tables 16, 17, and 18

for the 10-, 20-, and 40-item tests, appear to decrease as sample size increases.

4

Insert Tables 16, 17, and 18 about here
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Tables 19, 20, and 21 summarize the average sizes of bias for different test lengths. Figures
8, 9, and 10 also present the bias results of the respective tests. Bias statistics decreased with
an increase in sample size for item discrimination. When priors of item discriminations were
used, it was expected that positive bias would be observed for the smaller item discrimination
parameters (i.e., a; = .45 or a; = .73) and negative bias for the larger item discrimination
parameters (i.e., a; = 1.27 and o; = 1.55). This shrinkage effect was observed mainly for

MB and for Gibbs sampling, only for sample size 50.

Insert Tables 19, 20, and 21, and Figures 8, 9, and 10 about here

The bias patterns for item difficulty was somewhat different from the patterns for item
discrimination. Items with negative difﬁculty parameters had negative bias whereas positive
bias was observed for items with positive difficulty parameters. The same pattern was
observed across the three test lengths. MB consistently yielded better bias results than did
Gibbs sampling. The difference between the two methods decreased as the sample sizes

increased.

Correlation Results for Item Parameters

The average correlations between true and estimated values of both item discrimination and
item difficulty across 100 replications are given in Table 22. As sample sizes increased, the
average correlations increased. Only minor differences occurred between the two estimation
methods: Gibbs sampling yielded better results for item discrimination whereas MB yielded

better results for item difficulty.

Insert Table 22 about here

RMSEs for Ability Parameters

The average RMSEs for ability parameters for 50, 100, and 200 examinees are reported in
Tables 23, 24, and 25, respectively. As test length increased, RMSEs for ability parameters

decreased.

Insert Tables 23, 24, and 25, and Figure 11 about here
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Figure 11 summarizes the results from Tables 23, 24, and 25. When ability parameters
were close to zero, Gibbs sampling yielded smaller RMSEs. For extreme ability parameters,
MB yielded smaller RMSEs. RMSEs decreased around zero, that is, they were smaller
around the mean of item difficulty parameters. RMSEs increased when ability parameters

were not well matched with the mean of the item difficulty parameters.

Bias Results for Ability Parameters

Tables 26, 27, and 28 summarize the average sizes of bias from 50, 100, and 200 examinees.
Figure 12 presents the bias results for the three sample sizes. For all sample sizes, an increase
in test length was associated with a decrease in bias. Recall that both ability estimation
used in Gibbs sampling and MB (i.e.,. EAP) employed priors for ability. It was expected that
positive bias would be observed for the larger negative ability parameters and negative bias

for the larger positive ability parameters. This shrinkage effect was observed, in fact, for

all conditions. Increasing test length reduced the shrinkage effect. MB consistently yielded

smaller bias across all conditions.

Insert Tables 26, 27, and 28, and Figure 12 about here

Correlation Results for Ability

The average correlations between true and estimated values of ability parameters over 100
replications are given in Table 29. As test lengths increased, average correlations increased.
Differences in correlations were not associated with sample size. Gibbs sampling and MB

yielded the same results.

Insert Table 29 about here

Discussion

Previous work using Gibbs sampling and MCMC methods suggests this method may provide
a useful alternative method for estimation of IRT parameters when small sample sizes and
small numbers of items are used. Even though implementation of the Gibbs sampling method

in IRT is available in several computer programs, the accuracy of the resulting estimates has
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not been thoroughly studied. The simulation results of this study indicate that MB via
BILOG yielded better item and ability parameter estimates than Gibbs sampling. This is
consistent with the results reported by Baker (1998). -

The main difference between Gibbs sampling and the marginalized methods, MMLE and
MBE, is in the way these methods obtain parameter estimates. Gibbs sampling uses the
sample of parameter values to estimate the mean and variance of the posterior density of the
parameter. Under MML and MB, the marginalized likelihood function and the marginalized
posterior distribution, respectively, are maximized to obtain the marginal modes. Estimates
of the ability parameters do not arise during the course of item parameter estimation under
the marginalized methods. Instead, ability parameters are typically estimated after obtaining
the item parameter estimates, under the assumption that the obtained estimates are true
values. In the Gibbs sampling approach, ability parameters can be estimated jointly with
item parameters as in this paper, and the method is similar, in this sense, to JML or JB.
Note that ability can be obtained not jointly but after estimating item parameters in Gibbs
sampling.

The computer programs BUGS (Spiegelhalter et al., 1997) and CODA (Best et al,
1997) as well as the accompanying manuals are freely available over the Web. The uniform
resource locator (URL) of the Medical Research Council Biostatistics Unit at the University
of Cambridge is:

http://www.mrc-bsu.cam.ac .uk/bugs/

Gibbs sampling and general MCMC methods are likely to be more useful for situations
where complicated models are employed For example, Gibbs sampling could be usefully
applied to the estimation of item and ability parameters in the hierarchical Bayes approach
(Mislevy, 1986; Swaminathan & Gifford, 1982, 1985, 1986). In this study, priors were imposed
directly on the parameters and the priors used for the Gibbs sampling and MB were not
precisely the same. Accuracy of Gibbs sampling with different kinds of priors has not been
investigated. This kind of research may be particularly valuable for small samples and short
tests. |

The focus in this paper was estimation of item and ability parameters in terms of RMSE
and bias. In addition to RMSE and bias, future studies may also consider accuracy with
respect to the posterior intervals of the estimates. This is because of the fact that one of

the possible advantages of using Gibbs sampling or other MCMC methods is incorporation
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of uncertainly in item parameter estimates into estimation of ability parameters (e.g. Patz
& Junker, 1997).

