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Abstract

Abstract

The present AERA invited address was solicited to address the theme

for the 1999 annual meeting, "On the Threshold of the Millennium:

Challenges and Opportunities." The paper represents an extension of

my 1998 invited address, and cites two additional common

methodology faux pas to complement those enumerated in the previous

address. The remainder of these remarks are forward-looking. The

paper then considers (a) the proper role of statistical

significance tests in contemporary behavioral research, (b) the

utility of the descriptive bootstrap, especially as regards the use

of "modern" statistics, and (c) the various types of effect sizes

from which researchers should be expected to select in

characterizing quantitative results. The paper concludes with an

exploration of the conditions necessary and sufficient for the

realization of improved practices in educational research.
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In 1993, Carl Kaestle, prior to his term as President of the

National Academy of Education, published in the Educational

Researcher an article titled, "The Awful Reputation of Education

Research." It is noteworthy that the article took as a given the

conclusion that educational research suffers an awful reputation,

and rather than justifying this conclusion, Kaestle focused instead

on exploring the etiology of this reality. For example, Kaestle

(1993) noted that the education R&D community is seemingly in

perpetual disarray, and that there is a

...lack of consensus--lack of consensus on goals,

lack of consensus on research results, and lack of a

united front on funding priorities and

procedures.... [T]he lack of consensus on goals is

more than political; it is the result of a weak

field that cannot make tough decisions to do some

things and not others, so it does a little of

everything... (p. 29)

Although Kaestle (1993) did not find it necessary to provide a

warrant for his conclusion that educational research has an awful

reputation, others have directly addressed this concern.

The National Academy of Science evaluated educational research

generically, and found "methodologically weak research, trivial

studies, an infatuation with jargon, and a tendency toward fads

with a consequent fragmentation of effort" (Atkinson & Jackson,

1992, p. 20). Others also have argued that "too much of what we see

in print is seriously flawed" as regards research methods, and that

"much of the work in print ought not to be there" (Tuckman, 1990,
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p. 22). Gall, Borg and Gall (1996) concurred, noting that "the

quality of published studies in education and related disciplines

is, unfortunately, not high" (p. 151).

Indeed, empirical studies of published research involving

methodology experts as judges corroborate these impressions. For

example, Hall, Ward and Comer (1988) and Ward, Hall and Schramm

(1975) found that over 40% and over 60%, respectively, of published

research was seriously or completely flawed. Wandt (1967) and

Vockell and Asher (1974) reported similar results from their

empirical studies of the quality of published research.

Dissertations, too, have been examined, and have been found

methodologically wanting (cf. Thompson, 1988a, 1994a).

Researchers have also questioned the ecological validity of

both quantitative and qualitative educational studies. For example,

Elliot Eisner studied two volumes of the flagship journal of the

American Educational Research Association, the American Educational

Research Journal (AERJ). He reported that,

The median experimental treatment time for seven of

the 15 experimental studies that reported

experimental treatment time in Volume 18 of the AERJ

is 1 hour and 15 minutes. I suppose that we should

take some comfort in the fact that this represents a

66 percent increase over a 3-year period. In 1978

the median experimental treatment time per subject

was 45 minutes. (Eisner, 1983, p. 14)

Similarly, Fetterman (1982) studied major qualitative projects, and

reported that, "In one study, labeled fAn ethnographic study of...,

5
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observers were on site at only one point in time for five days. In

a(nother] national study purporting to be ethnographic, once-a-

week, on-site observations were made for 4 months" (p. 17)

None of this is to deny that educational research, whatever

its methodological and other limits, has influenced and informed

educational practice (cf. Gage, 1985; Travers, 1983). Even a

methodologically flawed study may still contribute something to our

understanding of educational phenomena. As Glass (1979) noted,

"Our research literature in education is not of the highest

quality, but I suspect that it is good enough on most topics" (p.

12).

However, as I pointed out in a 1998 AERA invited address, the

problem with methodologically flawed educational studies is that

these flaws are entirely gratuitous. I argued that

incorrect analyses arise from doctoral methodology

instruction that teaches research methods as series

of rotely-followed routines, as against thoughtful

elements of a reflective enterprise; from doctoral

curricula that seemingly have.less and less room for

quantitative statistics and measurement content,

even while our knowledge base in these areas is

burgeoning (Aiken, West, Sechrest, Reno, with

Roediger, Scarr, Kazdin & Sherman, 1990; Pedhazur &

Schmelkin, 1991, pp. 2-3); and, in some cases, from

an unfortunate atavistic impulse to somehow escape

responsibility for analytic decisions by justifying

choices, sans rationale, solely on the basis that
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the choices are common or traditional. (Thompson,

1998a, p. 4)

Such concerns have certainly been voiced by others. For

example, following the 1998 annual AERA meeting, one conference

attendee wrote AERA President Alan Schoenfeld to complain that

At [the 1998 annual meeting] we had a hard time

finding rigorous research that reported actual

conclusions. Perhaps we should rename the

association the American Educational Discussion

Association.... This is a serious problem. By

encouraging anything that passes for inquiry to be a

valid way of discovering answers to complex

questions, we support a culture of intuition and

artistry rather than building reliable research

bases and robust theories. Incidentally, theory was

even harder to find than good research. (Anonymous,

1998, p. 41)

Subsequently, Schoenfeld appointed a new AERA committee, the

Research Advisory Committee, which currently is chaired by Edmund

Gordon. The current members of the Committee are: Ann Brown, Gary

Fenstermacher, Eugene Garcia, Robert Glaser, James Greeno, Margaret

LeCompte, Richard Shavelson, Vanessa Siddle Walker, and Alan

Schoenfeld, ex officio, Lorrie Shepard, ex officio, and William

Russell, ex officio. The Committee is charged to strengthen the

research-related capacity of AERA and its members, coordinate its

activities with appropriate AERA programs, and be entrepreneurial

in nature. [In some respects, the AERA Research Advisory Committee
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has a mission similar to that of the APA Task Force on Statistical

Inference, which was appointed in 1996 (Azar, 1997; Shea, 1996).]

AERA President Alan Schoenfeld also appointed Geoffrey Saxe

the 1999 annual meeting program chair. Together, they then

described the theme for the AERA annual meeting in Montreal:

As we thought about possible themes for the upcoming

annual meeting, we were pressed by a sense of

timeliness and urgency. With regard to timeliness,

...the calendar year for the next annual meeting is

1999, the year that heralds the new millennium....

It's a propitious time to think about what we know,

what we need to know, and where we should be

heading. Thus, our overarching theme [for the 1999

annual meeting] is "On the Threshold of the

Millennium: Challenges and Opportunities."

There is also a sense of urgency. Like many

others, we see the field of education at a point of

critical choices--in some arenas, one might say

crises. (Saxe & Schoenfeld, 1998, p. 41)

The present paper was among those invited by various divisions to

address this theme, and is an extension of my 1998 AERA address

(Thompson, 1998a).

Purpose of the Present Paper

In my 1998 AERA invited address I advocated the improvement of

educational research via the eradication of five identified faux

pas:

(1) the use of stepwise methods;
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(2) the failure to consider in result interpretation the context

specificity of analytic weights (e.g., regression beta

weights, factor pattern coefficients, discriminant function

coefficients, canonical function coefficients) that are part

of all parametric quantitative analyses;

(3) the failure to interpret both weights and structure

coefficients as part of result interpretation;

(4) the failure to recognize that reliability is a characteristic

of scores, and not of tests; and

(5) the incorrect interpretation of statistical significance and

the related failure to report and interpret the effect sizes

present in all quantitative analyses.

Two Additional Methodology Faux Pas

The present didactic essay elaborates two additional common

methodology errors to delineate a constellation of seven cardinal

sins of analytic research practice:

(6) the use of univariate analyses in the presence of multiple

outcomes variables, and the converse use of univariate

analyses in post hoc explorations of detected multivariate

effects; and

(7) the conversion of intervally-scaled predictor variables into

nominally-scaled data in service of OVA (i.e., ANOVA, ANCOVA,

MANOVA, MANCOVA) analyses.

However, the present paper is more than a further elaboration

of bad behaviors. Here the discussion of these two errors focuses

on driving home two important realizations that should undergird

best methodological practice:

9
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1. All statistical analyses of scores on measured/observed

variables actually focus on correlational analyses of scores

on synthetic/latent variables derived by applying weights to

the observed variables; and

2. The researcher's fundamental task in deriving defensible

results is to employ an analytic model that matches the

researcher's (too often implicit) model of reality.

These two realization will provide a conceptual foundation for the

treatment in the remainder of the paper.

Focus on the Future: Improving Educational Research

Although the focus on common methodological faux pas has some

merit, in keeping with the theme of this 1999 annual meeting of

AERA, the present invited address then turns toward the

constructive portrayal of a brighter research future. Three issues

are addressed. First, the proper role of statistical significance

testing in future practice is explored. Second, the use of so-

called "internal replicability" analyses in the form of the

bootstrap is described. As part of this discussion some "modern"

statistics are briefly discussed. Third, the computation and

interpretation of effects sizes are described.

Other methods faux pas and other methods improvements might

both have been elaborated. However, the proposed changes would

result in considerable improvement in future educational research.

In my view, (a) informed use of statistical tests, (b) the more

frequent use of external and internal replicability analyses, and

especially (c) required reporting and interpretation of effect

sizes in all quantitative research are both necessary and

10
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sufficient conditions for realizing improvements.

Essentials for Realizing Improvements

The essay ends by considering how fields move and what must be

done to realize these potential improvements. In my view, AERA must

exercise visible and coherent academic leadership if change is to

occur. To date, such leadership has not often been within the

organization's traditions.

Faux Pas #6: Univariate as Against Multivariate Analyses

Too often, educational researchers invoke a series of

univariate analyses (e.g., ANOVA, regression) to analyze multiple

dependent variable scores from a single sample of participants.

Conversely, too often researchers who correctly select a

multivariate analysis invoke univariate analyses post hoc in their

investigation of the origins of multivariate effects. Here it will

be demonstrated once again, using heuristic data to make the

discussion completely concrete, that in both cases these choices

may lead to serious interpretation errors.

The fundamental conceptual emphasis of this discussion, as

previously noted, is on making the point that:

1. All statistical analyses of scores on measured/observed

variables actually focus on correlational analyses of scores

on synthetic/latent variables derived by applying weights to

the observed variables.

Two small heuristic data sets are employed to illustrate the

relevant dynamics, respectively, for the univariate (i.e., single

dependent/outcome variable) and multivariate (i.e., multiple

outcome variables) cases.

11
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Univariate Case

Table 1 presents a heuristic data set involving scores on

three measured/observed variables: Y, Xl, and X2. These variables

are called "measured" (or "observed") because they are directly

measured, without any application of additive or multiplicative

weights, via rulers, scales, or psychometric tools.

INSERT TABLE 1 ABOUT HERE.

However, ALL parametric analyses apply weights to the

measured/observed variables to estimate scores for each person on

synthetic or latent variables. This is true notwithstanding the

fact that for some statistical analyses (e.g., ANOVA) the weights

are not printed by some statistical packages. As I have noted

elsewhere, the weights in different analyses

...are all analogous, but are given different names

in different analyses (e.g., beta weights in

regression, pattern coefficients in factor analysis,

discriminant function coefficients in discriminant

analysis, and canonical function coefficients in

canonical correlation analysis), mainly to obfuscate

the commonalities of [all] parametric methods, and

to confuse graduate students. (Thompson, 1992a, pp.

906-907)

The synthetic variables derived by applying weights to the measured

variables then become the focus of the statistical analyses.

The fact that all analyses are part on one single General

Linear Model (GLM) family is a fundamental foundational
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understanding essential (in my view) to the informed selection of

analytic methods. The seminal readings have been provided by Cohen

(1968) viz, the univariate case, by Knapp (1978) viz, the

multivariate case, and by Bagozzi, Fornell and Larcker (1981)

regarding the most general case of the GLM: structural equation

modeling. Related heuristic demonstrations of General Linear Model

dynamics have been offered by Fan (1996, 1997) and Thompson (1984,

1991, 1998a, in press-a).

In the multiple regression case, a given person's score on

the measured/observed variable Y. is estimated as the

synthetic/latent variable The predicted outcome score for a

given person equals = a + b1(X1.) + b2(X2.), which for these data,

as reported in Figure 1, equals -581.735382 + [1.301899 x X1] +

[0.862072 x X21]. For example, for person 1, Y1 = [1.301899 x 392]

+ [0.862072 x 573] = 422.58.

INSERT FIGURE 1 ABOUT HERE.

Some Noteworthy Revelations. The "ordinary least squares"

(OLS) estimation used in classical regression analysis optimizes

the fit in the sample of each Y. to each Yi score. Consequently, as

noted by Thompson (1992b), even if all the predictors are useless,
A

the means of Y and Y will always be equal (here 500.25), and the
A

mean of the e scores (ei = Yi - Y.) will always be zero. These

expectations are confirmed in the Table 1 results.

It is also worth noting that the sum of squares (i.e., the sum

of the squared deviations of each person's score from the mean) of

the Y scores (i.e., 167,218.50) computed in Table 1 matches the

13
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"regression" sum of squares (variously synonymously called

"explained," "model," "between," so as to confuse the graduate

students) reported in the Figure 1 SPSS output. Furthermore, the

sum of squares of the e scores reported in Table 1 (i.e.,

32,821.26) exactly matches the "residual" sum of squares (variously

called "error," "unexplained," and "residual") value reported in

the Figure 1 SPSS output.

It is especially noteworthy that the sum of squares explained

(i.e., 167,218.50) divided the sum of squares of the Y scores

(i.e., the sum of squares "total" = 167,218.50 + 32,821.26 =

200,039.75) tells us the proportion of the variance in the Y scores

that we can predict given knowledge of the X1 and the X2 scores.

For these data the proportion is 167,218.50 / 200,039.75 = .83593.

This formula is one of several formulas with which to compute the

uncorrected regression effect size, the multiple le.

Indeed, for the univariate case, because ALL analyses are

correlational, an r2 analog of this effect size can always be

computed, using this formula across analyses. However, in ANOVA,

for example, when we compute this effect size using this generic

formula, we call the result eta2 (n2; or synonymously the

correlation ratio [not the correlation coefficient!]), primarily to

confuse the graduate students.

Even More Important Revelations. Figure 2 presents the

correlation coefficients involving all possible pairs of the five

(three measured, two synthetic) variables. Several additional

revelations become obvious.

14
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INSERT FIGURE 2 ABOUT HERE.

A

First, note that the Y scores and the e scores are perfectly

uncorrelated. This will ALWAYS be the case, by definition, since
A

the Y scores are the aspects of the Y scores that the predictors

can explain or predict, and the e scores are the aspects of the Y

scores that the predictors cannot explain or predict (i.e., because
A

ei is defined as Y. - Y., therefore rywax, = 0). Similarly, the

measured predictor variables (here X1 and X2) always have

correlations of zero with the e scores, again because the e scores

by definition are the parts of the Y scores that the predictors

cannot explain.

Second, note that the ry,yma reported in Figure 3 (i.e.,

.9143) matches the multiple R reported in Figure 1 (i.e., .91429),

except for the arbitrary decision by different computer programs to

present these statistics to different numbers of decimal places.
A

The equality makes sense conceptually, if we think of the Y scores

as being the part of the predictors useful in predicting/explaining

the Y scores, discarding all the parts of the measured predictors

that are not useful (about which we are completely uninterested,

because the focus of the analysis is solely on the outcome

variable).

This last revelation is extremely important to a conceptual

understanding of statistical analyses. The fact that Rywition, X2 = ry
A

xylva means that the synthetic variable, Y, is actually the focus of

the analysis. Indeed, synthetic variables are ALWAYS the real focus

of statistical analyses!

15
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This makes sense, when we realize that our measures are only

indicators of our psychological constructs, and that what we really

care about in educational research are not the observed scores on

our measurement tools per se, but instead is the underlying

construct. For example, if I wish to improve the self-concepts of

third-grade elementary students, what I really care about is

improving their unobservable self-concepts, and not the scores on

an imperfect measure of this construct, which I only use as a

vehicle to estimate the latent construct of interest, because the

construct cannot be directly observed.

Third, the correlations of the measured predictor variables

with the synthetic variable (i.e., .7512 and -.0741) are called

"structure" coefficients. These can also be derived by computation

(cf. Thompson & Borrello, 1985) as rs = rymitioc / R (e.g., .6868 /

.91429 = .7512). [Due to a strategic error on the part of

methodology professors, who convene annually in a secret coven to

generate more statistical terminology with which to confuse the

graduate students, for some reason the mathematically analogous

structure coefficients across all analyses are uniformly called by

the same name--an oversight that will doubtless soon be corrected.]

The reason structure coefficients are called "structure"

coefficients is that these coefficients provide insight regarding

what is the nature or the structure of the underlying synthetic

variables of the actual research focus. Although space precludes

further detail here, I regard the interpretation of structure

coefficients are being essential in most research applications

(Thompson, 1997b, 1998a; Thompson & Borrello, 1985). Some

16
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educational researchers erroneously believe that these coefficients

are unimportant insofar as they are not reported for all analyses

by some computer packages; these researchers

believe that SPSS and other computer packages were

sole authorship venture by a benevolent God who

judiciously to report on printouts (a) a// results of interest and

(b) only the results of genuine interest.

