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Repeated Measures 2

Abstract

The present paper presents similarities and differences between the univariate and the

multivariate analysis of repeated measures designs. Both methods are illustrated by

means of an example. When the data are analyzed using the univariate approach and the

homogeneity assumption is violated, three correcting factors are presented. When the

data are analyzed using the multivariate approach, the homogeneity assumption is not

necessary. The paper also presents the effects on the Type I and/or Type II error rates of

violating or not violating the assumption of homogeneity of variance.
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Analyzing Repeated Measures Designs Using Univariate and

Multivariate Methods: A Primer

Researchers, in an effort to reduce error variance and systematic bias, typically

assign subjects randomly to the different treatments in the experiment (Stevens, 1996). If

each subject in the experiment is given only one treatment, the design is called a

completely randomized block design (also known as a between-subjects design).

However, if each subject is given two or more treatments, the design is called a repeated

measures design (also known as a within-subjects design). Since repeated measures

designs involve each subject being measured more than once on the same variable, such

designs require less subjects for a given study.

For example, suppose a researcher is investigating the effect of three different

sleeping aid pills. A between-subjects design would require three different groups of

individuals. Consequently, if, say, each group were to have 5 subjects in it, analyzing the

data using a between-subjects design would require 15 subjects. However, if the same

individual is allowed to participate in all the conditions of the study (i.e., the data are

created and analyzed using a within-subjects design), only 5 individuals would be

required. Thus, it follows that when subjects are scarce or observations are expensive to

obtain, repeated measures designs are more economical than a corresponding between-

subj ects design.

The purpose of the present paper is to discuss the similarities and differences

between the univariate and the multivariate analysis of repeated measures designs. To do

so, a hypothetical data set will be presented and analyzed using both methods.
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Advantages and Disadvantages

Advantages of Repeated Measures Designs

As stated by Keppel and Saufley (1980), " The within-subjects design has become

the typical design used to study such phenomena as learning, transfer of training, and

practice effects of all sorts" (p. 175). In a pretest-posttest design, for example, subjects

are observed at pretest, receive a treatment, and are then observed at posttest. Thus, the

researcher has two observations per subject in the study. However, if a retention test is

administered at a later date (e.g., one week later), then the researcher has three

observations on each subject. Another example might be when police officer trainees are

learning how to properly handcuff an individual. In this situation, the trainee is allowed to

perform the particular task several times. After each practice trial, the trainee's

performance is assessed. The researcher can then determine how trainees improve over

repeated trials.

In addition to being economical as regards the number of subjects required for a

given experiment, Neter, Kutner, Nachtsheim, and Wassarman (1996) note that

A principal advantage of repeated measures designs is that they

provide good precision for comparing treatments because all

sources of variability between subjects are excluded from the

experimental error. Only variation within the subjects enters the

experimental error, since any two treatments can be compared

directly for each subject. Thus, one may view the subjects as

serving as their own controls. (p. 1165)
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Since all variability due to individual differences has been excluded from the

experimental error term, repeated measures designs are "much more powerful than

completely randomized designs, where different subjects are randomly assigned to the

different treatments" (Stevens, 1996, p. 450). Another advantage of the within-subjects

designs is that, since the same subjects are being observed repeatedly, the researcher does

not have to repeat the instructions.

Disadvantages of Repeated Measures Designs

Repeated measures designs have several disadvantages, "namely, practice effects,

differential carryover effects, and the potential for violations of certain statistical

assumptions" (Keppel & Zedeck, 1989, p. 264). Practice effects occur when the subjects

change systematically during the course of the experiment. Such changes may involve

either a positive or a negative practice effect. A positive practice effect may show up as a

result of an improvement, on the part of the subject, on the task that has been measured.

On the other hand, a negative practice effect may show up due to fatigue or boredom. If

fatigue were causing the change, lengthening the rest period between successive tasks

may eliminate or minimize this problem. In the case where boredom is causing the

change, monetary incentives may be used to keep the subjects motivated through the

course of the experiment.

