DOCUMENT RESUME

ED 428 736 IR 019 397
AUTHOR Westhoff, Dirk; Unger, Claus

TITLE "Campus" - An Agent-Based Platform for Distance Education.
PUB DATE 1998-06-00

NOTE 7p.; In: ED-MEDIA/ED-TELECOM 98 World Conference on

Educational Multimedia and Hypermedia & World Conference on
Educational Telecommunications. Proceedings (10th, Freiburg,
Germany, June 20-25, 1998); see IR 019 307. Figures may not
reproduce clearly.

PUB TYPE Reports - Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Access to Information; *Artificial Intelligence; *Computer

Interfaces; Computer Mediated Communication; Computer
Oriented Programs; *Computer System Design; Computer Uses in
Education; Distance Education; Educational Technology;
Foreign Countries; Higher Education; Information Retrieval;
*Internet; Robotics

IDENTIFIERS Java Programming Language

ABSTRACT

This paper presents "Campus," an environment that allows
University of Hagen (Germany) students to connect briefly to the Internet but
remain represented by personalized, autonomous agents that can fulfill a
variety of information, communication, planning, and cooperation tasks. A
brief survey is presented of existing mobile agent system environments, all
of which are based on a central architecture requiring one or more servers to
be permanently active and reachable. The Agent Application Programming
Interface (AAPI) package is introduced; AAPI is an extension of the Java
Class Hierarchy that supports the design and implementation of systems of
mobile, autonomous agents and is based upon decentralized control structures.
Derived from the AAPI package, "Campus" offers a variety of "Campus
Intercommunication Agents" that can perform the following functions on behalf
of their owners: retrieve information from libraries, search machines, and
faculty/registrar blackboards; exchange information with other agents; search
for individual agents; cooperate with other agents in setting up individual
working groups; enroll their owners into existing working groups; and arrange
meetings between owners. A table presents properties of mobile agent systems.
Four figures illustrate migration of an AAPI agent, reverse routing, the
two-layered network of "Campus," and the agents' docking and route windows.
(DLS)

R Y R R A 2222222222222 XX X222 22222 a2ttt i s st ittt sl &l

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
[R R R R R R R R R R R R 2 A R R R R R 2222222222222 222222222 a2 2 s s sl

ERIC

Aruitoxt provided by Eic:

?»Campus” -

: .

0 an Agent-based Platform for Distance Education
o U.S. DEPARTMENT OF EDUCATION
Q Office of Educational Research and Improvement
St EDUCATIONAL RESOURCES INFORMATION
pd i CENTER (ERIC)

Dirk WeSthOff’ Claus Unger O This document has been reproduced as
Q i i . received from the person or organization
23] University of Hagen, Department for Computer Science originating it

58084 Hagen, Gel‘man)’ O Minor changes have been made to

i i . improve reproduction quality.
dirk.westhoff @fernuni-hagen.de, claus.unger@fernuni-hagen.de P

® points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.
“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY Abstract: Campus supports the communication and co-operation between a distance teaching
university and its stud%nts in an Internet environment. While students usually connect quite
G.H. Marks rarely to the Internet, they can continuously be represented in the Internet by their individual
autonomous agents which can fulfil a variety of tasks for their owners. Campus is being imple-
mented with the helg of the AFent Application Programming Interface (AA%I) package. AAPI
is an extension of the Java Class Hierarchy and has been (ﬁzvelo%zd at the University of Ha-
Een; it supports the design and implementation of systems of mobile, autonomous agents and is
ased upon decentralised control structures. Derived from the AAPI package, Campus offers a
variety of Campus Intercommunication Agents.

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

1 Introduction

The University of Hagen is a distance teaching university with about 55.000 students, most of them spread all over
Germany, some of them even over the whole world. Most of these students have access to the Internet, but because
of connection costs are linked to the Internet just for short intervals. Campus provides an environment in which
students are continuously represented by their own personalised, autonomous agents which can fulfil a variety of
information, communication, planning and co-operation tasks on behalf of their owners. Each student runs on her
computer a Campus environment, populated with several Campus Intercommunication Agents (CIAgents). The
student charges her agent with a list of tasks, briefly connects to the Internet, releases the agent to the network, and
disconnects again. According to their tasks, the agents migrate through the network, collect information for their
owners, communicate and co-operate with other agents, until they are finally picked up again by their owners as
soon as they reconnect to the network. Thus, while students are just rarely connected to the network, their agents
can continuously represent them in the network. Beside minimising the student access times to the network, co-
operation and communication between agents may stimulate co-operation and communication between students as
well. Campus and its services are dealt with in more detail in chapter 4. Compared with the traditional server/client
paradigm, mobile, autonomous agents in general show several essential advantages: transporting the algorithms
to the data and substituting global network-wide communication and co-operation by local communication and
co-operation may significantly reduce communication costs and the amount of network resources needed. On the
other hand, security, authentication and accounting problems have to be solved for agent systems. Campus is being
implemented as an agent application on top of the Agent Application Programming Interface (AAPI) package.

