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Design of Item Pools 2

Abstract

An integer programming approach to item pool design is presented that can be used to

calculate an optimal blueprint for an item pool to support an existing testing program. The

results are optimal in the sense in that they minimize the efforts involved in actually

producing the items as revealed by current item writing patterns. Also, an adaptation of

the models for use as a set of monitoring tools in item pool management is presented. The

approach is demonstrated empirically for an item pool designed for the Law School

Admission Test (LSAT).
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Design of Item Pools 3

An Integer Programming Approach to Item Pool Design

Recently, a variety of methods for automated assembly of test forms from an item

pool have become available. Each of these methods can be classified as belonging to one

of the following classes (van der Linden, 1998): (1) heuristics that select items

sequentially to match a target for the test information function or to fit a weighted

combination of the test specifications (e.g., Ackerman, 1992; Luecht, 1998; Sanders &

Verschoor, 1998; Swanson & Stocking, 1993); (2) methods that model the test assembly

problem as a 0-1 linear programming (LP) problem and then use a search algorithm to

find a solution (e.g., Aderna, Boekkooi-Timminga & van der Linden, 1991; Boekkooi-

Timminga, 1987, 1990; Theunissen, 1985; Timminga & Adema, 1996; van der Linden,

1994, 1996; van der Linden & Boekkooi-Timminga, 1989), (3) methods based on network-

flow programming with Lagrange relaxation and/or embedding of the network model in a

heuristic (Armstrong & Jones, 1992; Armstrong, Jones & Wang, 1994, 1995; Armstrong,

Jones & Wu, 1992) and (4) methods based on optimal design theory from statistics (e.g.,

Berger, 1994). Detailed descriptions and examples of these methods are given in a recent

special issue of Applied Psychological Measurement on optimal test assembly (van der

Linden, 1998).

These test assembly methods result in tests that are optimal or close to optimality.

However, even when optimal, the results need not be satisfactory because an important

constraint on the quality of the tests is imposed by the composition of the item pool. For

example, an item pool can have enough items with the content attributes required by the

test specifications but their statistical attributes may be off target in the sense that the

items are too difficult or too easy. This case can easily occur if an item pool is frequently

used and certain categories of items in the pool are depleted quickly. The result is then an

optimal test with an information function too low on a relevant interval on the ability

scale. Though the problem of item pool depletion is less likely to happen for larger item

pools, it should not be inferred that larger item pools are necessarily optimal. On the

5



Design of Item Pools 4

contrary, a well-known phenomenon in item pool management is that a considerable

proportion of the items in the pool may never be used. The presence of such "wallflowers"

can be the result of attribute values not needed by the test specifications or

overrepresented in the pool. Since the costs of screening and pretesting items aie generally

high, items in either category typically involve a considerable loss of resources.

This paper presents a integer-programming method for item pool design. The

method results in a blueprint for an item pool, that is, a document specifying what

attributes the items in a new item pool or an update of an existing pool should have. As

will become clear below, the blueprint is designed to allow for the assembly of a

prespecified number of test forms from the pool each with its own set of specifications. At

the same time, it is optimal in the sense that the efforts or "costs" involved in realizing the

item pool are minimized. A favorable consequence of this objective is that the number of

unused items is also minimized. (In practice, it may be prudent to have a few spare items

though; see the, discussion later in this paper.)

The actual task of writing test items to a blueprint is difficult. The main reason for

it does reside not so much in the content attributes of the items as well as in their

statistical attributes, such as p-values, item-test correlations, and IRT parameters. It is a

common experience that the values of statistical attributes of individual items are only

loosely predictable. At the same time, however, at the level of a pool of items, statistical

attributes often show persistent patterns of correlation with content attributes. In this paper,

these patterns are used to derive an empirical measure for item writing efforts that is

minimized in the design model.