The Critical, Essential Revelation. Figure 2 also provides the

basis for delineating a paradox which, once resolved, leads to a

fundamentally important insight regarding statistical analyses.

Notice for these data the r2 between Y and X1 is .68682= 47.17% and

the r2 between Y and X2 is -.06772 = 0.46%. The sum of these two

values is .4763.

Yet, as reported in Figures 2 and 3, the R2 value for these

data is .914292 = 83.593%, a value approaching the mathematical

limen for E2. How can the multiple R2 value (83.593%) be not only

larger, but nearly twice as large as the sum of the r2 values of the

two predictor variables with Y?

These data illustrate a "suppressor" effect. These effects

were first noted in World War II when psychologists used paper-and-

pencil measures of spatial and mechanical ability to predict

ability to pilot planes. Counterintuitively, it was discovered that

verbal ability, which is essentially unrelated with pilot ability,

nevertheless substantially improved the It2 when used as a predictor

in conjunction spatial and mechanical ability scores. As Horst

(1966, p. 355) explained, "To include the verbal score with a

negative weight served to suppress or subtract irrelevant

incorrectly

written in a

has elected

17
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[measurement artifact] ability [in the spatial and mechanical

ability scores], and to discount the scores of those who did well

on the test simply because of their verbal ability rather than

because of abilities required for success in pilot training."

Thus, suppressor effects are desirable, notwithstanding what

some may deem a pejorative name, because suppressor effects

actually increase effect sizes. Henard (1998) and Lancaster (in

press) provide readable elaborations. All this discussion leads to

the extremely important point that

The latent or synthetic variables analyzed in all

parametric methods are always more than the sum of

their constituent parts. If we only look at observed

variables, such as by only examining a series of

bivariate r's, we can easily under or overestimate

the actual effects that are embedded within our

data. We must use analytic methods that honor the

complexities of the reality that we purportedly wish

to study--a reality in which variables can interact

in all sorts of complex and counterintuitive ways.

(Thompson, 1992b, pp. 13-14, emphasis in original)

Multivariate Case

Table 2 presents heuristic data for 10 people in each of two

groups on two measured/observed outcome/response variables, X and

Y. These data are somewhat similar to those reported by Fish

(1988), who argued that multivariate analyses are usually vital.

The Table 2 data are used here to illustrate that (a) when you have

more than one outcome variable, multivariate analyses may be

18
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essential, and (b) when you do a multivariate analysis, you must

not use a univariate method post hoc to explore the detected

multivariate effects.

INSERT TABLE 2 ABOUT HERE.

For these heuristic data, the outcome scores of X and Y have

exactly the same variance in both groups 1 and 2, as reported in

the bottom of Table 2. This exactly equal SD (and variance and sum

of squares) means that the ANOVA "homogeneity of variance"

assumption (called this because this characterization sounds

fancier than simply saying "the outcome variable scores were

equally 'spread out' in all groups") was perfectly met, and

therefore the calculated ANOVA F test results are exactly accurate

for these data. Furthermore, the analogous multivariate

"homogeneity of dispersion matrices" assumption (meaning simply

that the variance/covariance matrices in the two groups were equal)

was also perfectly met, and therefore the MANOVA F tests are

exactly accurate as well. In short, the demonstrations here are not

contaminated by the failure to meet statistical assumptions!

Figure 3 presents ANOVA results for separate analyses of the

X and Y scores presented in Table 2. For both X and Y, the two

means do not differ to a statistically significant degree. In fact,

for both variables the pcurmAnm values were .774. Furthermore, the

eta2 effect sizes were both computed to be 0.469% (e.g., 5.0 / [5.0

+ 1061.0) = 5.0 / 1065.0 = .00469). Thus, the two sets of ANOVA

results are not statistically significant and they both involve

extremely small effect sizes.

19
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INSERT FIGURE 3 ABOUT HERE.

However, as also reported in the Figure 3 results, a

MANOVA/Descriptive Discriminant Analysis (DDA; for a one-way

MANOVA, MANOVA and DDA yield the same results, but the DDA provides

more detailed analysis--see Huberty, 1994; Huberty & Barton, 1989;

Thompson, 1995b) of the same data yields a pcucmAnm value of

.000239, and an eta2 of 62.5%. Clearly, the resulting interpretation

of the same data would be night-and-day different for these two

sets of analyses. Again, the synthetic variables in some senses can

become more than the sum of their parts, as was also the case in

the previous heuristic demonstration.

Table 2 reports these latent variable scores for the 20

participants, derived by applying the weights (-1.225 and 1.225)

reported in Figure 3 to the two measured outcome variables. For

heuristic purposes only, the scores on the synthetic variable

labelled "DSCORE" were then subjected to the ANOVA reported in

Figure 4. As reported in Figure 4, this analysis of the

multivariate synthetic variable, a weighted aggregation of the

outcome variables X and Y, yields the same eta2 effect size (i.e.,

62.5%) reported in Figure 3 for the DDA/MANOVA results. Again, all

statistical analyses actually focus on the synthetic/latent

variables actually derived in the analyses, guod erat

demonstrandum.

INSERT FIGURE 4 ABOUT HERE.

The present heuristic example can be framed in either of two
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ways, both of which highlight common errors in contemporary

analytic practice. The first error involves conducting multiple

univariate analyses to evaluate multivariate data; the second error

involves using univariate analyses (e.g., ANOVAs) in post hoc

analyses of detected multivariate effects.

Usina Several Univariate Analyses to Analyze Multivariate

Data. The present example might be framed as an illustration of a

researcher conducting only two ANOVAs to analyze the two sets of

dependent variable scores. The researcher here would find no

statistically significant (both pcurmAnm values = .774) nor

(probably, depending upon the context of the study and researcher

personal values) any noteworthy effect (both eta2 values = 0.469%).

This researcher would remain oblivious to the statistically

significant effect (PCALCULATED = .000239) and huge (as regards

typicality; see Cohen, 1988) effect size (multivariate eta2 =

62.5%).

One potentially noteworthy argument in favor of employing

multivariate methods with data involving more than one outcome

variable involves the inflation of "experimentwise" Type I error

rates (auw; i.e., the probability of making one or more Type I

errors in a set of hypothesis tests--see Thompson, 1994d). At the

extreme, when the outcome variables or the hypotheses (as in a

balanced ANOVA design) are perfectly uncorrelated, am,/ is a

function of the "testwise" alpha level (am) and the number of

outcome variables or hypotheses tested (k), and equals

1 - (1 - anv)k.

Because this function is exponential, experimentwise error rates
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can inflate quite rapidly! [Imagine my consternation when I

detected a local dissertation invoking more than 1,000 univariate

statistical significance tests (Thompson, 1994a).]

One way to control the inflation of experimentwise error is to

use a "Bonferroni correction" which adjusts the arw downward so as

to minimize the final auw. Of course, one consequence of this

strategy is lessened statistical power against Type II error.

However, the primary argument against using a series of univariate

analyses to evaluate data involving multiple outcome variables does

not invoke statistical significance testing concepts.

Multivariate methods are often vital in behavioral research

simply because multivariate methods best honor the reality to which

the researcher is purportedly trying to generalize. Implicit within

every analysis is an analytic model. Each researcher also has a

presumptive model of what reality is believed to be like. It is

critical that our analytic models and our models of reality match,

otherwise our conclusions will be invalid. It is generally best to

consciously reflect on the fit of these two models whenever we do

research. Of course, researchers with different models of reality

may make different analytic choices, but this is not disturbing

because analytic choices are philosophically driven anyway (Cliff,

1987, p. 349).

My personal model of reality is one "in which the researcher

cares about multiple outcomes, in which most outcomes have multiple

causes, and in which most causes have multiple effects" (Thompson,

1986b, p. 9). Given such a model of reality, it is critical that

the full network of all possible relationships be considered

C



Common Methodology Mistakes -22-
Faux Pas #6: Multivariate vs Univariate

simultaneously within the analysis. Otherwise, the Figure 3

multivariate effects, presumptively real given my model of reality,

would go undetected. Thus, Tatsuokals (1973b) previous remarks

remain telling:

The often-heard argument, "I'm more interested in

seeing how each variable, in its own right, affects

the outcome" overlooks the fact that any variable

taken in isolation may affect the criterion

differently from the way it will act in the company

of other variables. It also overlooks the fact that

multivariate analysis--precisely by considering all

the variables simultaneously--can throw light on how

each one contributes to the relation. (p. 273)

For these various reasons empirical studies (Emmons, Stallings &

Layne, 1990) show that, "In the last 20 years, the use of

multivariate statistics has become commonplace" (Grimm & Yarnold,

1995, p. vii).

Using Univariate Analyses post hoc to Investigate Detected

Multivariate Effects. In ANOVA and ANCOVA, post hoc (also called "a

posteriori," "unplanned," and "unfocused") contrasts (also called

"comparisons") are necessary to explore the origins of detected

omnibus effects iff ("if and only if") (a) an omnibus effect is

statistically significant (but see Barnette &McLean, 1998) and (b)

the way (also called an OVA "factor", but this alternative name

tends to become confused with a factor analysis "factor") has more

than two levels.

However, in MANOVA and MANCOVA post hoc tests are necessary to
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evaluate (a) which groups differ (b) as regards which one or more

outcome variables. Even in a two-level way (or "factor"), if the

effect is statistically significant, further analyses are necessary

to determine on which one or more outcome/response variables the

two groups differ. An alarming number of researchers employ ANOVA

as a post hoc analysis to explore detected MANOVA effects

(Thompson, 1999b).

Unfortunately, as the previous example made clear, because the

two post hoc ANOVAs would fail to explain where the incredibly

large and statistically significant MANOVA effect originated, ANOVA

is not a suitable MANOVA post hoc analysis. As Borgen and Seling

(1978) argued, "When data truly are multivariate, as implied by the

application of MANOVA, a multivariate follow-up technique seems

necessary to 'discover' the complexity of the data" (p. 696). It is

simply illogical to first declare interest in a multivariate

omnibus system of variables, and to then explore detected effects

in this multivariate world by conducting non-multivariate tests!

Faux Pas #7: Discarding Variance in Intervally-Scaled Variables

Historically, OVA methods (i.e., ANOVA, ANCOVA, MANOVA,

MANCOVA) dominated the social scientist's analytic landscape

(Edgington, 1964, 1974). However, more recently the proportion of

uses of OVA methods has declined (cf. Elmore & Woehlke, 1988;

Goodwin & Goodwin, 1985; Willson, 1980). Planned contrasts

(Thompson, 1985, 1986a, 1994c) have been increasingly favored over

omnibus tests. And regression and related techniques within the GLM

family have been increasingly employed.

Improved analytic choices have partially been a function of
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growing researcher awareness that:

2. The researcher's fundamental task in deriving defensible

results is to employ an analytic model that matches the

researcher's (too often implicit) model of reality.

This growing awareness can largely be traced to a seminal article

written by Jacob Cohen (1968, P. 426).

Theory

Cohen (1968) noted that ANOVA and ANCOVA are special cases of

multiple regression analysis, and argued that in this realization

"lie possibilities for more relevant and therefore more powerful

exploitation of research data." Since that time researchers have

increasingly recognized that conventional multiple regression

analysis of data as they were initially collected (no conversion of

intervally scaled independent variables into dichotomies or

trichotomies) does not discard information or distort reality, and

that the "general linear model"

...can be used equally well in experimental or non-

experimental research. It can handle continuous and

categorical variables. It can handle two, three,

four, or more independent variables... Finally, as

we will abundantly show, multiple regression

analysis can do anything the analysis of variance

does--sums of squares, mean squares, F ratios--and

more. (Kerlinger & Pedhazur, 1973, p. 3)

Discarding variance is generally not good research practice.

As Kerlinger (1986) explained,

...partitioning a continuous variable into a
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dichotomy or trichotomy throws information away...

To reduce a set of values with a relatively wide

range to a dichotomy is to reduce its variance and

thus its possible correlation with other variables.

A good rule of research data analysis, therefore,

is: Do not reduce continuous variables to

partitioned variables (dichotomies, trichotomies,

etc.) unless compelled to do so by circumstances or

the nature of the data (seriously skewed, bimodal,

etc.). (p. 558, emphasis in original)

Kerlinger (1986, p. 558) noted that variance is the "stuff" on

which all analysis is based. Discarding variance by categorizing

intervally-scaled variables amounts to the "squandering of

information" (Cohen, 1968, p. 441). As Pedhazur (1982, pp. 452-453)

emphasized,

Categorization of attribute variables is all too

frequently resorted to in the social sciences.... It

is possible that some of the conflicting evidence in

the research literature of a given area may be

attributed to the practice of categorization of

continuous variables.... Categorization leads to a

loss of information, and consequently to a less

sensitive analysis.

Some researchers may be prone to categorizing continuous

variables and overuse of ANOVA because they unconsciously and

erroneously associate ANOVA with the power of experimental designs.

As I have noted previously,
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Even most experimental studies invoke intervally

scaled "aptitude" variables (e.g., IQ scores in a

study with academic achievement as a dependent

variable), to conduct the aptitude-treatment

interaction (ATI) analyses recommended so

persuasively by Cronbach (1957, 1975) in his 1957

APA Presidential address. (Thompson, 1993a, pp. 7-8)

Thus, many researchers employ interval predictor variables, even in

experimental designs, but these same researchers too often convert

their interval predictor variables to nominal scale merely to

conduct OVA analyses.

It is true that experimental designs allow causal inferences

and that ANOVA is appropriate for many experimental designs.

However, it is not therefore true that doing an ANOVA makes the

design experimental and thus allows causal inferences.

Humphreys (1978, p. 873, emphasis added) noted that:

The basic fact is that a measure of individual

differences is not an independent variable [in a

experimental design], and it does not become one by

categorizing the scores and treating the categories

as if they defined a variable under experimental

control in a factorially designed analysis of

variance.

Similarly, Humphreys and Fleishman (1974, p. 468) noted that

categorizing variables in a nonexperimental design using an ANOVA

analysis "not infrequently produces in both the investigator and

his audience the illusion that he has experimental control over the
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independent variable. Nothing could be more wrong." Because within

the general linear model all analyses are correlational, and it is

the design and not the analysis that yields the capacity to make

causal inferences, the practice of converting intervally-scaled

predictor variables to nominal scale so that ANOVA and other OVAs

(i.e., ANCOVA, MANOVA, MANCOVA) can be conducted is inexcusable, at

least in most cases.

As Cliff (1987, p. 130, emphasis added) noted, the practice of

discarding variance on intervally-scaled predictor variables to

perform OVA analyses creates problems in almost all cases:

Such divisions are not infallible; think of the

persons near the borders. Some who should be highs

are actually classified as lows, and vice versa. In

addition, the "barely highs" are classified the same

as the "very highs," even though they are different.

Therefore, reducing a reliable variable to a

dichotomy [or a trichotomy] makes the variable more

unreliable, not less.

In such cases, it is the reliability of the dichotomy that we

actually analyze, and not the reliability of the highly-reliable,

intervally-scaled data that we originally collected, which impact

the analysis we are actually conducting.

Heuristic Examples for Three Possible Cases

When we convert an intervally-scaled independent variable into

a nominally-scaled way in service of performing an OVA analysis, we

are implicitly invoking a model of reality with two strict

assumptions:
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1. all the participants assigned to a given level of the way (or

"factor") are the same, and

2. all the participants assigned to different levels of the way

are different.

For example, if we have a normal distribution of IQ scores, and we

use scores of 90 and 110 to trichotomize our interval data, we are

saying that:

1. the 2 people in the High IQ group with IQs of 111 and 145 are

the same, and

2. the 2 people in the Low and Middle IQ groups with IQs of 89

and 91, respectively, are different.

Whether our decision to convert our intervally-scaled data to

nominal scale is appropriate depends entirely on the research

situation. There are three possible situations.

Table 3 presents heuristic data illustrating the three

possibilities. The measured/observed outcome variable in all three

cases is Y.

INSERT TABLE 3 ABOUT HERE.

Case #1: No harm, no foul. In case #1 the intervally-scaled

variable X1 is re-expressed as a trichotomy in the form of variable

X1'. Assuming that the standard error of the measurement is

something like 3 or 6, the conversion in this instance does not

seem problematic, because it appears reasonable to assume that:

1. all the participants assigned to a given level of the way are

the same, and

2. all the participants assigned to different levels of the way
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are different.

Case #2: Creating variance where there is none. Case #2 again

assumes that the standard error of the measurement is something

like 3 to 6 for the hypothetical scores. Here none of the 21

participants appear to be different as regards their scores on

Table 3 variable X2, so assigning the participants to three groups

via variable X2' seems to create differences where there are none.

This will generate analytic results in which the analytic model

does not honor our model of reality, which in turn compromises the

integrity of our results.

Some may protest that no real researcher would ever, ever

assign people to groups where there are, in fact, no meaningful

differences among the participants as regards their scores on an

independent variable. But consider a recent local dissertation that

involved administration of a depression measure to children; based

on scores on this measure the children were assigned to one of

three depression groups. Regrettably, these children were all

apparently happy and well-adjusted.

It is especially interesting that the highest score

on this [depression] variable.., was apparently 3.43

(p. 57). As... [the student] acknowledged, the PNID

authors themselves recommend a cutoff score of 4 for

classifying subjects as being severely depressed.

Thus, the highest score in... [the] entire sample

appeared to be less than the minimum cutoff score

suggested by the test's own authors! (Thompson,

1994a, p. 24)
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Case #3: Discarding variance, distorting distribution shape.