But as Keppel (1991) noted, "In most cases, however, researchers generally

assume that practice effects will be present and that they can not be eliminated

completely" (p. 335). A common solution to this problem is to introduce

counterbalancing. Counterbalancing is a way of ordering treatments so that each

treatment is administered an equal number of times first, second, third, and so on, in
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particular sequences of conditions given to different subjects (Keppel & Zedeck, 1989).

When using counterbalancing, two situations may arise: (a) there is an even number of

levels of the treatment conditions; or (b) there is an odd number of levels of the treatment

conditions.

When the number of levels of the treatment conditions, k, is an even number and

the number of subjects, n, is some multiple of it, Girden (1992) provided the following

guideline.

1, 2, k, 3, k-1, 4, k-2, etc.

For example, if there were two levels of treatments (k=2) and two subjects (n=2), the

order of presentation would look schematically like Table 1. That is, subject one would

be administered treatment A followed by treatment B. Subject two, however, would be

administered treatment B followed by treatment A. In the case of four levels of treatment

and four subjects, the order of presentation would look schematically like Table 2. That

is, subject one would be administered the treatments in the following order. Treatment A

would be first, treatment B would be second, treatment D would be third, and treatment C

would be fourth. The order of presentation for subject two would be the following.

Treatment B first, treatment C second, treatment A third, and treatment D fourth. The

order of presentation for subjects three and four may be interpreted similarly from Table

2.

Insert Tables 1 and 2 About Here

When there are more subjects than levels of treatment, some of the orders of presentation

will be repeated. For example, suppose there were eight subjects and four levels of
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presentations in a particular study. Then, the first and the fifth subject would be

administered the same first order of presentation. Similarly, the second and sixth subjects

would be administered the same second order of presentation, etc. This situation is

presented schematically in Table 3.

Insert Table 3 About Here

Thus, it follows that each treatment precedes each of the other treatments exactly

once. That is, A precedes each of B, C, and D exactly once; B precedes each of A, C, and

D exactly once; and, D precedes each of A, B, and C exactly once. In other words, each

subject is given each treatment once and each treatment appears once in each level. This

procedure helps to eliminate "the confounding that is surely present when only one

sequence is used by counterbalancing the effect of practice over the treatment conditions

equally" (Keppel & Saufley, 1980, p. 192). Continuing with the example of four levels of

treatment, the first order of presentation would be 1, 2, 4, 3. The second order of

presentation is derived by adding 1 to each of the numbers of the preceding order: 2

(1+1), 3 (2 +1), 1 (4+1 does not apply), 4 (3+1). This procedure would be continued until

all the orders of presentation have been completed. Table 2 presents the completed order

of presentation of the levels for the example with four levels and four treatment

conditions.

When there is an odd number of levels of the treatment conditions, the first order

of presentation is derived just as before. However, reversing the order of the first order

and then repeating the procedure derives the remaining orders of presentation. For

example, if five levels of treatment were to be administered, the first order of presentation
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would be 1, 2, 5, 3, 4. As mentioned before, the second order of presentation would be 4,

3, 5, 2, 1 (i.e., simply reverse the first order of presentation). The third order of

presentation would be derived, again, by adding 1 to each number in the preceding order.

Thus, the third order of presentation would be 5 (4+1), 4 (3+1), 1 (5+1), 3 (2+1), 2 (1+1).

Table 4 presents the completed order of presentation of the levels for five levels with five

treatment conditions.

Insert Table 4 About Here

As stated by Maxwell and Delaney (1990), "Differential carryover occurs when

the carryover effect of treatment condition 1 onto treatment condition 2 is different from

the carryover effect of treatment condition 2 onto treatment condition 1" (p. 482). A

common solution to this problem is to provide sufficient time between treatments so that

the preceding treatment condition may dissipate completely from the subject's system.

Unfortunately, unlike practice effects, differential carryover effects cannot be neutralized

with counterbalancing (Keppel & Zedeck, 1989).

Assumptions for Repeated Measures Designs

Single-case repeated measures designs have the following three assumptions, as

outlined by Stevens (1996): (a) independence of the observations; (b) multivariate

normality; and (c) sphericity (sometimes called circularity). Of the three assumptions,

sphericity is not necessary when the data are analyzed using the multivariate approach.

