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The Five Families of Cognitive Learning:

A Context in which to Conduct Cognitive Demands Analyses

of Innovative Technologies

The purpose of this paper is two-fold: 1) provide an intellectual context of this type of

learning that my colleagues today are assessing. We call this context the five families of

cognitive learning; and 2) provide a context for the type of learning demanded by the specific

technologies that we are assessing. As technolo.sy becomes more integrated into general

classroom instruction and as assessment draws learning closer to instruction, it becomes

increasingly important to find ways of evaluating what students are learning via these

technologies. By "technologies" we refer not only to the actual machines, but also to the

learning environments (e.g., software products). which afford students the opportunity to

learn. We need to understand what a particular software product does and how students learn

from using it. Whereas cognitive task analysis attempts to identify the cognitive skills an

individual uses or needs to perform a task proficiently (Klein, 1995; Means & Gott, 1988;

Roth & Mumaw, 1995), a cognitive demands analysis seeks to describe the types of cognitive

learning expected of the individual by the technology. Clearly, this learning is dependent upon

a number of factors, including both the context in which the technology is used and the

individual characteristics of the learner. However, within a 2iven learning situation, we can

attempt to understand what is expectedor demandedof the learner.

Information regarding the cognitive demands placed on students using the technology can

simplify the assessment process by allowing the alignment of student assessments with the

technology. Students are not expected merely to learn the content being presented to them;

rather, learning demands may also include the types of activities and instructional opportunities

in which students are expected to engage. By identifying these types of expected learning, we

can create a suite of performance assessments inte2rated into a real-world, problem-solving

environment that can assess varied student learnin2 and understanding.
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Context: The Five Families of Learning

In order to carry out a coenitive demands analysis. we must examine the types of learning

that a particular technoloay targets. In the CRESST model of learning, Baker (1995) posits five

families of cognitive learning: content understandina, collaboration. communication, problem

solving, and metacognition (see Figure 1). These cognitive types of learning owe their

intellectual history to Gagné (Gagne, Briggs, & Wager, 1992), Mayer (Mayer & Wittrock,

1996), Merrill (1983, 1993a,b), and Salas (Salas, Dickinson, Converse, & Tannenbaum,

1992). The five families describe the range of cognitive learnina in which students engage; they

are seen as working together to influence overall learning. Once we determine the types of

learning in which students engage, we can create assessments to evaluate each learning family.

Collaboration

Content
Understanding

Learning dProblem Solving

Communication Metacognition

Figure 1. The CRESST model of learning.

Content understanding. The first type of learning is the understanding of subject

matter content. Whereas the other types of learning involve relatively context-free material

that is, learning that could occur within any number of varied contextscontent understanding

refers to the learning of domain-specific material. For instance, students engaged in learning

astronomy via the use of an innovative technology will learn particular facts, concepts,

procedures. and principles related to astronomy.
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Assessment of content understanding should evaluate not only basic factual knowledge,

but also a deeper level of understanding of the subject area (Herman. 1992: Linn. Baker, &

Dunbar, 1991). There are many approaches to this assessment: explanations or essays,

representational tasks (e.g., concept mapping), multiple-choice questions. and so on. The

CRESST content understanding model (Baker, Aschbacher, Niemi, & Sato. 1992) uses

student explanations to assess comprehension; this model has been used successfully for

assessing deep understanding in history, geography, mathematics, science, and

interdisciplinary tasks at the elementary, middle school, and high school levels (Aschbacher,

1995; Baker, 1994; Baker, Aschbacher, et al., 1992; Baker, Niemi, Herl, et al., 1995; Herl,

Baker. & Niemi. 1996; Niemi. in press). This assessment model includes the following

activities: stimulating prior content area knowledge, reading primary source documents

containing new information, and writing an explanation of important issues that integrates new

concepts with prior knowledge. Understanding is assessed by examining overall content

quality, prior knowledge, principles, and use of resources.