In the following chapters, we briefly survey existing mobile agent systems, describe the basic concepts of the AAPI
package, introduce Campus in some more detail, and conclude with some ideas on future work.

2 Survey of Mobile Agent-Systems

This chapter gives a brief survey of some existing mobile agent system environments. The java-based Aglet work-
bench of IBM [IBM 96] is an extension of mobile java applets. Similar to an applet, an aglet’s binary code migrates
through the network, but in contrast to an applet, the state of an aglet is transported together with the aglet. States
are defined in terms of creation, migration, activation, deactivation and termination events. For each state, the aglet
workbench offers the aglet programmer adequate sets of methods. Global and local communication between aglets
is realised via the communication mechanisms Remote Procedure Call (RPC) and message passing. In both cases,
aglets have to create so-called Aglet-Proxies. These are the aglets’ communication stations which also protect

™~ aglets from unauthorised manipulation.

G- Agent Tcl [Kotz et al. 96],[Gray et al. 96] is a mobile agent-system which was developed at the Dartmouth College.
™M

S

ornY . G BT AAT Y AR [S
@E MC E—?@-S J \/\ﬂ\blb) j u'*:\.\z,'IA%;.‘g.'fE.v AT

Do

|

Q

ERIC

Aruitoxt provided by Eic:

Agents are realised in Agent Tcl, an extension of the scripting language Tool command language (Tcl). For com-
munication between agents, Agent Tcl uses the Agent Remote Procedure Call (ARPC) or a paging mechanism. To
work under non-permanent network connections, Agent Tcl contains the Laptop Docking System, which assigns
every Laptop a permanent docking computer. When the Laptop is not connected to the network, the docking com-
puter serves as target for the agent. Security services, based on Safe Tcl, protect a computer from malicious agents.
Security services to protect agents against malicious environments have not been realised yet.

Mole [StraBer et al. 96],[Hohl 95] is the prototype of an agent system. Stationary System-Agents manage the
resources and services of one place (set of computers). If mobile User Agents visit these places, the System Agent
assigns special resources or services to these User Agents. Mole supports local and global communication [Rohrle
et al. 96] with RPC and message passing mechanisms. If an agent wants to communicate globally, it sends its
message to a central Mailbox Agent, which forwards the message to the other partner.

JAE (Java Agent Environment) [Park et al. 97] has been drafted at the technical University Aachen. JAE focusses
on the integration of wireless (e.g. mobile phone) and Internet agent technologies. JAE introduces the concept for
Personal Digital Assistants (PDA). JAE distinguishes between agent servers, mobile agents and stationary service
agents. A computer based agent server provides an environment for incoming mobile agents, and is supported by
service agents. Only mobile agents can leave a computer and travel to another computer. Additional approaches
can be found in [Li et al. 96].

All the described agent systems are based upon a central architecture, i.e. one or more servers have to be perma-
nently active and reachable. To avoid bottlenecks and problems with server failures, as well as to gain general
experiences with decentralised architectures, the AAPI package is, following the basic Internet paradigm, uncom-
promisingly based upon a decentralised approach. [Tab.1] compares the described systems and the AAPI package
approach:

| IBM Aglets | Agent Tcl | Mole | JAE || aaPI |
agent migration + + + + +
state-of-life-API + +
local communication + + + + +
global communication + +) + +
security for the agent +
security for the computer + + (+)
non-permament connections + + +) +
decentral IP-management +
authentification +)
accounting +)
platform independency + + + +

[(+) := (planned) quality of the agent-system J

Table 1: Properties of mobile agent systems

3 The AAPI Package

The runtime environment for an agent is called an active context. Except when migrating between contexts, agents
are always embedded in a context. A context can:

start and ship its own agents;

dock (i.e. receive, start and ship) foreign, travelling agents;
synchronise several running agents;

communicate with its own travelling agents;

support communication with foreign agents in foreign contexts;

0o 0 0 0 o

The agent’s statical profile is defined by a set of attributes, e.g. identifier, creation date, owner, task description,
etc.

