
DOCUMENT RESUME

ED 423 304 TM 029 112

AUTHOR Betebenner, Damian W.
TITLE Improved Confidence Interval Estimation for Variance

Components and Error Variances in Generalizability Theory.
PUB DATE 1998-00-00
NOTE 11p.; Paper presented at the Annual Meeting of the American

Educational Research Association (San Diego, CA, April
13-17, 1998).

PUB TYPE Reports Descriptive (141) Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Accountability; *Educational Change; Error of Measurement;

*Generalizability Theory; *Performance Based Assessment;
Research Design; *Sampling; Simulation

IDENTIFIERS *Confidence Intervals (Statistics)

ABSTRACT
The zeitgeist for reform in education precipitated a number

of changes in assessment. Among these are performance assessments, sometimes
linked to "high stakes" accountability decisions. In some instances, the
trustworthiness of these decisions is based on variance components and error
variances derived through generalizability theory. Often overlooked is the
fact that these statistics are subject to sampling error. This paper
introduces techniques used to determine the accuracy of such statistics. It
addresses the shortcomings of overlooking sampling error by presenting a
number of results with respect to confidence intervals about linear
combinations of expected mean squares appropriate for generalizability
theory. Simulation results indicate that these intervals, particularly the
two-sided and one-sided lower intervals, are accurate or conservative both in
simple and complex designs with varying amounts of difference in degrees of
freedom across effects. (Contains 1 figure and 12 references.) (Author/SLD)

********************************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

********************************************************************************



PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

30,1ALeun
.A04-40Ane,r-

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1

U S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

16...chis document has been reproduced as
received from the person or organization
originating it.

0 Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Improved Confidence Interval Estimation for Variance
Components and Error Variances in Generalizability Theory

Damian W. Betebenner
School of Education

University of Colorado

Abstract
The zeitgeist for reform in education precipitated a number of changes in
assessment. Among these are performance assessments, sometimes linked to
"high stakes" accountability decisions. In some instances the trustworthiness
of these decisions are based upon variance components and error variances
derived through generalizability theory. Often overlooked is the fact that
these statistics are subject to sampling error. This paper introduces tech-
niques used to determine the accuracy of such statistics.

Introduction

The climate today in educational assessment is vastly different than it was twenty
years ago. Where standardized achievement tests once dominated the landscape, numerous
competitor assessments regularly appear, assessments that incorporate previously unheard-
of formats. The nontraditional nature of these assessments is an outgrowth of the search
for tests that provide a measure of validity that typical multiple choice tests can't. Validity,
however, is only a partial measure of the soundness of any measurement instrument. If a
test's results aren't reliable, its superior validity is of little consequence. Older notions of
reliability, like with antiquated notions of validity, don't possess the sophistication neces-
sary to determine the accuracy of such instruments. Recent initiatives linking test results to
rewards and penalties at the state, local and individual level are not uncommon. Providing
a measure of accuracy to such results is critical. The statistical techniques developed to ad-
dress these issues are typically referred to under the comprehensive heading generalizability
theory.

Introduced nearly 30 years ago, today generalizability theory is one of the major
statistical techniques used in assessment. Its adaptability makes it the model of choice in
a number of assessment situations. Particularly with performance assessments, where IRT
based procedures are inappropriate due to the small number of items, generalizability theory
is sound. Depending upon the desired use of the assessment (e.g., to measure achievement
at the individual level, the school level, or perhaps at the district level), generalizability
theory allows for the computation of multifaceted error estimates that provide the most
complete measure of reliability available from any procedure today. This subdivision of
error is particularly valuable in pinpointing exactly where to improve an assessment.
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CONFIDENCE INTERVALS IN GENERALIZABILITY THEORY 2

Beginning with a model that includes all relevant facets and their interactions, the
initial G study provides variance component estimates for both the main effects and for
interactions associated with the model.' Using these variance components, the D study
provides variance components associated with the means for sets of sampled conditions.
These in turn yield the the absolute and relative error variances, er2(A) and 6-2(6), re-
spectively. The variance components and error variances provide both specific and overall
information about how accurate the results from a test are and where sources of inaccu-
racy arise. More specifically, variance components provide a measure of the variability for
each effect were it possible to collect numerous scores for the same student or aggregate of
interest over all conditions in the universe of admissible observations. Similarly, 6-2(A) and
6-2(8) provide a composite measure of variability for the same hypothetical collection of
scores.