Another approach to the assessment of content understanding is to evaluate students'

underlying knowledge structures. Research on memory suggests that knowledge is organized

in complex semantic networks (Jonassen. Beissner, & Yacci, 1993; Rumelhart & Ortony,

1977). Ausubel (1968) posited a hierarchical memory model in which new concepts are

integrated hierarchically into existing cognitive structures and relationships generated

accordingly. Rather than constraining cognitive structures in a hierarchical arrangement,

Deese's associationist memory model (1965) allowed for various types of cognitive structures.

Expert-novice research has provided additional information regarding individuals' knowledge

structures, indicating that expert knowledge is organized in a qualitatively different way than is

novice's knowledge (Chase & Simon. 1973; Chi, Feltovich, & Glaser, 1981; Chi, Glaser, &

Farr, 1988; Gentner & Stevens, 1983). As novices become more expert, a restructuring of

their knowledge occurs (Royer, Cisero. & Carlo, 1993). Whatever the exact nature of
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students' knowledge structures. by eliciting specific information from students we can attempt

to assess these cognitive structures.

A concept map is a graphical representation of information consisting of nodes and links,

or labeled links. Nodes correspond to concepts within a particular subject area or domain; links

indicate relationships between pairs of concepts (or nodes), and labels on each link explain

how two concepts are related (refer to Jonassen et al., 1993, for more in-depth coverage of

concept mapping). Students create concept maps by identifying important concepts and

generating and appropriately labeling the links between those concepts. This approach assumes

that a deep understanding in a subject domain allows an individual to conceive a rich set of

interrelationships among important concepts within that domain (Heinze-Fry & Novak, 1990;

Novak & Gowin, 1984). Asking students to show relationships between important concepts

by creating these maps, we can evaluate their content understanding (Baker, Niemi, Novak, &

Herl, 1992; Herl et al., 1996; Jonassen et al., 1993: Ruiz-Primo & Shavelson, 1995). Concept

mapping relies less on verbal ability and is less dependent upon language skills than an actual

essay writing task, while still requiring other skills involved in such a task. Thus, using a

concept mapping approach allows us to separate the assessment of content understanding from

the assessment of communication skills.

Collaboration. The second type of learning, collaboration, involves learning how to

cooperate with members of a team. Students learn to work together, each contributing to the

group in his or her own way. Collaborative learning in the classroom can foster student

learning and deeper understandine, as well as higher levels of self-esteem, attitudes towards

others, and social skills (Webb, 1995; Webb & Palincsar, 1996). In addition, teamwork has

been studied from a workplace readiness perspective: Interpersonal and teamwork skills are

now recognized as essential for future job preparedness (O'Neil, Allred, & Baker, in press).

Researchers in education, industry, and the military all recognize that collaboration can enhance

learnine, task performance, work productivity, and product quality. In a workplace

environment in which teams are believed to offer the potential for greater competitiveness,
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employees are increasingly being asked to work in teams. For all these reason, organizations at

the national, state, and local levels have begun calling for the use of collaborative group work

in the classroom (for example, California State Department of Education, 1992b; Mathematical

Sciences Education Board. National Research Council. 1989; National Council of Teachers of

Mathematics. 1989: O'Neil, in press).

Teamwork is thought to be composed of two sets of skills: taskwork skills and teamwork

skills (Morgan. S alas. & Glickman, 1993). Taskwork skills influence how well a team

performs on a particular task. Teamwork skills influence how effective an individual member

will be as part of a team. Further defining teamwork skills. O'Neil, Chung, and Brown (in

press) identify six factors that affect collaboration. Adaptability refers to a team member's

ability to recognize problems within the team and respond appropriately. Communication

involves the clear and accurate exchange of information among team members. Coordination

refers to how team members organize their activities to complete a task on time. Decision

making involves using available information to make appropriate decisions for the team.

Interpersonal skills affect the cooperative interaction of the individuals within a team. Finally,

leadership is a team member's ability to provide direction and coordinate activities for the team.

In combination, skill in these factors determines how well a student collaborates with his or her

teammates.