However, just as violating the assumption for the observations is very serious for

univariate analysis of variance (ANOVA) and for multivariate analysis of variance
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(MANOVA), so it is here. Also, just as ANOVA and MANOVA are generally robust to

violations of the multivariate normality, so that also applies here (Stevens, 1996).

The sphericity assumption is met when the variances of the differences of all

treatment combinations are equal (i.e., the variance of the differences of treatments A and

B equals the variance of the differences of treatments B and C, and so on). The variance

of differences between two treatments is defined by

a2A-B = a2A Cr2B 2aAB

where a2A is the variance of a set of scores under treatment A, a's is the variance of

another set of scores under treatment B, and o-AB is the covariance of the two sets of

scores. To illustrate this concept, suppose the set of scores in Table 5 have been obtained.

Insert Table 5 About Here

Once all the variances and covariances have been calculated, such values may be

used to compute the variances of the differences of all treatments. These latter values

may be used to determine if the assumption of sphericity has been met. To do so, the

definition for the variance of the differences is applied to such values. For example, the

variance of the difference between treatment A and treatment B would be

a2A-B = a2A a2B 2c5A..

Substituting the values for a2A a2B and (Ls,

a2A-B = 2.917 + 2.917 - 2(-2.08333) = 10.

1 0
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However, since all the variances and covariances of the different treatment levels are the

same, as reported in Table 6, all the variances of the differences here would be equal to

10. Thus, for this data set, the sphericity assumption is met.

Insert Table 6 About Here

A second approach to test the sphericity of a data set is to examine the matrix of

orthonormal contrasts (Girden, 1992; Stevens, 1996). That is, sphericity is met if

CTEC=02I

is true. Here, C is a matrix of (k-1) orthogonal contrasts, CT is the transpose of C, E is the

variance-covariance matrix and I is an identity matrix with e on the main diagonal and

zeros elsewhere.

The first step in determining if the assumption of sphericity is met, is to create a

set of (k-1) orthogonal contrasts. For the hypothetical data set in Table 5, a set of

orthogonal contrasts is presented in Table 7. Contrast one compares the means for

Treatments A and B (i.e., are there any differences between these two means?). Contrast

two compares the combined means of treatments A and B with the mean of treatment C.

Finally, contrast three compares the combined means of treatments A, B, and C with the

mean of treatment D. Since the contrasts have means of zero and the sum of the cross-

products of any two contrasts is zero, the contrasts are said to be orthogonal.

Insert Table 7 About Here

To construct matrix C in the above-mentioned formula, the contrasts are first

normalized by multiplying each coefficient of a contrast by a value so that the sum of the
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squared transformed coefficients equals one. This is accomplished by first squaring each

coefficient in the contrast, then summing over the new squared coefficients, and finally,

dividing each coefficient by the square root of the result. For example, squaring the

coefficients of contrast one and summing over the new squared coefficients, (1)2 + (-1)2 =

2. Then, each coefficient in contrast one would be normalized by dividing each

coefficient by the square root of 2. Similarly, squaring each coefficient in contrast three

.and summing over the new squared coefficients, (1)2+ (i)2 (1)2 + 2 12. Thus,

each coefficient in contrast three would be normalized by dividing each coefficient by the

square root of 12. These new coefficients are the coefficients of matrix C. For simplicity,

such coefficients are presented in decimal form in Table 8. The transpose of matrix C is

found by interchanging the rows and columns of matrix C. Next,

CTE C = o2 I

is computed to determine if the sphericity assumption is met (Girden, 1992).

Insert Table 8 About Here

A third, "more direct way of determining variance of the difference is to calculate

the difference between scores of two treatment levels (e.g. A-B) and determine the

variance of these differences" (Girden, 1992, pp. 16-17). Using the data set in Table 5,

the variance of the difference between treatment A and treatment B is 10. Similarly, all

other variances of differences between any two treatments would be calculated. Such

variances are assumed to be equal.
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Correcting Violations to the Sphericity Assumption

When the sphericity assumption is not met, the actual level of statistical

significance of the conventional (unadjusted) univariate F test on the repeated measures

factor will exceed the nominal level (Barcikowski & Robey, 1984). That is, the Type I

error rate will no longer be the preset a but a larger value. For example, instead of

rejecting at the 0.05 level, perhaps the null hypothesis is being rejected at the 0.10 level.

