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Abstract

[n many cross-cultural research studies, assessment instruments are translated or adapted
for use in multiple languages. However, it cannot be assumed that the different language versions
of an assessment are equivalent across languages. A fundamental issue to be addressed is the
comparability or equivalence of the construct measured by each language version of the
assessment. This paper presents and critiques several methods for evaluating structural
equivalence across different language versions of a test or questionnaire. Applications of these
techniques to large-scale, cross-lingual tests are presented and discussed. Simulated data are also
used to evaluate the methods. It is concluded that weighted multidimensional scaling and
confirmatory factor analysis are effective for helping evaluate construct equivalence across
groups. Qualifications for using these procedures to evaluate construct equivalence are provided.



Evaluating Construct Equivalence Across Translated or Adapted Tests

Tests, questionnaires, and other types of assessments are commonly used to compare
individuals from different cultural groups. In many cross-cultural comparnisons, especially
international studies, “culture” is confounded with “language.” In these cases, assessment
instruments are typically translated or adapted across languages so that comparisons among
groups and individuals from different cultures can be made. However, it cannot be assumed
different language versions of an assessment are equivalent across languages. As stated in the
Standards for Educational and Psychological Testing, “when it is intended that two versions of
dual-language tests be comparable, evidence of test comparability should be reported” (AERA,
APA, & NCME, 1985, p.75). '

Many other test specialists and cross-cultural researchers have also stressed the need to
ensure that instruments translated or adapted across languages are measuring the same construct
(e.g., Geisinger, 1994, Hambleton, 1993, 1994; Sireci, 1997, in press; van der Vijver & Poortinga,
1997; van der Vijver & Tanzer, 1998). For example the Guidelines for Adapting Educational and
Psychological Tests developed recently by the International Test Commission stipulate:

Instrument developers/publishers should apply appropriate statistical techniques to ( 1)
establish the equivalence of the different versions of the instrument, and (2) identify
problematic components or aspects of the instrument which may be inadequate to one or
more of the intended populations. (Hambleton, 1994, p. 232)

The first requirement relates to construct equivalence, while the second requirement relates to
item bias or differential item functioning. Both lack of construct comparability and item bias can
lead to test bias, which implies that inferences derived from test scores are not equivalent across
groups.

Although it is clear that evaluating construct equivalence across different language
versions of a test is imperative, performing such evaluations is not straightforward. The methods
available are complex and tend to require a great deal of technical expertise. Furthermore, the
research is equivocal with respect to which methods are preferred.

The purposes of this paper are to describe popular methods for evaluating construct
equivalence, present the results of some recent applications of these methods, and provide some
suggestions for conducting such studies in the future. The suggestions provided are based on
research using both real and simulated data. This paper is limited to the evaluation of construct
equivalence across different language versions of an assessment. Issues of item bias or differential
item functioning due to translation are discussed elsewhere (e.g., Budgell, Raju, & Quartetti,
1995; Ellis, 1989; Sireci & Berberoglu, 1997).



t9

Methods for Evaluating Construct Equivalence Across Translated/Adapted Tests

Construct equivalence is a very general term that states the same psychological construct
is measured across all studied groups. Evaluation of construct equivalence begins by ascertaining
the theoretical legitimacy of a construct for all cultural groups of interest and involves full
investigation of the nomological network of variables relevant to the construct. The present study
explores only one specific aspect of construct equivalence that is particularly important in cross-
lingual research: the “structural equivalence” of an assessment instrument across its different
language versions. If the dimensional structure of an assessment is found to be consistent across
its different language versions, then evidence that the assessment is measuring the same construct
in these languages is provided. Test development and test adaptation processes are designed to
promote structural equivalence. Thus, evaluating translated or adapted tests for this particular
aspect of construct equivalence is an important component of evaluating the validity of inferences
drawn from such tests, especially when such inferences are cross-cultural in nature.

Exploratory factor analysis, multidimensional scaling, and confirmatory factor analysis
have all been used to evaluate construct equivalence of assessments across different cultural
groups. These procedures are described briefly in this section, and applications of these
procedures to real and simulated data are presented in subsequent sections.

Exploratory Factor Analysis

- Exploratory factor analysis, including common factor analysis and principal components
analysis, has been widely used in studying the structure of assessment instruments, including
ascertaining structural equivalence across different language versions of an assessment (Anastasi,
1992; Geisinger, 1994, Paunonem, Jackson, Trzebinski, & Forsterling, 1992; van der Vijver &
Poortinga, 1997). These studies typically involve performing separate factor analyses for each
language group, and then comparing the results. If similar patterns of factor loadings are
observed across groups, then evidence of construct equivalence (i.e., structural equivalence) is
obtained.

4 There are at least two limitations of the use of exploratory factor analysis for evaluating
construct equivalence. First, the analyses are conducted separately for each group, which makes
evaluation of a “common” factor structure difficult. Although items and subscores comprising an
assessment may exhibit similar loadings on the first (dominant) factor, interpretations of the
secondary factors are difficult because they are not constrained to be in the same order across
language groups. A second limitation of exploratory factor analysis is that there are no statistical
tests or numerical indices to help determine the degree to which structural equivalence holds

across groups.

Weighted multidimensional scaling

Multidimensional scaling (MDS) providf)s an alternative to exploratory factor analysis for



discovering the structure of assessment instruments Some researchers have argued that MDS is
preferred over factor analysis for such investigations (e.g., Davison, 1985) Weighted MDS
models, also called “individual differences™ models are particularly relevant to the multi-group
situation because a common stimulus space (dimensional representation of test structure) can be
derived simultaneously for all groups. Furthermore, differences among the groups with respect to
dimensional structure are reported using “‘subject weights.” These weights are used to adjust the
stimulus space so that it can be “stretched” or “shrunk” to best fit the data for one or more
groups. For example, the INDSCAL model proposed by Carroll and Chang (1970) uses a
weighted Euclidean distance formula to scale stimuli:

-

dyk = Z w,m(xm —Xj,)'
e=1

where: di=the Euclidean distance between stimuli (e.g., test items) i and J for group &, wy, is the
weight for group k on dimension a, x,,~the coordinate of stimulus / on dimension a, and r=the
dimensionality of the model. A common structural space, called the stimulus space, is derived for
the stimuli. The “personal” distances for each group are related to the common stimulus space by
the equation:

xkia = “’lm xia
where x,, represent the coordinate for stimulus i/ on dimension a in the personal space for group
k, wia represents the weight of group k on dimension a, and x,, represents the coordinate of
stimulus / on dimension a in the common stimulus space.

