
DOCUMENT RESUME

ED 425 723 IR 019 211

AUTHOR Marcus, Robert L.; Robertson, Douglass
TITLE Web Based Parallel Programming Workshop for Undergraduate

Education.
PUB DATE 1998-00-00
NOTE 11p.; In: Association of Small Computer Users in Education:

Proceedings of the ASCUE Summer Conference (31st, North
Myrtle Beach, SC, June 7-11, 1998) ; see IR 019 201.

PUB TYPE Reports Descriptive (141) Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Algorithms; Computer Assisted Instruction; *Computer Science

Education; Computer System Design; Higher Education;
Instructional Materials; *Material Development;
*Programming; Programming Languages; Undergraduate Study;
*Workshops; *World Wide Web

IDENTIFIERS Central State University OH; Course Development; Department
of Defense; FORTRAN Programming Language; *High Performance
Computing; *Parallel Distributed Processing; Web Sites

ABSTRACT
Central State University (Ohio), under a contract with

Nichols Research Corporation, has developed a World Wide web based workshop
on high performance computing entitled "IBN SP2 Parallel Programming
Workshop." The research is part of the DoD (Department of Defense) High
Performance Computing Modernization Program. The research activities included
developing techniques for converting classroom materials to Web presentations
and algorithms in parallel programming techniques. Traditional classroom
materials were prepared for Web presentations using the Accelerated Web Page
System in the Scientific Visualization Center which used an optical character
reader to scan printed material, and the Omnipage-Pro toolkit to produce
HTML. The Internet Assistant software under Microsoft Office 97 was used for
converting Microsoft Word documents to Web page files. The workshop material
presents a series of sample programs on parallel programming using FORTRAN
90. It discusses topics on process synchronization, deadlock, data
distribution, and load balancing. The workshop is designed for entrant level
parallel programmers to make it suitable for undergraduate instructions and
DoD applications. Basic algorithms on sorting, searching, statistical
computations, numerical methods and linear systems are presented. The
workshop is hosted on the Web server at Central State University and Wright
Patterson Air Force Base, Dayton, Ohio. The workshop was successfully field
tested on undergraduate students at Central State University. (Author/AEF)

**

Reproductions supplied by EDRS are the best that can be made
from the original document.

**

1998 ASCUE Proceedings

Web Based Parallel Programming Workshop for Undergraduate Education

Mr. Robert L. Marcus, Computer Science
Mr. Douglass Robertson, Scientific Visualization Center

Central State University
Wilberforce, Ohio 45384

Abstract

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

O This document has been reproduced as
received from the person or organization
originating it.

O Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Central State University has developed a web based workshop on high performance computing under
a contract with Nichols Research Corporation (NRC) entitled "IEN SP2 Parallel Programming
Workshop." The research is part of the DoD High Performance Computing Modernization Program
(HPCMP). The research activities included developing techniques for converting classroom
materials to web presentations, and algorithms in parallel programming techniques. Traditional
classroom materials were prepared for web presentations using the Accelerated Web Page System
in the Scientific Visualization Center which used an optical character reader to scan printed material
and the Omnipage-Pro toolkit to produce HTML. The Internet Assistant software under MSOffice
97 was used for converting MS Word documents to web page files. The workshop material presents
a series of sample programs on parallel programming using FORTRAN 90. It discusses topics on
process synchronization, deadlock, data distribution, and load balancing. The workshop is designed
for entrant level parallel programmers to make it suitable for undergraduate instructions and DoD
applications. Basic algorithms on sorting, searching, statistical computations, numerical methods
and linear systems are presented. The workshop is hosted on the web server at Central State
University and the web server at Wright Patterson Air Force Base (WPAFB), Dayton, Ohio. The
workshop was successfully field tested on undergraduate students at Central State University.

Introduction

Under the NRC contract Central State University was charged with developing web based
education/training programs tailored for DoD high performance computing (HPC) users, other
academic institutions and students. As such, Central State University developed the "113M SP2
Parallel Programming Workshop." The programs were developed on a 128 node IBM SP2 system
under a classroom grant from the Ohio Supercomputer Center (OSC). They were rehosted on the
IBM SP2 system at the ASC/MSRC at WPAFB. The web version of the workshop is installed on

the web server at CSU and WPAFB.

The workshop was designed for use in undergraduate education, or for entrant level HPC DoD

programmers. Algorithms were selected from data structures, statistics, numerical methods, and
linear systems. Consequently, the workshop is appropriate for (science and/or engineering) students
at the sophomore level or above. Workshop pre-requisites are:

FORTRAN 90 Programming
An Introduction to UNIX Shell Scripts

The current versions of the programs in the workshop use task communication and synchronization
constructs in the Message Passing Library (MPL). Conversions to MPI (an industry standard) is
underway.