A common solution to this problem is to adjust the degrees of freedom by the correction

factor epsilon (Girden 1992; Huynh & Feldt, 1976; Stevens, 1996). As O'Brien and

Kaiser (1985) explained, "Epsilon measures nonsphericity: If epsilon equals one in the

population, then sphericity holds and the traditional sampling distribution is designated.

Reductions in epsilon indicate increasing degrees of nonsphericity and bring about

suitable increases to the critical values for F' (p. 319).

Geisser and Greenhouse (1958) showed that the value of the epsilon is greater

than or equal to 1/(k-1), where k is the number of treatments in the design. Geisser and

Greenhouse also suggested evaluating the F-ratio at 1 and (n-1) degrees of freedom

instead of evaluating the F-ratio at (k-1) and (k-1)(n-1) degrees of freedom. As Stevens

(1996) explained, "Doing this makes the test very conservative, since adjustment is made

for the worst possible case, and we don't recommend it" (p. 460). This procedure is

conservative because smaller degrees of freedom correspond to a larger critical F value.

Another practical method for estimating the epsilon is epsilon hat. Such epsilon

hat adjustment, although usually less severe than the Geisser and Greenhouse adjustment,

is extremely tedious if done by hand. Maxwell and Delaney (1990) suggest using the

following formula for computing epsilon hat:

13
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Ejk = an entry in the jth row and kth column of the sample covariance matrix,

El; = mean of variances along the diagonal in the same covariance matrix,

A.= mean of the entries in the jth row of the same covariance matrix,

E..= mean of all entries in the same covariance matrix,

a = number of treatments.

However, since SAS and SPSS-X calculate this epsilon hat, the researcher need not be

concerned with the computation's complexity. The researcher may, however, want to

conceptually understand the theory behind the formula. Once epsilon hat is calculated,

the value may be used to calculate yet another estimator for epsilon. This estimator,

epsilon tilde, was introduced by Huynh and Feldt in 1976. They suggest using the

following formula for computing epsilon tilde:

where

n(k -1)e 2
(k 1)(n -1- (k

n = number of subjects in the study,

k = number of treatment levels,

e = defined as above.

1 4
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Again, since SAS and SPSS-X calculate this epsilon tilde, the researcher may

choose to concentrate on conceptually understanding the formula rather than

concentrating on the calculations. Moreover, it can be shown that for any given n and k,

epsilon tilde is greater than or equal to epsilon hat with the equality holding when epsilon

hat equals 1/(k-1) (Huyhn & Feldt, 1976). Mso, epsilon hat tends to underestimate

epsilon, while epsilon tilde tends to overestimate epsilon. Consequently, the critical F

value for epsilon tilde will typically be smaller than the critical F value for epsilon

hat, thus leading to more rejections of the null hypothesis (Maxwell & Delaney, 1990).

Since the different epsilons will all be estimated by using a computer package, the

researcher may choose to concentrate on deciding which epsilon to use. To do so, the

researcher may follow the guidelines provided by Girden (1992, p. 21). These guidelines

are:

1. If e is greater than .75, adjust the degrees of freedom by e;

2. If e is less than .75, adjust the degrees of freedom by the more conservative

e; and

3. If nothing is known about e, adjust the degrees of freedom by the conservative

e.

Using SPSS on the data in Table 4, the Geisser and Greenhouse epsilon, epsilon hat, was

found to be 0.603. Similarly, the Huynh and Feldt epsilon, epsilon tilde, and the lower

bound epsilon were calculated to be 1.00 and 0.333, respectively. Thus, following

Girden's guidelines, the Geisser and Greenhouse epsilon, epsilon hat, would be used to

adjust the degrees of freedom. Therefore, the adjusted degrees of freedom would be

obtained by multiplying the original degrees of freedom by 0.603.

15
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Example

The remainder of the paper will show how to do a single-case repeated measures

analysis of variance. In doing so, the univariate as well as the multivariate approaches

will be illustrated by means of the following example: Suppose a high school Algebra I

teacher is interested in the effect of practice on the ability to solve algebra problems.