In this paper, we employed the 2PL model in the example and in the simulation section
without addressing the problem of model selection and criticism. The model criticism for
Gibbs sampling seems to be an important topic to investigate in future research. Also the
evaluation of Gibbs sampling for other models including the three-parameter logistic model,
the partial credit model, and the graded response model may provide guidelines for using
the method under IRT. |
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Table 1
Memory Test Data from Thissen (1982)
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Estimated Item Parameters and St

Table 3

andard Errors (s.e.) of the Memory Test Items

BUGS BILOG :
Gibbs Sampling-Informative Gibbs Sampling-Uninformative Marginal Bayesian Margianal Maximum Likelihood
Item Aj (s.e) ¢; (se.) Aj (s.e.) ¢ (s.e.) Aj (s.e.) {; (s.e.) Aj (s.e.) ¢ (s-e)
1 671 (.463) —1.775 (.510) 793 (.615) —1.768 (.522) 869 (.382) —1.760 (.559) 2.344 (1.550) —.525 (.938)
2 1.416 (.662) —1.753 (.617) 27.800(22.320) —16.860(14.660) 1.413 (.793) —1.655 (.737) 6.066(30.895) —5.595(13.719)
3 521 (.419)  —2.484 (.614) .728 (.604) —2.488 (.630) 769 (.323)  —2.403 (.659) 255 (1.932)  —2.072 (1.730)
4 700 (.511) —2.264 (.617) .843 (.667) —2.275 (.622) .906 (.409) —2.208 (.635) 1.395 (3.164) —1.619 (.863)
5 782 (.512)  —1.640 (.504) 1.256 (.858) —1.741 (.612) 932 (.398) —1.606 (.534) 1.153 (1.519) —-1.979 (.951)
6 827 (.536)  —1.669 (.524) 1.733 (1.124) —1.968 (.799) 933 (.404) —1.606 (.537) .465 (.814) —1.719 (.520)
7 595 (.421)  —1.103 (.405) 598 (.437) ~1.058 (.402) 834 (.356) —1.105 (.449) 177 (.849) —1.138 (.525)
8 1.380 (.633) —.163 (.459) 14.520 {1.932) —1.629 (4.836) 1.355 (.690) —.153 (.472) .761 (.985) —.647 (.588)
9 517 (.367)  —.007 (.345) .701 (.480) .006 (.361) 747 (.301)  —.004 (.424) 2.168 (1.415) 1.105 (.922)
10 .727 (.477) 1.270 (.436) 1.040 (.647) 1.353 (.494) .914 (.365) 1.270 (.505) .624 (.910) 1.046 (1.049)
Table 4
Ability Estimates and Standard Errors (s.e.) of the Memory Test
BUGS BILOG
GS-1 GS-U MB/EAP MML/ML

Examinee 9; (s.e.) 0; (se.) 0; (s.e.) 0; (s.e.)

1 —1.167  (.788) —1.198  (.728) —1.309 (.738) —3.968 (2.549)

2 —-1.148  (.793) —-1.194 (.718) -1.309 (.738) —~3.968 (2.549)

3 —~1.148 (.779) —~1.189  (.723) -1.309 (.738) —-3.968 (2.549)

4 -1.160 (.776) -1.196 (.703) —~1.309 (.738) —-3.968 (2.549)

5 —~1.144 (.780) ~1.187 {.722) -1.309 (.738) —-3.968 (2.549)

6 -.773  (.751) -.779 (.631) —.840 (.695) —1.873 (1.434)

7 —.509 (.734) —.557  (.577) —.495 (.666) —.348  (.622)

8 —516 (.737) ~.560 (.575) —.495  (.666) —.348  (.622)

9 —516 (.754) —-.566 (.582) —.495 (.666) —.348  (.622)

10 —120 (712) 121 (.448) —.234 (.646) -1.029  (.822)

11 —.135 (.709) 114 (.461) _~.234 (.646) -1.029  (.822)

12 —.366 (.752) —.331 (.550) —.414  (.659) —1.259  (.948)

13 —379 (.753) —.432  (.563) —.414  (.659) -797  (.727)

14 —.489 (.770) ~520 (.598) —.487  (.665) —.152  (.597)

15 —515  (.772) —-.557  (.596) —.485 (.665) —-1.476 (1.097)

16 066  (.702) 203 (.408) .069 (.625) —.070 (.589)

17 .080 (.700) 212 (.405) .069  (.625) -.070 (.589)

18 —222  (.734) ~.399 (.529) —.140 (.640) —281  (.612)

19 116 (.714) 200 (.415) 077 (.625) —872  (.754)

20 —241  (.737) —401  (.547) —.131 (.639) —1.289  (.967)

21 478 (.746) 890  (.396) 329  (.609) 753 (.328)

22 —195  (.731) —-.366 (.525) - —.126  (.639) 411 (491)

23 157 (.731) —-.398  (.550) —.090 (.636) —.215  (.604)

24 —.195 (.782) —.416  (.560) —.129  (.639) 568  (.412)

25 330 (.687) 260 (.385) .385  (.607) —.010  (.583)

26 416 (.706) 358 (.371) 421 (.605) 087  (.572)

27 419 (.699) .358  (.375) 421 (.605) 087 (.572)

28 .00 (.726) —.176  (477) 227 (.615) 120 (.568)

29 066 (.744) —.247  (.495) 217 (.616) 197 (.556)

30 403 (.700) 269  (.410) 443 (.605) —285  (.613)

31 641 (.707) 884 (.377) 595  (.601) 971 (.303)