One way to assess students' collaborative skills is through observation of group work;

factors affecting collaboration can be thus be evaluated for each team member. Although

observational methods are generally difficult and time-consuming, evaluation of collaborative

activity becomes easier through the use of technology. If teammates communicate via

computer, on-line messages sent back and forth between them can be saved for subsequent

coding as process measures. Collaborative environments that present a set of constrained

messages from which to choose (rather than allowing any message to be sent) can further

simplify the coding process (O'Neil, Chung, & Brown. in press). By examining on-line
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messaees, we can better understand the process by which a collaborative group arrived at its

final product, as well as the contribution of each member of the eroup to that final product.

Communication. A third type of learning involves the communication of ideas.

Communication is the ability to express oneself clearly and effectivelyboth orally and

through writingfor various audiences and purposes. A more team-oriented definition sees

communication as the process by which information is clearly and accurately exchanged

between people, often in a prescribed manner using proper terminology (O'Neil. Chung, &

Brown, in press). Throughout their lives, students will benefit from the ability to convey their

beliefs. Whether by an oral presentation, through some form of writing, or by using some

multimode approach. students must learn how to express themselves to others. This expression

can take many forms, including persuasive, narrative, expository, explanatory, prose, and

even questioning.

Much has been documented about the writing process, and scoring rubrics created to

assess writing ability abound (e.g., Baker, Aschbacher. et al., 1992; California State

Department of Education, 1992a; Koretz, Stecher, Klein, McCaffrey, & Deibert, 1994; Novak,

Herman, & Gearhart, 1996; Wolf & Gearhart, 1993). Argumentation, organization, focus,

development, mechanics, audience awareness, style, and tone are all part of good

communication (Gearhart. Herman, Baker, & Whittaker. 1992: Wolf & Gearhart. 1993).

As with collaboration, communication skills are content-independent; if a student can

communicate well, he or she should be able to do so across various content areas. However,

prior knowledge plays heavily into this ability: It is difficult to write about something you

know nothing about. Thus, we suggest assessing communication skills within a particular

content area. By incorporating both a concept-mappine task (assessing content understanding)

and an explanation essay task (assessing content understanding and communication skillssee

Baker, Aschbacher, et al., 1992) in our performance assessment package, we can evaluate

students' communication skills in conjunction with (and controlling for) content understanding.

We have developed and validated a procedure for reliably scoring the essays students generate;
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this manner of assessing content understanding implicitly includes within it an assessment of

communication skills as well (i.e., mechanics and argumentation). That is, students who

communicate well are better able to explain their content understanding.

Problem solving. A fourth type of learning involves problem-solvin2 skills. Whether

termed problem solving or critical thinking, it is clear thatsince schools cannot possibly teach

students everything they will need to know for the futureproblem-solving skills fill the gap

by allowing students to use what they have learned to successfully solve new problems or learn

new skills. Industry has complained that high school graduates are unable to function well in

the workplace because they lack the problem-solving skills necessary for success (O'Neil, in

press). Moreover, conditions of employment are now likely to change several times during

one's life (Resnick, 1987; Resnick & Resnick. 1992). In such environments, it is clear that

problem-solving skills can significantly affect an individual's likelihood of success in the

workforce.

Problem solving is defined as "cog.nitive processing directed at achieving a goal when no

solution method is obvious to the problem solver- (Mayer & Wittrock, 1996, p. 3). The

CRESST model of problem solving is adapted from the problem-solving models of Glaser,

Raghavan, and Baxter (1992) and Sugrue (1995). It includes four scored elements: (a)content

understanding, (b) metacognition, (c) motivation (self-efficacy and effort), and (d) domain-

specific problem-solving strategies. The elements are scored separately and are reported as a

profile of problem solving. CRESST has created several feasible measures for all of these

constructs except problem-solving strategies. To assess content understanding, CRESST has

used both essay-based explanation tasks (e.g., Baker et al., 1995) and paper-and-pencil

concept mapping tasks (Herl et al., 1996). We have also created measures of metacognition

(O'Neil & Abedi, 1996) and motivation (Malpass. 1994, measuring self-efficacy; Huang,

1996, measuring effort). In our case, the CRESST domain-specific problem-solving strategies

are measured on a search task by looking at search behavior and the use of the information

found. We believe that content understanding and problem-solving strategies are best assessed
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domain-specifically whereas metaconition and motivation are best assessed as domain-

independent constructs. However, we realize that all domain-independent constructs need to be

instantiated in a particular domain.