Alternatively, presume that the intervally-scaled independent

variable (e.g., an aptitude way in an ATI design) is somewhat

normally distributed. Variable X3 in Table 3 can be used to

illustrate the potential consequences of re-expressing this

information in the form of a nominally-scaled variable such as X3/.

Figure 5 presents the SPSS output from analyzing the data in

both unmutilated (i.e., X3) and mutilated (i.e., X3') form. In

unmutilated form, the results are statistically significant

(pcuemAnm = .00004) and the R2 effect size is 59.7%. For the

mutilated data, the results are not statistically significant at a

conventional alpha level (aCALCULATED = ' 1145) and the eta2 effect size

is 21.4%, roughly a third of the effect for the regression

analysis.

INSERT FIGURE 5 ABOUT HERE.

Criticisms of Statistical Significance Tests

Tenor of Past Criticism

The last several decades have delineated an exponential growth

curve in the decade-by-decade criticisms across disciplines of

statistical testing practices (Anderson, Burnham & Thompson, 1999).

In their historical summary dating back to the origins of these

tests, Huberty and Pike (in press) provide a thoughtful review of

how we got to where we're at. Among the recent commentaries on

statistical testing practices, I prefer Cohen (1994), Kirk (1996),

Rosnow and Rosenthal (1989), Schmidt (1996), and Thompson (1996).
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Among the classical criticisms, my favorites are Carver (1978),

Meehl (1978), and Rozeboom (1960).

Among the more thoughtful works advocating statistical

testing, I would cite Cortina and Dunlap (1997), Frick (1996), and

especially Abelson (1997). The most balanced and comprehensive

treatment is provided by Harlow, Mulaik and Steiger (1997) (for

reviews of this book, see Levin, 1998 and Thompson, 1998c).

My purpose here is not to further articulate the various

criticisms of statistical significance tests. My own recent

thinking is elaborated in the several reports enumerated in Table

4. The focus here is on what should be the future. Therefore,

criticisms of statistical tests are only briefly summarized in the

present treatment.

INSERT TABLE 4 ABOUT HERE.

But two quotations may convey the tenor of some of these

commentaries. Rozeboom (1997) recently argued that

Null-hypothesis significance testing is surely the

most bone-headedly misguided procedure ever

institutionalized in the rote training of science

students... [I]t is a sociology-of-science

wonderment that this statistical practice has

remained so unresponsive to criticism... (p. 335)

And Tryon (1998) recently lamented,

[T]he fact that statistical experts and

investigators publishing in the best journals cannot

consistently interpret the results of these analyses
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is extremely disturbing. Seventy-two years of

education have resulted in minuscule, if any,

progress toward correcting this situation. It is

difficult to estimate the handicap that widespread,

incorrect, and intractable use of a primary data

analytic method has on a scientific discipline, but

the deleterious effects are doubtless substantial...

(p. 796)

Indeed, empirical studies confirm that many researchers do not

fully understand the logic of their statistical tests (cf. Mittag,

1999; Nelson, Rosenthal & Rosnow, 1986; Oakes, 1986; Rosenthal &

Gaito, 1963; Zuckerman, Hodgins, Zuckerman & Rosenthal, 1993).

Misconceptions are taught even in widely-used statistics textbooks

(Carver, 1978).

Brief Summary of Four Criticisms of Common Practice

Statistical significance tests evaluate the probability of

obtaining sample statistics (e.g., means, medians, correlation

coefficients) that diverge as far from the null hypothesis as the

sample statistics, or further, assuming that the null hypothesis is

true in the population, and given the sample size (Cohen, 1994;

Thompson, 1996). The utility of these estimates has been questioned

on various grounds, four of which are briefly summarized here.

Conventionally, Statistical Tests Assume "Nil" Null

Hypotheses. Cohen (1994) defined a "nil" null hypothesis as a null

specifying no differences (e.g., Ho: SDI - SD2 = 0) or zero

correlations (e.g., R2=0). Researchers must specify some null

hypothesis, or otherwise the probability of the sample statistics
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is completely indeterminate (Thompson, 1996)--infinitely many

values become equally plausible. But "nil" nulls are not required.

Nevertheless, "as almost universally used, the null in Ho is taken

to mean nil, zero" (Cohen, 1994, p. 1000).

Some researchers employ nil nulls because statistical theory

does not easily accommodate the testing of some non-nil nulls. But

probably most researchers employ nil nulls because these nulls have

been unconsciously accepted as traditional, because these nulls can

be mindlessly formulated without consulting previous literature, or

because most computer software defaults to tests of nil nulls

(Thompson, 1998c, 1999a). As Boring (1919) argued 80 years ago, in

his critique of the mindless use of statistical tests titled,

"Mathematical vs. scientific significance,"

The case is one of many where statistical ability,

divorced from a scientific intimacy with the

fundamental observations, leads nowhere. (p. 338)

I believe that when researchers presume a nil null is true in

the population, an untruth is posited. As Meehl (1978, p. 822)

noted, "As I believe is generally recognized by statisticians today

and by thoughtful social scientists, the [nil] null hypothesis,

taken literally, is always false." Similarly, Hays (1981, p. 293)

pointed out that "[t]here is surely nothing on earth that is

completely independent of anything else (in the population]. The

strength of association may approach zero, but it should seldom or

never be exactly zero." Roger Kirk (1996) concurred, noting that:

It is ironic that a ritualistic adherence to null

hypothesis significance testing has led researchers
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to focus on controlling the Type I error that cannot

occur because a// null hypotheses are false. (p.

747, emphasis added)

A pcucmAnm, value computed on the foundation of a false premise

is inherently of somewhat limited utility. As I have noted

previously, "in many contexts the use of a 'nil' hypothesis as the

hypothesis we assume can render me largely disinterested in whether

a result is thonchance" (Thompson, 1997a, p. 30).

Particularly egregious is the use of "nil" nulls to test

measurement hypotheses, where wildly non-nil results are both

anticipated and demanded. As Abelson (1997) explained,

And when a reliability coefficient is declared to be

nonzero, that is the ultimate in stupefyingly

vacuous information. What we really want to know is

whether an estimated reliability is .50'ish or

.80'ish. (p. 121)

Statistical Tests Can be a Tautological Evaluation of Sample

Size. When "nil" nulls are used, the null will always be rejected

at some sample size. There are infinitely many possible sample

effects. Given this, the probability of realizing an exactly zero

sample effect is infinitely small. Therefore, given a "nil" null,

and a non-zero sample effect, the null hypothesis will always be

rejected at some sample size!

Consequently, as Hays (1981) emphasized, "virtually any study

can be made to show significant results if one uses enough

subjects" (p. 293). This means that

Statistical significance testing can involve a
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tautological logic in which tired researchers,

having collected data from hundreds of subjects,

then conduct a statistical test to evaluate whether

there were a lot of subjects, which the researchers

already know, because they collected the data and

know they're tired. (Thompson, 1992c, p. 436)

Certainly this dynamic is well known, if it is just as widely

ignored. More than 60 years ago, Berkson (1938) wrote an article

titled, "Some difficulties of interpretation encountered in the

application of the chi-square test." He noted that when working

with data from roughly 200,000 people,

an observant statistician who has had any

considerable experience with applying the chi-square

test repeatedly will agree with my statement that,

as a matter of observation, when the numbers in the

data are quite large, the P's tend to come out

small... [W]e know in advance the P that will result

from an application of a chi-square test to a large

sample... But since the result of the former is

known, it is no test at all! (pp. 526-527)

Some 30 years ago, Bakan (1966) reported that, "The author had

occasion to run a number of tests of significance on a battery of

tests collected on about 60,000 subjects from all over the United

States. Every test came out significant" (p. 425). Shortly

thereafter, Kaiser (1976) reported not being surprised when many

substantively trivial factors were found to be statistically

significant when data were available from 40,000 participants.
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Because Statistical Tests Assume Rather than Test the

Population, Statistical Tests Do Not Evaluate Result Replicabilitv.

Too many researchers incorrectly assume, consciously or

unconsciously, that the p values calculated in statistical

significance tests evaluate the probability that results will

replicate (Carver, 1978, 1993). But statistical tests do not

evaluate the probability that the sample statistics occur in the

population as parameters (Cohen, 1994).

Obviously, knowing the probability of the sample is less

interesting than knowing the probability of the population. Knowing

the probability of population parameters would bear upon result

replicability, because we would then know something about the

population from which future researchers would also draw their

samples. But as Shaver (1993) argued so emphatically:

[A] test of statistical significance is not an

indication of the probability that a result would be

obtained upon replication of the study.... Carver's

(1978) treatment should have dealt a death blow to

this fallacy.... (p. 304)

And so Cohen (1994) concluded that the statistical significance

test "does not tell us what we want to know, and we so much want to

know what we want to know that, out of desperation, we nevertheless

believe that it does!" (p. 997).

Statistical Significance Tests Do Not Solely Evaluate Effect

Magnitude. Because various study features (including score

reliability) impact calculated p values, PcALcuLATED cannot be used as

a satisfactory index of study effect size. As I have noted
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elsewhere,

The calculated p values in a given study are a

function of several study features, but are

particularly influenced by the confounded, joint

influence of study sample size and study effect

sizes. Because p values are confounded indices, in

theory 100 studies with varying sample sizes and 100

different effect sizes could each have the same

single RCALcuIATED, and 100 studies with the same single

effect size could each have 100 different values for

RourmAnm (Thompson, 1999a, pp. 169-170)

The recent fourth edition of the American Psychological

Association style manual (APA, 1994) explicitly acknowledged that

values are not acceptable indices of effect:

Neither of the two types of probability values

[statistical significance tests] reflects the

importance or magnitude of an effect because both

depend on sample size... You are [therefore]

encouraged to provide effect-size information. (APA,

1994, p. 18, emphasis added)

In short, effect sizes should be reported in every quantitative

study.

The "Bootstrap"

Explanation of the "bootstrap" will provide a concrete basis

for facilitating genuine understanding of what statistical tests do

(and do not) do. The "bootstrap" has been so named because this

statistical procedure represents an attempt to "pull oneself up" on
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one's own, using one's sample data, without external assistance

from a theoretically-derived sampling distribution.

Related books have been offered by Davison and Hinkley (1997),

Efron and Tibshirani (1993), Manly (1994), and Sprent (1998).

Accessible shorter conceptual treatments have been presented by

Diaconis and Efron (1983) and Thompson (1993b). I especially and

particularly recommend the remarkable book by Lunneborg (1999).

Software to invoke the bootstrap is available in most

structural equation modeling software (e.g., EQS, AMOS).

Specialized bootstrap software for microcomputers (e.g., S Plus,

SC, and Resampling Stats) is also readily available.

The Sampling Distribution

Key to understanding statistical significance tests is

understanding the sample distribution and distinguishing the (a)

sampling distribution from (b) the population distribution and (c)

the score distribution. Among the better book treatments is one

offered by Hinkle, Wiersma and Jurs (1998, pp. 176-178). Shorter

treatments include those by Breunig (1995), Mittag (1992), and

Rennie (1997).

The population distribution consists of the scores of the N

entities (e.g., people, laboratory mice) of interest to the

researcher, regarding whom the researcher wishes to generalize. In

the social sciences, many researchers deem the population to be

infinite. For example, an educational researcher may hope to

generalize about the effects of a teaching method on all human

beings across time.

Researchers typically describe the population by computing or
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estimating characterizations of the population scores (e.g., means,

interquartile ranges), so that the population can be more readily

comprehended. These characterizations of the population are called

"parameters," and are conventionally symbolized using Greek letters

(e.g., A for the population score mean, a for the population score

standard deviation).

The sample distribution also consists of scores, but only a

subsample of n scores from the population. The characterizations of

the sample scores are called "statistics," and are conventionally

represented by Roman letters (e.g., M, SD, r). Strictly speaking,

statistical significance tests evaluate the probability of a given

set of statistics occurring, assuming that the sample came from a

population exactly described by the null hypothesis, given the

sample size.

Because each sample is only a subset of the population scores,

the sample does not exactly reproduce the population distribution.

Thus, each set of sample scores contains some idiosyncratic

variance, called "sampling error" variance, much like each person

has idiosyncratic personality features. (Of course, sampling error

variance should not be confused with either "measurement error"

variance or "model specification" error variance (sometimes modeled

as the "within" or "residual" sum of squares in univariate

analyses) (Thompson, 1998a).] Of course, like people, sampling

distributions may differ in how much idiosyncratic "flukiness" they

each contain.

Statistical tests evaluate the probability that the deviation

of the sample statistics from the assumed population parameters is
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due to sampling error. That is, statistical tests evaluate whether

random sampling from the population may explain the deviations of

the sample statistics from the hypothesized population parameters.

However, very few researchers employ random samples from the

population. Rokeach (1973) was an exception; being a different

person living in a different era, he was able to hire the Gallup

polling organization to provide a representative national sample

for his inquiry. But in the social sciences fewer than 5% of

studies are based on random samples (Ludbrook & Dudley, 1998).

On the basis that most researchers do not have random samples

from the population, some (cf. Shaver, 1993) have argued that

statistical significance tests should almost never be used.

However, most researchers presume that statistical tests may be

reasonable if there are grounds to believe that the score sample of

convenience is expected to be reasonably representative of a

population.

In order to evaluate the probability that the sample scores

came from a population of scores described exactly by the null

hypothesis, given the sample size, researchers typically invoke the

sampling distribution. The sampling distribution does not consist

of scores (except when the sample size is one). Rather, the

sampling distribution consists of estimated parameters, each

computed for samples of exactly size n, so as to model the

influences of random sampling error on the statistics estimating

the population parameters, given the sample size.

This sampling distribution is then used to estimate the

probability of the observed sample statistic(s) occurring due to
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sampling error. For example, we might take the population to be

infinitely many IQ scores normally distributed with a mean, median

and mode of 100 and a standard deviation of 15. Perhaps we have

drawn a sample of 10 people, and compute the sample median (not all

hypotheses have to be about means!) to be 110. We wish to know

whether our statistic or one higher is unlikely, assuming the

sample came from the posited population.

We can make this determination by drawing all possible samples

of size 10 from the population, computing the median of each

sample, and then creating the distribution of these statistics

(i.e., the sampling distribution). We then examine the sampling

distribution, and locate the value of 110. Perhaps only 2% of the

sample statistics in the sampling distribution are 110 or higher.

This suggests to us that our observed sample median of 110 is

relatively unlikely to have come from the hypothesized population.

The number of samples drawn for the sampling distribution from

a given population is a function of the population size, and the

sample size. The number of such different sets of population cases

for a population of size N and a sample of size n equals:

N!

n! (N n)!

Clearly, if the population size is infinite (or even only

large), deriving all possible estimates becomes unmanageable. In

such cases the sampling distribution may be theoretically (i.e.,

mathematically) estimated, rather than actually observed.

Sometimes, rather than estimating the sampling distribution,

estimating an analog of the sampling distribution, called a "test
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distribution" (e.g., F, t, x2) may be more manageable.

Heuristic Example for a Finite Population Case

Table 5 presents a finite population of scores for N=20

people. Presume that we wish to evaluate a sample mean for n=3

people. If we know (or presume) the population, we can derive the

sampling distribution (or the test distribution) for this problem,

so that we can then evaluate the probability that the sample

statistic of interest came from the assumed population.

INSERT TABLE 5 ABOUT HERE.

Note that we are ultimately inferring the probability of the

sample statistic, and not of the population parameter(s). Remember

also that some specific population must be presumed, or infinitely

many sampling distributions (and consequently infinitely pcurmAnm

values) are plausible, and the solution becomes indeterminate.

Here the problem is manageable, given the relatively small

population and samples sizes. The number of statistics creating

this sampling distribution is

N!

n! (N - n)!

20!
3! (20 - 3 )!

20!
3! (17)!

20x19x18x17x16x15x14x13x12x11x10x9x8x7x6x5x4x3x2
3 x 2 x (17x16x15x14x13x12x11x10x9x8x7x6x5x4x3x2)

2.433E+18
6 x 3.557E+14

4 3
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2.433E+18
2.134E+15

= 1,140.

Table 6 presents the first 85 and the last 10 potential

samples. [The full sampling distribution takes 25 pages to present,

and so is not presented here in its entirety.]

INSERT TABLE 6 ABOUT HERE.

Figure 6 presents the full sampling distribution of 1,140

estimates of the mean based on samples of size n=3 from the Table

5 population of N=20 scores. Figure 7 presents the analog of a test

statistic distribution (i.e., the sampling distribution in

standardized form).

INSERT FIGURES 6 AND 7 ABOUT HERE.

If we had a sample of size n=3, and had some reason to believe

and wished to evaluate the probability that the sample with a mean

of M = 524.0 came from the Table 5 population of N=20 scores, we

could use the Figure 6 sampling distribution to do so. Statistic

means (i.e., sample means) this large or larger occur about 25% of

the time due to sampling error.

In practice researchers most frequently use sampling

distributions of test statistics (e.g., F, 'el x2). rather than the

sampling distributions of sample statistics, to evaluate sample

results. This is typical because the sampling distributions for

many sample statistics change for every study variation (e.g.,

changes for different statistics, changes for each different sample

4 4
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size for even for a given statistic). Sampling distributions of

test statistics (e.g., distributions of sample means each divided

by the population SD) are more general or invariant over these

changes, and thus, once they are estimated, can be used with

greater regularity than the related sampling distributions for

statistics.