32 .430 (.701) 556 (.522) 442  (.605) 944 (.301)

33 659 (.722) 905 (.397) 602 (.601) 1.021  (.313)

34 853 (.671) 940  (415) 894 (.597) 988  (.306)

35 687  (.693) 416  (.380) 766 (.599) 199 {.556)

36 690  (.750) 368 (.391) 763 (.599) 555  (.420)

37 982  (.694) 1.024 (.437) 972 {.596) 1.106  {(.342)

38 1.189  (.683) 1175 (.489) 1.223  (.592) 1.033  (.316)

39 1.302 (.716) 1.308 (.524) 1.300 (.592) 1.165 (.372)

40 1415  (.711) 1277  (.540) 1.519  {.597) 1.354  (.514)
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Table 5
Estimated Item Parameters ond 95% Posterior Intervals of the Memory Test Items

Gibbs Sampling-Informative Marginal Bayesian
Item X;  (Post. Interval) (5 (Post. Interval) A;  (Post. Interval) ¢; (Post. Interval)
1 671 (.035, 1.759) 1775  (—2.881, —.883) 869 (-120, 1.621) 1760  (—2.856, —.664)
2 1.416 (219, 2.803) -1.753 (—3.153, —.733) 1.413 (—.141, 2.974) —1.655 (-3.100, —.210)
3 521 (.019, 1.551) —2.484 (—3.826, —1.434) . .769 (-136, 1.405) —2.403 (—3.695, —1.111)
4 700 (.033, 1.894) —2.264 (—3.597, —1.186) .906 (.104, 1.711) —-2.208  (—3.453, —.963)
5 782 (.045, 1.936) —1.640  (—2.740, —.752) 932 (.152, 1.716) -1.606  (—2.653, —.559)
6 827 (.050, 2.086) -1.669 (—2.842, —.757) .933 (-141, 1.728) —1.606 (—2.659, —.553)
7 595 (.029, 1.613) -~1.103  (—1.947, —.371) 834 (.136, 1.535) -1.105  (—1.985, —.225)
8 1.380 (:272, 2.765) —.163 (—1.089, .739) 1.355 (.003, 2.714) —.153 (-1.078, .772)
9 517 (.027, 1.405) -.007 (—.694, .670) 747 (.157, 1.340) —.004 (-.835, .827)
10 727 (.045, 1.819) 1.270 (.492, 2.182) 914 (.199, 1.633) 1.270 (.280, 2.260)
Table 6
Ability Estimates and 95% Posterior Intervals of the Memory Test

Gibbs Sampling-Informative MML/Expected A Posteriori

Examinee 6; Posterior Interval 6; Posterior Interval

1 —1.167 (=2.736, .339) ~1.309 (=2.755, .138)

2 —1.148 " (—2.788, .334) —1.309 (—2.755, .138)

3 -1.148 (-2.716, .324) -1.309 (~2.755, .138)

4 -1.160 (—2.772, .290) -1.309 (—2.755, .138)

i 5 —1.144 (-2.732, .324) —1.309 (-2.755, .138)

6 773 (~2.366, .610) —.840 (-2.202, .522)

7 —.509 (—2.027, .883) —.495 (—1.799, .809)

8 -.516 (—2.037, .859) —.495 (~1.799, .809)

9 -.516 (—2.075, .870) —.495 (~1.799, .809)

10 -.129 (—1.589, 1.216) —.234 (-1.500, 1.033)

11 -.135 (-1.630, 1.141) —.234 (-1.500, 1.033)

12 —.366 (—1.943, 1.003) —.414 (—1.706, .879)

13 -.379 (-1.917, 1.071) —.414 (-1.706, .878)

14 —.489 (—2.081, .975) —.487 (~1.790, .816)

15 -.515 (~2.089, .960) —.485 (-1.788, .818)

16 .066 (—1.420, 1.408) .069 (-1.157, 1.294)

17 .080 (—1.359, 1.440) .069 (—-1.157, 1.294)

18 -.222 (-1.716, 1.197) —.140 (-1.394, 1.114)

19 116 (—1.339, 1.533) 077 (—1.148, 1.302)

20 -.241 (-1.734, 1.167) -.131 (-1.384, 1.122)

21 AT8 (—1.084, 1.854) .329 (—.865, 1.524)

22 -.195 (-1.695, 1.187) -.126 (-1.378, 1.126)

23 -.157 (—1.620, 1.277) —.090 (-1.338, 1.157)

24 -.195 (-1.765, 1.309) -.129 (—1.382, 1.124)

25 330 (—1.093, 1.616) .385 (—.805, 1.574)

26 416 (—1.034, 1.781) 421 (—.766, 1.607)

27 . .419 (—.966, 1.763) 421 (-.766, 1.607)

28 .100 (—1.393, 1.508) 227 (—.979, 1.432)

29 .066 (—1.419, 1.509) 217 (—.990, 1.423)

30 .403 (—.970, 1.800) .443 (—.742, 1.628)

31 641 (—.747, 2.018) .595 (—.582, 1.772)

32 .430 (—.974, 1.789) .442 (-.743, 1.627)

33 659 (—.839, 2.045) .602 (-.576, 1.779)

34 853 (—.486,2.154) . 894 (~.276, 2.064)

35 .687 (—.681, 2.007) 766 (—.407, 1.939)

36 .690 (-.813,2.139) .763 (—.410, 1.936)

37 .982 (~.379, 2.322) 972 (—.195, 2.139)

38 1.189 (—.138, 2.545) 1.223 (.063, 2.384)

39 1.302 (—.094, 2.722) 1.300 (-140, 2.460)