The point of view taken in this paper is that item pools are not static .entities. Tests

are assembled from the pool and subsequently released, or items may be removed from

the pool because they become obsolete. In most testing programs, new items are therefore

written and pretested on a continuous basis. Though presented as a method for designing a

single pool, it is believed that in practice the models in this method will serve as tools for

6



Design of Item Pools 5

monitoring the item writing process on a more continuous basis. The slight adaptation

needed to use the models for item pool management is presented later in this paper. As

will become clear below, if the models are used in this mode, possible differences between

the statistical attributes of items in the blueprint and their actual values in the pretest are

automatically compensated in the next application of the design models.

The problem of item pool design has been addressed earlier in Boekkooi-Timminga

(1991) and Stocking and Swanson (1998). The former paper also uses integer

programming to calculate the numbers of items needed for future test forms but follows a

sequential approach maximizing the information function of each subsequent test under the

Rasch or one-parameter logistic model. The results are then used to improve on the

composition of an existing item pool. The model proposed in this paper directly calculates

a blueprint for the entire item pool (though it is sometimes efficient to do the calculations

sequentially). In addition, its objective is minimizing the costs of actually producing the

pool by the current item writers rather than maximizing the test information functions. At

the same time, the model guarantees that the targets for the test information functions are

met. Finally, this model is not restricted to items calibrated under the Rasch model. The

paper by Stocking and Swanson does not deal with the problem of designing an item pool

as such. Rather, it presents a method for assigning items from a master pool to a set of

smaller pools accessed randomly in an adaptive testing program to minimize item

exposure among examinees.

The remainder of the paper is organized as follows: First, the problem of item pool

design is analyzed, making an important distinction between test specifications based on

categorical and quantitative item attributes. Then the design method is presented, and it is

shown how its models minimize the existing costs involved in item writing. In addition, it

is explained how the method can be used if the item pool has to support a testing program

with sets of items related to common stimuli. The next section of the paper explains how

the proposed models can be adapted for use as monitoring tools in item pool management.
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Finally, an empirical application of the models to the problem of designing an item pool

for the Law School Admission Test (LSAT) is presented.

Analysis of Design Problem

An important distinction between test specifications or constraints in mathematical

programming models for test assembly is the one between constraints on categorical item

attributes, on quantitative attributes, and constraints needed to represent inter-item

dependencies (van der Linden, 1998). This distinction also plays a critical role in the item

pool design model presented in this paper.

Categorical Constraints

The defining characteristic of a categorical item attribute, such as item content,

cognitive level, format, author, or answer key, is that it partitions the item pool into a

series of subsets. A test specification with respect to a constraint on a categorical attribute

generally constrains the distribution of the items in the test over the subsets. If the items

are coded by multiple attributes, their Cartesian product introduces a partition of the pool.

Constraints on categorical attributes then address not only marginal distributions of items

on attributes but also their joint and conditional distributions.

A natural way to represent categorical attributes is by a table. An example for the

case of two categorical constraints with a few constraints on their distributions is given in

Table 1. One attribute is item content, C (with levels CI, C2, and C3); the other is item

[Insert Table 1 about here]

format, F (with levels Fl and F2). In the first panel, the full distribution of the items in

the pool is represented by the numbers ni., and n.. that are the numbers of items in

cell (i,j), row i, column j, and the total table, respectively. Likewise, in the second panel

the numbers of items in the test are denoted as r. r1..
,

r and r . The following set of.j'

constraints is imposed on the test:

r12
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r.i = 4;

- r1. = 8.

Note that this set not only fixes certain numbers directly but also restricts the values

possible for the other numbers in the table. For example, the first and last constraint

together imply the constraint r11+r135.2. This fact sometimes allows us to represent the

same set of test specifications by different sets of constraints. Some of these sets may be

smaller and therefore more efficient than others. The method in this paper, however, is

neutral with respect to such differences.