The problem is that the applicability and generalizability of

test distributions tend to be based on fairly strict assumptions

(e.g., equal variances of outcome variable scores across all groups

in ANOVA). Furthermore, test statistics have only been developed

for a limited range of classical test statistics. For example, test

distributions have not been developed for some "modern" statistics.

"Modern" Statistics

All "classical" statistics are centered about the arithmetic

mean, M. For example, the standard deviation (SD), the coefficient

of skewness (S), and the coefficient of kurtosis (K) are all

moments about the mean, respectively:

SDx = (E os, 1102) / (n-i) ) = ( ( E 2e) / al-1» 5

Coefficient of Skewnessx (Sx) = (E [(X1-Mx)/SDx)3) / n; and

Coefficient of Kurtosisx (Kx) = ((E [(X1-Mx)/SDx)4) / n) - 3.

Similarly, the Pearson product-moment correlation invokes

deviations from the means of the two variables being correlated:

(E (Xi - Ex)(y4 - My)) / n-1
r-XY

(SDx * SDy)

The problem with "classical" statistics invoking the mean is

that these estimates are notoriously influenced by atypical scores

(outliers), partly because the mean itself is differentially

4 5
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influenced by outliers. Table 7 presents a heuristic data set that

can be used to illustrate both these dynamics and two alternative

"modern" statistics that can be employed to mitigate these

problems.

INSERT TABLE 7 ABOUT HERE.

Wilcox (1997) presents an elaboration of some "modern"

statistics choices. A shorter accessible treatment is provided by

Wilcox (1998). Also see Keselman, Kowalchuk, and Lix (1998) and

Keselman, Lix and Kowalchuk (1998).

The variable X in Table 7 is somewhat positively skewed (Sx =

2.40), as reflected by the fact that the mean (Mx = 500.00) is to

the right of the median (Mdx = 461.00). One "modern" method

"winsorizes" (a la statistician Charles Winsor) the score

distribution by substituting less extreme values in the

distribution for more extreme values. In this example, the 4th

score (i.e., 433) is substituted for scores 1 through 3, and in the

other tail the 17th score (i.e., 560) is substituted for scores 18

through 20. Note that the mean of this distribution, 1442 = 480.10,

is less extreme than the original value (i.e., Mx = 500.00).

Another "modern" alternative "trims" the more extreme scores,

and then computes a "trimmed" mean. In this example, .15 of the

distribution is trimmed from each tail. The resulting mean, Mx. =

473.07, is closer to the median of the distribution, which has

remained 461.00.

Some "classical" statistics can also be framed as "modern."

For example, the interquartile range (75th %ile - 25th %ile) might

4 6
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be thought of as a "trimmed" range.

In theory, "modern" statistics may generate more replicable

characterizations of data, because at least in some respects the

influence of more extreme scores, which are less likely to be drawn

in future samples from the tails of a non-uniform (non-rectangular

or non-flat) population distribution, has been minimized. However,

"modern" statistics have not been widely employed in contemporary

research, primarily because generally-applicable test distributions

are often not available for such statistics.

Traditionally, the tail of statistical significance testing

has wagged the dog of characterizing our data in the most

replicable manner. However, the "bootstrap" may provide a vehicle

for statistically testing, or otherwise exploring, "modern"

statistics.

Univariate Bootstrap Heuristic Example

The bootstrap logic has been elaborated by various

methodologists, but much of this development has been due to Efron

and his colleagues (cf. Efron, 1979). As explained elsewhere,

Conceptually, these methods involve copying the data

set on top of itself again and again infinitely many

times to thus create an infinitely large "mega" data

set (what's actually done is resampling from the

original data set with replacement). Then hundreds

or thousands of different samples [each of size n)

are drawn from the "mega" file, and results [i.e.,

the statistics of interest] are computed separately

for each sample and then averaged [and characterized

4 7
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in various ways). (Thompson, 1993b, p. 369)

Table 8 presents a heuristic data set to make concrete

selected aspects of bootstrap analysis. The example involves the

numbers of churches and murders in 45 cities. These two variables

are highly correlated. [The illustration makes clear the folly of

inferring causal relationships, even from a "causal modeling" SEM

analysis, if the model is not exactly correctly "specified" (cf.

Thompson, 1998a).] The statistic examined here is the bivariate

product-moment correlation coefficient. This statistic is

"univariate" in the sense that only a single dependent/outcome

variable is involved.

INSERT TABLE 8 ABOUT HERE.

Figure 8 presents a scattergram portraying the linear

relationship between the two measured/observed variables. For the

heuristic data, r equals .779.

INSERT FIGURE 8 ABOUT HERE.

In this example 1,000 resamples of the rows of the Table 8

data were drawn, each of size n=45, so as to model the sampling

error influences in the actual data set. In each "resample,"

because sampling from the Table 8 data was done "with replacement,"

a given row of the data may have been sampled multiple times, while

another row of scores may not have been drawn at all. For this

analysis the bootstrap software developed by Lunneborg (1987) was

used. Table 9 presents some of the 1,000 bootstrapped estimates of

r.

4 8
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INSERT TABLE 9 ABOUT HERE.

Figure 9 presents a graphic representation of the bootstrap-

estimated sampling distribution for this case. Because r, although

a characterization of linear relation, is not itself linear (i.e.,

r=1.00 is not twice r=.50), Fisher's r-to-Z transformations of the

1,000 resampled r values were also computed as:

r-to-Z = .5 (ln [(1 + r)/(1 - r)) (Hays, 1981, p. 465).

In SPSS this could be computed as:

compute r_to_z=.5 * ln ((1 + r)/(1 - r)).

Figure 10 presents the bootstrap-estimated sampling distribution

for these values.

INSERT FIGURES 9 AND 10 ABOUT HERE.

Descriptive vs. Inferential Uses of the Bootstrap

The bootstrap can be used to test statistical significance.

For example, the bootstrap can be used to estimate, through Monte

Carlo simulation, sampling distributions when theoretical

distributions (e.g., test distributions) are not known for some

problems (e.g., "modern" statistics).

The standard deviation of the bootstrap-estimated sampling

distribution characterizes the variability of the statistics

estimating given population parameters. The standard deviation of

the sampling distribution is called the "standard error of the

estimate" (e.g., the standard error of the mean, SEm) [The

decision to call this standard deviation the "standard error," so'

as to confuse the graduate students into not realizing that SE is

4 9
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an SD, was taken decades ago at an annual methodologists' coven--in

the coven priority is typically afforded to most confusing the

students regarding the most important concepts.] The SE of a

statistic characterizes the precision or variability of the

estimate.

The ratio of the statistic estimating a parameter to the SE of

that estimate is a very important idea in statistics, and thus is

called by various names, such as "t," "Wald statistic," and

"critical ratio" (so as to confuse the students regarding an

important concept). If the statistic is large, but the SE is even

larger, a researcher may elect not to vest much confidence in the

estimate. Conversely, even if a statistic is small (i.e., near

zero), if the SE of the statistic is very, very small, the

researcher may deem the estimate reasonably precise.

In classical statistics researchers typically estimate the SE

as part of statistical testing by invoking numerous assumptions

about the population and the sampling distribution (e.g., normality

of the sampling distribution). Such SE estimates are theoretical.

The SD of the bootstrapped sampling distribution, on the other

hand, is an empirical estimate of the sampling distribution's

variability. This estimate does not require as many assumptions.

Table 10 presents selected percentiles for two bootstrapped r-

to-z sampling distributions for the Table 8 data, one involving 100

resamples, and one involving 1,000 resamples. Notice that

percentiles near the means or the medians of the two distributions

tend to be closer than the values in the tails, and here especially

in the left tail (small z values) where there are fewer values,
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because the distribution is skewed left. This purely heuristic

comparison makes an extremely important conceptual point that

clearly distinguishes inferential versus descriptive applications

of the bootstrap.

INSERT TABLE 10 ABOUT HERE.

When we employ the bootstrap for inferential purposes (i.e.,

to estimate the probability of the sample statistics), focus shifts

to the extreme tails of the distributions, where the less likely

(and less frequent) statistics are located, because we typically

invoke small values of p in statistical tests. These are exactly

the locations where the estimated distribution densities are most

unstable, because there are relatively few scores here (presuming

the sampling distribution does not have an extraordinarily small

SE). Thus, when we invoke the bootstrap to conduct statistical

significance tests, extremely large numbers of resamples are

required (e.g., 2,000, 5,000).

However, when our application is descriptive, we are primarily

interested in the mean (or median) statistic and the SD/SE from the

sampling distribution. These values are less dependent on large

numbers of resamples. This is said not to discourage large numbers

of resamples (which are essentially free to use, given modern

microcomputers), but is noted instead to emphasize these two very

distinct uses of the bootstrap.

The descriptive focus is appropriate. We hope to avoid

obtaining results that no one else can replicate (partly because we

are good scientists searching for generalizable results, and partly
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simply because we do not wish to be embarrassed by discovering the

social sciences equivalent of cold fusion). The challenge is

obtaining results that reproduce over the wide range of

idiosyncracies of human personality.

The descriptive use of the bootstrap provides some evidence,

short of a real (and preferred) "external" replication (cf.

Thompson, 1996) of our study, that results may generalize. As noted

elsewhere,

If the mean estimate [in the estimated sampling

distribution] is like our sample estimate, and the

standard deviation of estimates from the resampling

is small, then we have some indication that the

result is stable over many different configurations

of subjects. (Thompson, 1993b, p. 373)

Multivariate Bootstrap Heuristic Example

The bootstrap can also be generalized to multivariate cases

(e.g., Thompson, 1988b, 1992a, 1995a). The barrier to this

application is that a given multivariate "factor" (also called

"equation," "function," or "rule," for reasons that are, by now,

obvious) may be manifested in different locations.

For example, perhaps a measurement of androgyny purports to

measure two factors: masculine and feminine. In one resample

masculine may be the first factor, while in the second resample

masculine might be the second factor. In most applications we have

no particular theoretical expectation that "factors" ("functions,"

etc.) will always replicate in a given order. However, if we

average and otherwise characterize statistics across resamples

5 2
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without initially locating given constructs in the same locations,

we will be pooling apples, oranges, and tangerines, and merely be

creating a mess.

This barrier to the multivariate use of the bootstrap can be

resolved by using Procrustean methods to rotate all "factors" into

a single, common factor space prior to characterizing the results

across the resamples. A brief example may be useful in

communicating the procedure.

Figure 11 presents DDA/MANOVA results from an analysis of Sir

Ronald Fisher's (1936) classic data for iris flowers. Here the

bootstrap was conducted using my DISCSTRA program (Thompson, 1992a)

to conduct 2,000 resamples.

INSERT FIGURE 11 ABOUT HERE.

Figure 12 presents a partial listing of the resampling of

n=150 rows of data (i.e., the resample size exactly matches the

original samples size). Notice in Figure 12 that case #27 was

selected at least twice as part of the first resample.

INSERT FIGURE 12 ABOUT HERE.

First 13 presents selected results for both the first and the

last resamples. Notice that the function coefficients are first

rotated to best fit position with a common designated target

matrix, and then the structure coefficients are computed using

these rotated results. [Here the rotations made few differences,

because the functions by happenstance already fairly closely

matched the target matrix--here the function coefficients from the

5 3
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INSERT FIGURE 13 ABOUT HERE.

Figure 14 presents an abridged map of participant selection

across the 2,000 resamples. We can see that the 150 flowers were

each selected approximately 2,000 times, as expected if the random

selection with replacement is truly random.

INSERT FIGURE 14 ABOUT HERE.

Figure 15 presents a summary of the bootstrap DDA results. For

example, the mean statistic across 2,000 resample is computed along

with the empirically-estimated standard error of each statistic. As

generally occurs, SE's tend to be smaller for statistics that

deviate most from zero; these coefficients tend to reflect real

(non-sampling error variance) dynamics within the data, and

therefore tend to re-occur across samples.

INSERT FIGURE 15 ABOUT HERE.

However, notice in Figure 15 that the SE's for the

standardized function coefficients on Function I for variables X2

and X4 were both essentially .40, even though the mean estimates of

the two coefficients appear to be markedly different (i.e., 11.61

and 12.91). In a theoretically-grounded estimate, for a given n and

a given population estimate, the SE will be identical. But

bootstrap methods do not require the sometimes unrealistic

assumption that related coefficients even in a given analysis with

a common fixed n have the same sampling distributions.

5 4
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Clarification and an Important Caveat

The bootstrap methods modeled here presume that the sample

size is somewhat large (i.e., more than 20 to 40). In these cases

the bootstrap invokes resampling with replacement. For small

samples other methods are employed.

It is also important to emphasize that "bootstrap methods do

not magically take us beyond the limits of our data" (Thompson,

1993b, p. 373). For example, the bootstrap cannot make an

unrepresentative sample representative. And the bootstrap cannot

make a quasi-experiment with intact groups mimic results for a true

experiment in which random assignment is invoked. The bootstrap

cannot make data from a correlational (i.e., non-experimental)

design yield unequivocal causal conclusions.

Thus, Lunneborg (1999) makes very clear and careful

distinctions between bootstrap applications that may support either

(a) population inference (i.e., the study design invoked random

sampling), or (b) evaluation of how "local" a causal inference may

be (i.e., the study design invoked random assignment to

experimental groups, but not random selection), or (c) evaluation

of how "local" non-causal descriptions may be (i.e., the design

invoked neither random sampling nor random assignment). Lunneborg

(1999) quite rightly emphasizes how critical it is to match study

design/purposes and the bootstrap modeling procedures.

The bootstrap and related "internal" replicability analyses

are not magical. Nevertheless, these methods can be useful because

the methods combine the subjects in hand in

[numerous] different ways to determine whether

5 5
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results are stable across sample variations, i.e.,

across the idiosyncracies of individuals which make

generalization in social science so challenging.

(Thompson, 1996, P. 29)

Effect Sizes

As noted previously, pcuemAnm values are not suitable indices

of effect, "because both [types of p values] depend on sample size"

(APA, 1994, p. 18, emphasis added). Furthermore, unlikely events

are not intrinsically noteworthy (see Shaver's (1985) classic

example). Consequently, the APA publication manual now "encourages"

(p. 18) authors to report effect sizes.

Unfortunately, a growing corpus of empirical studies of

published articles portrays a consensual view that merely

"encouraging" effect size reporting (APA, 1994) has not appreciably

affected actual reporting practices (e.g., Keselman et al., 1998;

Kirk, 1996; Lance &Vacha-Haase, 1998; Nilsson & Vacha-Haase, 1998;

Reetz & Vacha-Haase, 1998; Snyder & Thompson, 1998; Thompson,

1999b; Thompson & Snyder, 1997, 1998; Vacha-Haase & Ness, 1999;

Vacha-Haase & Nilsson, 1998). Table 11 summarizes 11 empirical

studies of recent effect size reporting practices in 23 journals.

INSERT TABLE 11 ABOUT HERE.

Although some of the Table 11 results appear to be more

favorable than others, it is important to note that in some of the

11 studies' effect sizes were counted as being reported even if the

relevant results were not interpreted (e.g., an r2was reported but

not interpreted as being big or small, or noteworthy or not). This
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dynamic is dramatically illustrated in the Keselman et al. (1998)

results, because the reported results involved an exclusive focus

on between-subjects OVA designs, and thus there were no spurious

counts of incidental variance-accounted-for statistic reports. Here

Keselman et al. (1998) concluded that, "as anticipated, effect

sizes were almost never reported along with 2-va1ues" (p. 358).

If the baseline expectation is that effect should be reported

in 100% of quantitative studies (mine is), the Table 11 results are

disheartening. Elsewhere I have presented various reasons why I

anticipate that the current APA (1994, p. 18) "encouragement" will

remain largely ineffective. I have noted that an "encouragement" is

so vague as to be unenforceable (Thompson, in press-b). I have also

observed that only "encouraging" effect size reporting:

presents a self-canceling mixed-message. To present

an "encouragement" in the context of strict absolute

standards regarding the esoterics of author note

placement, pagination, and margins is to send the

message, "these myriad requirements count, this

encouragement doesn't." (Thompson, in press-b)

Two Heuristic Hypothetical Literatures

Two heuristic hypothetical literatures can be presented to

illustrate the deleterious impacts of contemporary traditions.

Here, results are reported for both statistical tests and effect

sizes.

Twenty "TinkieWinkie" Studies. First, presume that a

televangalist suddenly denounces a hypothetical childrens'

television character, "TinkieWinkie," based on a claim that the
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character intrinsically by appearance and behavior incites moral

depravity in 4 year olds.

This claim immediately incites inquiries by 20 research teams,

each working independently without knowledge of each others'

results. These researchers conduct experiments comparing the

differential effects of "The TinkieWinkie Show" against those of

"Sesame Street," or "Mr. Rogers," or both.

This work results in the nascent new literature presented in

Table 12. The eta2 effect sizes from the 20 (10 two-level one-way

and 10 three-level one-way) ANOVAs range from 1.2% to 9.9% (M

m=3.00%; SDqm=20%) as regards moral depravity being induced by

"The TinkieWinkie Show." However, as reported in Table 12, only 1

of the 20 studies results in a statistically significant effect.

INSERT TABLE 12 ABOUT HERE.

The 19 research teams finding no statistically significant

differences in the treatment effects on the moral depravity of 4

year olds obtained effect sizes ranging from eta2=1.2% to eta2=4.8%.