First, four subjects, students, are administered an algebra test. Their scores are recorded

as the number of problems solved correctly out of 20 problems. Then they are provided

with practice on solving algebra problems. Finally, they are observed at posttest.

However, if the teacher wanted to know whether the effects of practice persisted, the

subjects could be tested again after three days and again one week following the practice

session. The scores for this example are presented in Table 9.

Univariate Repeated Measures Analysis for Practice Effects Data

Analysis of variance (ANOVA) begins with the partitioning of the total variability

in the experiment into two separate components, between treatments variability and

within treatments variability. While this procedure is the same whether the ANOVA is

for independent measures or for repeated measures designs, the two designs differ in the

components of the between treatments variability. Figures 1 and 2 present the partitioning

of the total variation for independent measures and for repeated measures, respectively.

Insert Figures 1 and 2 About Here

Notice that the independent measures design contains three sources of variability

that contribute to between treatments variability: treatment effects, individual differences,

and experimental error. On the other hand, because repeated measures designs use the

16
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same subjects in every treatment, the variability between the treatments cannot be due to

individual differences. Thus, there are only two sources of variability that contribute to

between treatments variability: treatment effects and experimental error. It will therefore

be this between treatments variability that will be used as the numerator of the F-ratio on

subsequent calculations.

Because the subjects may come into the experiment with different levels of

knowledge about algebra, these initial differences between the subjects may account for

the variability within treatments. Another source of variability that contributes to within

treatments variability is experimental error. This source of variability is introduced every

time the researcher makes a measurement of the dependent variable. Notice, however,

that there is no treatments effect contribution to within treatments variability since the set

of scores are within the same treatment. For example, the four scores within the posttest

may vary from each other but not because of treatment effect. Instead, such scores vary

due to the individual differences and experimental error within that particular test.

Computing the Sums of Squares

The first sum of squares to be computed will be the total sum of squares

variability (SOStota0. Once computed, this SOStotal will be partitioned into

SOSbetween treatments and SOSwithin treatments. Thus, symbolically,

SOStotal = SOSbetween treatments 4- SOSwithin treatments

However, because the subjects in repeated measures are being measured repeatedly, the

variability due to individual differences (SOSbetween subjects) needs to be measured.

Consequently, the within treatments variability must be partitioned into individual

differences and experimental error. Thus, symbolically,

17
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SOSwithin treatments = SOSbetween subjects + SOSerror

Consequently,

SOStotai = SOSbefween treatments + SOSbetween subjects + SOSerror

The total variability in the experiment is found by

G2sostow =EX

Here EX2 is the sum of all squared scores, G is the sum of all the scores, and N is the

number of scores in the entire experiment. Thus, for the data in Table 9,

SOStotal =2576
180'
16

=2576 2025
=551

Next, the between treatment variability will be found using

T 2

SOSbetween treatments =E
G2

n N

Here T is the test total for each particular test, n is the nurnber of subjects tested in each

test administration, and G and N are defined as before. Thus, using the data in Table 9,

11 712 1802

SOSbetween treatments = +
4 4 16

=2541 2025
=516

The within treatments variability is determined by adding the variability that is

due to individual differences (SOSbetween subjects) and the experimental error SOSerrOr. Thus,

SOSwithin treatmens = SOSbetween subjects + SOSerror

18
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Therefore, using the data in Table 9,

SOSbetween subjects = 4(12 11.25 + ...+ 11.25 11.25)2

= 6.5

Once the SOStotaj, SOSbetween treatments, and SOSbetween subjects have been calculated,

SOSerror may be found by using

SOStotal = SOSbetween treatments + SOSbetween subjects + SOSerror

and solving for SOSerror.