2

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

C.P. Singer

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

93

1998 ASCUE Proceedings

Accelerated Web Page Development System

The Center for Scientific Visualization developed the techno-scan system to reduce the amount of
time needed to develop a web page. Some faculty in the department used Microsoft's Internet
Assistant to develop web pages, but the quality of the HTML was not sufficient. The techno-system
also reduced the amount of time to input graphics by using WYSIWYG interface. This rapid system
relies heavily on OCR (Optical Character Recognition) technology and macros for its hard copy to
HTML manipulation. Considerations are being given to using web tools such as Front Page and Page
Mil for developing a web site since most faculty now, have suitable computing platforms for
preparing text and graphical material for the web electronically.

Parallel Programming Design Issues

Three paradigms were emphasized:
apply Software Engineering principles using a modular design
use message passing only where necessary
give preference to group communication constructs

The fiist design paradigm is to apply traditional software engineering principles to develop programs
with a modular design using functions and subroutines to separate communications from parallel
computations. This facilitates optimizing the program to minimize time for communications, and
maximize the time for parallel computations. Program designed to run in a distributed memory
parallel environment, such as the IBM SP2, usually have three basic components that perform the
following tasks:

distribution of data using message passing
execute local algorithms on nodes in the partition
collect data from remote nodes using message passing

In the workshop programs, these components were named:
distribute
node_application
collect

The term application is replaced by the name of the given application for the sample program (see
the structure chart for each sample program). For example, the program mp_gaussm.f has a
subroutine named node_gauss which performs the Gaussian elimination algorithm on a partition (or
group) of distributed nodes (or tasks). See the structure chart and data-flow diagram below.

The second design paradigm is to use one of the following data distribution methods, if the
application design permits, as alternatives to message passing:

loop parallelization, or
parallel reads

These two methods will provide improved speedup of parallel processing over the use of message
passing. Several workshop programs demonstrated that technique (the names of the programs ends
with "lp.f'). In other applications, collecting data may be inherent in the algorithm as demonstrated

94

1998 ASCUE Proceedings

by the sorting example mp_sort.f. It uses a sort-merge algorithm. The merging process is designed
so that the final merge of data occurs on taskO, the master/control node, and there is no need for a
distinct component to collect results.

The third design paradigm is to use group communication constructs which simplifies program
structure, improves its readability, enhances its maintainability. However, point-to-point
communication constructs may be used to design tailored communication algorithms that are more
efficient for a given application. Types of group message passing constructs are:

point-to-group
grout-to-point
grout-to-group.

Figures and Diagrams:
Each program in the workshop included figures as the ones shown below for the program
mp_gaussm.f.

Topic:
Program:
Purpose:

Constructs:

Description:

Scalability:

Distributing a two dimensional matrix of data
mp_gaussm.f
Solves an NxN linear system using a matrix distribution
for the data and a Gauss-Jordan pivoting method.
mp_bcast --broadcasting
mp_bsend -- blocking send
mp_brecv -- blocking receive
mp_bcast -- broadcast to group
This program distributes an NxN linear system of data to
several tasks using a whole matrix distribution. The
Gauss-Jordan pivoting method is used to pivot the system
(a variation of matrix diagonalization) in parallel, leaving
the solutions in column N+1 on each task. The solutions
are passed to taskO, put in standard order and then printed.
The size of the linear system was 400x400.
YES, limited
The maximum real time decreased for two tasks and
increased when using three and four tasks.

95

4

1998 ASCUE Proceedings

Documentation Template: mp_gaussm.f

mp_gaussm.f

Get_data

user

mp_gauss Display_data

distribute node_gauss

Structure Chart for mp_gaussm.f

collect

96

1998 ASCUE Proceedings

,1

ll II

11, 111

400 x 400

Matrix Distribution Algorithm

distribut

100 X 400

Node 0

Node 0

111111111111111,11IIIIIII,111111111

100 X 400

Node 1

100 X 400

Node 2

100 X 400

Node 3

Data flow diagram for mp_gaussmi

1

Node 0

97

1998 ASCUE Proceedings

Twelve Basic MPL Constructs

All workshop programs were implemented using commands from the following list:

1. Parallel environment commands:
MP_ENVIRON, Returns the number of tasks in the partition and the caller's task id.
MP_TASK_QUERY, Returns information about system variables and constants.

2. Point-to-point non-blocking message passing:
MP_RECV, Posts a receive buffer for a message and returns without waiting for the message

arrival.
MP_SEND, Identifies a message to be sent and returns without waiting for the send to

complete.
MP_STATUS, Returns status of a non-blocking send or receive.
MP_WAIT, Waits until a non-blocking send or receive has completed.