Unfortunately, these 19 research teams are acutely aware of how

non-statistically significant findings are valued within the

profession.

They are acutely aware, for example, that revised versions of

published articles were rated more highly by counseling

practitioners if the revisions reported statistically significant

findings than if they reported statistically nonsignificant

findings (Cohen, 1979). The research teams are also acutely aware

of Atkinson, Furlong and Wampold's (1982) study in which
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101 consulting editors of the Journal of Counseling

Psychology and the Journal of Consulting and

Clinical Practice were asked to evaluate three

versions, differing only with regard to level of

statistical significance, of a research manuscript.

The statistically nonsignificant and approach

significance versions were more than three times as

likely to be recommended for rejection than was the

statistically significant version. (p. 189)

Indeed, Greenwald (1975) conducted a study of 48 authors and

47 reviewers for the Journal of Personality and Social Psychology

and reported a

0.49 (± .06) probability of submitting a rejection

of the null hypothesis for publication (Question 4a)

compared to the low probability of 0.06 (± .03) for

submitting a nonrejection of the null hypothesis for

publication (Question 5a). A secondary bias is

apparent [as well) in the probability of continuing

with a problem [in future inquiry]. (p. 5, emphasis

added)

This is the well known "file drawer problem" (Rosenthal,

1979). In the present instance, some of the 19 research teams

failing to reject the null hypothesis decide not to even submit

their work, while the remaining teams have their reports rejected

for publication. Perhaps these researchers were socialized by a

previous version of the APA publication manual, which noted that:

Even when the theoretical basis for the prediction
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is clear and defensible, the burden of

methodological precision falls heavily on the

investigator who reports negative results. (APA,

1974, p. 21)

Here only the one statistically significant result is published;

everyone remains happily oblivious to the overarching substance of

the literature in its entirety.

The problem is that setting a low alpha only means that the

probability of a Type I error will be small on the average. In the

literature as a whole, some unlikely Type I errors are still

inevitable. These will be afforded priority for publication. Yet

publishing replication disconfirmations of these Type I errors will

be discouraged normatively. Greenwald (1975, pp. 13-15) cites the

expected actual examples of such epidemics. In short, contemporary

practice as regards statistical tests actively discourages some

forms of replication, or at least discourages disconfirming

replications being published.

Twenty Cancer Treatment Studies. Here researchers learn of a

new theory that a newly synthesized protein regulates the growth of

blood supply to cancer tumors. It is theorized that the protein

might be used to prevent new blood supplies from flowing to new

tumors, or even that the protein might be used to reduce existing

blood flow to tumors and thus lead to cancer destruction. The

protein is synthesized.

Unfortunately, given the newness of the theory and the absence

of previous related empirical studies upon which to ground power

analyses for their new studies, the 20 research teams institute
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inquiries that are slightly under-powered. The results from these

20 experiments are presented in Table 13.

INSERT TABLE 13 ABOUT HERE.

Here all 20 studies yield pcsizmAnm values of roughly .06

(range = .0598 to .0605). As reported in Table 13, the effect sizes

range from 15.1% to 62.8%. In the present scenario, only a few of

the reports are submitted for publication, and none are published.

Yet, these inquiries yielded effect sizes ranging from

eta2=15.1%, which Cohen (1988, pp. 26-27) characterized as "large,"

at least as regards result typicality, up to eta2=62.8%. And a life-

saving outcome variable is being measured! At the individual study

level, perhaps each research team has decided that p values

evaluate result replicability, and remain oblivious to the

uniformity of efficacy findings across the literature.

Some researchers remain devoted to statistical tests, because

of their professed dedication to reporting only replicable results,

and because they erroneously believe that statistical significance

evaluates result replicability (Cohen, 1994). In summary, it would

be the abject height of irony if, out of devotion to replication,

we continued to worship at the tabernacle of statistical

significance testing, and at the same time we declined to (a)

formulate our hypotheses by explicit consultation of the effect

sizes reported in previous studies and (b) explicitly interpret our

obtained effect sizes in relation to those reported in related

previous inquiries.

An Effect Size Primer
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Given the central role that effect sizes should play with

quantitative studies, at least a brief review of the available

choices is warranted here. Very good treatments are also available

from Kirk (1996), Rosenthal (1994), and Snyder and Lawson (1993).

There are dozens of effect size estimates, and no single one-

size-fits-all choice. The effect sizes can be divided into two

major classes: (a) standardized differences and (b) variance-

accounted-for measures of strength of association. [Kirk (1996)

identifies a third, "miscellaneous" category, and also summarizes

some of these choices.]

Standardized differences. In experimental studies, and

especially studies with only two groups where the mean is of

primary interest, the differences in means can be "standardized" by

dividing the difference by some estimate of the population

parameter score a. For example, in his seminal work on meta-

analysis, Glass (cf. 1976) proposed that the difference in the two

means could be divided by the control group standard deviation to

estimate A.

Glass presumed that the control group standard deviation is

the best estimate of a. This is reasonable particularly if the

control group received no treatment, or a placebo treatment. For

example, for the Table 2 variable, X, if the second of the two

groups was taken as the control group,

Ax = (12.50 - 11.50) / 7.68 = .130.

In this estimation the variance (see Table 2 note) is computed by

dividing the sum of squares by n-1.

However, others have taken the view that the most accurate
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standardization can be realized by use of a "pooled" (across

groups) estimate of the population standard deviation. Hedges

(1981) advocated computation of g using the standard deviation

computed as the square root of a pooled variance based on division

of the sum of squares by n-1. For the Table 2 variable, X,

gx = (12.50 - 11.50) / 7.49 = .134.

Cohen (1969) argued for the use of d, which divides the mean

difference by a "pooled" standard deviation computed as the square

root of a pooled variance based on division of the sum of squares

by n. For the Table 2 variable, X,

dx = (12.50 - 11.50) / 7.30 = .137.

As regards these choices, there is (as usual) no one always

right one-size-fits-all choice. The comment by Huberty and Morris

(1988, p. 573) is worth remembering generically: "As in all of

statistical inference, subjective judgment cannot be avoided.

Neither can reasonableness!"

In some studies the control group standard deviation provides

the most reasonable standardization, while in others a "pooling"

mechanism may be preferred. For example, an intervention may itself

change score variability, and in these cases Glass's A may be

preferred. But otherwise the "pooled" value may provide the more

statistically precise estimate.

As regards correction for statistical bias by division by n-1

versus n, of course the competitive differences here are a function

of the value of n. As n gets larger, it makes less difference which

choice is made. This division is equivalent to multiplication by 1

/ the divisor. Consider the differential impacts on estimates
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derived using the following selected choices of divisors.

n 1/Divisor n-1 1/Divisor Difference
10 .1000 9 .111111 .011111
100 .0100 99 .010101 .000101

1000 .0010 999 .001001 .000001
10000 .0001 9999 .000100010 .00000001

Variance-accounted-for. Given the omnipresence of the General

Linear Model, all analyses are correlational (cf. Thompson, 1998a),

and (as noted previously) an r2 effect size (e.g., eta2, B2, omega2

[0; Hays, 1981], adjusted R2) can be computed in all studies.

Generically, in univariate analyses "uncorrected" variance-

accounted-for effect sizes (e.g., eta2, R2) can be computed by

dividing the sum of squares "explained" ("between," "model,"

"regression") by the sum of squares of the outcome variable (i.e.,

the sum of squares "total"). For example, in the Figure 3 results,

the univariate eta2 effect sizes were both computed to be 0.469%

(e.g., 5.0 / (5.0 + 1061.0] = 5.0 / 1065.0 = .00469).

In multivariate analysis, one estimate of eta2 can be computed

as 1 - lambda (X). For example, for the Figure 3 results, the

multivariate eta2 effect size was computed as (1 - .37500) equals

.625.

Correcting for score measurement unreliability. It is well

known that score unreliability tends to attenuate r values (cf.

Walsh, 1996). Thus, some (e.g., Hunter & Schmidt, 1990) have

recommended that effect sizes be estimated incorporating

statistical corrections for measurement error. However, such

corrections must be used with caution, because any error in

estimating the reliability will considerably distort the effect

sizes (cf. Rosenthal, 1991).
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Because scores (not tests) are reliable, reliability

coefficients fluctuate from administration to administration

(Reinhardt, 1996). In a given empirical study, the reliability for

the data in hand may be used for such corrections. In other cases,

more confidence may be vested in these corrections if the

reliability estimates employed are based on the important meta-

analytic "reliability generalization" method proposed by Vacha-

Haase (1998).

"Corrected" vs. "uncorrected" variance-accounted-for

estimates. "Classical" statistical methods (e.g., ANOVA,

regression, DDA) use the statistical theory called "ordinary least

squares." This theory optimizes the fit of the synthetic/latent
A

variables (e.g., Y) to the observed/measured outcome/response

variables (e.g., Y) in the sample data, and capitalizes on all the

variance present in the observed sample scores, including the

"sampling error variance" that it is idiosyncratic to the

particular sample. Because sampling error variance is unique to a

given sample (i.e., each sample has its own sampling error

variance), "uncorrected" variance-accounted-for effect sizes

somewhat overestimate the effects that would be replicated by

applying the same weights (e.g., regression beta weights) in either

(a) the population or (b) a different sample.

However, statistical theory (or the descriptive bootstrap) can

be invoked to estimate the extent of overestimation (i.e., positive

bias) in the variance-accounted-for effect size estimate. [Note

that "corrected" estimates are always less than or equal to

"uncorrected" values.] The difference between the "uncorrected" and

6 5



Common Methodology Mistakes -65-
Effect Sizes

"corrected" variance-accounted-for effect sizes is called

"shrinkage."

For example, for regression the "corrected" effect size

"adjusted 112" is routinely provided by most statistical packages.

This correction is due to Ezekiel (1930), although the formula is

often incorrectly attributed to Wherry (Kromrey & Hines, 1996):

1 - ((n - 1) / (n - y - 1)) x (1 - Ile),

where n is the sample size and v is the number of predictor

variables. The formula can be equivalently expressed as:

R2 ((1 JP x (m / (n Y -1))).

In the ANOVA case, the analogous n2 can be computed using the

formula due to Hays (1981, p. 349):

( S SBETwEEN ( is - 1) X MSwminsT ) / ( S STOTAL + MSwrmiN ) ,

where k is the number of groups.

In the multivariate case, a multivariate omega2 due to Tatsuoka

(1973a) can be used as "corrected" effect estimate. Of course,

using univariate effect sizes to characterize multivariate results

would be just as wrong-headed as using ANOVA methods post hoc to

MANOVA. As Snyder and Lawson (1993) perceptively noted,

"researchers asking multivariate questions will need to use

magnitude-of-effect indices that are consistent with their

multivariate view of the research problem" (p. 341).

Although "uncorrected" effects for a sample are larger than

the "corrected" effects estimated for the population, the

"corrected" estimates for the population effect (e.g., omega2) tend

in turn to be larger than the "corrected" estimates for a future

sample (e.g., Herzberg, 1969; Lord, 1950). As Snyder and Lawson
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(1993) explained, "the reason why estimates for future samples

result in the most shrinkage is that these statistical corrections

must adjust for the sampling error present in both the given

present study and some future study" (p. 340, emphasis in

original).

It should also be noted that variance-accounted-for effect

sizes can be negative, notwithstanding the fact that a squared-

metric statistic is being estimated. This was seen in some of the

omega2 values reported in Table 12. Dramatic amounts of shrinkage,

especially to negative variance-accounted-for values, suggest a

somewhat dire research experience. Thus, I was somewhat distressed

to see a local dissertation in which R2=44.6% shrunk to 0.45%, and

yet it was claimed that still "it may be possible to generalize

prediction in a referred population" (Thompson, 1994a, p. 12).

Factors that inflate sampling error variance. Understanding

what design features generate sampling error variance can

facilitate more thoughtful design formulation, and thus has some

value in its own right. Sampling error variance is greater when:

(a) sample size is smaller;

(b) the number of measured variables is greater; and

(c) the population effect size (i.e., parameter) is smaller.

The deleterious effects of small sample size are obvious. When

we sample, there is more likelihood of "flukie" characterizations

of the population with smaller samples, and the relative influence

of anomalous scores (i.e., outliers) is greater in smaller samples,

at least if we use "classical" as against "modern" statistics.

Table 14 illustrates these variations as a function of
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different sample sizes for regression analyses each involving 3

predictor variables and presumed population parameter R2 equal to

50%. These results illustrate that the sampling error due to sample

size is not a monotonic (i.e., constant linear) function of sample

size changes. For example, when sample size changes from n=10 to

n=20, the shrinkage changes from 25.00% (R2=50% - R2*=25.00%) to

9.73% (R2=50% -R2*=40.63%). But even more than doubling sample size

from n=20 to n=45 changes shrinkage only from 9.73% (R2=50% -

R2*=40.63%) to 3.66% (R2=50% - R2*=46.34%).

INSERT TABLE 14 ABOUT HERE.

The influence of the number of measured variables is also

fairly straightforward. The more variables we sample the greater is

the likelihood that an anomalous score will be incorporated in the

sample data.

The common language describing a person as an "outlier" should

not be erroneously interpreted to mean either (a) that a given

person is an outlier on all variables or (b) that a given score is

an outlier as regards all statistics (e.g., on the mean versus the

correlation). For example, for the following data Amanda's score

may be outlying as regards My, but not as regards rxy (which here

equal +1; see Walsh, 1996).

Person I Y.

Kevin 1 2
Jason 2 4
Sherry 3 6
Amanda 48 96

Again, as reported in Table 14, the influence of the number of
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measured variables on shrinkage is not monotonic.

Less obvious is why the estimated population parameter effect

size (i.e., the estimate based on the sample statistic) impacts

shrinkage. The easiest way to understand this is to conceptualize

the population for a Pearson product-moment study. Let's say the

population squared correlation is +1. In this instance, even

ridiculously small samples of any 2 or 3 or 4 pairs of scores will

invariably yield a sample r2 of 100% (as long as both X and Y as

sampled are variables, and therefore r is "defined," in that

illegal division is not required by the formula r = COVxy / [fAc x

Again as suggested by the Table 14 examples, the influence of

increased sample size on decreased shrinkage is not monotonic.

[Thus, the use of a sample r=.779 in the Table 8 heuristic data for

the bootstrap example theoretically should have resulted in

relatively little variation in sample estimates across resamples.]

Indeed, these three influences on sampling error must be

considered as they simultaneously interact with each other. For

example, as suggested by the previous discussion, the influence of

sample size is an influence conditional on the estimated parameter

effect size. Table 15 illustrates these interactions for examples

all of which involve shrinkage of a 5% decrement downward from the

original R2 value.

INSERT TABLE 15 ABOUT HERE.

Pros and cons of the effect size classes. It is not clear that

researchers should uniformly prefer one effect index over another,
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or even one class of indices over the other. The standardized

difference indices do have one considerable advantage: they tend to

be readily comparable across studies because they are expressed

"metric-free" (i.e., the division by SD removes the metric from the

characterization).

However, variance-accounted-for effect sizes can be directly

computed in all studies. Furthermore, the use of variance-

accounted-for effect sizes has the considerable heuristic value of

forcing researchers to recognize that all parametric methods are

part of a single general linear model family (cf. Cohen, 1968;

Knapp, 1978).

In any case, the two effect sizes can be re-expressed in terms

of each other. Cohen (1988, p. 22) provided a general table for

this purpose. A d can also be converted to an r using Cohen's

(1988, p. 23) formula #2.2.6:

r = d / [(d2 + 4)3]
= 0.8 / [(0.82 + 4)J
= 0.8 / [(0.64 + 4).3]
= 0.8 / [( 4.64 )i]
= 0.8 / 2.154
= 0.371 .

An r can be converted to a d using Friedman's (1968, p. 246)

formula #6:

ci = [2 (r) / [ (1 r2) 5]
= [2 ( 0.371 )] / [(1 - 0.3712)5]
= [2 (0.371)] / [(1 - 0.1376)5]
= [2 (0.371)] / (0.8624)5
= [2 (0.371)] / 0.9286

0.742 0.9286
0.799 .

Effect Size Interpretation. Schmidt and Hunter (1997) recently

argued that "logic-based arguments [against statistical testing]
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seem to have had only a limited impact... [perhaps due to] the

virtual brainwashing in significance testing that all of us have

undergone" (pp. 38-39). They also spoke of a "psychology of

addiction to significance testing" (Schmidt & Hunter, 1997, P. 49).

For too long researchers have used statistical significance

tests in an illusory atavistic escape from the responsibility for

defending the value of their results. Our p values were implicitly

invoked as the universal coinage with which to argue result

noteworthiness (and replicability). But as I have previously noted,

Statistics can be employed to evaluate the

probability of an event. But importance is a

question of human values, and math cannot be

employed as an atavistic escape (1 la Fromm's Escape

from Freedom) from the existential human

responsibility for making value judgments. If the

computer package did not ask you your values prior

to its analysis, it could not have considered your

value system in calculating p's, and so p's cannot

be blithely used to infer the value of research

results. (Thompson, 1993b, p. 365)

The problem is that the normative traditions of contemporary

social science have not yet evolved to accommodate personal values

explication as part our work. As I have suggested elsewhere

(Thompson, 1999a),

Normative practices for evaluating such [values]

assertions will have to evolve. Research results

should not be published merely because the
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individual researcher thinks the results are

noteworthy. By the same token, editors should not

quash research reports merely because they find

explicated values unappealing. These resolutions

will have to be formulated in a spirit of reasoned

comity. (p. 175)

In his seminal book on power analysis, Cohen (1969, 1988, pp.