Although weighted MDS models can evaluate test structure simultaneously across all
groups, most MDS models do not provide statistical tests of structural equivalence (cf. Ramsay,
1982). Rather, descriptive fit indices are used to evaluate data-model fit. The STRESS index
represents the square root of the normalized residual variance of the monotonic regression of the
MDS distances on the transformed proximities. Thus, lower values of STRESS indicate better fit.
The R? index reflects proportion of variance of the transformed proximities accounted for by the
MDS distances. Thus, higher values of R? indicate better fit. Recent applications of weighted
MDS have illustrated its advantages for evaluating structural equivalence across cultural groups
(Day & Rounds, 1998; Day, Rounds, & Swaney, 1998) and across different language versions of
a test (Sireci, Fitzgerald, & Xing, 1998).

Confirmatory factor analysis

Confirmatory factor analysis (CFA) is becoming an increasingly popular technique for
evaluating structural equivalence across different language versions of an assessment (Brown &
Marcoulides, 1996, Reise, Widaman, & Pugh, 1993; Robie & Ryan, 1996; Sireci, Fitzgerald, &
Xing, 1998). CFA is attractive in this situation because it can handle multiple groups



simultaneously, statistical tests of model fit are available, and descriptive indices of model fit are
provided. In multi-group CFA analyses, the hypothesized structure of an assessment is
incorporated into a structural equation model, and the structure is constrained to be equal across
all groups. A typical hypothesis tested using CFA is whether the factor loading matrix is
equivalent across all groups. The structure of the factor loadings is usually an “independent
clusters structure” (MacDonald, 1985), which specifies that: 1) each measured variable has a
nonzero loading on only the factor it was designated to measure, 2) correlations among the
factors (i.e., lower diagonal of the phi matrix) are freely estimated, and 3) the errors associated
with the factor loadings (i.e., theta delta matrix) are uncorrelated (Marsh, 1994). In this paper,
we use the term “invariant independent clusters structure” to refer to a model that constrains this
structure to be equal across two or more groups.

Evaluating Construct Equivalence: Examples

The results from two recent studies of construct equivalence are presented in this section.
The first study evaluated the structural equivalence of a subset of items (developed in Hebrew
and translated into Russian) taken from the Verbal Reasoning section of the Psychometric
Entrance Test (PET). The PET is a high-stakes test used for admissions decisions in universities
and colleges in Israel (see Beller, 1994, 1995 for further description of the PET). The second
study evaluated the structural equivalence of a high-stakes information technology certification
exam (one of Microsoft’s Certified Professional exams) across four language groups: English,
French, German, and Japanese.

Hebrew and Russian versions of the PET

Allalouf, Bastari, Hambleton, & Sireci (1997) used exploratory factor analysis, MDS, and
CFA to evaluate the structural equivalence of two different language versions of the PET. The
PET is developed in Hebrew and translated/adapted into five other languages: Arabic, Russian,
English, French, and Spanish. The data analyzed came from four of the five content areas
composing the Verbal Reasoning subtest: analogies, logic, reading comprehension, and sentence
completion. The fifth content area, antonyms, was excluded from analysis because these items are
not considered to be equivalent across languages and are not used to equate the different language
versions of the PET. A total of 41 items were included in the analysis; all were dichotomously
scored multiple-choice items. Only data from the Hebrew and Russian versions of this test were
analyzed. The sample sizes were 7,149 and 2,604 for the Hebrew and Russian samples,
respectively.

Previous research demonstrated that the Verbal Reasoning subtest of the PET is
multidimensional and that the dimensionality corresponded closely to the content areas composing
the test (Budescu, 1985; Beller, 1994, Kaplan-Shefer et. al., 1992, Rokas & Melamed, 1996).
Allalouf et al. sought to confirm this specific test structure using both exploratory and
confirmatory analyses. - ‘
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Exploratory factor analyses

PCA and non-linear factor analyses of the PET data were conducted. The PCA was
conducted using SPSS (version 6.0) and the non-linear factor analyses were conducted using
NOHARM (Fraser & MacDonald, 1988) and TESTFACT (Wilson, Wood, & Gibbons, 1991).
Tetrachoric correlations among the items were computed for all analyses, and separate analyses
were conducted for the Hebrew and Russian data. '

The results of the PCA indicated the data were multidimensional Six components had
eigenvalues greater than one for both language versions. For the Hebrew data, the first
component accounted for about 16% of the variance in the item data, the second component
accounted for about 4% of the variance. For the Russian data, the first two components
accounted for about 13% and 4% of the variance, respectively. The cumulative variance
accounted for by the six components was 31% and 29% for the Hebrew and Russian data,
respectively. The results for the non-linear factor analyses were similar. Both NOHARM and
TESTFACT indicated five factors were required to represent the Hebrew version of the PET and
six factors were required to represent the Russian version. Although the results were similar
across three sets of exploratory factor analysis, interpretation of the factor loadings was clearest
for the obliquely-rotated TESTFACT solution. These factor loadings are summarized in Table 1.
For both the Hebrew and Russian data, separate factors corresponding to each of the four content
areas were observed. For the Hebrew data, five factors were required because the two sets of
reading comprehension items (that corresponded to different reading passages) loaded on separate
factors. Six factors were required for the Russian data because in addition to the reading
comprehension passages, two separate sets of analogy items (one set related to vocabulary
analogies, the other to “logic-type” analogies) also loaded on separate factors. Allalouf and Sireci
(1998) found that the analogy items from the PET exhibited a large degree of differential item
functioning across Hebrew and Russian, which may partly explain this difference in
dimensionality.