40 1.415 (.033, 2.826) 1.519 (.349, 2.689)
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Table 7
Item Parameters of the 10 Item Test

Parameter
Item aj B;

1 45 .00

2 73 -.91

3 .73 91

4 1.00 -1.83

5 1.00 .00

6 1.00 .00

7 1.00 1.83

8 1.27 -.91

' 9 1.27 91
10 1.55 .00

Table 8
Item Parameters of the 20 Item Test
Parameter
Item a;j B;

1 45 -.91

2 .45 91

3 .73 -1.83

4 .73 .00

5 .73 .00

6 .73 1.83

7 1.00 -.91

8 1.00 -.91

9 1.00 00

10 1.00 00
11 1.00 00
12 1.00 00
13 1.00 91
14 1.00 91
15 1.27 -1.83
16 1.27 00
17 1.27 00
18 1.27 1.83
19 1.55 -.91
20 1.35 91
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Table 9
Item Parameters of the 40 Item Test

Parameter

Item o; B;
1 45 -.91
2 45 .00
3 45 .00
4 45 91
5 73 -—1.83
6 73 -.91
7 .73 -.91
8 .73 .00
9 .73 .00
10 .73 91
11 .73 91
12 .73 1.83
13 1.00 -1.83
14 1.00 -1.83
15 1.00 -91
16 1.00 -.91
17 1.00 .00
18 1.00 .00
19 1.00 .00
20 1.00 .00
21 1.00 .00
22 1.00 .00
23 1.00 .00
24 1.00 .00
25 1.00 91
26 1.00 91
27 1.00 1.83
28 1.00 1.83
29 1.27 -~1.83
30 1.27 -.91
31 1.27 -.91
32 1.27 .00
33 1.27 .00
34 1.27 91
35 1.27 91
36 1.27 1.83
37 1.55 -.91
38 1.55 .00
39 1.55 .00

40 1.55 91
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Table 10

Root Mean Square Errors of the 10 Item Test

Gibbs Sampling

Marginal Bayesian

N =50 N =100 N =200 N =50 N =100 N =200
Item oa; B ;B o B o B o B o Bi
1 .358 .585 281  .491 .189  .382 338  .433 273 322 196  .248
2 357 .573 305 .418 231 298 242 .404 219 294 177 239
3 .365 .507 335 426 .242  .300 257 .383 236 .312 184 217
4 381 .861 372 679 290 524 245 487 260 422 222 375
5 412 271 342 .198 242 141 257  .273 226 .200 181 (144
6 472 .343 370 .206 269 .163 311 337 255  .208 206 .165
7 358  .827 365  .603 313 529 217 438 253 .391 228 332
8 400 428 396 276 313 218 311 .384 310 .264 261 .207
9 425 452 391 .293 290  .194 323 .367 300 .281 263 .196
10 420 .260 361 .149 330 124 425 266 374 161 316 .130
Table 11
Root Mean Square Errors of the 20 Itemn Test
Gibbs Sampling Marginal Bayesian
N =50 N =100 N =200 N =50 N =100 N =200
Item a; B; a;j B; a; B8; a; B; a; B; a; B;
1 .396 719 233 .694 161 372 .358  .500 236 .389 .166  .309
2 .344 .856 260 .578 170 .592 320 521 255 377 175 341
3 377 .842 299  .727 .186 .531 281  .499 220 .387 141 313
4 .389 .480 341 .381 202 .197 269 379 254 .302 .164 .189
5 .369 .436 314 277 219 .205 247 371 234 .260 180 .197
6 429 1.016 280 .831 205  .697 301 529 202 405 .155  .396
7 .380 .460 341 331 208  .235 243 .376 244  .286 162 220
8 378 .388 333 .326 246 .239 .248  .356 242 291 199 .209
9 314 .330 282 214 .243 169 200 .324 206 .212 202 172
10 391 .327 323 234 223 .139 257 .327 °.231 .232 .181  .143
11 .381 .308 345 234 .237 .163 270 .305 243 .233 195 167
12 .446 .348 365 .254 228 .152 316 .343 265 .254 182 157
13 .406 .483 329 274 231 .240 278 418 232 .228 .184 .219
14 .425 716 292 .354 215 .226 269 432 206 .299 170 213
15 .443 1.034 432 744 292 .360 336 .672 353  .533 258 .336
16 .438 .264 344 .168 240 127 327 278 273 .181 197 134
17 .409 .255 311 192 275 127 325 .270 265 .204 237 133
18 .403 .819 394 645 274 .406 312 .588 314 456 237 375
19 426 .335 442 279 340 .178 436 .360 .408 .283 314 192
20 .382 315 368 .223 361 .207 374 327 337 224 333 .216
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Root Mean Square Errors of the 40 Item Test