Thus,

SOSerror = 551 516 6.5

= 28.5

Partitioning the Degrees of Freedom

Like the total variability, the total degrees of freedom (41) may be partitioned into

two components: between treatments df and within treatments df However, just as in the

case of within treatments variability, within treatments df need to be partitioned into

between subjects c#*and experimental error 4.. Thus, symbolically,

But,

dftotal = afbetween treatments + dfwithin treatments

= ifbetween treatments + CYbetween subjects + dferrok

dftotai = N 1

Thus, for the data in Table 9,

19
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dftotat = 16 1

= 15

Similarly,

dfwithin treatments 'N k

= 16 4

= 12

Dfbetween subjects = 11 1

= 4 1

= 3

But, using

dfwithin treatments = 4fbetween subjects + dferror

4ferror = dfwithin treatments dfbetween subjects

Substituting,

dferror = 12 3

= 9

Lastly,

dfbetween treatments = k 1

= 4 1

= 3

Computing the Mean Squares

The F-ratio is a ratio of two variances. Such variances, also called mean squares (MS),

are computed by dividing a sum of squares by its corresponding df The MS in the

2 0
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numerator of the F-ratio is the between treatments MS. Such MSbehveen treatments is found by

applying the following formula:

SOSbetween freatments
MSbetween treatment.,

`If between treatments

The denominator of the F-ratio is MSerror and is found by applying the following formula:

MS,,Tor

Therefore,

SOSe,or

dferror

MSbetweenF treatments
=

MSerror

A careful examination of the F-ratio reveals that

F =Treatment
effect + error

error

Thus, when there is no treatment effect, the value of the F-ratio should be one.

Conversely, if there is a treatment effect, the F-ratio will be larger than one.

For this example,

F 17.2

3.17

=54.26

Table 10 presents the complete summary table for the univariate-repeated

measures ANOVA. The critical value for F with 3 and 9 degrees of freedom is 3.86.

21
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Notice that the calculated value of the F statistic, 54.26, is much larger than the expected

value of one. Thus, there is a treatment effect. As a matter of fact, 93.65% of the total

variation is due to the treatment, practice on solving algebra problems. Thus, the

researcher may conclude that, on the average, the subjects benefited from the practice

provided on solving algebra problems.

Insert Table 10 About Here

Multivariate Approach

A second solution to the problem arising when the sphericity assumption has been

violated is to use multivariate analysis of variance (MANOVA) methods; as Girden

(1982) noted, "sphericity is not an assumption here" (p. 23). However, MANOVA

methods assume multivariate normality. Nonetheless, violations of the multivariate

normality assumptions are generally regarded as less serious than violations of the

sphericity assumption (Maxwell & Delaney, 1990).

The MANOVA analysis is done not on the original scores but on new

latent/synthetic variables constructed from the measured variables. These new variables

are obtained by subtracting adjacent repeated measures (e.g., Pretest - Posttest, Posttest -

3 Days After, 3 Days After - 1 Week After). These new variables are then used to

compute the F statistic. Table 11 presents these new variables.

Insert Table 11 About Here
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Once all the means, variances, and covariances have been calculated, Hotelling's

T2 may be used to compute the F statistic.

T 2 nyxlyT

where n is the number of subjects in the study, y is the row vector of means, K1 is the

inverse of the variance-covariance matrix, and ir is the transpose of y (i.e. the column

vector of means). Therefore, using the data in Tables 10 and 11

T =4[-7 5
10

2.5] 1.67[
2.33

1.67
3.33

3.67

2.33

3.67
4.3

It;

_-2.5

= 1052.12

However, T2 may be converted to Fby means of

F = nk +1
T2

(n 1)(k 1)

with (k - 1) and (n - k + 1) degrees of freedom. Thus,

F= 4 4 + 1
(1052.12)

(3)(3)

=116.90

with 3 and 3 degrees of freedom. The critical value for F with 3 and 3 degrees of freedom

is 9.28. Thus, again, the results are statistically significant, if that means anything to

anyone. Consequently, the researcher may conclude that, on the average, the subjects

benefited from the practice provided on solving algebra problems.

2 3



Repeated Measures 23

Should the Univariate or the Multivariate Approach be Used?

When the sphericity assumption has been violated, the actual level of statistical

significance of the unadjusted univariate F test will no longer be the preset a. In other

words, instead of committing a Type I error 5% of the times, such an error might be

committed 10 or 15% of the time. Thus, the researcher faces two options: adjust the

degrees of freedom or use the multivariate approach. However, even if the researcher

opts for adjusting the degrees of freedom, the obtained results are only approximate. On

the other hand, when the multivariate normality assumption has been met, the actual a

level of the multivariate approach is guaranteed mathematically to be equal to the preset

a level. Thus, when the researcher's concern is the probability of falsely rejecting the

null hypothesis, the multivariate approach is suggested (Maxwell & Delaney, 1990).