[Insert Table 1 Here)

Multidimensional scaling analyses

To evaluate the structure of the PET across the Hebrew and Russian versions
simultaneously, Allaloufet al. used weighted MDS. As mentioned earlier, weighted MDS models
derive a common set of stimulus (item) coordinates for all groups entered into an analysis and a
vector of dimension weights for each group. These dimension weights reflect the differential
weighting of the dimensions necessary to best account for the correlations among the items for
each group. Thus, differences in dimensional weights across language groups would suggest
differences in the dimensional structure across language versions of the test. The Russian data
were split randomly and separate inter-item tetrachoric correlation matrices were computed for
each sample. There were 1,302 Russian examinees in each sample. For the Hebrew data, two
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random samples (without replacement) of 1,302 examinees were selected and separate inter-item
tetrachoric matrices were also derived Two tetrachoric correlation matrices were derived for
each language group so that variation among the weights within each language could be
compared with variation among the weights across language groups.

MDS models fit distances to dissimilarity data, not to similarity data. Therefore, the
tetrachoric correlations were transformed to dissimilarities using the transformation suggested by

Davison (1985):
5” = [2— 2r,

where §;=the dissimilarity between item i and j, and r;= the tetrachoric correlation between items
iandj.

A five-dimensional MDS solution was accepted as the best dimensional representation of
the data. This solution accounted for 48% of the variation in the (transformed) item tetrachoric
correlations (about 17% more than the PCA). The first dimension accounted for about 14% of
the variance, the second and third dimensions each accounted for about 10% of the variance, and
the third and fourth dimensions each accounted for about 7%. The STRESS value for the five-
dimensional solution was .19, which is relatively large for a MDS solution. This relatively poor fit
is probably reflective of a high level of error (i.e., random variation) in the data. However, all five
dimensions were interpretable. The first three dimensions essentially recovered the content areas.
The first dimension separated the reading comprehension items from the other items, the second
dimension polarized the analogy and logic items, and the third dimension separated the sentence
completion items from the other items. The fourth dimension tended to segregate the logic and
sentence completion items from one another. The fifth dimension separated the two sets of logic
items from one another, and polarized some of the analogy items. The first three dimensions from
this solution are displayed in Figure 1. Clusters of items corresponding closely to their content
area designations are evident in the figure.

[Insert Figure 1 Here]

The weights for each of the four groups, together with their projections in a two-
dimensional subspace, are presented in Figure 2. The weights are very similar for the Hebrew and
Russian groups, suggesting that the structure of these dichotomous item response data is similar
across the Hebrew and Russian versions of the PET.

[Insert Figure 2 Here]

Confirmatory factor analyses

Separate inter-item tetrachoric and asymptotic covariance matrices were derived from the
Hebrew and Russian data using PRELIS-2 (Jéreskog & Sorbom, 1993b) for the confirmatory

wov 9



factor analyses Four four-factor models were fit to the data using the weighted least squares
estimation procedure. In each case, the factor loadings for the items were specified according to
their content specifications (i.e, all the analogy items were specified to load on one factor, all the
logic items were specified to load on a second factor, etc.). The first model specified a common
four-factor structure underlying the data for both groups. The second model constrained the
factor loadings to be equal across the Hebrew and Russian data (i.e., independent clusters
structure). The third model added the constraint that the errors associated with the factor loadings
(i.e., theta delta matrices) were also equivalent across the two groups. The fourth model added
the constraint that the correlations among the latent variables were equivalent across the groups
(i.e., invariant phi matrix). All models had goodness of fit (GFI) indices above .96, and root mean
square errors ranging from .05-.08, suggesting reasonable fit to the data. The results of these
analyses are summarized in Table 2.

[Insert Table 2 Here)

Summary of PET analyses

The analyses performed on the Hebrew and Russian PET items tended to compliment one
another. In general, the hypothesized content structure of the PET was confirmed and it was
found to be similar across the two language versions of the subset of items. Although some minor
differences were observed in the exploratory analyses, the CFAs suggest that these differences are
not large enough to reject the hypothesis of structural equivalence.

Microsoft’s Network Technology Exam

Sireci et al. (1998) analyzed data from a version of Microsoft’s Networking Technology
Server (NTS) exam, which is one of the four operating systems exams required to become a
Microsoft Certified Systems Engineer. Random samples of candidates from four of the most
popular language versions of the exam were selected: English (n=2,000), French (n=1,329),
German (n=1,576), and Japanese (n=2,000). The NTS exam comprises 55 items measuring six
global content areas: planning (5 items), installation and configuration (14 items), managing
resources (10 items), connectivity (8 items), monitoring and optimization (8 items), and
troubleshooting (10 items).

Similar to Allalouf et al. (1997), PCA, MDS, and CFA were used to evaluate the structure of
the examination data across the four language versions of the test. To account for the presence
of a high level of error in the item-level data, the PCA analyses were conducted using both item-
level data and item parcel data. Thirteen parcels of items were created based on the content
specifications of the test and an attempt to balance the difficulty and variability of parcel scores.
The thirteen parcels comprised between three to six items. Pearson correlations were computed
among the thirteen parcels. Separate matrices were derived for each language version of the test,
and the PCA were conducted separately for each version. The Pearson correlations were
transformed to dissimialrities using equation 3 for use in the MDS analyses.

10



For the MDS analyses, the data for each language group were split into two random samples,
and separate inter-parcel Pearson correlation matrices were computed for each sample. This
procedure provided a total of eight correlation matrices for the analysis: two matrices for each
language group.