24-27) suggested values for what he judged to be "low," "medium,"

and "large" effect sizes:

Characterization d r2

"low" .2 1.0%
"medium" .5 5.9%
"large" .8 13.8%

Cohen (1988) was characterizing what he regarded as the typicality

of effect sizes across the broad published literature of the social

sciences. However, some empirical studies suggest that Cohen's

characterization of typicality is reasonably accurate (Glass, 1979;

Olejnik, 1984).

However, as Cohen (1988) himself emphasized:

The terms "small," "medium," and "large" are

relative, not only to each other, but to the content

area of behavioral science or even more particularly

to the specific content and research method being

employed in any given investigation... In the face

of this relativity, there is a certain risk inherent

in offering conventional operational definitions...

in as diverse a field of inquiry as behavioral

science... [This] common conventional frame of
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reference... is recommended for use only when no

better basis for estimating the ES index is

available. (p. 25, emphasis added)

If in evaluating effect size we apply Cohen's conventions (against

his wishes) with the same rigidity with which we have traditionally

applied the a=.05 statistical significance testing convention we

will merely be being stupid in a new metric.

In defending our subjective judgments that an effect size is

noteworthy in our personal value system, we must recognize that

inherently any two researchers with individual values differences

may reach different conclusions regarding the noteworthiness of the

exact same effect even in the same study. And, of course, the same

effect size in two different inquiries may differ radically in

noteworthiness. Even small effects will be deemed noteworthy, if

they are replicable, when inquiry is conducted as regards highly

valued outcomes. Thus, Gage (1978) pointed out that even though the

relationship between cigarette smoking and lung cancer is

relatively "small" (i.e., r2 = 1% to 2%):

Sometimes even very weak relationships can be

important... [O]n the basis of such correlations,

important public health policy has been made and

millions of people have changed strong habits. (p.

21)

Confidence Intervals for Effects. It often is useful to

present confidence intervals for effect sizes. For example, a

series of confidence intervals across variables or studies can be

conveyed in a concise and powerful graphic. Such intervals might
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incorporate information regarding the theoretical or the empirical

(i.e., bootstrap) estimates of effect variability across samples.

However, as I have noted elsewhere,

If we mindlessly interpret a confidence interval

with reference to whether the interval subsumes

zero, we are doing little more than nil hypothesis

statistical testing. But if we interpret the

confidence intervals in our study in the context of

the intervals in all related previous studies, the

true population parameters will eventually be

estimated across studies, even if our prior

expectations regarding the parameters are wildly

wrong (Schmidt, 1996). (Thompson, 1998b, p. 799)

Conditions Necessary (and Sufficient) for Change

Criticisms of conventional statistical significance are not

new (cf. Berkson, 1938; Boring, 1919), though the publication of

such criticisms does appears to be escalating at an exponentially

increasing rate (Anderson et al., 1999). Nearly 40 years ago

Rozeboom (1960) observed that Hthe perceptual defenses of

psychologists (and other researchers, too] are particularly

efficient when dealing with matters of methodology, and so the

statistical folkways of a more primitive past continue to dominate

the local scene" (p. 417).

Table 16 summarizes some of the features of contemporary

practice, the problems associated with these practices, and

potential improvements in practice. The implementation of these

"modern" inquiry methods would result in the more thoughtful
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specification of research hypotheses. The design of studies with

more statistical power and precision would be more likely, because

power analyses would be based on more informed and realistic effect

size estimates as an effect literature matured (Rossi, 1997).

INSERT TABLE 16 ABOUT HERE.

Emphasizing effect size reporting would eventually facilitate

the development of theories that support more specific

expectations. Universal effect size reporting would facilitate

improved meta-analyses of literature in which cumulated effects

would not be based on as many strong assumptions that are probably

somewhat infrequently met. Social science would finally become the

business of identifying valuable effects that replicate under

stated conditions; replication would no longer receive the hollow

affection of the statistical significance test, and instead the

replication of specific effects would be explicitly and directly

addressed.

What are the conditions necessary and sufficient to persuade

researchers to pay less attention to the likelihood of sample

statistics, based on assumptions that "nil" null hypotheses are

true in the population, and more attention to (a) effect sizes and

(b) evidence of effect replicability? Certainly current doctoral

curricula seem to have less and less space for quantitative

training (Aiken et al., 1990). And too much instruction teaches

analysis as the rote application of methods sans rationale

(Thompson, 1998a). And many textbooks, too, are flawed (Carver,

1978; Cohen, 1994).
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But improved textbooks will not alone provide the magic bullet

leading to improved practice. The computation and interpretation of

effect sizes are already emphasized in some texts (cf. Hays, 1981).

For example, Loftus and Loftus (1982) in their book argued that "it

is our judgment that accounting for variance is really much more

meaningful than testing for [statistical] significance" (p. 499).

Editorial Policies

I believe that changes in journal editorial policies are the

necessary (and sufficient) conditions to move the field. As

Sedlmeier and Gigerenzer (1989) argued, "there is only one force

that can effect a change, and that is the same force that helped

institutionalize null hypothesis testing as the sine qua non for

publication, namely, the editors of the major journals" (p. 315).

Glantz (1980) agreed, noting that "The journals are the major force

for quality control in scientific work" (p. 3). And as Kirk (1996)

argued, changing requirements in journal editorial policies as

regards effect size reporting "would cause a chain reaction:

Statistics teachers would change their courses, textbook authors

would revise their statistics books, and journal authors would

modify their inference strategies" (p. 757).

Fortunately, some journal editors have elaborated policies

n requiring" rather than merely "encouraging" (APA, 1994, p. 18)

effect size reporting (cf. Heldref Foundation, 1997, pp. 95-96;

Thompson, 1994b, p. 845). It is particularly noteworthy that

editorial policies even at one APA journal now indicate that:

If an author decides not to present an effect size

estimate along with the outcome of a significance



Common Methodology Mistakes -76-
Conditions Necessary for Change

test, I will ask the author to provide specific

justification for why effect sizes are not reported.

So far, I have not heard a good argument against

presenting effect sizes. Therefore, unless there is

a real impediment to doing so, you should routinely

include effect size information in the papers you

submit. (Murphy, 1997, p. 4)

Leadership from AERA

Professional disciplines, like glaciers, move slowly, but

inexorably. The hallmark of a profession is standards of conduct.

And, as Biesanz and Biesanz (1969) observed, "all members of the

profession are considered colleagues, equals, who are expected to

uphold the dignity and mystique of the profession in return for the

protection of their colleagues" (p. 155). Especially in academic

professions, there is some hesitance to change existing standards,

or to impose more standards than seem necessary to realize common

purposes.

As might be expected, given these considerations, in its long

history AERA has been reticent to articulate standards for the

conduct of educational inquiry. Most such expectations have been

articulated only in conjunction with other organizations (e.g.,

AERA/APA/NCME, 1985). For example, AERA participated with 15 other

organizations in the Joint Committee on Standards for Educational

Evaluation's (1994) articulation of the program evaluation

standards. These were the first-ever American National Standards

Institute (ANSI)-approved standards for professional conduct. As

ANSI-approved standards, these represent de facto THE American

77



Common Methodology Mistakes -77-
Conditions Necessary for Change

standards for program evaluation (cf. Sanders, 1994).

As Kaestle (1993) noted some years ago,

...[I]f education researchers could reverse their

reputation for irrelevance, politicization, and

disarray, however, they could rely on better support

because most people, in the government and the

public at large, believe that education is

critically important. (pp. 30-31)

Some of the desirable movements of the field may be facilitated by

the on-going work of the APA Task Force on Statistical Inference

(Azar, 1997; Shea, 1996).

But AERA, too, could offer academic leadership. The children

who are served by education need not wait for AERA to wait for APA

to lead via continuing revisions of the APA publication manual.

AERA, through the new Research Advisory Committee, and other AERA

organs, might encourage the formulation of editorial policies that

place less emphasis on statistical tests based on "nil" null

hypotheses, and more emphasis on evaluating whether educational

interventions and theories yield valued effect sizes that replicate

under stated conditions.

It would be a gratifying experience to see our organization

lead movement of the social sciences. Offering credible academic

leadership might be one way that educators could confront the

"awful reputation" (Kaestle, 1993) ascribed to our research. As I

argued 3 years ago, if education "studies inform best practice in

classrooms and other educational settings, the stakeholders in
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these locations certainly deserve better treatment from the

[educational] research community via our analytic choices" (p. 29).
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Table 1
Heuristic Data Set #1 (n = 20) Involving 3 Measured Variables

ID/
Stat.

Measured Variables Synthetic/Latent Variables
Y X1 X2 YHAT yhat yhat2 e e2

1 473 392 573 422.58 -77.67 6033.22 50.42 2542.79
2 395 319 630 376.68 -123.57 15270.62 18.32 335.86
3 590 612 376 539.17 38.92 1514.44 50.83 2584.35
4 590 514 517 533.13 32.88 1081.21 56.87 3234.25
5 525 453 559 489.92 -10.33 106.65 35.08 1230.55
6 564 551 489 557.16 56.91 3239.21 6.84 46.76
7 694 722 333 645.31 145.06 21041.11 48.69 2371.37
8 356 441 531 450.16 -50.09 2508.79 -94.16 8866.10
9 408 392 531 386.37 -113.88 12968.85 21.63 467.9910 421 551 362 447.68 -52.57 2763.51 -26.68 711.7511 434 441 545 462.23 -38.02 1445.43 -28.23 796.8712 342 367 489 317.61 -182.64 33355.67 24.39 594.76

13 538 465 616 554.68 54.43 2963.05 -16.68 278.2814 369 538 390 454.89 -45.36 2057.14 -85.89 7377.44
15 499 514 489 508.99 8.74 76.45 -9.99 99.8316 564 600 446 583.89 83.64 6995.32 -19.89 395.4417 525 587 390 518.69 18.44 339.93 6.31 39.8818 447 477 474 447.89 -52.36 2741.31 -0.89 0.7919 668 648 503 695.52 195.27 38129.31 -27.52 757.0820 603 416 757 612.44 112.19 12587.27 -9.44 89.13

Sum 10005 10000 10000 10005.00 0.00 167218.50 0.00 32821.26M 500.25 500.00 500.00 500.25 0.00 8360.93 0.00 1641.06SD 100.01 100.02 99.98 91.44 91.44 10739.79 40.51 2372.46

Note. These SD's are based on the population parameter formula.
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Figure 1
SPSS Output of Regression Analysis

for the Table 1 Data

Equation Number 1 Dependent Variable.
Block Number 1.
Variable(s) Entered on Step Number 1.. X2

2.. X1

Multiple R .91429 Analysis of Variance
R Square .83593 DF Sum of Squares Mean Square
Adjusted R Square .81662 Regression 2 167218.48977 83609.24489
Standard Error 43.93930 Residual 17 321121-:26025- 1930.66237

Variable

43.30599 Signif F = .0000

Variables in the Equation

SE B Beta T Sig T

X1 1.301899 .140276 1.302088 9.281 .0000
X2 .862072 .140337 .861822 6.143 .0000
(Constant) 581.735382 130.255405 4.466 .0003

Note. Using an Excel function (i.e., "=FDIST(f,dfl,df2)" =
"=FDIST(43.30599,2,17)"), the exact pcmzuLATED value was evaluated to
be .000000213. A PCALCUIATED value can never be 0, notwithstanding the
SPSS reporting traditions for extremely small values of 2;
obtaining a sample with a probability of occurring of 0 would mean
that you had obtained an impossible result [which is impossible to
do!].
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Figure 2
SPSS Output of Bivariate Product-moment Correlation Coefficients

for the 3 Measured and 2 Synthetic Variables
for Heuristic Data Set #1 (Table 1)

Y X1 X2 E YHAT
a

Y 1.0000 .6868 -.0677 .4051 .9143
( 20) ( 20) ( 20) ( 20) ( 20)
P= . P= .001 P= .777 P= .076 P= .000

b c
X1 .6868 1.0000 -.7139 .0000 .7512

( 20) ( 20) ( 20) ( 20) ( 20)
P= .001 P= . P= .000 P=1.000 P= .000

b c
X2 -.0677 -.7139 1.0000 .0000 -.0741

( 20) ( 20) ( 20) ( 20) ( 20)
P= .777 P= .000 P= . P=1.000 P= .756

b b b
E .4051 .0000 .0000 1.0000 .0000

( 20) ( 20) ( 20) ( 20) ( 20)
P= .076 P=1.000 P=1.000 P= . P=1.000

a c c b
YHAT .9143 .7512 -.0741 .0000 1.0000

( 20) ( 20) ( 20) ( 20) ( 20)
P= .000 P= .000 P= .756 P=1.000 P= .

a A

The bivariate r between the Y and the Y scores is always the
multiple R.

A
The measured variables and the synthetic variable Y always have a
correlation of 0 with the synthetic variable e scores.

The structure coefficients for the two measured predictor
variables. This can also be computed as rs= r for a given measured
predictor with Y / R (Thompson & Borrello, 1985). For example,
.6868 / .9143 = .7512.
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Table 2
Heuristic Data Set #2 (n = 20) Involving Scores of 10 People in

Each of Two Groups on 2 Measured Response Variables

Group/ Meas. Vars. Latent
Statistic X Y Score

1 1 0 -1.225 aeraa997.wkl 3/8/99
1 1 0 -1.225
1 12 12 0.000
1 12 12 0.000
1 12 12 0.000
1 13 11 -2.450
1 13 11 -2.450
1 13 11 -2.450
1 24 23 -1.225
1 24 23 -1.225

2 0 1 1.225
2 0 1 1.225
2 11 13 2.450
2 11 13 2.450
2 11 13 2.450
2 12 12 0.000
2 12 12 0.000
2 12 12 0.000
2 23 24 1.225
2 23 24 1.225

Standardized
Difference 0.137 -0.137 -2.582
MI 12.50 11.50 -1.23
SDI 7.28 7.28 0.95

M2 11.50 12.50 1.23
SD2 7.28 7.28 0.95

12.00 12.00 0.00
SD 7.30 7.30 1.55

Note. The tabled SD values are the parameter estimates (i.e., [SOS
/ n]'5 = [530.5 / 10]3 = 53.053 = 7.28) . The equivalent values
assuming a sample estimate of the population a are larger (i.e.,
[SOS / (n-1)13 = [530.5 / 9]3 = 58.943 = 7.68).

The latent variable scores were computed by applying the raw
discriminant function coefficient weights, reported in Figure 3 as
-1.225 and 1.225, respectively, to the two measured variables. For
example, "Latent Scorel" or DSCORE1 equals [(-1.225 x 1) +(1.225 x
0)] equals -1.225.

9 3
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Figure 3
SPSS Output for 2 ANOVAs and a DDA/MANOVA

for the Table 2 Data

EFFECT .. GROUP
Multivariate Tests of Significance (S = 1, M = 0, N = 7 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .62500 14.16667 2.00 17.00 .000
Hotellings 1.66667 14.16667 2.00 17.00 .000
Wilks .37500 14.16667 2.00 17.00 .000
Roys .62500
Note.. F statistics are exact.

Multivariate Effect Size

TEST NAME Effect Size

(All) .625

EFFECT .. GROUP (Cont.)
Univariate F-tests with (1,18) D. F.

Variable Hypoth. SS ErrorSSHypoth. MS Error MS F Sig. of FETA Square

X 5.00000 1061.00000 5.00000 58.94444 .08483 .774 .00469
5.00000 1061.00000 5.00000 58.94444 .08483 .774 .00469

EFFECT .. GROUP (Cont.)
Raw discriminant function coefficients

Function No.

Variable 1

-1.225
1.225

Note. Using an Excel function (i.e., "=FDIST(f,dfl,df2)" =
"=FDIST(14.16667,2,17)"), the exact pcuzuum) value was evaluated to
be .000239. A DCALCULATED value can never be 0, notwithstanding the
SPSS reporting traditions for extremely small values of 2;
obtaining a sample with a probability of occurring of 0 would mean
that you had obtained an impossible result [which is impossible to
do!].
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Figure 4
SPSS ANOVA Output for the Multivariate Synthetic Variable

for the DDA/MANOVA Results

Variable DSCORE
By Variable GROUP

Analysis of Variance

Sum of Mean
Source D.F. Squares Squares Ratio Prob.

Between Groups 1 30.0125 30.0125 30.0000 .0000
Within Groups 18 18.0075 1.0004
Total 19 48.0200

Note. The degrees of freedom from this ANOVA of the DDA/MANOVA
synthetic variables (i.e., "DSCORE") are wrong, because the
computer does not realize that the multivariate synthetic variable,
"DSCORE," actually is a composite of two measured variables, and so
therefore the F and p values are also wrong. However, the eta2 can
be computed as 30.0125 / 48.020 = .625 , which exactly matches the
multivariate effect size for the DDA/MANOVA reported by SPSS.
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Table 3
Heuristic Data Set #3 (n = 21) Involving Scores of 21 People on

One Measured Response Variable and Three Pairs of
Intervally- and Nominally-Scaled Predictors

Predictors
Id Y X1 X1' X2 X2' X3 X3'

1 495 399 1 499 1 483 1
2 497 399 1 499 1 492 1
3 499 400 1 499 1 495 1
4 499 400 1 499 1 495 1
5 499 400 1 499 1 495 1
6 501 401 1 499 1 496 1
7 503 401 1 499 1 497 1

8 496 499 2 500 2 498 2
9 498 499 2 500 2 499 2

10 500 500 2 500 2 500 2
11 500 500 2 500 2 500 2
12 500 500 2 500 2 500 2
13 502 501 2 500 2 501 2
14 504 501 2 500 2 502 2

15 498 599 3 501 3 503 3
16 500 599 3 501 3 504 3
17 502 600 3 501 3 505 3
18 502 600 3 501 3 505 3
19 502 600 3 501 3 505 3
20 504 601 3 501 3 508 3
21 506 601 3 501 3 517 3

Note. X1', X2', and X3' are the re-expressions in nominal scoreform of their intervally-scaled variable counterparts.
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Figure 5
Regression (Y, X3) and ANOVA (Y, X3') of Table 3 Data

Regression (Y, X3)

Equation Number 1 Dependent Variable..