In a test assembly problem, values for the numbers rid are sought such that the

constraints on all distributions are met and the combination of the values optimizes an

objective function. In so doing, the numbers of items in the pool are fixed and serve as

upper bounds to the numbers r1. The basic approach to the item pool design problem in

this paper is to reverse the role of these two quantities. The numbers nii are now taken as

the decision variables and a function of them is optimized subject to all constraint sets

involved by the specifications of the tests the pool has to support.

Quantitative Constraints

Examples of quantitative item attributes are word counts, exposure rates, values for

item response theory (IRT) information functions, expected response times, and classical

parameters as p-values and item-test correlations. Unlike categorical constraints,

quantitative constraints do not impose bounds directly on numbers of items but on a

function of their joint attribute values, mostly a sum or an average.

In IRT-based test assembly, important constraints are those on the information

function of the test. These constraints typically require the sum of values of the item

information functions to meet certain bounds. It is important to note that though each

combination of item information functions defines a unique test information function, the

reverse does not hold. Unlike categorical attributes, constraints with quantitative attributes
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have no one-one correspondence with item distributions but sets of distributions that are

feasible with respect to the constraints. However, this property should not be viewed as a

disadvantage. It can be exploited to choose an distribution to represent a quantitative

constraint that is optimal with respect to an objective function. This paper follows this

approach and translates all constraints on quantitative attributes into optimal distribution of

the items over tables defined by a selection of their values.

The option of choosing an objective function for the selection of an optimal item

distribution is used to solve a problem alluded to earlier, namely the one of the difficulty

involved in writing items with prespecified values for their statistical attributes. More

concretely, it is proposed to use the distribution of the statistical attributes for a recent

item pool as an indicator of the efforts or costs involved in writing items with certain

combinations of attribute values by the item writers. In so doing, the assumption is that

items with combinations of attribute values with higher frequencies are easier or less

"costly" to produce. More realistic information on item writing costs is obtained if the

joint distribution of all quantitative and categorical attributes is used. If persistent

differences between item writers exist, further improvement is possible by choosing item

writers as one of the (categorical) attributes defining the joint distribution.

The idea will now be formalized for constraints on test information functions but

can easily be generalized to constraints on other quantitative attributes (see the other

examples later in this paper). In the empirical example below, the 3-parameter logistic

, model was used to calibrate the existing item bank:

pi(0) ProbfUi----1I0} a- ci + (1-c1){1.+exp[--ai(0-bi)]}-1, (1)

where 0 is the unknown ability of the examinee and ai E [0,00] , bi and ci E [0, 1 ]

are the discrimination, difficulty, and guessing parameter for item i, respectively (Lord,

1980, chap. 2). First, the parameters ai, bi, and ci are discretized, that is, their scales of

1 0
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possible values is replaced by a grid of discrete values, (aid,bid,cid), with d=1,...,D grid

points . The number of points on the grid as well as their spacing is free. Let Q be the

table defined by the product of these grids for all quantitative attributes, with arbitrary cell

q. The symbol C is used to represent the full table defined by the categorical attributes,

with an arbitrary cell denoted by c E C. A cell in the joint table defined by C and Q is be

denoted as (c,q)E CxQ.

Let xcq denote the frequency of the items in cell (c,q) for a representative pool.

These frequencies contain information on the efforts involved in writing items for the

various cells in the table. Cells with relatively large frequencies represent combinations of

categorical and quantitative attribute values that tend to go together often; apparently, such

items are easy to produce. On the other hand, empty cells seem to point at combinations

of attribute values that are difficult to produce. A monotonically decreasing function of

xcq, denoted as 9(x cq), will be used as an empirical measure of the efforts involved in

writing items with the various possible combinations of attribute values. The generic term

"cost function" will be used for this function. In the model below, the costs for writing the

new item pool will be minimized using this function.
-1

A simple cost function is 9(x cq) = xcq , which requires xcq>0. Other choices are

possible. However, as will be obvious from the definition of the objective function in