When the context starts one of its own agents, it defines an initial route for the agent’s tour through the Internet.
Such a route may be a simple list or, e.g., a complex path graph of Internet addresses. During its journey, the agent
can extend its initial route.

If the agent wants to move from one context to another, the binary-code of the agent has to be sent together with
its profile and route.

Agent, profile, route and binary code are represented as objects which are linked to each other. At the stage of
migration, they change their representations into data-streams and, via its Internet address, move to the next site
on the agent’s route [Fig.1].

e Y 4 \

context
agent

context

agent

[pmﬁlJ [routh [bém] [pmﬁlJ { routcj binary-
Host A Host B

O

ERIC

Aruitoxt provided by Eic:

Figure 1: Migration of an AAPI agent

Agents working in the same context are represented as parallel threads. They can communicate and co-operate
with each other via ComObjects. When an agent wants to start a communication with a parallel agent, it creates a
ComObject for this agent, which beside the message may contain algorithms in form of binary code to be executed
by the other agent. It may also contain structured containers for results. Within its thread, each agent is contin-
uously looking for ComObjects another agent has created for it. Communication between agents across different
contexts in different computers works in a similar way. The agent creates a ComObject in its context and sends
this object to the context of the target agent, which in turn executes the requested tasks and sends the results back.

session i:

Single-step ageat mi
= = = Multi-stcp agent migration

"> Controll-flow

ipy, (HC) reccipt

Figure 2: Reverse routing

The Internet address of its owning context always defines the last station in an agent’s route. As mentioned before,
our students’ computers are quite rarely linked to the network and may get assigned different Internet addresses
for different sessions. In such a case an agent cannot find home and present its results to its owner. The following
algorithm solves this problem (Fig.2]: whenever the home context (HC) of an agent changes its Internet address
from ip;(HC) to ip;41 (HC), it immediately informs all contexts ¢/ on the agent’s reverse initial route until it
finds the context where the agent is actually working in. This context changes the target station in the agent’s route

BESH copY B ALABLE

Q

ERIC

Aruitoxt provided by Eic:

accordingly and confirms the successful change to the agent’s home context.

If the agent has extended its initial route and is actually working in a context cZ that is part of the route extension,
the home context can’t inform the agent about a changed internet adress. In this case, after the agent has finished
working on the extended contexts, the agent migrates to an active context of its initial route, to wait for information
of its home context. Here the agent can be reached again, to change the target station in its agent’s route.

This reverse routing algorithm assumes that the home context can reach its agent. There are several reasons why a
home context may not be able to reach its agent A:

unavailability of A during the migration;

regular termination of A's actual working context;
irregular termination of A's actual working context;
interrupted connection to A's actual working context;
Agent A is working in a context cE;

0O O 0 0 ©

While the first case can be solved by handling the migration of an agent as an atomic operation [Mira da Silva et
al. 97],[Klar 96],[Westhoff 97], the second one can be handled by enforcing contexts not to close as long as they
contain active agents. The last three cases can only be handled by restarting the reverse routing algorithm after a
certain time-out.

The above algorithm assumes that only the home computer of an agent may get disconnected from the network
and change its Internet address. We are presently working on an extension of the above algorithm which allows
arbitrary computers to change their Internet addresses and to inform all interested computers in the network. To
strictly follow the agent paradigm, even short messages between contexts are modelled as agents.

The classes and methods of the AAPI package realise a basic mobile agent, i.e. they support an agent’s creation,
travelling, working, self-copying and termination. More advanced agents can easily be defined within the AAPI
environment by simply overwriting the corresponding methods. Details on the AAPI package and how to use it
can be found in [Westhoff 97].

4 Campus

While lecturers as well as all university institutions are almost permanently connected to the Internet with constant
Internet addresses, most of the students are quite rarely connected to the Internet; their Internet addresses may
change between sessions. Thus within Campus we model a two layered network [Fig.3], the outer layer containing
all computers which are rarely connected to the network, the inner layer containing computers which are almost
permanently connected to the network.