PCA results

The item-level PCA results exhibited low percentages of variance accounted for by the
first factor across all four groups. The variance in the item-level data accounted for by the first
factor ranged from 10.4% (French) to 13.0% (German). The number of eigenvalues greater than
one ranged from 16 to19 across the four groups. These results are not particularly revealing,
except for confirming the expectation of a large amount of error variance present in these item-
level data. '

The PCA results for the thirteen item parcels were similar across the four language groups
in terms of eigenvalues and percentages of variance accounted for by the first factor. In all cases,
a one-factor solution fit the data well. The first factor accounted for between 31.2% (French) and
36.4% (German) of the variance among the item parcels. The eigenvalues for the first component

~ were between 4.1 (English and French) and 4.7 (German), and the eigenvalues for the second

component were all close to one. . The largest proportion of variance accounted for by the second
component was 9.3% for the English language sample.

Although the separate-group PCA analyses were similar in terms of variance accounted
for, there were some notable differences among the factor loadings across groups. Table 3 gives
the factor loading matrix for each language group. For seven of the parcels (parcels 1, 2, 4, 6,
7,12, and 13) the loadings were similar across all four groups. However, for the English data,
parcels 3, 5, 8, and 10 exhibited small loadings (i.e., < .30) on the first factor relative to the
loadings for the other groups. For the Japanese data, parcels 10 and 11 exhibited different
loadings in comparison to the other groups. For the French data, parcel 9 had a loading of zero
on the first factor, which was small relative to the other groups. Across the four groups, the
factor loadings for the French and German data appear most similar. Given these findings, it
appears possible that more than one dimension is necessary to account for the variation among the
parcels across the four language groups.

[Insert Table 3 Here]

MDS Results

To evaluate the factor structure among the groups simultaneously, the data for each
language group were split randomly (without replacement) and separate inter-parcel correlation
matrices were derived for each sample. A three-dimensional solution was selected as the best
representation of the data. This solution accounted for 75% of the variation among the

11



9

transformed parcel dissimilarities The percentages of variance accounted for by the first through
thurd dimensions were 35%, 23%, and 17%, respectively

The three-dimensional MDS solution is portrayed visually in Figure 3. The first dimension
was interpreted as distinguishing between the proactive and reactive aspects of network
technology. The second dimension seemed to be related to wiring issues such as installation and
connectivity, and the third dimension was related to managing resources.

[Insert Figure 3 Here]

The subject weights for each sample matrix are displayed in Figure 4. The German
samples have the largest weights on the first dimension, while the English samples have the
smallest weights. The reverse pattern occurs on the second dimension. Comparing the variation
among the weights within each language group with the variation among the averaged weights
across language groups indicates that the dimensional structures for the German and English
versions of the test appear most different. Dimension 1 best accounted for the variation (about
61%) in the German data, while dimension 2 best accounted for the variation (56%) in the English
data. More equal weighting of the dimensions was required to account for the variance in the
French and Japanese data.

[Insert Figure 4 Here]

CFA Results

Three one-factor CFA models were fit to the data for all four language groups.
Polychoric correlations were computed among the item parcels and the maximum likelihood
estimation procedure was used for all analyses. The first model specified a single factor
underlying the data for all four groups. The second model specified invariant factor loadings
across groups, and the third model specified invariant uniquenesses (theta deltas) across the
groups. These results are summarized in Table 4. Inspection of the fit values indicates that all
three unidimensional models fit the data well. The GFI indices for all models are above .97, and
the RMRs are all below .04. Because these one-factor models exhibited reasonable fit, no two-
factor models were fit to the data.

[Insert Table 4 Here]

At first glance, the CFA results seem to contradict the PCA and MDS results. Fit of a
common unidimensional model to the data was not expected given the differences observed
among the PCA factor loadings and the MDS dimension weights. However, the PCA and MDS
results are primarily descriptive, and therefore useful for discovering differences among the
groups. Although differences among the groups do seem to exist, the results of the CFA suggest
these differences are not large enough to warrant different factor structures for one or more

groups.
12
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Summary of NTS analyses The structural equivalence of the Microsoft NTS exam over
the four studied language versions was evaluated using both exploratory and confirmatory
methods. The exploratory methods revealed a dominant factor for all groups, but differences in
the factor loadings for some item parcels were observed among the different language versions of
the test. However, when the structure of the original English language exam was imposed on the
data for the other language versions, adequate fit to the data was observed. These seemingly
contradictory findings seem to indicate that although some structural differences can be observed
across the four different language versions of the NTS exam, these differences are relatively
minor, supporting the view that the same construct is being measured by all four versions of the
exam.

Simulation Study

The preceding analyses using real test data are illuminating regarding the types of
structural information provided by PCA, MDS, and CFA. However, given the differences
observed between the exploratory and confirmatory analyses of the Microsoft data, it is unclear
whether CFA provides the final judgment regarding structural equivalence, or whether CFA is not
powerful enough to detect departure from structural equivalence. To investigate this issue, data
were simulated to model situations of structural equivalence and structural non-equivalence
across groups. These data were analyzed using CFA and weighted MDS to discover whether
these procedures would correctly identify the conditions of structural equivalence and non-
equivalence.

Data generation

.Because the Microsoft data provided somewhat equivocal results, the simulated data were
generated to have similar characteristics to those data. Data for thirteen measured variables were
simulated for four groups. The data were generated to fit one of two structural models. In the
first data generation condition (Condition I), an invariant independent clusters structure was
simulated. This model posited two correlated factors underlying the data for all four groups, and
the factor loadings for the measured variables were equal across all four groups. The first nine
measured variables were specified to load on the first factor, the other four measured variables
were specified to load on the second factor. This model mimicked the PCA factor loadings for
the English Microsoft data.

Condition II simulated a specific situation of structural non-equivalence. In this condition,

 the factor loadings for three of the four groups were identical (i.e., same factor loadings specified

in condition I). The factor loadings for the fourth group had two differences from the other
groups. First, the tenth measured variable was specified to load on the first factor instead of the
second factor. Second, the magnitude of the factor loadings were specified using the results from
the PCA analysis of the French Microsoft data. Thus, Condition II contained two departures
from an invariant independent clusters structure: the factor loadings were not equal across all
four groups, and one of the measured variables loaded on a different factor in one group than in

13



the other three Figures S and 6 illustrate the pattern of factor loadings for Conditions I and I,
respectively.