One way to assess students' problem-solving skills is by having them search for

information on concepts about which they are uncertain. This uncertainty principle for

information seeking is described by Kuhlthau (1993) as bringing a person's knowledge of a

content domain from an affective state of uncertainty (a.k.a. "anomalous state of knowledge"

or ASK; Belkin, Oddy, & Brooks. 1982) to one of understanding. Searching involves

determining the information need; choosing topics to pursue; exploring and finding general

information to increase overall understanding; formulating a searCh based on the information

found during exploration; collecting and gathering relevant information; and, finally, presenting

and resolving the problem (that is, finding answers or solutions to meet the initial information

need). The search process involves the affective, cognitive, and physical realms of humans'

experience and is often iterative; the search queries are reformulated repeatedly as the

information need changes (Marchionini. 1995).

Once relevant information is found, students must integrate this newly learned material

into their existing knowledge base. Thus, assessment of problem solving in the context of

searching can include both evaluation of the search itself and evaluation of this knowledge

integration. For instance, we can assess student search behavior by giving students the task of

improving their existing representational maps (i.e.. concept maps). By monitoring their on-

line search. we can determine whether (a) students search well enough to access rich

information sources to support the "weak" concept areas in their maps (as determined from

initial concept maps), and (b) students understand enough to define the problem well through

their search behavior. This approach allows us to examine both the searching process (through

analysis of student search strategies) and the final integrated product (the updated concept

1.
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map). Thus, in our technical approach. we have created both process and outcome measures of

problem-solving strategies.

Metacognition. The fifth and final type of cognitive learning is metacognition.

Metacognition is defmed as "knowledge or cognition that takes as its object or regulates any

aspect of any cognitive endeavor" (Flavell. 1981, p. 37) or as knowledge about, awareness of,

and control over one's thoughts, motivations, and feelings (Wittrock. in press). Thus, students

who think about their thought processes, or monitor their progress, or are aware of the

cognitive strategies they use to solve a problem are engaging in metacognitive activity.

In our work, we characterize metacognition as consisting of four components: (a)

awareness. (b) knowledge of cognitive strategies, (c) planning, and (d) self-monitoring or self-

checking (O'Neil & Abedi, 1996). The second component, knowledge of cognitive strategies,

falls into the category of metacognitive knowledge; awareness. planning, and self-checking are

considered metacognitive activities. Metacognitive activities are assumed to be resident in

working memory or consciousness (Dembo, 1994).

Research on metacognitive processes suggests that students who plan and monitor their

learning and are aware of when to use which strategies often become more active in their own

information processing; create more complex, efficient representations; and abstract

information better than do students who do not engage in self-monitoring activities. These

types of results in turn lead to greater transfer (Belmont, Butterfield, & Ferretti, 1982; Berardi-

Coletta. Buyer, Dominowski, & Rellinger, 1995; Wittrock, in press). Research has also

shown that students can be taught metacognitive techniques which in turn can enhance their

performance and foster transfer (Berardi-Colettaet al., 1995: Brown, Campione, & Day, 1981;

Lodico, Ghatala, Levin, Pressley, & Bell, 1983; Salomon, Globerson, & Guterman, 1989).

Assessment of metacognition in empirical work can be categorized as domain-dependent

or domain-independent (O'Neil & Abedi, 1996). Many domain-dependent studies use think-

aloud protocols in order to elicit insights into students' underlying thought processes (see

Royer et al., 1993 for a review of mainly domain-dependent metacognitive assessments).