Table 12

Gibbs Sampling

Marginal Bayesian

N =250 N = 100 N =200 N =50 N = 100 N = 200
Item aj B; aj B; aj B a; B a; Bj aj B;
1 351 .800 253 .665 158 427 327 535 250 .398 150 .288
2 362 .642 258  .461 183 .325 335  .489 256 339 185 264
3 369 .648 221  .494 151 .294 341 462 229 .366 154 .240
4 311  .838 206 .646 152 511 306 .564 209  .400 150 .352
5 380  .956 311 .903 213 .598 269 .530 231 459 170 .369
6 337 .556 287 .425 205 283 240 399 214 .300 167 242
7 344 639 283 .659 193 .321 237 487 212 .393 158  .269
8 357 .531 219 .303 191 240 253 .436 160 287 155 231
9 338 .429 306 .308 199 .203 231 .386 233 .285 161 .195
10 364 572 266 .566 176 .280 260 422 193 .355 143 237
11 383  .588 240 573 185 .338 276 471 172 .320 146 275
12 320 .980 296 .824 239 .628 232 536 218 465 189  .388
13 415 717 322 685 279 .446 285 465 242 .464 232 .361
14 398 1.060 307 .649 253 .424 253 574 221 441 203 .341
15 413 .495 316 .351 229 .210 281  .381 231 .295 182 187
16 426 .557 304 489 259 299 208 .443 226 .370 215 243
17 382  .326 311 .204 184 136 251 .331 218 .206 154 159
18 356 .324 292 .255 212 151 229 .308 228 .259 178 .154
19 397 324 259 .234 215 .168 201  .320 195 .240 176 173
20 401 .346 326 251 200 .158 254 .356 254 251 169 .162
21 370 .331 293 .210 233 .133 251 .329 217 218 187 .138
22 365  .318 317 238 191 .165 242 326 243 .244 155  .170
23 363 .368 267 .305 199 .168 250 .348 207 .266 172 170
24 372 .436 318 .219 233 .135 242 381 241 225 2190 .139
25 412 510 364 .305 233 .253 288 410 274 278 187 232
26 343 550 304 .351 207 244 229 391 225 .304 173 .226
27 429 .780 337 .645 242 428 299 519 243 .428 195 .322
28 402 .838 291 .626 218 .397 268 515 208 457 173 .321
29 433 1.056 427 691 310 .506 330 .719 356 .521 268 .430
30 427 .362 324 .231 217  .158 340  .336 263 .231 194 .166
31 402 414 311 .269 276 172 .306  .382 252 .269 241 173
32 419 342 277 210 213 .143 325  .343 229 .226 191 .150
33 435 262 328  .186 210 .138 318 .278 264 .198 183 .146
34 370  .398 313 .257 268 175 298 384 258 .27l 235 177
35 419 371 373 320  .247 179 311 375 301 285 238 .190
36 402 787 376  .609 277 313 308 627 315 .492 245 302
37 414 .365 374 230 314 157 381 .391 373 .252 299  .168
38 417 234 310 .162 276 114 386 .258 316 .175 257 .119
39 398 234 341 .150 266  .111 378 .254 335 .160 254  .118
40 405 293 331 .218 278 154 381 318 302 .240 259 .181
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Table 13
Average Root Mean Square Errors of the 10 Item Test

Gibbs Sampling

Marginal Bayesian

Parameter N=50 N=100 N =200 N=50 N=100 N =200
aj = .45 .358 .281 .189 .338 273 .196
.73 .361 .320 237 .250 .228 .181

1.00 .406 .362 279 .258 249 .209

1.27 413 .394 .302 317 .305 .262

1.55 420 .361 .330 .425 374 .316

B; = —1.83 .861 .679 524 487 422 .375
-91 .501 .347 258 .394 279 .223

.00 .365 .261 .203 327 .223 172

91 .480 .360 .247 375 .297 .207

1.83 .827 .603 .529 .438 391 .332

Table 14
Average Root Mean Square Errors of the 20 Item Test
Gibbs Sampling Marginal Bayesian

Parameter N=50 N=100 N =200 N=50 N=100 N =200-
aj = .45 .370 .247 .166 339 .246 171
.73 391 .309 .203 275 .228 .160

1.00 .390 .326 .229 .260 .234 .184

1.27 423 .370 .270 .325 301 232

1.55 .404 405 .351 .405 373 .324

B; = —1.83 .938 .736 .446 .586 .460 .325
-.91 476 .408 .306 .398 312 .233

.00 .344 244 .160 .325 .235 .162

91 .593 357 316 425 .282 247

1.83 918 .738 .552 .559 431 .386

Table 15
Average Root Mean Square Errors of the 40 Item Test
Gibbs Sampling Marginal Bayesian

Parameter N=50 N=100 N =200 N=50 N=100 N =200
a; = .45 .348 235 .161 © 327 .236 .160
.73 .354 .276 .200 .250 .204 .161

1.00 .390 .308 224 .263 .230 .184

1.27 413 .341 252 317 .280 .224

1.55 .409 .339 .284 .382 .332 .267

B; = —1.83 .947 732 .494 572 471 .375
-.91 .524 415 .253 .419 314 217

.00 .381 262 .175 .350 .247 171

91 .515 .405 .269 417 .307 234

1.83 .846 676 442 .549 .461 .333
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Table 16
Bias Results of the 10 Item Test

Gibbs Sampling Marginal Bayesian

O

ERIC

Aruitoxt provided by Eic:

N =50 N =100 N =200 N =50 N =100 N =200
Item a; B; aj B; aj B; a; B; a; B; a; B;
1 200 -.045 .107 -.026 .059 .005 .285 —.034 214 —.024 .153  -.008
2 135  —.029 .071 -.008 .065 .022 .136 .068 .091 .073 .075 .061
3 .105 .048 .094 .054 .055 .050 124 —.059 106  —.027 .070 -.003
4 .054 —.255 046 —.212 .018 —.154 .001 —.143 .006 -—.155 -.003 -—-.126
5 .148 .000 .105 .019 .080 .011 .044 —.002 .020 .015 .023 .010
6 .187 .019 .080 -.016 .048 —.009 .076 .012 .002 -.020 -.007 -—.008
7 .073 .220 .103 .098 .091 .058 .005 .144 .041 .087 .045 .060
8 .039 —.083 .063 -—.028 .021 —.036 -.106 -—.136 -.079 -.096 -.074 —.084
9 —.005 .100 .075 .029 —.026 .050 -.136 127 —.064 .092 —.110 .096
10 -.108 .026 —.033 .009 .010 -.018 —.290 .023 -.213 .010 -.116 —.021
Table 17
Bias Results of the 20 Item Test
Gibbs Sampling Marginal Bayesian
N =50 N =100 N =200 N =50 N =100 N =200
Item a;j B; [N Bj [ B ) B; a; B; ) B;
1 .235 .048 .083 -.102 .034 —.136 .302 237 .189 .164 127 .101
2 176 .015 .095 .087 .040 .094 266 —.218 198  —.154 132 -.134
3 134 —.144 .049 —.181 -.005 -—.124 .153 .074 .086 .039 .033 .019
4 .162 017 .103 —.008 .044 -.010 .154 .002 .106 —.013 .055 -.010
5 132 .041 .100 .031 .057 .016 133 .029 .105 .023 .066 .012
6 .128 .125 .054 .166 .012 .148 149 -—.182 .087 -—.072 .046 —.015
7 102 -.015 .126 .011 .063 —.016 .018 -—.020 .048 —.017 .016 —.045
8 107 —.029 .043 -.033 .030 .019 .025 —.048 -.011 -.047 -.010 .002
9 .052 .014 .043 .027 .051 .014 -.019 .011 -.020 .027 .008 .014
10 .132 .059 .090 —.022 .047 —.011 .038 .058 .021 -.023 .003 -.011
11 .095 - .009 .101 .005 .046 .034 .012 .003 .025 .004 .002 .036
12 .100 .044 .059 .012 .056 —.021 .022 .043 —.004 .011 .008 -.021
13 .109 .055 .098 .024 .050 —.012 .029 .057 .026 .051 .008 .011
14 .081 .189 .034 .114 .042 .013 .009 .119 —.021 .126 —.001 .037
15 -.033 —.451 .043 -.232 .007 —.087 -.121 -=-.371 —.044 -.247 —.058 -—.149
16 .108 .023 .105 .002 .079 .001 —.051 .024 —.032 .001 -.007 .002
17 .024 -.007 .034 .005 .060 —.012 -.114 -—.004 —.086 .006 -.027 -.012
18 —.024 .240 .002 .135 —.004 117 -.126 235 —.089 .167 -.070 177
19 -.100 -.099 .033 —.040 .027 -~-.019 —.264 -—.180 -.117 -.111 -.081 -.072
20 —.026 .047 .025 -.026 .037 .021 -.215 132 -.137 .047 -.070 .073
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Table 18
Bias Results of the 40 Item Test

Gibbs Sampling Marginal Bayesian
N =50 N =100 N =200 N =50 N =100 N =200
Item a; B; aj B; aj Bj o Bj o; Bj o Bi

1 .195 .028 096 —.107 .009 -.103 275 .230 .194 .153 .103 114

2 .190 .054 .107 .005 .060 —.006 276 .041 .200 .010 137 .000

3 .183 114 .098 .030 .030 .012 274 .079 .189 .011 115 .003

4 .168 —.098 .053 .063 .014 .041 262 -—.281 165 —.196 107 =173

5 161 —.146 047 -—.229 022 -.126 .163 .065 .091 .044 .053 .016

6 124 -.037 085 —.028 .046 -.007 131 .057 .094 .034 .058 .025

7 082 -.016 .081 -—.058 .055 —.008 .105 .090 .094 .040 .061 .019

8 .085 .103 .038 .046 .040 .022 .107 .099 .056 .051 .047 .021
‘9 138 —.034 115 -.027 047 -.023 133  -.028 113 -.031 .053 -—.020
10 139 —.062 .048 .038 .020 .000 137 -.143 .071 -.057 .037 -.034
11 .160 .001 .032 .154 .038 .053 .155 —.075 .058 .047 .051 .010
12 .104 179 .065 .141 .041 .076 125 —.071 .096 —.082 .065 —.058
13 122 —-.132 057 -—.167 027 -.105 .050 -—.091 020 -.138 005 -—.107
14 .084 —.266 047 -—.118 047 -.032 025 —.142 .009 -.093 .018 -—.046
15 106 —.069 100 -.013 .074 .020 .030 -.057 032 -.036 .031 -.003
16 133 -.097 .047 -—.087 .023 -.033 .053 -—.088 -.005 -.088 —-.010 -.042
17 121 .021 109 -.002 .038 -—.001 .029 .025 .032 -.006 -.003 -—.002
18 .095 -.030 042 -.012 022 -—-.024 015 -.027 —.014 -.018 -.021 -.023
19 082 -—.013 .063 ©.016 .051 .000 .010 -.001 .001 .017 .008 .000
20 157 -.055 049 -.002 .017 -.014 .048 -—.056 -.010 -.001 -.021 -.013
21 .089 .011 065 -.019 066 —.007 .011 .008 .001 -.019 .014 -—.008
22 .095 .024 .097 .003 045 —.005 .006 .024 .025 .002 —-.001 -.006
23 .004 -—.002 006 -—.049 -.004 -.017 —.043 —.004 —-.038 -.043 —-.040 -.017
24 .085 .001 .075 .009 049 —.005 .009 -—-.003 .012 .007 .004 -—-.006
25 .093 107 117 .012 .070 .015 .023 .095 .048 .038 .025 .039
26 —.035 177 .041 .061 .009 .061 —.068 125 -.010 .073 —.024 .081
27 .139 .140 .086 .064 .016 .100 072 .083 .040 .041 —.004 .097
28 .102 .170 .032 .144 .053 .004 .040 .093 —.006 125 .024 .025
29 —.065 —.438 —.066 —.273 -.003 -.123 —.146 -.367 -.118 -.261 -.059 -.162
30 .093 -.037 .076 .012 .031 .007 -.0563 -.097 —.037 —.048 —-.046 -—.038
31 .051 -.055 .053 .006 .065 .030 —-.085 -—.104 —-.062 —.054 -.012 -.014
32 .029 .013 059 -—.007 .038 .005 -.110 .013 —-.061 -.008 —.037 .006
33 119 .035 .084 .021 .043 .000 —.041 .040 —.035 .021 —.039 .000
34 .000 .101 .063 .032 048 -.017 —.124 .154 —.063 .102 —.028 .026
35 .090 .030 .040 .023 .010 .017 -.073 .100 —.066 .067 —.058 .061
36 —-.005 310 .017 .181 .011 .060 -.101 315 —-.062 223 —.047 .118
37 —.009 -—.093 .007 -.021 .008 -.010 -.198 -.180 -.130 -.095 -.090 -.059
38 037 -—-.022 -.013 .012 .042 .011 -.173 -.022 -.172 .012 —.062 .012
39 .000 -.015 -.014 .003 .048 .004 -.202 -.015 -.159 .004 —.060 .004
40 .026 .015 .063 .001 .031 .048 —.168 107 —.096 .078 —.069 .100
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Table 19
Average Bias Results of the 10 Item Test