Two variants of each condition were simulated. In the first condition, the true correlation
between the latent variables was .10 In the second condition, the correlation between the latent
variables was .60. These two conditions were simulated so that the effect of the degree of latent
variable correlation on the ability of CFA and MDS to recover true dimensionality could be
observed. The .10 condition represents a very low correlation condition, in which the
multidimensionality should be relatively easier to detect. The .60 condition represents a high
correlation condition, where the multidimensionality may be more difficult to detect. These two
correlation conditions have been widely used to evaluate methods for discovering test structure
(e.g., Hambleton & Rovenelli, 1986).

[Insert Figures 5 and 6 Here]

The data for all conditions were generated using MGRPGEN (Rogers, 1996), which is a
Fortran program for generating data according to pre-specified structural equation models. The
samples of simulated “examinees” ranged from 1,329 to 2,000 for each “language” group, which
mimicked the Microsoft NTS sample sizes. The errors associated with the factor loadings (i.e.,
the theta delta matrix) were specified to be equal to the uniqueness values from the PCA analysis
of the English Microsoft data for Condition I, and to the English and French uniquenesses for
Condition II. Ten replications for each condition were generated. All 40 data sets (4 conditions
X 10 replications) were analyzed using LISREL version 8.0 (Joreskog & Sorbom, 1993a). In
each analysis, an invariant independent clusters model was fit to the data. This was the correct
- model for the Condition I analyses, but an incorrect model for the Condition II analyses. In
addition, another ten replications of a one-factor model were applied to the Condition II data.
This model mimicked the model fit to the Microsoft data in the Sireci et al. (1998) study.

The purpose of this simulation study was to discover whether any of the goodness of fit
indices and other descriptive statistics associated with the CFA and MDS analyses were sensitive
to the lack of structural equivalence in Condition II. This simulation study is not a comprehensive
analysis of the utility of CFA and MDS for evaluating structural equivalence. Only one type of
structural non-equivalence was simulated, and the degree of non-equivalence was restricted to
only one of four groups. The relatively small number of replications also limits the generalizability
of the results. However, the main purpose of the simulation was to discover whether these two
analytic tools would uncover a type of structural non-equivalence that was suggested in the
analysis of real test data. If the LISREL goodness of fit indices were sensitive to the departure
from structural equivalence simulated in Condition I, then it is likely that the LISREL results for
the Microsoft data really do reflect structural equivalence across the four studied language
versions of the exam. On the other hand, if the LISREL fit indices suggest the invarant
independent clusters model fits Condition I1, then CFA may not be powerful enough for detecting
this type of structural non-equivalence. -

14



Simulation study results

CFA results

In the Sireci et al. (1998) study, only the goodness of fit (GFI) and root mean square
residual (RMR) indices were reported. However, LISREL version 8 reports over 20 different
indices of overall data-model fit. To discover which fit indices were sensitive to the lack of
structural equivalence in Condition 11, the performances of nine of these fit indices were
evaluated. Selection of these nine indices was motivated by a desire to: 1) save time by avoiding
those indices requiring comparing several nested models, 2) focus on indices that should be
sensitive to misfit in the measurement model (as opposed to the structural model), and 3) focus on
indices that are commonly reported in the literature. After reviewing recent research in this area
(e.g., Browne & Cudek, 1993; Byrne, 1998; Marsh, 1994; Mulaik, et al., 1989), the nine
measures selected were: chi-square, root mean square error of approximation (RMSEA), RMR,
GFI, normed fit index (NFI), non-normed fit index (NNFI), parsimony normed fit index (PNFI),
comparative fit index (CFI), and incremental fit index (IFI). Although testing hierarchical models
is preferred when analyzing goodness of fit in CFA (e.g., Joreskog & Sorbom, 1996; Reise et al,
1993), conventions for using the other indices to evaluate a particular data-model fit have been
offered (e.g., Browne & Cudek, 1993; Byrne, 1998; MacCallum & Browne, 1993, Reise, et al.,
1993). There has been much debate about the utility of these indices, however, non-significant
chi-squares, RMSEA and RMR values below 10, and values for the other indices of .90 or above,
have been proposed as indicators of reasonable data-model fit.

The minimum, maximum, and mean fit statistics across the ten replications for both
scenarios of Conditions I and II are presented in 5. All fit indices suggest good data-model fit
under Condition I (“true” structural equivalence), regardless of the level of correlation among the
factors. For the Condition I analyses, it may seem surprising at first to see non-significant chi-
squares with such large sample sizes, but this finding can be explained by the fact that the data
were generated using the same model that was fit to these data.

For the Condition II analyses (i.e., structural non-equivalence), only the chi-square test,
RMR, GFI, and PNFI were sensitive to the lack of structural equivalence under the low
correlation condition. Although the values for the other fit indices moved in the direction of
relatively poorer fit under condition II, all provided values that would probably be interpreted as
reflecting reasonable data-model fit, which in this case is the wrong conclusion.

For the high correlation Condition Il analyses, only two fit indices correctly suggested
rejection of the structural equivalence model: the chi-square test and the RMR. Given the fact
that most researchers seeking to obtain data-model fit ignore the chi-square test when large
sample sizes are used, the RMR appears most useful for evaluating structural equivalence. Other
popular measures, such as the CFI, GFI, and RMSEA provided values that would probably be
interpreted as suggesting reasonable data-model fit, which again is the wrong conclusion.
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[Insert Table 5 Here]

Given the fact that a one-factor CFA model was fit to the Microsoft data, it is also of
interest to evaluate the performance of the LISREL fit indices when fitting a one-factor model to
the Condition II data. This one-factor model (that restricted the factor loadings to be equal
across the groups) is inappropriate for these data on two accounts: 1) two factors underlie the
data for all groups, and 2) the factor loadings are not equivalent across all groups. The results of
applying this one-factor structural equivalence model to the Condition II data are reported in

~ Table 6. Under the low correlation condition, all fit indices suggest poor data-model fit.