3. Group message passing:
MP_BCAST, Distributes a message throughout a group.
MP_GATHER - Concatenates a distinct message from each task to create a single message

on task dest.
MP_SCATTER, Distributes distinct messages to each task in the group.

4. Point-to-point blocking message passing:
MP_BRECV, Receives a message and waits until the requested data arrives.
MP_BSEND, Sends a message and waits until the ouput buffer can be reused.

5. Define a group within a partition
MP_GROUP, Explicitly defines a task group.

Workshop Chapters

The following is a listing of the workshop chapters.

1.0 Introduction
2.0 Parallel Programming Design
3.0 Program Execution
4.0 Topics in Parallel Programming

Communications
Synchronization
Deadlock
Cache Efficiencies

5.0 Point-to-Point Message Passing
5.1 Sample Program mp_maxl.f
6.0 Point-to-Group and Group-to-Point Message Passing
6.1 Sample Program mp_max21

6.2 Sample Program mp_stats.f
Statistical Computations: Maximum, total, average, average deviation, standard
deviation, and average square

7.0 Loop Parallelization

98

7

1998 ASCUE Proceedings

7.1 Sample Program mp_statslp.f
7.2 Sample Program mp_integral.f
8.0 Implementation of a "Ureka" Capability
8.1 Sample Program mp_find.f
9.0 Group Communication within a Partition
9.1 Sample Program mp_sort.f
10.0 Distributing Columns of a Two Dimensional Matrix
10.1 Sample Program mp_gaussc.f
11.0 Distributing a Two Dimensional Matrix
11.1 Sample Program mp_gaussm.f
12.0 Loop Parallelization and Matrix Distribution
13.1 Sample Program mp_gausslpf
13.0 Distributing a Matrix Using Parallel Reads
13.1 Sample Program mp_gausspr.f
APPENDlX: MPL Commands Man Pages

Chapter Descriptions

The first four chapters presented important background information on parallel programming. The
other chapters presented sample programs on the topics indicated. Chapter 4 presented some
introductory examples to demonstrate how programs are executed in a distributed parallel
environment.

Chapters 5 presented the program, mp_max11, which computed the maximum value of an array of
400,003 elements. Only point-to-point message passing was used. All communication constructs
were blocking. The program was not scaleable (see table below). Chapter 6 presented a modified
version of mp_maxl.f, named mp_max21, which used point-to-group and group-to-point message
passing. Blocking and non-blocking constructs were used. Program mp_max21 was not scaleable
either. Chapter 6 presented a second program, mp_stats.f, which computed several statistical
parameters shown above. The strategy was to perform more parallel computations to offset the time
due to communications (group communications). The array contained 100,003 elements. The
program did not show scalability.

Chapter 7 presented two programs that used the loop parallelization technique: mp_statslp.f and
mp_integral.f. Program mp_statslpf was a modification of program mp_stats.f to use loop
parallelization was to define data on each node instead of message passing to distribute the data. The
array size was 400,003. The program showed scalability up to 5 nodes. The second program,
mp_integrall, is an example from numerical methods. It uses the trapezoidal rule to compute an
integral which has as its value pi=3.1415926. The algorithm used 4,000,000 subintervals that were
summed in parallel. The program showed scalability up to 5 nodes.

Chapter 8 presented a technique to replicate the ureka command (on the Cray T3D) which sends a
signal from a source node to other nodes in a partition. This technique was implemented in the
program mp_find.f. The technique used a non-blocking receive from "any source" node to receive
a special value in a variable. A while search loop was entered to find a key value in an array. The
receive variable (or buffer) is used in the boolean expression of the while statement so that when (or

99

1998 ASCUE Proceedings

if) a value is received, the while loop is terminated. The task which finds the key value sends the
special value to all other tasks in the partition.

Chapter 9 presented the use of the mp_group construct to define a sub-group of tasks within a given
partition. The program mp_sort.f demonstrates a parallel sorting algorithm:

Data is distributed to all nodes in the sub-group
Sorting is done in parallel on each node
Merging is done in parallel

The process for merging is to repeated pair-wise merge data in the top half of the sub-group with
nodes in the bottom half until all data is merged on the initial task (task 0). The program ensures that
the sub-group is a power of 2. There were 10,000 elements in the array. The program was scaleable
up to 8 nodes.

Chapter 10-13 presented techniques for distributing two-dimensional data. Each program solved an
NxN linear system using the Gauss-Jordan method. In Chapter 10 program mp_gaussc.f distributed
columns of the matrix of data to each node. The method required several inter-communiCations
during each step of the pivoting process. A 20x20 linear system was solved, but it was not scaleable.