Address changes of computers in the outer layer are not reported to other computers; Address changes in the inner
layer are immediately reported to all computers in the inner layer, as well as through their agents to computers in
the outer layer as well. Computers in the outer layer send their agents to computers in the inner layer, let them
perform their tasks and pick them up again, if necessary via reverse routing. The inner layer provides various
service, information and chat ’booths’, where agents on behalf of their owners can, e.g.,

o retrieve actual information from libraries, search machines, faculties’
and registrar’s blackboards;

exchange information with other agents;

search for individual agents;

co-operate with other agents in setting up individual working groups;
enrol their owners into existing working groups;

arrange dates between their owners;

0o 0 0 0 ©o

Each of these ’booths’ contains one context where travelling agents can dock. We are presently developing a

O

ERIC

Aruitoxt provided by Eic:

/
/ . studem's travelling agem

student’s agent

B -
e

— :gcnl I:gémuon in a permancatly

- agent migration in nnmly
> connec neiwork

Figure 3: The two layered network of Campus

variety of protocols for communication and co-operation between agents and booths.
Campus contains several types of CIAgents. They are all derived from the basic agent type of the AAPI package.
[Fig.4] depicts the CIAgents’ docking- and its route window:

i o +
Faod o FATE T T
Lot ittty Svem |

[eumycinas e manis -
; R3] et |

Figure 4: The CiAgents’ docking- and route-window

The docking window is divided into the boxes My-CIAgent and Docking. The My-CIAgent box lists the student’s
personal CIAgents and the docking box gives a view of all the agents that are either working or resting on the
student’s context. In the Campus’ route window the student can compose routes for her My-CIAgents, e.g. by
selecting members of her learning groups.

5 Conclusion and Future Work

The AAPI package provides a comfortable and easy to use high level interface to implement systems of individual,
mobile, autonomous agents in the Internet. It supports decentralised control architectures. With the help of the

=

RGT RODY AVAT AT
6 LAY \wbu !rﬁdlf tyla

'
)

O

ERIC

Aruitoxt provided by Eic:

AAPI package Campus is being realised, a platform that, through a variety of different types of agents supports
communication and co-operation between a distance teaching university and its students.

Beside the definition of various protocols for inter agent communication and co-operation, security and authen-
tication problems will be our major future concern: runtime environments have to be secured against malicious
agents, agents have to be secured against their embedding environments; secure authentication methods have to be
developed. Further more, appropriate accounting mechanisms are needed.

6 References

[Gray et al. 96] Gray R., & Kotz D., & Nog S., & Rus D., & Cybenko G. (1996). Mobile agents for mobile computing.
Department of Computer Science, Dartmouth College, Hannover http://www.cs.dartmouth.edu/reports/ab-
stracts/TR96-285

[Hohl 95] Hohl F. (1995). Konzeption eines einfachen Agentensystems und Implementation eines Protoryps. IPVR (Institute
for Parallel and Distributed Computer Systems), University of Stuttgart.

[IBM 96] (1996). Mobile Agents Facility Specification. International Business Machines Corporation. The Open Group.
http://www.trl.ibm.co.jp/aglets/

[Klar 96] Klar P. (1996). Persistenz als Basis der Migration in einem Mobilen-Agenten-System: Design und Implementierung.
IPVR (Institute for Parallel and Distributed Computer Systems), University of Stuttgart.

[Kotz et al. 96] Kotz D., & Gray R., & Rus D. (1996). Transportable Agents Support Worldwide Applications. Department of
Computer Science, Dartmouth College, Hannover. http://www.cs.dartmouth.edu/dfk/papers/kotz:
agents.html

[Li et al. 96] Li W., & Messerschmidt D.G. (1996). Java-To-Go. Itinaritive Computing Using Java. University of California at
Berkeley. http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-go/

[Mira da Silva et al. 97] Mira da Silva M., & Rodrigues da Silva A. (1997). Insisting on Persistent Mobile Agent Systems.
University of Evora, Portugal, Lisboa.

[Park et al. 97] Park A. S.-B., & Leuker S. (1997). A Multiple-Agent Architecture Supporting Service Access. Technische
Universitit Aaachen.

[Rohrle et al. 96] Rohrle K., & Hohl F. (1996). Finden von mobilen Agenten in einem weitverteilten System. IPVR (Institute
for Parallel and Distributed Computer System), University of Stuttgart.

[StraBer et al. 96] StraBer M., & Baumann J., & Hohl F. (1996). Mole - A Java Based Mobile Agent-System. IPVR (Institute
for Parallel and Distributed Computer Systems), University of Stuttgart, 1996.

[Westhoff 97] Westhoff D. (1997). AAPI - eine Schnittstelle zur Implementierung mobiler autnomer Agenten. Germany, Internal
technical reference of the FernUniversitit-Gesamthochschule in Hagen.

U.S. Department of Education En Ic
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

NOTICE

REPRODUCTION BASIS

>4 This document is covered by a signed “Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

I:I This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form

(either “Specific Document” or “Blanket”).

EFF-089 (9/97)