However, for the high correlation condition, the results were more equivocal for several indices,
including the GFI. The RMR and six other indices (NFI, NNFI, PNFI, CFl, IF1, and RFI)
correctly suggested poor data-model fit under this condition. Although it is encouraging these
indices were on-target, it is important to note the relatively poor performance of the widely used
GFI under this condition.

[Insert Table 6 Here]

It is interesting to note the relatively small ranges for all of the fit indices across all
replicated conditions. Although only ten replications of each condition were simulated, the very
minor changes in the fit statistics suggest that the results probably will not change dramatically if
the number of replications were increased.

Given these findings, a natural question is “What were the values of the other fit indices
for the structural equivalence model fit to the NTS data?” As previously reported, the RMR was
very low (.032) suggesting good data-model fit. This is an important finding because this index
performed well under all simulation conditions. All other indices also suggested good fit (e.g., the

. lowest fit index was the PNFI, which equaled .91). Thus, the simulation results support the

conclusion that the structure of the Microsoft NTS exam is equivalent across the four language
versions studied.

MDS results

The INDSCAL MDS model was also fit to all four data simulation conditions. For the
low and high correlation scenarios under Condition I, and for the low correlation scenario under
Condition 2, MDS performed very well. The two-dimensional solutions fit like a glove for these
three scenarios (the largest STRESS was .08 and the lowest R2 was .96 across these 30
replications). Under condition I, the stimulus coordinates captured the specified factor loadings
on the first dimension. Those variables specified to load on the first factor had large positive
coordinates on this dimension, and the variables specified to load on the second factor had large
negative coordinates.

Under the low correlation scenario for Condition I, the first dimension accounted for
almost all (at least 98%) of the variance in the data and no “groups” exhibited weights larger than
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.02 on the second dimension, for eight of the ten replications For the other two replications, the
second dimension accounted for about 22% of the variance and all four groups had similar
weights on both dimensions For the high correlation condition, the subject weights were also
similar in every replication, but the variance accounted for by the second dimension was relatively
larger (ranging from 9% to 38% across the 10 replications). All interpretations of the MDS
analyses under Condition I (both low and high correlation) correctly led to the conclusion of
structural equivalence across groups.

For the low correlation scenario under Condition II, the two-dimensional MDS model
recovered the factor loadings for the first three groups on the first dimension, and recovered the
factor loadings for the fourth group on the second dimension. Across the ten replications, the
dimension weights were essentially 1.0, 0.0 for the first three groups and 0.0, 1.0 for the fourth
group—exactly what the model would “predict.” The R2 was 1.00 for all analyses (the first
dimension accounted for 75% of the variance and the second dimension accounted for 25%).
Thus, MDS had no trouble discovering structural non-equivalence, and specifying the cause of the
non-equivalence, under the low correlation condition.

' MDS did not perform as well under the high correlation scenario of Condition II. Three
dimensions were needed to fit the data properly, and even then, the STRESS values were
“borderline” (median STRESS was .11). However, the R2 values were consistently high
(median=.97). Inspection of the dimension coordinates generally provided the following
interpretation: one dimension accounted for the pattern of factor loadings generated for the first
three groups, a second factor accounted for the pattern of factor loadings generated for the fourth
group, and a third factor polarized two or three variables that were specified to load on the same
factor for the first three groups. In all replications, the first three groups had large weights on
two of the factors (that together accounted for about 73% of the variance) and a weight on the
other factor near zero. The inverse pattern of weights appeared for the fourth group (a weight
near 1.0 on one dimension and weights near zero on the other two). Thus, under this condition,
MDS was able to detect the lack of structural equivalence (via the group weights), but the
coordinates for the measured variables were difficult to interpret for one of the three factors, even
though the factor typically accounted for about 20% of the variance. '

The results from the MDS analysis of the simulated data are informative with respect to
MDS analysis of the Microsoft NTS data. Although differences in the dimension weights were
observed across the four language groups, none of the groups exhibited weights near zero on any
of the dimensions. Thus, if any structural differences do exist across the groups, they are
probably very minor and reflect subtle differences across dimensions that are highly correlated.

3

Discussion

The extensive set of analyses conducted using real and simulated data provided a great
deal of information regarding the factorial structure of the studied tests, as well as information
regarding the utility of the data analytic procedures for illuminating test structure. With respect to
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the PET and NTS exams, the sum of the analyses supports the view that the structure of these
tests is equivalent across the different language groups studied This finding is encouraging with
respect to the PET because there is a large body of research on the structure of the PET that has
informed the test development process (e.g., Budescu, 1985, Kaplan-Shefer et. al , 1992; Rokas
& Melamed, 1996). In the present study, the four content areas studied were ‘“‘recovered” and
this structure appeared appropriate for both the Hebrew and Russian data Of course, the
analyses should be replicated on other test forms and across the other language versions of the
PET.

The finding of structural equivalence for the NTS exam is also encouraging because for
this exam, it is clear the construct that is intended to be measured is legitimate for each language
group and is the same in each language group. That is, all language groups are tested on their
proficiency with the same computerized software. If large structural differences were observed
for these data, clearly, they would point to translation problems, not to construct non-equivalence.
Replications of the analyses conducted in this study on other samples of NTS examinees should
shed light on the meaningfulness of some of the minor differences noticed in the exploratory
analyses.

It is interesting to note that previous research on the same PET data (Allalouf & Sireci,
1998) and NTS data (Sireci, Fitzgerald, & Xing, 1998) did identify some items as functioning
differentially across languages. Although these differentially functioning items may affect mean
differences across the groups, they do not appear to be large enough, or numerous enough, to
cause structural differences.