Chapter 11. presented a technique (using the broadcast construct) to distribute the entire matrix to
each node. Each step of the pivoting process required only one communication step: broadcast the
pivot row. A 400x400 linear system was solved, showing scalability up to 4 nodes.

Chapter 12 presented a loop parallelization technique to define rows of data on each node for the
pivoting process. Each step of the pivoting process required only one communication step: broadcast
the pivot row. A 400x400 linear system was solved, showing scalability up to 9 nodes.

Chapter 12 presented a parallel read technique for reading rows of data into the matrix for each node.
The data was stored in a direct access binary file. Each step of the pivoting process required only
one communication step: broadcast the pivot row. A 400x400 linear system was solved, showing
scalability up to 6 nodes.

Scalability and Speedup

The workshop material emphasize speed-up as the primary goal of parallel processing. If possible,
the algorithms were improved until the program demonstrated scalability (i.e. speed-up greater than
one) for a reasonable size partition of nodes. Speed-up was computed from the following formula:

Speed-up = Wall clock time with a single task
Wall clock time with more than one task

The wall clock time is the maximum "real time" (obtained from using the timex UNIX command)
for the tasks in the partition. We consider the algorithm to be scaleable over when the speed-up
factor is greater than one.

The table below shows speed-up factors for the workshop programs.

100

1998 ASCUE Proceedings

Scalability and Speed-up Listing
Maximum Real Time

Program Nodes (sec) Speed-up
mp_maxl.f 1 0.5

2 0.88 0.57
4 5.87 0.09

mp_max21 1 0.44
2 0.85 0.52
4 1.28 0.34

mp_stats.f 1 0.33
2 0.55 0.60
4 0.56 0.59

mp_statslp.f 1 2.38
2 1.49 1.60
4 0.79 3.01
5 0.66 3.61

mp_integral! 1 3.14 -
2 2.04 1.54
3 1.25 2.51
4 1.07 2.93
5 1.45 2.17

mp_find.f 1 0.45 -
2 0.57 0.79
4 0.68 0.66

mp_sort.f 1 72.06
2 19.59 3.68
4 4.35 16.56
8 2.77 26.01

mp_gaussc.f 1 0.30
2 0.38 0.79
3 0.48 0.63
4 0.49 0.62

mp_gaussm.f 1 55.36
2 32.26 1.72
3 21.45 2.58
4 16.60 3.33

mp_gausslp.f 1 36.56
4 15.27 2.39
6 10.58 3.46
9 8.42 4.34

mp_gausspri 1 46.89 -
2 29.24 1.60
4 16.99 2.76
6 11.59 4.05

The following programs:

101

1998 ASCUE Proceedings

mp_max l.f
mp_max2.f
mp_stats.f
mp_find.f
mp_gaussc.f

were not scaleable because the time saved from performing parallel computations did not offset the
additional time needed for communications. The other programs:

mp_statslp.f
mp_integral.f
mp_sort.f
mp_gaussm.f
mp_gausslp.f
mp_gausspr.f

were scaleable.

Future Research Directions
Convert the programs to MPI.
Write C versions of all programs.
Write similar programs for a shared memory system (Origin 2000).
Implement a small scale application program to generate volume data for visualization
purposes.

Conclusions

The workshop was used successfully to teach part of a short introductory course on parallel
computing for undergraduate students. Some of the workshop programs were written by students
who took the course: CPS 460 Advance Topics, during the winter of 1997. The workshop used
algorithms that were familiar to science and engineering underclassmen. Even though only 12 basic
MPL constructs were used in the examples, the workshop included man pages on all MPL constructs
for additional reference. Central State University continue these activities and expand the workshop
to a 4 credit hour course on An Introduction to Parallel Computing.

References

[1] Analytical, Numerical, and Computational Methods for Science and Engineering, Hostetter,
Santina and Montalvo, Prentice Hall, 1991

[2] An Introduction to IBM SP2 Programming, David J. Ennis, The Ohio Supercomputer Center,
1996

[3] CTC Virtual Workshop on Parallel Computing and Progarmniing Languages, Cornell
University, September, 1997

102
1.1

U.S. DEPARTMENT OF EDUCATION
Office of EducatIonal Research and Improvement (0RI)

Educe *nal Resources InlorrnatIon Center (ERIC)

NOTICE

REPRODUCTION BASIS

ERIC

This document is covered by a signed "Reproducdon Release
(Blanket)" form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission tu
reproduce, or is otherwise in the public domain and., therefore, may
be .reproduced by ERIC without a signed Reproduction Release
form (either "Specific Document" or "Blanker)..