Gibbs Sampling Marginal Bayesian
Parameter N =50 N=100 N =200 N=50 N=100 N =200
aj = .45 .200 .107 .059 .285 214 .153
.73 120 .083 .060 .130 .099 .073
1.00 .116 .084 .059 .032 .017 .015
1.27 .017 .069 —.003 -.121 —.072 —.092
1.55 —.108 —.033 .010 —~.290 -.213 —.116
B; = —1.83 —.255 -.212 —.154 —.143 —.155 —-.126
-91 —.056 —.018 —.007 —.034 —.012 -.012
.00 —.000 —.004 —.003 —.000 —.005 —-.007
.91 .074 .042 .050 .034 .033 .047
1.83 .220 .098 .058 144 .087 .060
Table 20
Average Bias Results of the 20 Item Test
Gibbs Sampling Marginal Bayesian
Parameter N=50 N=100 N =200 N=50 N=100 N =200
aj = .45 .206 .089 .037 .284 .194 .130
.73 .139 .077 .027 147 .096 .050
1.00 .097 .074 .048 .017 .008 .004
1.27 .019 .046 .036 -.103 —.063 —.041
1.55 —.063 .029 .032 —.240 —.127 —.076
B = —1.83 ~.298 -.207 —-.106 —.149 —.104 —.065
-.91 —.024 —.041 —.038 —.003 —.003 —.004
.00 .025 .007 .001 .021 .005 .001
91 .077 .050 .029 .023 .018 —.003
1.83 .183 151 | .133 .027 .048 .081
Table 21
Average Bias Results of the 40 Item Test
Gibbs Sampling Marginal Bayesian
Parameter N=50 N=100 N =200 N=50 N=100 N =200
aj = .45 .184 .089 .028 272 187 .116
.73 124 .064 .039 132 .084 .053
1.00 .092 .065 .038 .019 .009 .000
1.27 .039 .041 .030 —.092 —.063 —.041
1.55 .014 .011 .032 -.185 -.139 -.070
B; = —1.83 —.246 -.197 -.097 —.134 -.112 -.075
-.91 —.047 —.037 -.013 -.019 ~.012 .000
.00 .013 .002 —.003 .011 .001 —.003
91 .034 .048 .027 .010 .019 .014
1.83 .200 133 .060 .105 077 .046
Table 22
Average Correlations Between Item Parameters and Estimates over 100 Replications
Gibbs Sampling Marginal Bayesian
N =50 N =100 N =200 N =50 N =100 N =200
Test Tag Tgj Tagd  Tgj Tad Tgh Tad Tgj Tad  Tgh Tad Tpj
10-Item 503 .920 .624  .950 737 .968 499  .948 615 .969 .738  .980
20-item 521 .899 .658 .937 .788  .961 520 .930 .653  .960 782 975
40-item 561 .892 686  .927 .801 .963 .554 927 679 .955 797 974

BEST CoPY AVA\LABLE
LRIC 38

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

Table 23
Average Root Mean Square Errors of Ability for 50 Ezaminees

Gibbs Sampling Marginal Bayesian
[} n=10 n=20 n=40 n=10 n=20 n=40
-2.5 1.284 .962 .679 1.059 .745 .500
-2.0 974 .730 .550 .812 .582 .433
-1.5 726 572 .434 .646 .508 .386
-1.0 597 .469 .368 .586 .470 381
-5 .509 .437 .321 .559 .480 355
.0 .507 .420 .309 .585 478 .354
5 .521 441 322 .579 479 353
1.0 .574 .493 370 .566 .494 .37
1.5 .729 .529 429 .635 .466 .366
2.0 .863 691 .555 697 .544 .437
2.5 1.248 .961 .696 - 1.022 .740 .519

Table 24

Average Root Mean Square Errors of Ability for 100 Ezaminees

Gibbs Sampling Marginal Bayesian
[/ n=10 n=20 n=40 n=10 n=20 n=40
-2.5 1.265 .928 .651 1.086 773 .523
-2.0 .963 691 .543 .840 .590 .456
-1.5 732 .558 .434 .664 .509 .404
-1.0 .589 .470 .366 .584 475 371
-.5 .509 .418 319 .551 .448 .338
.0 .481 .408 307 .536 .452 338
.5 .524 .406 327 .563 .434 .349
1.0 .588 463 372 .581 463 375
1.5 737 .560 .428 .676 511 394
2.0 .950 717 467 .823 616 392
2.5 1.247 937« 631 1.075 776 .505