Equation 2 below, the choice of unit does not matter. Also, before calculating 404, it

is recommended to collapse the CxQ table over attributes that show no substantial

dependencies on any of the other attributes. This operation will result in larger frequencies

and hence a more stable estimate of the distribution over CxQ. If different patterns of

correlation exist for different item writers, the cost function can be made more realistic by

adding item writers as a categorical attribute to the table. If this option is used, a

constraint has to be added to the design models below on the number of items or stimuli

to be written by each item writer. The blueprint of the new item pool then automatically

shows which types of items have to be written by which author.
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It should be noted that the use of a cost function defined on item writing

practices for a recent item pool is not conservative in the sense that old practices are

automatically continued. The new item pool can be planned freely to support any new sets

of test specifications, and the integer programming model guarantees that test forms can

be assembled to these specifications. The point is, however, that a potentially large set of

item pools can be expected to be feasible for the integer programming model. The cost

function is used only to select a solution from this set that minimizes the costs of item

writing.

Constraints on Interdependent Items

The constraints in this category deal with possible relations of exclusion and

inclusion between the items in the pool. Two items exclude each other, for example, if one

item contains a clue to the key on the other item ("enemies"). In 0-1 LP-based test

assembly, it is possible to constrain the test to have no more than one item from each

known set of enemies. However, the problem of enemies in the item pool is basically a

problem of how to distribute them over different test forms if they happen to occur. Also,

the number of enemies in an item pool is generally low. The position taken here is

therefore that the presence of enemies is a problem of test assembly--not of item pool

design. It will therefore be ignored in the remainder of this paper.

An important type of inclusion relation exists between items that are organized

around common stimuli, for example, a reading passage in a reading comprehension test

or a description of an experiment in a biology test. We will use "item sets" as a generic

term for this part of a test. Typically, the items in these sets are selected from larger sets

available in the pool. Selection of item sets often involves constraints on categorical (e.g.,

content) and quantitative (e.g., word counts) attributes for the stimuli. Several versions of

0-1 LP models for test assembly are available to deal with pools with item sets (van der

Linden, in preparation).

The problem of designing a pool with item sets is solved by the following three-

1 9
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stage procedure:

1. First, a blueprint for a pool of items is designed using the integer

programming model in Equations 2-6 below ignoring the item set structure.

The model constrains the distributions of the items over their categorical

and quantitative attributes. The objective function minimizes a cost function

for writing the items.

2. Next, a blueprint for a pool of stimuli for the item sets is designed using the

same methodology as for the pool of items. The model now constrains the

distribution of the stimuli over their categorical and quantitative attributes

and the objective function minimizes a cost functiOn for writing the stimuli.

3. Finally, items are assigned to the stimuli to form item sets. The assignment

is done using a separate integer programming model formulated for this

task. The constraints in the model control the assignment both for the

numbers of items available in the various cells of the CxQ table and the

numbers required in the item. sets. The objective function is of the same

type as above; its specific form will be explained later in this paper.

The fact that these steps are taken separately should not come as a surprise. They only

serve to design an item pool with a set structure. Of course, if the design is realized, the

actual stimuli and items in the sets °are written simultaneously and in a coordinated

fashion.

Models for Item Pool Design

In this section the various models announced above will be explained. First, the

model for designing the pool of items is presented. Then the case of item sets is addressed

and the models for designing a pool of stimuli and assigning items to stimuli are

explained.

Pool of Items

The following notation is needed to present the model. Index f=1,...,F will be used

13
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to represent the individual test forms the item pool should support. Still, the symbols C

and Q will be used to represent the tables defined by the categorical and quantitative

attributes, respectively. As an example of a constraint on a quantitative attribute the

information function of test form f will be required to approach a set of target values

T f(0k), k=1,...,K, from above. Using this attribute for the model in Equation 1 implies a

three-dimensional table Q, with one dimension for each item parameter in (1). The

information on 0 in a response to an item in cell q Q will be denoted as I (0); this

quantity is calculated, for example, substituting the midpoints of the intervals of the item-

parameter values defining cell q of the table. The decision variables in the model are

integer variables nfccr These variables represent the number of items in cell (c,q) needed

in the pool to support form f. The complete pool is thus defined by the numbers E nfcci.
f=1