With respect to the performance of the different methods for evaluating structural
equivalence across groups, CFA and MDS appear to be appropriate, but qualifications are
necessary for each method. When using CFA, the GFI index should not be relied upon for
evaluating data-model fit. This index, and many others, suggested reasonable model fit to the
data when the factor loadings were not equivalent across all groups. In the present study, the
RMR index performed well, and we suggest its use in future studies. However, our simulation
study was extremely limited. Only one specific type of structural non-equivalence was simulated
and the number of replications was small. Future research should evaluate the performance of the
RMR and other fit indices under varying conditions of structural non-equivalence, number of
measured variables, factor loading patterns, and number of groups studied. Also, it is important
to note that the present study focused on overall measures of model fit. A more detailed
inspection of model fit, for example, evaluating residuals, modification indices, and other elements
of the solution, is recommended when evaluating structural equivalence across groups (e.g., Reise
et al, 1993). Although not reported above, inspection of the residuals and other elements of the
solutions did not signify poor fit for any of the analyses, with one exception. For the simulated
data under Condition II (where the fourth group had a different pattern of factor loadings), the
estimated correlation between the factors was consistently higher for the “misfit”” (fourth) group
in comparison to the other three groups. This finding should be researched further to discover if
it could be indicative of lack of structural equivalence.
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With respect to using weighted MDS to evaluate structural equivalence, two findings
cause us to offer qualifications before endorsing MDS for this purpose First, the MDS solution
for the NTS exam suggested differences in structure among the language groups that were not
supported by the CFA results. Second, under the high correlation/non-structural equivalence
condition, MDS analysis of the simulated data yielded dimensions that were not directly
interpretable, and may have been spurious. A comparison of the MDS group weights, however,
was accurate under all conditions. Thus, when using MDS to evaluate structural equivalence
across groups, we recommend focusing on the group weights and interpretable dimensions only.
For example, if a dimension is interpretable and large differences are noted in the group weights
associated with that dimension, the solution may represent lack of structural equivalence. Based
on the simulation results, the weight differences should be large (e.g., one or more groups have
weights near zero on a dimension, and one or more other groups have large weights on the
dimension) before concluding such differences represent departure from structural equivalence.

In summary, the results of this study suggest that exploratory and confirmatory procedures
can be used in complimentary fashion to help evaluate construct equivalence across different
language versions of an assessment. If the focus is on discovering subtle structural differences
across groups, exploratory procedures are recommended. Weighted MDS is particularly suited to
this focus because all language groups can be included in a single analysis. If the focus is on
discovering whether a specific factor structure is appropriate for all groups, CFA is
recommended. As stated earlier, statistical evaluation of test structure is only one aspect of
evaluating construct equivalence across different language versions of an assessment. Evidence of
structural equivalence should be taken together with other evidence of the legitimacy of the
construct in each language group, and evidence of the similarity of the construct’s nomological
network across language groups, before concluding construct equivalence holds across different
language versions of an assessment.
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Table I Rotated TESTFACT Factor Loadings for Hebrew and Russian PET Data

Item | Content | Heb. | Heb | Heb. | Heb. [ Heb. | Rus. Rus. | Rus. | Rus. | Rus Rus
Arca Fl F2 F3 F4 FS Fl F2 F3 F4 F3 F6

| AL 45

2 AL 30 42

3 AL 49 26

4 AL 46

5 AL 60 25

6 SC 47 30

7 SC 40 25

8 SC 39

9 SC 32 26

10 SC 43 45

11 LO 33 28 29

12 LO 33 24

13 LO 4] 29

14 LO 53 30 30

15 LO 29

16 LO 52 22

17 RC 70 66

18 RC 52 51

19 RC 63 69

20 RC 71 57

21 RC 61 51

22 AL

23 AL 52 43

24 AL - 37 36

25 AL 43 30

26 SC 51

27 SC 34 43

28 SC 34

29 SC 42 70

30 SC 30 27

31 LO 57 51

32 LO 45 49

33 LO 49 52

34 LO 53 47

35 LO 54 52

36 LO 4] 45

37 RC : 52 58

38 RC 53 72

39 RC 31 30

40 RC 63 4]

4] RC 43 31

Notes: Decimals and loadings less than

.25 are omitted.




Table 2

Goodness of Fit Results for CFA of PET Data

Model

GFI

RMR

One Common Factor
for all Groups

.97

057

Equivalent Factor
Loadings (A,) for all
Groups

.96

.060

Equivalent Errors of
Factor Loadings (©;)
for all Groups

.96

.066

Equivalent
Correlations Among
Factors

.96

.076
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Table 3

PCA Rota;ed Factor Loading Matrix for Microsoft NTS Data

*1=planning, 2=installation and configuration, 3

optimization, and 6=troubleshooting.

26

1" Factor 2" Factor

Content

Area’ Parcel | English | French | German Japanese English | French | German | Japanese
1 1 .56 .52 47 Sl .34 43 41 .32
2 12 41 .54 46 .56 .55 33 .49 .30
2 3 .10 .56 48 .58 12 .23 32 .29
2 4 .67 .56 .61 .53 23 35 37 47
3 5 22 .58 .59 .46 .62 14 .18 .33
3 6 .66 .64 .62 51 19 .09 22 .29
4 7 .61 .55 .44 .44 13 21 43 .49
4 8 .00 37 .28 48 .73 .24 .54 22
5 9 .61 .00 .28 56 - 17 75 .64 16
S 10 .28 16 -.08 .72 .39 .63 .78 -.18
6 11 | .58 .59 .65 .00 -.01 -.14 .08 .79
6 12 .65 .55 .51 .58 .20 .34 51 .36
6 13 .36 .28 49 .32 32 48 .35 .50

=managing resources, 4=connectivity, 5=monitoring and




Table 4

Goodness of Fit Results for CFA of Microsoft NTS Data

Model GFI RMR
One Common Factor
for all Groups .99 .021
Equivalent Factor
Loadings (A,) for all .99 031
Groups
Equivalent Errors of
Factor Loadings (O;) .98 .032

for all Groups
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Table 5
Fit Indices for Simulated Data Fit to Two-Factor Independent Clusters Model