12
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Domain-independent studies generally gather information about students' metacognition via

self-report measures (see, for example, O'Neil & Abedi. 1996; O'Neil & Brown, in press;

Pintrich & De Groot. 1990: Weinstein, Palmer. & Schultz. 1987; Zimmerman & Martinez-

Pons, 1990). These self-report measures have been found to be reliable with some promising

validity information; in addition. they are clearly a much more efficient way to collect data than

are think-aloud interviews. Including a measure of metacognition in our assessment package

allows us not only to assess student learning of metacognitive techniques. but also to directly

address a possible benefit of alternative assessment.

Analyses of Innovative Technologies

The cognitive demands analyses described below began with a large list of possible

innovative technologies to be explored. As was discussed earlier, we are using CRESST

assessment measures to assess government sponsored innovative educational technologies.

Thus, we collected information on these technologies, using Web descriptions, technical

reports (as available), information requested directly from the developers, and face-to-face

interviews. Our decision of which innovative technologies to include for analysis was driven

by which technologies would be in place for testing in the Fall, and by our desire to focus on

student-level (rather than teacher-level) assessment. After reviewing all the information and

investigating the current state of each technology, the following three technologies were

selected for inclusion: Algebra Tutor, Hands-On Universe (HOU), and Function Machines.

For each technology, we then requested further information from the developers, as

available. Not only did we want access to the software itself, but we needed to gain a better

understanding of how the software was being used. Because many of the technologies are

relatively context-free or domain-independent (that is, they can be used in a variety different

contexts with varied student populations), how precisely a technology is integrated into the

classroom curriculum will affect its impact on students. Thus, we asked developers to supply

us with specific information regarding the expected student population using their product, the

content area in which the product was to be used, and as much curriculum material as was

13
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currently available. Equipped with all this information, we then reviewed each technology or

learnine environment again, in order to analyze the types of learning afforded by each

technology to its users. This matching of technologies with the five types of learning is shown

in Table 1. The distinction of primary versus secondary goals was derived from the cognitive

demands analysis.

For each technology listed in Table 1 . the next section first includes a brief

explanation of the technology's purpose, intended audience, and intended use withinthe

assessment phase. This information is essential to the analysis of these innovative technologies

because, as explained above, many of the products are usable in a variety of ways, in a variety

of content domains. Following these descriptions, a cognitive demands analysis is presented

for each technology.

14
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Table 1

Matching Technologies With the Five Types of Learnine: The Cognitive Demands of Five

Technologies

Content Collabo- Communi- Problem Metacog-
Technologies knowledge ration cation solving nition

Algebra Tutor XX

Hands-On XX
Universe

Function XX
Machines

X XX

XX

XX

XX= primary goals. X= secondary goals.

Algebra Tutor

Purpose. The stated purpose of this technology is to "help students to develop algebraic

skills which they can use in the context of real-life problem situations" (Anderson, Mark,

Pelletier, et al., 1992). This intelligent tutoring system encourages a hands-on, learning-by-

doing approach in which studentsindividually and in groupsattempt to solve real-world

problems on-line, rather than through the use of a textbook in the classroom. Algebra Tutor

focuses on multiple representations of information, teaching students how to use, understand,

and interpret various types of representations (e.g., text, tables, graphs) in order to solve real-

world algebraic problems.

Intended audience and use. The intended audience is ninth-grade algebra students,

both individually and in groups. Although some of the innovative technologies being reviewed

here are relatively context-free, the Algebra Tutor is very domain-specific: This product tutors

high school students in mathematics and algebra. Curriculum materials include problems in

real-world mathematical applications, stressing the relevance of mathematicsand algebra in

particularto everyday life.

Analysis. Students using Algebra Tutor go through a series of steps in solving each

problem. For example, students fill in tables by identifying important aspects of the problem

15
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and labeling table columns, select appropriate units of measurement. create graphs, solve

equations, and write formulas. Algebra Tutor encourages students to become actively involved

in the learning process. Whether used individually, in student pairs. or in collaborative groups,

this intelligent tutor fosters learning and deep understanding of its algebra content via its

interactive nature. Discussion (between team members), interaction (both between team

members and between individual students and the tutor), and individualized feedback (from the

tutor to the team or the individual student) are the key components of this system. Problem-

solving and reasoning skills are fostered by the technology's emphasis on representations of

real-world problems. andin particularits use of word problems.