Table 25

Average Root Mean Square Errors of Ability for 200 Ezaminees

Gibbs Sampling Marginal Bayesian
[} n=10 n=20 n=40 n=10 n=20 n=40
-2.5 1.218 .885 .630 1.112 795 .556
-2.0 .936 .669 .490 .859 .608 444
-1.5 .703 .532 .407 .662 .508 .388
-1.0 571 .451 .343 .570 .454 343
-5 .514 .419 .326 .540 .437 .339
.0 .502 412 317 .536 .440 .336
5 .503 .421 315 .529 .438 .328
1.0 .563 465 .342 .560 467 .345
1.5 .701 .542 .406 .663 .516 .386
2.0 .898 647 479 .824 581 434
2.5 1.192 871 .604 1.091 776 527
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Table 26
Average Bias Results of Ability for 50 Ezaminees

Gibbs Sampling Marginal Bayesian
] n=10 n=20 n=40 n=10 n =20 n =40
—-2.5 1.233 .892 597 .987 .633 .353
-2.0 913 .609 428 713 .393 .220
S -15 591 392 257 427 219 .086
-1.0 .390 .230 .129 273 112 .005
-5 .182 .104 .059 127 .039 —.006
.0 -.012 -.012 —.004 -.014 —.012 —.001
5 —.147 —-.135 —.068 -.090 -.077 .001
1.0 -.354 —.246 —.166 —.244 -.128 —.042
1.5 —.600 -.355 —.287 —.431 -.178 . -.111
2.0 —-.763 —.595 —.424 —.535 -.375 —.206
2.5 —-1.191 —.890 —.589 —.942 —.625 —-.334
Table 27
Average Bias Results of Ability for 100 Ezaminees
Gibbs Sampling Marginal Bayesian
[/ n=10 n=20 n=40 n=10 n=20 n=40
-2.5 1.214 .844 .560 1.019 .657 .393
-2.0 .882 .565 .399 722 .409 .254
-1.5 .595 381 231 .469 .257 111
-1.0 .360 211 .126 274 .124 .040
-.5 .140 .090 .078 .092 .042 .036
.0 -.017 .000 —.008 -.019 -.000 —.009
.9 —.186 -.100 —.063 —.143 —.054 —.020
1.0 —.365 -.232 —.136 —.278 —.145 —.054
1.5 —.584 -.383 —-.229 —.459 —-.257 —-.111
2.0 —.869 —.581 -.317 -.708 —.425 -.170
2.5 —1.194 —.869 —.531 —1.000 —.687 —.364
- Table 28
Average Bias Results of Ability for 200 Ezaminees
Gibbs Sampling Marginal Bayesian
[/ n=10 n=20 n=40 n=10 n=20 n=40
—-2.5 1.162 .812 .530 1.048 .703 435
-2.0 .841 .537 334 .743 .443 .249
-1.5 951 .329 .201 474 .254 .130
-1.0 313 .190 .126 .258 .138 .076
-.5 .140 .092 .051 .110 .064 .025
.0 .009 -.010 -.000 .010 -.010 .000
5 -.140 -.104 —.054 -.112 —.075 —.027
1.0 -.330 -.210 —.106 -.277 -.157 —.054
1.5 —.545 —.346 —.209 —.469 —-.269 —-.138
2.0 -.802 —.526 —.308 -.703 —.431 -.221
2.5 —1.138 -.796 —-.521 —1.026 —.684 —-.423
Table 29
Average Correlations ry; Between Ability Parameters and Estimates over 100 Replications
Gibbs Sampling Marginal Bayesian
Examinee n=10 n=20 n=40 n=10 n=20 n=40
50 .796 .875 932 .802 .879 ..933
100 .798 .880 932 .802 .882 933
200 .801 .880 934 .803 .881 .935
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Figure Captions
Figure 1. A Directed Acyclic Graph for Memory Test Data.
Figure 2. Convergence with Starting Values for Memory Test Item 1.
Figure 3a. Traces Plus Gelman and Rubin Shrink Factors for Memory Test Item 1.
Figure 8b. Gelman and Rubin Shrink Factors for Memory Test Item 1.

Figure 4. Trace Lines of the Sampled Values and Kernel Density Plots for Memory Test
Item 1.

Figure 5. Root Mean Square Error Plots for the 10-Item Test.
Figure 6. Root Mean Square Error Plots for the 20-Item Test.
Figure 7. Root Mean Square Error Plots for the 40-Item Test.
Figure 8. Bias Plots for the 10-Item Test.

Figure 9. Bias Plots for the 20-Item Test.

F: i_c}ure 10.- Bias Plots for the 40-Item Test.

Figure 11. Root Mean Square Error Plots for Ability.

Figure 12. Bias Plots for Ability.
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Shrink factor
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Appendix

model memory;

const
I =40,
J = 10;
var

y[1,31, plI,J], thetalIl, lambdaf[J], zetalJ], b[J];
data in "memory.dat";
inits in "memory.in";
{
for (i in 1:I) {
for (j in 1:J) {
logit(pli,jl) <- lambda[jl*thetal[il + zetalj];
y[i,jl - dbern(pli,jl);
}
theta[i] ~ dnorm(0,1);
}
for (j in 1:J) {
lambda[j] ~ dnorm(0,1) I(0,);
zeta[j] ~ dnorm(0,0.0001);
b[j] <- - zetal[jl/lambdalj]
}
}
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