Condition I - Condition II
r=.10 r=.60 =10 r=.60
Index Mean | Min. | Max. [ Mean | Min. Max. | Mean | Min. | Max. Mean | Min. | Max_ |
Chi- .
Square [ 275a 255 (304 [,g0a |264 |329 2240b | 2206 [ 2315 | 1443b | 1270 | 1543
RMR .018 .016 | .021 |.016 |.014 | .02] 171 168 |.176 | .125 |.118 | 133
PNFI .938 .936 | 938 | .937 .937 | 938 |.875 .872 | 877 | 903 .900 (.908

GFI .995 994 |.995 [ .995 994 | .996 | .883 879 | .888 | 918 |.910 | .927
NFI .992 990 1.992 | .991 991 1.992 | .925 922 | .928 | 955 |.952 | .960
NNFI 1.000 | 1.00 | 1.001]1.000 |.999 1.001 |.930 928 ].933 | 962 |.959 | .966
CFI 1.000 |1.00 /1.000]1.000 |.999 | 1.000 .934 932 | 937 | .964 | .961 [ 969
[F1 1.000 [1.00 [1.001]1.000 |1.00 |1.00] .934 932 | 937 | 964 | .961 | .969

RMSEA [0.000 |0.00 |.002 .001 0.00 }.004 |[.031 .030 1.032 | .024 |.022 | .025
@None of the chi-squares were statistically significant (at p <. 10) under these conditions.
bAIl of the chi-squares were statistically significant (at p <.001) under these conditions.
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Table 6

Fit Indices for Simulated Data Fit to One-Factor Model

=10 r=.60
Index Mean | Min. |Max. |Mean [ Min. | Max.
Chi-
square | gogp a | 8927 | 9371 5515a | 5165 | 5705
RMR 142 140 1.147 ].109 102 |.117
PNFI 661 658 |.667 |.793 786 | .801
NFI .690 687 1.692 | .828 821 ] 836
NNFI .684 679 |.685 | .828 821 |.837
CFI .697 692 |.703 | .835 828 | .844
IFI 697 692 |.703 |[.835 -|.828 | .844
GFI .856 .850 |.859 | .905 893 | .916
RMSEA | .066 065 |.066 |.051 .049 |.051
3All of the chi-squares were statistically significant (at p <.001) under these
conditions. '
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Figure 1
3-D MDS Subspace of PET Data
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Figure 2
Group Weights for PET Data
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Figure 3
3-D MDS Stimulus Space for NTS Data
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Figure 4
Group Weights for NTS Data
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Figure §

Structure of Condtion I Simulated Data
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Figure 6

Structure of Condtion Il Simulated Data

Group

1 2 3

! 1 I

2 2 2

3 3 3

4 4 4 \

5 5 5 gl

6 6 6

7 7 7

8 8 8

9 9 9
10 10 10

| Es

11 11 11
12 12 12
13 13 13 /

o
&n

d0or




*

U.S. Department of Education
Office of Educational Research and Improvement (OERI)
National Library of Education (NLE)
- Educational Resources Information Center (ERIC)

REPRODUC TION RELEASE -

.(Specific Document)

 TM029591 .

l. DOCUMENT |DENT|F|CAT|ON:
Title: o

Evaluahing Cm&’fwd' Equivaknw 0CY05% Ao\aplwl Tests

-y Moo, . ra e
' - O -

author(sy SYPC , S, Pastacy, A. P&H&\Du’ri

Corporate Source:

. Publication Date:
WANersity of Mass.

Amherst

199%
I REPRODUCTI}ON RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the
monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy,
and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if
reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom

of the page.

The sample sticker shown below will be
affixed to all Level 1 documents

The sample sticker shown below will be
affixed to all Leve! 2A documents

The sample sticker shown below will be
affixed to all Leve! 2B documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED BY

Q\e
5’0‘0

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN
MICROFICHE, AND IN ELECTRONIC MEDIA
FOR ERIC COLLECTION SUBSCRIBERS ONLY,
HAS BEEN GRANTED BY

5’0&&

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

2A

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN
MICROFICHE ONLY HAS BEEN GRANTED BY

§’

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

2B

Level 1

f

Check here for Level 1 release, permitting reproduction
and dissemination in microfiche or other ERIC archival
media (e.g., electronic) and paper copy.

Documents will be processed as indicated provided reproduction quality permits.

Level 2A

!

Check here for Level 2A release, permitting reproduction
and dissemination in microfiche and in electronic media
for ERIC archival collection subscribers only

Level 2B

1

Check here for Level 2B release, permitting
reproduction and dissemination In microfiche only

If permission to reproduce is granted, but no box is checked, documents will be processed at Leve! 1.

1 hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document
as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system
contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies
to satisfy infonnation needs of educators in response to discrete inquiries.

Sign
here,»

A=

Pnnted Nam tsmogme S e

please | "™ tifNersity of Massachusetts

School of Education

“’""’“‘C/z sy o5ty ™

St

E-Majl Addreas

< (“‘/{,"'\“" e Date: }/ ST/??

""Ib Du\.-.i

Q
ERIC
Amherst, MA 01003

Aruitoxt provided by Eic:

(over)




lll. DOCUMENT AVAILABILITY INEORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please
provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly
available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more
stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

Iv. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and
address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:
THE UNIVERSITY OF MARYLAND

ERIC CLEARINGHOUSE ON ASSESSMENT AND EVALUATION
1129 SHRIVER LAB, CAMPUS DRIVE
COLLEGE PARK, MD 20742-5701
Attn: Acquisitions

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being
contributed) to:
ERIC Processing and Reference Facility
1100 West Street, 2" Floor
Laurel, Maryland 20707-3598

Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
e-mail: ericfac@inet.ed.gov
WWW: http:/lericfac.piccard.csc.com

Q
ERIC 088 (Rev. 9197)

“EEPRLVIOUS VERSIONS OF THIS FORM ARE OBSOLETE. '