The cost function is still denoted as

The model is as follows:

minimize E E 9ccinfcci
f c q

subject to

E Ici(0k)nfcci Tf(0k), f=l ..... F, k=1,...,K,
c q

E E nfcq nfg, f=1,...,F, g=1,...,0,
CE V fg q

E nfcq nf, f=1 F,
c q

nfcci = 0,1,..., f=1 ..... F, cEC, qeQ.

(minimizing costs) (2)

(test information) (3)

(categorical constraints) (4)

(length of forms) (5)

(integer variables) (6)

The objective function in Equation 2 minimizes the sum of the item writing costs across

14
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all items in the F forms. For each form the constraints in Equation 3 require the

information function to be larger than the target values at Ok, k=1,...,K. The objective

function in Equation 2 guarantees that these bounds are approached from above. The

categorical constraints imposed on the forms are formulated in Equation 4. The sets Vfg,

f=1,...,F and g=1,...,0, are the sets of cells in C on which the constraints have to be

imposed. For example, in the test form in Table 1 the first constraint is imposed on the set

of cells consists only of cell (1,1), the second on the set of cells in Row 1, and the third

on the set of cells in Column 1. Lower bounds n fg are set only; the objective function in

Equation 2 guarantees that the constraints are satisfied as an equality at optimality. The

same happens to the constraints on the lengths of the forms in Equation 5.

Other quantitative constraints can be added to the model following the same logic

as in Equation 3. Unlike LP models for simultaneous assembly with decision variables for

the individual items, in the current model it is not necessary to prevent the same item

from being assigned to more than one form. Thus the large number of extra constraints

required to preclude item overlap (Boekkooi-Timminga, 1987; van der Linden & Adema,

1998) need not bother us here.

For smaller CxQ tables, the optimal values of the variables in the model can be

calculated using one of the available implementations of the branch-and-bound algorithm

for integer programming. For larger tables optimal values can always be obtained relaxing

the model and using the simplex algorithm. The simplex algorithm is capable of handling

problems with thousands of variables in a small amount of time (Wagner, 1978).

Fractional values in the solution can then be rounded upwardly; as already noted, it is

always prudent to have a few spare items in the pool.

Pool of Stimuli

Tables C' and Q' are now defined for the sets of categorical and quantitative

attributes used to describe the stimuli in the test forms the item pool has to support. Since

psychometric attributes for stimuli are rare, table Q is expected to be much smaller than
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Q. Item sets do often have aggregated statistical attributes, such as sums of p-values or

average bis. However, these aggregates belong to the set of items associated with a

stimulus--not to the stimulus itself. Constraints on such aggregated attributes are dealt with

in the item assignment model below.

The model is analogous to that in Equations 2-6. The cok function (peg- is now

defined for the distribution of stimuli in the previous item pool. Likewise, the bounds in

Equations 3-4 are derived from the specifications for the item sets in the various test

forms. As an example of a quantitative attribute for stimuli, word counts are used. Let

wp- be the number of words for.a stimulus in cell q and wf the target for the number of

words for a stimulus in form f. The constraints needed are:

E wq-nfeci wf, (word counts) (7)
c q

Again, because of minimization in Equation 2, the bounds in the constraints in Equation 7

are approximated from above and serve as targets for the number of words per stimulus.

The output from the model is an optimal array of frequencies nfc'q for form f.

The blueprint for the complete pool of stimuli is determined by the numbers E nfc'q.

Assigning Items to Stimuli

To introduce the item assignment model, index sf=1,...,Sf is defined to denote the

item sets in form f=1,...,F. Each of these sets is associated with one stimulus, that is, one

of the cells (c-,q-). The total number of stimuli associated with the cells satisfy the

optimal numbers nfc-cr from the model in the previous section. The association is

arbitrary and assumed to be made prior to the item assignment. For each set the attribute

values of its stimulus are thus assumed to be known; however, for notational convenience,

the dependence of sf on (c',q') will remain implicit in this paper.