Block Number 1. Method: Enter X3

Analysis of Variance
Multiple R .77282 DF Sum of Squares Mean Square
R Square .59725 Regression 1 91.18013 91.18013
Adjusted R Square .57605 Residual 19 61.48654 3.23613
Standard Error 1.79893

F = 28.17564 Signif F = .0000

ANOVA (Y, X3')

Variable Y
By Variable X3A

Analysis of Variance

Sum of Mean F F
Source D.F. Squares Squares Ratio Prob.

Between Groups 2 32.6667 16.3333 2.4500 .1145
Within Groups 18 120.0000 6.6667
Total 20 152.6667

Note. Using an Excel function (i.e., "=FDIST(f,dfl,df2)" =
"=FDIST(28.17564,1,19)"), the exact pcLcuu,m) value was evaluated to
be .0000401. For the ANOVA, eta2 was computed to be 21.39% (32.6667
/ 152.6667).
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Table 4
My Most Recent Essays Regarding Statistical Tests

Thompson, B. (1996). AERA editorial policies regarding statistical
significance testing: Three suggested reforms. Educational
Researcher, 25(2), 26-30.

Thompson, B. (1997). Editorial policies regarding statistical
significance tests: Further comments. Educational Researcher,
26(5), 29-32.

Thompson, B. (1998). Statistical significance and effect size
reporting: Portrait of a possible future. Research in the
Schools, 5(2), 33-38.

Vacha-Haase, T., & Thompson, B. (1998). Further comments on
statistical significance tests. Measurement and Evaluation in
Counseling and Development, 31, 63-67.

Thompson, B. (1998). In praise of brilliance: Where that praise
really belongs. American Psychologist, 53, 799-800.

Thompson, B. (1999). Improving research clarity and usefulness with
effect size indices as supplements to statistical significance
tests. Exceptional Children, 65, 329-337.

Thompson, B. (1999). Statistical significance tests, effect size
reporting, and the vain pursuit of pseudo-objectivity. Theory
& Psychology, 9(2), 193-199.

Thompson, B. (1999). Why "encouraging" effect size reporting is not
working: The etiology of researcher resistance to changing
practices. Journal of Psychology, 133, 133-140.

Thompson, B. (1999). If statistical significance tests are
broken/misused, what practices should supplement or replace
them?. Theory & Psychology, 9(2), 167-183.

Thompson, B. (in press). Journal editorial policies regarding
statistical significance tests: Heat is to fire as p is to
importance. Educational Psychology Review.
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Table 5
Heuristic Data Set #3 Defining a Population of N=20 Scores

3/7/99

ID X

1
2

3

4

5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20

430
431
432
433
435
438
442
446
451
457
465
474
484
496
512
530
560
595
649
840

aeraa993.wk4
aeraa993.out

A 500.00
a 97.73
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Table 6
The Sampling Distribution for the Mean of

n=3 Scores Drawn from the Table 5 Population of N=20 Scores

Sample
Cases

X1 X2 X3 Mean Ratio1 2 2

1 1 2 3 430 431 432 431.00 -1.29
2 1 2 4 430 431 433 431.33 -1.29
3 1 2 5 430 431 435 432.00 -1.27
4 1 2 6 430 431 438 433.00 -1.26
5 1 2 7 430 431 442 434.33 -1.23
6 1 2 8 430 431 446 435.67 -1.21
7 1 2 9 430 431 451 437.33 -1.17
8 1 2 10 430 431 457 439.33 -1.14
9 1 2 11 430 431 465 442.00 -1.09

10 1 2 12 430 431 474 445.00 -1.03
11 1 2 13 430 431 484 448.33 -0.97
12 1 2 14 430 431 496 452.33 -0.89
13 1 2 15 430 431 512 457.67 -0.79
14 1 2 16 430 431 530 463.67 -0.68
15 1 2 17 430 431 560 473.67 -0.49
16 1 2 18 430 431 595 485.33 -0.27
17 1 2 19 430 431 649 503.33 0.06
18 1 2 20 430 431 840 567.00 1.26
19 1 3 4 430 432 433 431.67 -1.28
20 1 3 5 430 432 435 432.33 -1.27
21 1 3 6 430 432 438 433.33 -1.25
22 1 3 7 430 432 442 434.67 -1.22
23 1 3 8 430 432 446 436.00 -1.20
24 1 3 9 430 432 451 437.67 -1.17
25 1 3 10 430 432 457 439.67 -1.13
26 1 3 11 430 432 465 442.33 -1.08
27 1 3 12 430 432 474 445.33 -1.02
28 1 3 13 430 432 484 448.67 -0.96
29 1 3 14 430 432 496 452.67 -0.89
30 1 3 15 430 432 512 458.00 -0.79
31 1 3 16 430 432 530 464.00 -0.67
32 1 3 17 430 432 560 474.00 -0.49
33 1 3 18 430 432 595 485.67 -0.27
34 1 3 19 430 432 649 503.67 0.07
35 1 3 20 430 432 840 567.33 1.26
36 1 4 5 430 433 435 432.67 -1.26
37 1 4 6 430 433 438 433.67 -1.24
38 1 4 7 430 433 442 435.00 -1.22
39 1 4 8 430 433 446 436.33 -1.19
40 1 4 9 430 433 451 438.00 -1.16
41 1 4 10 430 433 457 440.00 -1.12
42 1 4 11 430 433 465 442.67 -1.07
43 1 4 12 430 433 474 445.67 -1.02
44 1 4 13 430 433 484 449.00 -0.96
45 1 4 14 430 433 496 453.00 -0.88
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46 1 4 15 430 433 512 458.33 -0.78
47 1 4 16 430 433 530 464.33 -0.67
48 1 4 17 430 433 560 474.33 -0.48
49 1 4 18 430 433 595 486.00 -0.26
50 1 4 19 430 433 649 504.00 0.07
51 1 4 20 430 433 840 567.67 1.27
52 1 5 6 430 435 438 434.33 -1.23
53 1 5 7 430 435 442 435.67 -1.21
54 1 5 8 430 435 446 437.00 -1.18
55 1 5 9 430 435 451 438.67 -1.15
56 1 5 10 430 435 457 440.67 -1.11
57 1 5 11 430 435 465 443.33 -1.06
58 1 5 12 430 435 474 446.33 -1.01
59 1 5 13 430 435 484 449.67 -0.94
60 1 5 14 430 435 496 453.67 -0.87
61 1 5 15 430 435 512 459.00 -0.77
62 1 5 16 430 435 530 465.00 -0.66
63 1 5 17 430 435 560 475.00 -0.47
64 1 5 18 430 435 595 486.67 -0.25
65 1 5 19 430 435 649 504.67 0.09
66 1 5 20 430 435 840 568.33 1.28
67 1 6 7 430 438 442 436.67 -1.19
68 1 6 8 430 438 446 438.00 -1.16
69 1 6 9 430 438 451 439.67 -1.13
70 1 6 10 430 438 457 441.67 -1.09
71 1 6 11 430 438 465 444.33 -1.04
72 1 6 12 430 438 474 447.33 -0.99
73 1 6 13 430 438 484 450.67 -0.92
74 1 6 14 430 438 496 454.67 -0.85
75 1 6 15 430 438 512 460.00 -0.75
76 1 6 16 430 438 530 466.00 -0.64
77 1 6 17 430 438 560 476.00 -0.45
78 1 6 18 430 438 595 487.67 -0.23
79 1 6 19 430 438 649 505.67 0.11
80 1 6 20 430 438 840 569.33 1.30
81 1 7 8 430 442 446 439.33 -1.14
82 1 7 9 430 442 451 441.00 -1.11
83 1 7 10 430 442 457 443.00 -1.07
84 1 7 11 430 442 465 445.67 -1.02
85 1 7 12 430 442 474 448.67 -0.96

1131 16 17 18 530 560 595 561.67 1.16
1132 16 17 19 530 560 649 579.67 1.49
1133 16 17 20 530 560 840 643.33 2.69
1134 16 18 19 530 595 649 591.33 1.71
1135 16 18 20 530 595 840 655.00 2.90
1136 16 19 20 530 649 840 673.00 3.24
1137 17 18 19 560 595 649 601.33 1.90
1138 17 18 20 560 595 840 665.00 3.09
1139 17 19 20 560 649 840 683.00 3.43
1140 18 19 20 595 649 840 694.67 3.65
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Figure 6
Graphic Presentation of the Sampling Distribution for the Mean of

n=3 Scores Drawn from the Table 5 Population of N=20 Scores

Count Midpoint
60 433 1************:**

146 446 1****************:********************
160 459 1********************:*******************
135 472 1***********************:**********
123 465 1**************************:****
96 496 1************************
97 511 1************************
67 524 1*****************
38 537 1**********
21 550 I*****
28 563 I*******
50 576 I*********:***
35 589 I******:**
24 602 I***:**
17 615 I**:*
17 628 I*:**
14 641 I:***
6 654 I**
4 667 I*
1 680 I

1 693 I

0 40 80 120 160 200
Histogram frequency

MEAN
Mean 500.000 Std err 1.581 Median 486.000
Mode 457.670 Std dev 53.395 Variance 2850.986
Kurtosis .418 S E Kurt .145 Skewness 1.052
S E Skew .072 Range 263.670 Minimum 431.000
Maximum 694.670 Sum 570000.020

Percentile Value Percentile Value Percentile Value
1.00 433.330 2.00 435.000 3.00 436.670
4.00 437.881 5.00 439.016 6.00 440.000
7.00 441.330 8.00 442.425 9.00 443.330

10.00 444.670 11.00 445.670 12.00 446.330
25.00 459.000 50.00 486.000 75.00 524.502
88.00 577.723 89.00 581.000 90.00 584.967
91.00 588.670 92.00 592.908 93.00 597.713
94.00 602.210 95.00 610.313 96.00 617.360
97.00 625.440 98.00 639.729 99.00 648.865
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Figure 7
Graphic Presentation of the Test Distribution for the Mean of
n=3 Scores Drawn from the Table 5 Population of N=20 Scores

Count Midpoint
39 -1.30 I********** .

143 -1.05 1***************:********************
159 -.80 1********************:*******************
147 -.55 1***********************:*************
125 -.30 1**************************:****
105 -.05 I**************************
99 .20 1*************************
68 .45 I*****************
37 .70 1*********
21 .95 I*****
33 1.20 I********
49 1.45 1*********:**
35 1.70 I******:**
25 1.95 I***:**
19 2.20 I**:**
12 2.45 I:**
14 2.70 I:***
5 2.95 I*
3 3.20 I*
1 3.45 I
1 3.70 I

0 40 80 120
Histogram frequency

160 200

TRATIO
Mean .000 Std err .030 Median -.262Mode -.793 Std dev 1.000 Variance 1.001Kurtosis .418 S E Kurt .145 Skewness 1.052S E Skew .072 Range 4.940 Minimum -1.293Maximum 3.647 Sum .000

Percentile Value Percentile Value Percentile Value

1.00 -1.249 2.00 -1.218 3.00 -1.1874.00 -1.164 5.00 -1.143 6.00 -1.1247.00 -1.099 8.00 -1.079 9.00 -1.06210.00 -1.037 11.00 -1.018 12.00 -1.00625.00 -.768 50.00 -.262 75.00 .45988.00 1.456 89.00 1.518 90.00 1.59291.00 1.661 92.00 1.741 93.00 1.83194.00 1.915 95.00 2.067 96.00 2.19997.00 2.350 98.00 2.618 99.00 2.789
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Table 7
Two Illustrative "Modern" Statistics

Id X X' X-

1
2

3

430
431
432

433
433
433

--
--

4 433 433 433
5 435 435 435
6 438 438 438
7 442 442 442
8 446 446 446
9 451 451 451

10 457 457 457
11 465 465 465
12 474 474 474
13 484 484 484
14 496 496 496
15 512 512 512
16 530 530 530
17 560 560 560
18 595 560 01
19 649 560
20 840 560

500.00 480.10 473.07
Md 461.00 461.00 461.00
SD 100.27 49.34 38.98

2.40 0.72 1.04
6.54 -1.08 0.30

aera992.wkl 3/6/99
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Table 8
Heuristic Data Set #4 for use in Illustrating

the Univariate Bootstrap

3/7/99

ID
Variables

Churches Murders Population

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3505
2023
2863
1475
2011
1709
1313
1098
937
836
997
582
645
663

1010
875
615
912
559
899
329

1162
1372
355
867

1129
244
1527
909

1328
921
982
829

1328
1339
1283
1439
999

1052
1428
1345
1423

1984
1056
921
586
447
420
373
326
211
166
151
141
138
134
132
125
113
89
88
78
52
49
44
42
37
27
24
24
23
22
19
17
14
13
12
12
12
11
9

7

6

6

7322564
3485557
2783726
1027974
1629902
1585577
1007618
736014
935393
641432
589305

1110623
579396
983403
741952
672971
723959
575396
573058
571059
567306
576396
643955
782224
529401
574932
525439
600499
569396
592669
527432
602993
524953
574039
567496
505955
572039
523085
568206
524099
526199
580284

aera994.wkl
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43 662 3 522943
44 1295 2 530299
45 1225 0 521944

Note. The first 15 cases are actual data reported by Waliczek
(1996).
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Figure 8
Scatterplot of the Table 8 Heuristic Data

PLOT OF MURDERS WITH CHURCHES

2000+

1750+

1500+

1250+

1
E 1000+

750+

1

500+
1

11

250+
1

12 11
11

I 2 2 1
0+1 1 12 21 I 12412 1

250 750 1250 1750 2250 2750 3250 3750
CHURCHES

Note. r2 = 60.8%; a = -362.363; b = .468.
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Table 9
Some of the 1,000 Bootstrap Estimates of r

Resample r

1 .34142710
2 .43497230
3 .59294180
4 .79517950
5 .82863380
6 .81409170
7 .82276610
8 .75451020
9 .63805250

10 .73474330
11 .71731940
12 .44586690
13 .91317640
14 .84653540
15 .86732770
.

990 .79418320
991 .57778890
992 .74192620
993 .67028270
994 .82308570
995 .78634330
996 .49483000
997 .70336210
998 .84107100
999 .77054850
1000 .76437550

Note. The actual r for the 45 pairs of scores presented in Table 8
equalled .779.
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Figure 9
"Bootstrap" Estimate of the Sampling Distribution

for r with the n=45 Table 8 Data

Count Midpoint One symbol equals approximately 8 occurrences
0 -.500 I
0 -.425 I
2 -.350 I
0 -.275 I
0 -.200 I
0 -.125 I
1 -.050 I
2 .025 I
5 .100 I*
5 .175 I*

13 .250 I**
21 .325 I:**
27 .400 I***.
41 .475 I*****
62 .550 I********
83 .625 I**********

149 .700 I*******************
276 .775 I********************:**************
271 .850 I***************:******************
42 .925 I*****
0 1.000 I

0 80 160 240
Histogram frequency

320

Mean .715 Std err .005 Median .768Mode -.384 Std dev .166 Variance .027Kurtosis 5.107 S E Kurt .155 Skewness -1.883S E Skew .077 Range 1.312 Minimum -.384Maximum .929 Sum 714.545

Percentile Value Percentile Value Percentile Value
1.00 .136 2.00 .244 3.00 .3104.00 .346 5.00 .367 6.00 .3997.00 .432 8.00 .443 9.00 .46210.00 .477 11.00 .495 12.00 .52125.00 .655 50.00 .768 75.00 .82588.00 .854 89.00 .856 90.00 .86291.00 .866 92.00 .869 93.00 .87594.00 .879 95.00 .883 96.00 .88897.00 .891 98.00 .896 99.00 .908
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Figure 10
"Bootstrap" Estimate of the Sampling Distribution

for r-to-Z with the n=45 Table 8 Data

r_TO_Z

Count Midpoint One symbol equals approximately 4 occurrences
1 -.4 I
1 -.3 I
0 -.2 I
0 -.1 I
2 .0 I*
6 .1 I:*

10 .2 I:**
17 .3 I**:*
29 .4
47 .5 1*********:**
48 .6 1************
60 .7 1***************
82 .8 1*********************

114 .8 1*****************************
145 1.0 I********************************:***
150 1.1 I*****************************:********
150 1.2 1***********************:**************
67 1.3 1*****************.
51 1.4 1***********:*
15 1.5 I**** .

5 1.6 I* .