Three types of learning are expected of students using Algebra Tutor. First, students are

clearly expected to gain an understanding of the algebra content presented by the program.

Second, it is anticipated that students will improve their problem-solving skills by using this

technology. Finally, when used in a collaborative environment, collaborative skills as well as

enhanced understanding of the content domain should be fostered.

Hands-On Universe

Purposes. Hands-On Universe's primary goal is to enable high school students to

perform genuine, real-world astronomical research in their classrooms, so as to facilitate a

deeper understanding of astronomy and to make clear to students how mathematics and science

are applied to real-life scientific investigations.

Intended audience and use. The intended audience is high school science students.

Analysis. Hands-On Universe includes four components: the HOU Telescopes (which

capture the actual images), the HOU Telecommunications Interface (World-Wide Webpages

used to request and retrieve images, obtain weather information, etc.), the HOU Image

Processing Software (PC- or Macintosh-based software used for data analysis), and the HOU

Curriculum (which includes real-world applications of math and science). Students use

information available on the Web and in the curriculum materials to request images from one of

several participating telescopes. They can then use the image processing software to analyze

16
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their images. All four HOU components are considered research tools to facilitate scientific

investigations, which in turn foster content understanding and problem-solving skills.

In summary, students learn about astronomy while using the same types of tools that real

scientists and engineers are currently using in the field. Learning expected from students using

this technology can be found in the five families of learning. First, students are expected to

gain a deeper understanding of the astronomy content being studied. This will include both an

understanding of the content itself and an awareness of the importance and relevance of this

matenal to real-world science. Second. by using these three technologies as research tools to

answer pertinent scientific questions. students will enhance their problem solving skills.

Function Machines

Purpose. Function Machines is an application for a visual programming language

expressly designed for mathematics and science education. This product's intended outcomes

are to engage students in mathematical investigations and to foster mathematical thinking and

scientific inquiry.

Intended audience and use. Function Machines can be used in a variety of ways,

with a broad class of students, to study a wide range of topics. The intended audience is fifth-

grade students; the content area to be explored is mathematics and, in particular. Math Land

curriculum. Developers plan to have students use Function Machines in collaborative teams.

Analysis. Function Machines uses graphical representations, which makes learning

how to program easier and more straightforward. Using a simple metaphor of a mathematical

function as a "machine" that takes something as input and produces something as output,

Function Machines simplifies the mathematics it teaches by making everything visual. Students

can literally see how functions work, by watching the machines in action, either step-by-step

("step- command) or in one uninterrupted sequence ("go" command). Creating machines (i.e.,

programming) in Function Machines is also visual; students construct machines using a tools

palette. connecting machines together with drawn lines, called "pipes."
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Machines (or programs) in Function Machines are actually sets of simpler machines, the

lowest level machines being predefined as primitive functions (e.g., arithmetic functions,

graphics. logic). Students can construct machines that are either primitives or composites;

composite machines are made up of primitives and/or other composite machines. A machine

can also be defined in terms of itself, as can its input, which can come from any machine,

including itself. Thus, iteration and the complex concept of recursion are both seen more

clearly through the use of this visual programmine language. The program's beauty and

flexibility lies in its allowing students to create anything from a very simple adding machine

(e.g., inputl + input2 ==> output) to a complex series (and/or encapsulated package) of

machines to solve complex real-life mathematical problems (e.g., planning a school dance).

During the construction and running of these proerams, students can always see what is really

going on by "x-raying" a composite machine to reveal its interior contents.