In addition, integer decision variables zs are defined to denote the number of

items from cell (c,q) in the item table assigned to set sf. Finally, a cost function cpcqc-cy

16
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is defined on the Cartesian product of the tables CxQ and C'xQ'. This function reflects

the costs of writing an item with attributes (c,q) for a stimulus with attributes (c',q').

The item assignment model is as follows:

minimize IEEE (Pcqc-q'zst-cq
fsfc q

subject to

zst.c n , sr-1,...,Sf, f=1,...,F,
c,q

E E zsicq nap cEC, qEQ,
f s f

zsfcci = 0,1,..., sf=1,...,Sf, f=1,...,F, ceC, qEQ.

(minimizing costs) (8)

(# of items needed) (9)

(# of items available) (10)

(integer variables) (11)

The constraints in Equation 9 assign its items to item set sf whereas the constraints in

Equation 10 ensure that no more items are assigned from cell (c,g) than available in the

blueprint for the item pool.

If constraints on aggregated quantitative item attributes have to be imposed on

some of the item sets, the model has to be expanded. For example, if item set sf has to

(I)have an average p-value between lower and upper bounds p, and p(u), respectively, thesf
following two constraints should be added to the model:

(1)
E pcizsfcci Its cpaf , sf=1,...,Sf, f=1,...,F,

c q

(u)El pcizsm ns fps , sf=1,...,Sf, f=1,...,F.
c q

17
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Models for Item Pool Management

As already indicated, item pools are not static entities. In most testing programs,

tests are assembled from the pool and new items are pretested on a continuous basis.

Hence, two important tasks of item pool management are: (1) monitoring the

developments in the item pool; and (2) instructing item writers to write new items to

complete the pool.

The models in this paper can easily be adapted for use in item pool management.

The only thing needed is to correct the decision variables in the models for the numbers of

items and stimuli currently available in the pool. The principle is illustrated for the model

in Equations 2-6. Let Val be a constant representing the current number of items in cell

(c,q) in the pool and ri cq a new decision variable denoting the number of items to be

written for this cell. The only adaptation necessary is substituting cella, for the old

decision variables in the model.

If the current items in the pool reveal new patterns of correlation between

categorical and quantitative attributes, the cost functions (pal can be updated by defining

them on vcq rather than the frequencies xcq fOr the previous item pool, or perhaps on a

weighted combination of both. This practice is recommended, for example, if the item

writers form a categorical attribute in the definition of table QxC and new item writers

have been hired.

Empirical Example

The method in this paper was used to design a new item pool for the Law School

Admission Test (LSAT). The purpose of this study was only to illustrate the procedure.

For security reasons, the exact item attributes and stimulus in this study are not revealed.

The pool has to support three different sections in the test, labeled here as A, B

and C. The first two sections have items organized as sets with a common stimulus; the

last section consists of discrete items. The three sections in the test are assembled to meet

large sets of constraints on their composition dealing with such features as item

1 8
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(sub)types, item-set structures in the pool, types of stimuli, gender and minority orientation

of the stimuli, answers key distributions, word counts, and test information functions. As

the authors of the items could not be identified, author was not used as an attribute in the

analyses of the pool. The numbers of attributes for each section are given in Table 2.

[Insert Table 2 about here]

The item pool was designed to support ten regular forms of the LSAT, ten forms

with a target for the test information function shifted 0.6 to the left on the 0 continuum,

and ten with a target shifted 0.6 to the right. The (integer) decision variables in these

constraints represented the frequencies needed for the cells in the full attribute tables,

CxQ. The numbers of decision variables and constraints in the models for the item pool,

stimulus pool, and assignment of the items to the stimuli are given in the fourth column of

Table 2.