0 40 80 120
Histogram frequency

160

Mean .961 Std err .010 Median 1.016Mode -.405 Std dev .302 Variance .091Kurtosis .591 S E Kurt .155 Skewness -.733S E Skew .077 Range 2.052 Minimum -.405Maximum 1.648 Sum 960.752

Percentile Value Percentile Value Percentile Value1.00 .137 2.00 .249 3.00 .3214.00 .361 5.00 .385 6.00 .4227.00 .463 8.00 .475 9.00 .49910.00 .519 11.00 .542 12.00 .57825.00 .784 50.00 1.016 75.00 1.17188.00 1.271 89.00 1.278 90.00 1.30191.00 1.317 92.00 1.329 93.00 1.35694.00 1.370 95.00 1.391 96.00 1.41297.00 1.428 98.00 1.453 99.00 1.517
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Table 10
Percentiles of Resampled Sampling Distributions for

r-to-Z Values for the Table 8 Data with
100 and 1,000 Resamples

aeraa996.wkl 3/8/99

%ile/ n of Resamples
Statistic 100 1000 Difference

99 1.453 1.517 -0.064
98 1.424 1.453 -0.029
97 1.405 1.428 -0.023
96 1.393 1.412 -0.019
95 1.352 1.391 -0.039
94 1.341 1.370 -0.029
93 1.309 1.356 -0.047
92 1.298 1.329 -0.031
91 1.294 1.317 -0.023
90 1.289 1.301 -0.012
89 1.284 1.278 0.006
88 1.279 1.271 0.008

75 1.195 1.171 0.024

Mean 1.000 0.961 0.039
(SD) (0.267) (0.302)

50 1.063 1.016 0.047

25 0.783 0.784 -0.001

12 0.657 0.578 0.079
11 0.654 0.542 0.112
10 0.634 0.519 0.115
9 0.567 0.499 0.068
8 0.553 0.475 0.078
7 0.543 0.463 0.080
6 0.494 0.422 0.072
5 0.476 0.385 0.091
4 0.416 0.361 0.055
3 0.362 0.321 0.041
2 0.337 0.249 0.088
1 0.303 0.137 0.166
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Figure 11
DDA/MANOVA Results for Sir Ronald Fisher's (1936) Iris Data

(k groups = 3; n = 150; p response variables = 4)

DISCRIMINANT FUNCTION CENTROIDS

Group
Function

I II

1 -5.50285 6.87673
2 3.93011 5.93367
3 7.88771 7.17438

DISCRIMINANT FUNCTION COEFFICIENTS

Response Function I Coefs Function II Coefs
Variables Function rs Function rs

X1 -0.82940 0.11458 0.02410 0.16000
X2 -1.53458 -0.04043 2.16458 0.29337
X3 2.20126 0.30383 -0.93196 0.07217
X4 2.81058 0.12958 2.83931 0.15087
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Figure 12
Bootstrap Resampling of Cases for the First Resample
(k groups = 3; n = 150; p response variables = 4)

RESAMPLING #1

Resample Variable
Step Case Group X1 X2 X3 X4

1 22 1.0 5.1 3.7 1.5 0.4
2 15 1.0 5.8 4.0 1.2 0.2
3 12 1.0 4.8 3.4 1.6 0.2
4 40 1.0 5.1 3.4 1.5 0.2
5 27 1.0 5.0 3.4 1.6 0.4
6 6 1.0 5.4 3.9 1.7 0.4
7 19 1.0 5.7 3.8 1.7 0.3
8 27 1.0 5.0 3.4 1.6 0.4
9 42 1.0 4.5 2.3 1.3 0.3

10 35 1.0 4.9 3.1 1.5 0.2
*************************************************
/abridged
****************************************

148 114 3.0 5.7 2.5 5.0 2.0
149 107 3.0 4.9 2.5 4.5 1.7
150 103 3.0 7.1 3.0 5.9 2.1

113



Common Methodology Mistakes -113-
Tables/Figures

Figure 13
Resampling Estimates of Statistics for Resamples #1 and #2000

(k groups = 3; n = 150; response variables = 4)

Resample #1

FUNCTION MATRIX BEFORE ROTATION
1 -1.53727 0.40113
2 -0.86791 1.88272
3 3.02954 -0.96330
4 1.89711 2.60662

FUNCTION MATRIX AFTER ROTATION
1 -1.51555 0.47666
2 -0.77374 1.92334
3 2.97819 -1.11194
4 2.02369 2.50962

STRUCTURE MATRIX BASED ON ROTATED FUNCTION
1 0.12341 0.24790
2 -0.02461 0.34791
3 0.30382 0.12217
4 0.13003 0.13888

Resample #2000

FUNCTION MATRIX BEFORE ROTATION
1 -1.04205 -0.14641
2 -1.22630 1.76173
3 2.47935 -1.28000
4 2.63734 3.88797

FUNCTION MATRIX AFTER ROTATION
1 -1.05126 -0.04647
2 -1.05290 1.87054
3 2.34614 -1.51038
4 2.99575 3.61905

STRUCTURE MATRIX BASED ON ROTATED FUNCTION
1 0.10285 0.07936
2 -0.02377 0.27628
3 0.28983 -0.00799
4 0.13456 0.13121
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Figure 14
Map of Participant Selection Across 2,000 Resamples
(h groups = 3; n = 150; p response variables = 4)

Participant Times

1 2033
2 1990
3 2031
4 1991
5 2003
6 1985
7 2001
8 2026
9 2103

10 1958
11 1968
12 2041

146 1942
147 1958
148 1981
149 1906
150 2036

Min 1892
Max 2125
Mean 1999.99
SD 44.56
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Figure 15
Mean (and SD) of Bootstrap Estimates Across 2,000 Resamples

(k groups = 3; n = 150; p response variables = 4)

*** SUMMARY STATISTICS FOR GROUP CENTROIDS:

Group Statistic
Function

1 -5.65456 6.79552
SD 1.16636 1.86960

1.63016 -0.26639
17.38350 -0.05702

2 4.01345 5.81133
SD 1.13114 1.87885

-1.00750 -0.25797
9.06839 -0.05715

3 8.06143 7.10633
SD 1.38417 1.86440

-3.82083 -0.26536
49.27710 -0.05739

Var Statistic
Function I Function II

Function rs Function rs

X1 -0.84924 0.10844 0.00669 0.15045
SD 0.29921 0.01392 0.61489 0.08020

X2 -1.60807 -0.04132 2.15484 0.27868
0.39638 0.02294 0.46866 0.02998

X3

SD

2.24008 0.29401 -0.93826 0.06939
SD 0.29062 0.01910 0.66124 0.06334

X4 2.91339 0.12619 2.86778 0.14410
SD 0.40405 0.01246 0.71420 0.01408
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Table 11
Effect Size Reporting Practices Described in 11 Empirical Studies

of the Quantitative Studies Published in 23 Journals

Empirical Study Journals Studied

1. Keselman et al. (1998)
Between-subjects Univariate

American Education Research Journal
Child Development
Cognition and Instruction
Contemporary Educational Psychology
Developmental Psychology
Educational Technology. Research and Development
Journal of Counseling Psychology
Journal of Educational Computing Technology
Journal of Educational Psychology
Journal of Experimental Child Psychology
Sociology of Education

Between-subjects Multivariate
American Education Research Journal
Child Development
Developmental Psychology
Journal of Applied Psychology
Journal of Counseling Psychology
Journal of Educational Psychology

2. Kirk (1996)

3. Lance & Vacha-Haase (1998)
4. Nilsson & Vacha-Haase (1998)
5. Reetz & Vacha-Haase (1998)
6. Snyder & Thompson (1998)
7. Thompson (1999b)

8. Thompson & Snyder (1997)
9. Thompson & Snyder (1998)
10. Vacha-Haase & Ness (1999)
11. Vacha-Haase & Nilsson (1998)

Journal of Applied Psychology
Journal of Educational Psychology
Journal of Experimental Psychology
Journal of Personality and Social Psychology
The Counseling Psychologist
Journal of Counseling Psychology
Psychology and Aging
School Psychology Quarterly
Exceptional Children
Journal of Experimental Education
Journal of Counseling and Development
Professional Psychology: Research and Practice
Measurement & Evaluation in Counseling and Development

Years
Effects
Reported

1994-1995 9.8%

1994-1995 10.1%

1995 23.0%
1995 45.0%
1995 asm
1995 53.0%

1995-1996 40.5%
1995-1997 53.2%
1995-1997 46.9%
1990-1996 54.3%
1996-1998 13.0%
1994-1997 36.4%

1996 10.0%
1995-1997 21.2%
1990-1996 35.3%

BEST COPY AVARLABLE
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Table 12
Heuristic Literature #1

k n pok F.k omega2 eta2 SOS., df. MS., SOS df. MS

1 40 .0479 4.18 7.4% 9.9% 5.5 1 5.50 50 38 1.32

2 30 .5668 .34 -2.3% 1.2% .6 1 .60 50 28 1.79
3 40 .4404 .61 -1.0% 1.6% .8 1 .80 50 38 1.32
4 50 .3321 .96 -0.1% 2.0% 1.0 1 1.00 50 48 1.04
5 60 .2429 1.39 .6% 2.3% 1.2 1 1.20 50 58 .86
6 30 .2467 1.40 1.3% 4.8% 2.5 1 2.50 50 28 1.79
7 40 .1761 1.90 2.2% 4.8% 2.5 1 2.50 50 38 1.32
8 50 .1279 2.40 2.7% 4.8% 2.5 1 2.50 50 48 1.04
9 60 .0939 2.90 3.1% 4.8% 2.5 1 2.50 50 58 .86

10 70 .0696 3.40 3.3% 4.8% 2.5 1 2.50 50 68 .74
11 9 0.9423 0.06 -26.4% 2.0% 2.0 2 1.00 100 6 16.67
12 12 0.9147 0.09 -17.9% 2.0% 2.0 2 1.00 100 9 11.11
13 15 0.8880 0.12 -13.3% 2.0% 2.0 2 1.00 100 12 8.33
14 18 0.8620 0.15 -10.4% 2.0% 2.0 2 1.00 100 15 6.67
15 21 0.8368 0.18 -8.5% 2.0% 2.0 2 1.00 100 18 5.56
16 24 0.8123 0.21 -7.0% 2.0% 2.0 2 1.00 100 21 4.76
17 27 0.7885 0.24 -6.0% 2.0% 2.0 2 1.00 100 24 4.17
18 30 0.7654 0.27 -5.1% 2.0% 2.0 2 1.00 100 27 3.70
19 33 0.7430 0.30 -4.4% 2.0% 2.0 2 1.00 100 30 3.33
20 36 0.7213 0.33 -3.9% 2.0% 2.0 2 1.00 100 33 3.03

Min 0.0479 -26.4% 1.2%
Max 0.9423 7.4% 9.9%
M 0.5309 -4.3% 3.0%
SD 0.3215 7.9% 2.0%

aera9922.wkl 3/12/99
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Table 13
Heuristic Literature #2

n pcsk Fad, omega2 eta2 SOS.q, df. MSeip SOS df. MS

1 6 .0601 6.75 48.9% 62.8% 84.4 1 84.40 50 4 12.50
2 8 .0600 5.35 35.2% 47.1% 44.6 1 44.60 50 6 8.33
3 10 .0602 4.78 27.5% 37.4% 29.9 1 29.90 50 8 6.25
4 12 .0599 4.50 22.6% 31.0% 22.5 1 22.50 50 10 5.00
5 14 .0598 4.32 19.2% 26.5% 18.0 1 18.00 50 12 4.17
6 16 .0604 4.17 16.5% 23.0% 14.9 1 14.90 50 14 3.57
7 18 .0600 4.10 14.7% 20.4% 12.8 1 12.80 50 16 3.13
8 20 .0599 4.03 13.2% 18.3% 11.2 1 11.20 50 18 2.78
9 22 .0604 3.96 11.9% 16.5% 9.9 1 9.90 50 20 2.5010 24 .0605 3.92 10.8% 15.1% 8.9 1 8.90 50 22 2.2711 9 .0603 4.65 44.8% 60.8% 155.0 2 77.50 100 6 16.67

12 12 .0601 3.91 32.6% 46.5% 86.8 2 43.40 100 9 11.11
13 15 .0601 3.59 25.7% 37.4% 59.8 2 29.90 100 12 8.3314 18 .0601 3.41 21.1% 31.3% 45.5 2 22.75 100 15 6.6715 21 .0600 3.30 18.0% 26.8% 36.7 2 18.35 100 18 5.56
16 24 .0601 3.22 15.6% 23.5% 30.7 2 15.35 100 21 4.76
17 27 .0601 3.17 13.8% 20.9% 26.4 2 13.20 100 24 4.1718 30 .0605 3.12 12.4% 18.8% 23.1 2 11.55 100 27 3.7019 33 .0602 3.09 11.2% 17.1% 20.6 2 10.30 100 30 3.3320 36 .0599 3.07 10.3% 15.7% 18.6 2 9.30 100 33 3.03

Min .0598 10.3% 15.1%
Max .0605 48.9% 62.8%
M .0601 21.3% 29.8%
SD .0002 11.0% 14.2%

aera9921.wkl 3/12/99
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Table 14
"Shrinkage" as a Function of n, nvaham,

R2=50%; niw=3 R2=50%; n=50 n=50; nr,=3

R2* npv R2* R2 R2*
5 -100.00% 45 -512.50% 0.01% -6.51%
7 0.00% 35 -75.00% 0.10% -6.42%

10 25.00% 25 -2.08% 1.00% -5.46%
15 36.36% 15 27.94% 5.00% -1.20%
20 40.63% 10 37.18% 10.00% 4.13%
25 42.86% 9 38.75% 15.00% 9.46%
30 44.23% 8 40.24% 20.00% 14.78%
45 46.34% 7 41.67% 25.00% 20.11%
50 46.74% 6 43.02% 30.00% 25.43%
75 47.89% 5 44.32% 35.00% 30.76%

100 48.44% 4 45.56% 50.00% 46.74%
500 49.70% 3 46.74% 75.00% 73.37%

1000 49.85% 2 47.87% 90.00% 89.35%
10000 49.98% 1 48.96% 99.00% 98.93%

aera9930.wkl 3/13/99

Note. R2* = "adjusted R2.
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Table 15
"Shrinkage" as an Interaction Effect

Combination
R2* ShrinkageR2

56 3 13.8% 8.8% 5.0%
93 5 13.8% 8.8% 5.0%

128 7 13.8% 8.8% 5.0%
166 9 13.8% 8.8% 5.0%
200 11 13.8% 8.8% 5.0%
19 1 13.8% 8.7% 5.1%
38 2 13.8% 8.9% 4.9%
56 3 13.8% 8.8% 5.0%
74 4 13.8% 8.8% 5.0%
93 5 13.8% 8.8% 5.0%
50 4 44.0% 39.0% 5.0%
40 6 72.5% 67.5% 5.0%
30 8 87.0% 82.0% 5.0%

aera9931.wkl 3/13/99

Note. R2* = "adjusted E2. The 13.8% effect size is the value that
Cohen (1988, pp. 22-27) characterized as "large," at least as
regards result typicality.
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Appendix A
SPSS for Windows Syntax Used to Analyze the Table 1 Data

SET blanks=-99999 printback=listing .

TITLE 'AERAA991.SPS
DATA LIST
FILE='c:\aeraad99\aeraa991.dta' FIXED RECORDS=1 TABLE /1
ID 1-2 Y 9-11 X1 18-20 X2 27-29 .

list variables=all/cases=9999 .

descriptives
variables=all/statistics=mean stddev skewness kurtosis .

correlations
variables=Y X1 X2/statistics=descriptives .

regression variables=y xl x2/dependent=y/
enter xl x2 .

subtitle '1 show synthetic vars are the focus of all analyses'.
compute yhat= -581.735382 +(1.301899 * xl) +(.862072 * x2) .

compute e=y-yhat .

print formats yhat e (F8.2) .

list variables=all/cases=9999 .

correlations variables=y xl x2 e yhat/
statistics=descriptives .

BEST COPY AVAILABLE
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Appendix B
SPSS for Windows Syntax Used to Analyze the Table 2 Data

SET BLANKS=SYSMIS UNDEFINED=WARN printback=listing.
TITLE 'AERAA997.SPS ANOVA/MANOA ###############' .

DATA LIST
FILE='c:\apsewin\aeraa997.dta' FIXED RECORDS=1 TABLE/1
group 12 x 18-19 y 25-26 .

list variables=all/cases=99999/format=numbered .

oneway x y by group(1,2)/statistics=all .

manova x y by group(1,2)/
print signif(mult univ) signif(efsize) cellinfo(cov)
homogeneity(boxm)/discrim raw stan cor alpha(.99)/
design .

compute dscore=(-1.225 * x) + (1.225 * y) .

print formats dscore(F8.3) .

list variables=all/caees=99999/format=numbered .

oneway dscore by group(1,2)/statistics=all .

BEST COPY AVAIUBLE
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Appendix C
SPSS for Windows Syntax Used to Analyze the Table 3 Data

SET BLANKS=SYSMIS UNDEFINED=WARN printback=listing.
TITLE 'AERA9910.SPS Var Discard ###################'
DATA LIST
FILE='a:aera9910.dta' FIXED RECORDS=1 TABLE/1
id 1-2 y 7-9 x3 14-16 x3a 20 .

list variables=all/cases=99999/format=numbered .

descriptives variables=all/statistics=all .

regression variables=y x3/dependent=y/enter x3 .

oneway y by x3a(1,3)/statistics=all
.

EST COPY AVAILABLE
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