Three types of learning are expected of students using Function Machines. First, students

will better comprehend the specific mathematical topics (i.e., content understanding) presented

to them while using Function Machines. Because of its visual nature, Function Machines is

also expected to foster an inquiry-based mathematical environment in which students can

engage in explorations and investigations. Thus, we expect students' problem-solving skills to

be enhanced via this software. Lastly, since Function Machines lends itself to use in

collaborative environments (e.g., groups of students working together to solve multiple-step,

complex mathematical problems), students using the program in this manner should gain

collaborative skills.

Assessment Specifications for Our Integrated Simulation

Since we can map the types of learning we expect from students onto specific assessment

tasks, we have assembled a suite of performance assessment tasks (our integrated simulation)

that includes both individual and collaborative concept mapping tasks, a problem-solving

search task, an explanation task, and a metacognitive questionnaire. The next section

documents the domain specifications for our integrated simulation.
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Explanation task. Using the CRESST model. students complete a short, paper-and-

pencil prior knowledge measure, in order to activate relevant prior knowledge. Then, students

will be presented with the paper-and-pencil explanation task. An interesting, relevant context

will help to frame students written responses, and the explanation prompt will require students

to demonstrate deep understanding of the content area. These data will not be discussed today.

Individual concept mapping task. Students are also asked to construct a concept

map using an on-line mapping tool. The specific concepts and link labels for this task are

provided to the students, and students work alone during this task. The individual student

concept maps are scored on-line, by comparing them to a criterion (i.e., expert-constructed)

map.

Problem-solving task. Once students receive feedback on their concept maps, they

are directed to use a constrained subset of Netscape to search for information that will justify

improving their maps. Students are instructed to "bookmark" Web pages that they believe

support the modifications they make to their concept maps, and to send those bookmarks to

specific terms on the concept map. For instance, a student who finds a page with relevant new

information about photosynthesis would bookmark the page and send that bookmark to the

"photosynthesis- concept on his or her map.

The information space being searched by students has been designed specifically for the

concept mapping content area. This information space is a series of Web pages that have been

gathered from the Internet. edited, and re-purposed for assessment use. The information space

includes a glossary of important terms, a search engine interface, and an index. In addition,

each page has been coded on various dimensions of relevance such that we can evaluate each

student's information seeking behavior as a problem-solving strategy aimed at improving an

existing concept map.

Collaborative concept mapping task. In this portion of the integrated assessment,

a three-member team collaborates on constructing a concept map. One member is initially cast

as the leader; however, each member of a group has an opportunity to assume this pivotal role.
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The leader is the only team member that has the ability to actually change the group concept

map; the other two members have only visual access to the map. Any chanees made by the

current leader to the group map are automatically updated to the screens of all members in a

group. Communication between group members takes place on-line, usine either predefined

messages or an open messaging system. As in O'Neil, Chung, and Brown (in press), type of

message usaee is utilized as an index of specific group processes. The product of each group

a collaborative concept mapreflects the shared mental model of the group with respect to the

relevant and important connections between and among the concepts given. Using the

individual and group maps combined, we can gauge each student's relative contribution to the

group map.

Metacognitive questionnaire. A Likert-scale trait questionnaire queried students on

their general metacognitive activities during the integrated simulation tasks. Items targeted the

four aspects of metacognition described above: awareness (e.g., "I am aware of my own

thinking"), knowledge of cognitive strategies (e.g., "I select and organize relevant information

to solve a task"), planning, (e.g., "I try to determine what the task requires"), and self-

monitoring (e.g., "I check my work while I am doing it").

Conclusion

By combining all of the tasks described in the previous section, we create an integrated

simulation based on our family of cognitive learning for students and use it for assessment of

innovative teciznologies. This assessment environment is integrated both across grade levels

and within content areas. In addition, we refer to this as an integrated assessment because it

blends real-world, meaningful tasks with a project-based scenario that captures the many types

of cognitive learning. The assessment is simulated in the sense that we have incorporated real-

world activities, collaborative environments, and an Internet-like information space within a

closed assessment. Also, the environment simulates the types of learning activities that

innovative technologies afford in a controlled environment, which allows us to make inferences

20
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regarding student learning. The following papers will provide feasibility, reliability, and some

validity data in our approach.
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