A previous pool of 5,316 items was available to define cost functions for the

models. The functions were defined as 9 (X cq)E x-1cq , with an arbitrary large value

substituted for empty cells in the table. The items in the pool were calibrated using the 3-

PL model in Equation 1. Before estimating the costs, the attribute tables were reduced in

size. Since the values of the items for the guessing parameter in the model, ci, did not

vary much, this parameter was left out as a dimension of the attributes table CxQ, using

its average value to calculate the information function values in the models. Also, the

values of the ai and bi parameters were grouped into 8 and 10 intervals, respectively,

using the midpoints of the intervals to calculate the information function values. Further,

attributes that did not show any correlation with the item parameter values were identified,

and the table was collapsed over these attributes. Finally, neighboring values of the same

attribute with approximately the same (conditional) distribution were grouped. The purpose

of all grouping and collapsing was to reduce the number of cells in the table and get more

stable estimates of the frequencies in the cost function. Cells that are collapsed in the

attribute tables received a value for the cost function based on their marginal frequencies.
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As the three sections in the LSAT have no overlap in items, three independent

models had to be solved. The numbers of constraints and decision variables in the integer-

programming models are given in Table 2. The three sets of test specifications the pool

was assumed to support involved no constraints on interdependent items between them.

Also, the objective functions in the models are sums of costs across these sets which are

minimal if the costs for each set are minimal. The models could therefore be solved

independently for.each set.

The best strategy to solve models of the size in the current application is through

the simplex algorithm for the relaxed version of the models, that is, with the integer

variables replaced by (nonnegative) real-valued variables, rounding the solutions upwardly.

The simplex algorithm as implemented in the Consolve module in the test assembly

software package ConTEST was used (Timminga, van der Linden & Schweitzer, 1996).

The solution times for all models was approximately 1 second of CPU time on a PC. No

rounding appeared to be necessary; the algorithm found a direct integer solution for all

variables. This result happened because the matrix of coefficients for the models appeared

to have a unimodular structure (for this property, see Nemhauser & Wolsey, 1988, chap.

11.3). This feature does not generalize automatically to other applications of the integer

programming models for item pool design in this paper. However, rounding the variables

upwardly is a simple but effective strategy that always works.

Concluding Remarks

The previous example simulated how the integer programming models in this paper

can be used to calculate blueprints for new item pools to support a testing program.

Although not illustrated in the example, only a minor correction to the decision variables

is necessary to use the models as tools for managing item pools in an ongoing program.

The same correction can be used to cope with changes in test specifications and/or

objective functions for the tests.

A case not dealt with in this paper is the one in which the tests assembled from the

2 0
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pool are allowed to have item overlap. If overlap is allowed, the number of possible tests

from a given pool goes up. Determining how many different tests are possible under this

condition involves a complicated combinatorial problem (Theunissen, 1996). If the overlap

is small, a wise strategy might be to just ignore this possibility, the result being an item

pool somewhat too large but allowing for all planned tests to be assembled. However, the

problem of how to design an item pool of minimal size to support tests for which large

overlap is allowed remains still to be solved.
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Table I

Distribution of items in the pool and constrained distribution

of items in a test form (case of two categorical attributes)

Fl F2 Fl F2

CI n11 n21 n.I CI ri 1

C2 n12 n22 n.2 C2 6

C3 n C3 r13 n23 n.3 13

ni. n2. n 8

r21

r22

r23

r2.

4

r.2

r.3

r..
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Table 2

Number of item attributes, constraints, and decision variables for the three

sections of the LSAT

Model #Attributes #Constraints #Decision Variables

Section A

Item Pool 5 70 1920

Stimulus Pool 4 1 8

Assignment 4 24

Section B

Item Pool 6 97 6144

Stimulus Pool 4 6 31

Assignment 10 12

Section C

Item Pool 5 65 11520

, Note. Cells with "*" are not applicable.
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