When the sphericity criterion holds, the univariate test is more powerful than the

multivariate test (Maxwell & Delaney, 1990). However, "sphericity almost always is

violated"(Girden, 1992, p. 26). When sphericity has been violated, neither test exceeds

the other in terms of power. However, "for moderate sample sizes, the multivariate test

ranges from somewhat less powerful to much more powerful than the mixed-model

test"(Maxwell & Delaney, 1990, p. 605). Thus, it follows that when n. the number of

subjects in the study. exceeds lc. the number of levels of the repeated factor, by a few, the

multivariate test is more powerful than the univariate test.

This paper presented how to analyze repeated measures designs using the

univariate as well as the multivariate approach. Each design has its own assumptions to

meet. However, the sphericity assumption of the univariate approach is almost always

violated. On the other hand, even when the normality assumption of the multivariate

4 4
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approach is violated, such violations are generally regarded as less serious than violations

of the sphericity assumption. Therefore, when the researcher's concern is committing a

Type I or a Type II error and several assumptions hold, the multivariate approach is

suggested.
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Table 1

Example of counterbalancing for two subjects

Subject

Order of Treatments

1 2

1

2

A

A

Table 2

Example of Counterbalancing for four subjects

Order of Treatments

Subject 1 2 3 4

1 A BD C

2 B C A D

3 C DB A

4 D AC B

28
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Table 3

Example of Counterbalancing for eight subjects

Order of Treatments

Subj ect 1 2 3 4

1 AB D C

2 B C AD
3 CDB A

4 D A CB
5 AB DC
6 B C AD
7 CDB A

8 D A CB

2 9
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Table 4

Example of Counterbalancing for five subjects

Order of Treatments

Subject 1 2 3 4 5

1 1 2 5 3 4

2 4 3 5 2 1

3 5 4 1 3 2

4 1 5 2 4 3

5 2 1 3 5 4

Table 5

Hypothetical data set to Illustrate Sphericity

Repeated Measures 29

Subject

Order of Treatments

A B C D

1 1 12 15 20

2 2 10 17 17

3 3 8 14 16

4 5 9 13 18

3 0
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Table 6

Variance-Covariance Matrix

Order of Treatments

Subject A B C D

1 2.917 -2.08333 -2.08333 -2.08333

2 -2.08333 2.917 -2.08333 -2.08333

3 -2.08333 -2.08333 2.917 -2.08333

4 -2.08333 -2.08333 -2.08333 2.917

Table 7

Orthogonal Contrasts for Table 3 data

Contrasts

Treatment C1 C2 C3

A 1 1 1

B -1 1 1

C 0 -2 1

D 0 0 -3

31
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Table 8

Orthonormal Matrix C

Treatment

Contrasts

A 0.707 0.408 0.289

-0.707 0.408 0.289

0 -0.816 0.289

0 0 -0.866

Table 9

Number of Correct Problems out of 20

Subject

Test Session

Pretest Posttest 3 Day After 1 Week After

1 1 12 15 20

2 2 10 17 17

3 3 8 14 16

4 5 9 13 18

3 2
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Table 10

Summary of ANOVA for Repeated Measures on a Single Factor

Source SS df MS F Eta2

Subjects 6.5 3 2.17

Treatments 516 3 172 54.26

Residual 28.5 9 3.17

Total 551 15

Table 11

Differences Between Adjacent Repeated Measures

Subject Pretest-Posttest Posttest-3 Days After 3 Days After- 1 Week After

1 -11 -3 -5

2 -8 -7 0

3 -5 -6 -2

4 -4 -4 -3

3 3
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Figure 1. Partitioning of variance for an independent measures design

Total Variability

Between treatments variability

Treatment effects
Individual differences
Experimental error

3 4

Within treatments variability

Individual differences
Experimental error



Figure 2. Partitioning of variance for a repeated measures design

Total variability

Between treatments variability

Treatment effects
Experimental error
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Within treatments variability

Individual differences
Experimental error/ \

Between subjects variability

Individual differences

35

Error variability

Experimental error
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