Any prudent user of a technique like generalizability theory must recognize that vari-
ance components and error variances are statistics and, as such, are subject to sampling
error. The variance of variance components and error variances represents the fluctuation
one might expect in those statistics were it possible to perform multiple G studies using stu-
dents, schools, tasks, and raters from the same universe of admissible observations. Whereas
the estimated variance components and error variances gauge the accuracy of the instru-
ment with respect to a single administration, the standard error associated with variance
components and error variances provides a measure of fidelity for the instrument across
multiple administrations. Particularly with respect to decisions involving significant conse-
quences, the extent of sampling error must be determined and accounted for. Determining
the amount of sampling error is crucial to placing any faith in the use of a statistic and, in
turn, any decision based upon that statistic (Cronbach, Linn, Brennan, & Haertel, 1995).

Brennan (1992) cites two methods for estimating standard errors of variance com-
ponents. Unfortunately, because the exact distributions of variance components and error
variances are very complex, even unbiased estimators of the variance of variance components
become difficult to interpret. A more reliable method which bypasses this distributional dif-
ficulty is to compute confidence intervals. Previously, researchers relied on two procedures,
the Satterthwaite and the Welch, to derive confidence intervals for variance components.2
Though appropriate in a number of situations (Smith, 1936; Satterthwaite, 1941, 1946;
Welch, 1956), a number of inadequacies make these two procedures less than ideal for use
with generalizability theory applications.

The Satterthwaite procedure assumes large values of degrees of freedom for each
source of variance and, in addition, assumes the difference in degrees of freedom across the
sources of variation to be small. Both the Welch and Satterthwaite procedures assume that
the estimated variance component about which the confidence interval is constructed be
a linear combination of expected mean squares with only positive coefficients (Burdick &
Graybill, 1992, pp. 30-31). That is, if

'Point estimates of variance components referred to in this paper are computed using linear combinations
of mean squares. The results presented in this paper apply only to variance component estimates of this
type.

2More specifically, the confidence intervals are for linear combinations of expected mean squares with
positive scalar coefficients.
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CONFIDENCE INTERVALS IN GENERALIZABILITY THEORY 3

62(7) = E Ckgs12c)
k=1

Ck > 0, (1)

then the Welch and Satterthwaite procedures are appropriate for confidence interval esti-
mation. This last restriction proves fatal to any intended application one might put these
two procedures to in generalizability theory.

As an example, consider the simple one-facet p x i design. If ni and np denote the
sample sizes associated with each facet, then the following equations provide the three
variance components as functions of expected mean squares:

a-2(p) = [E(4) E(42)Un2

o-2(i) = [E(R) E(S:i)1Inp

a-2(pi) = E(4)
Clearly, the scalar coefficients of the expected mean squares are not all positive, invalidating
the use of both the Welch and Satterthwaite procedures. Worse yet, in typical implemen-
tations of this design, where p and i are main effects associated with persons and items,
respectively, it is not at all uncommon for np to be significantly larger than n, undermining
one of the Satterthwaite assumptions.

This simple design illustrates the need for alternate confidence interval estimation
procedures for variance components and error variances in generalizability theory. The
purpose of this article is to present new results concerning confidence intervals of variance
components to statistics encountered using fully random balanced designs in generalizability
theory. These results are tested for accuracy across numerous simple and complex designs
found in generalizability theory applications. Appearing to overcome many of the short-
comings of the Welch and Satterthwaite procedures with respect to variance components,
this research also yields the ability to give accurate confidence intervals about the most
important statistic computed in generalizability theory, P(A).

Details of recent research

The variance components and error variances encountered using various designs in
generalizability theory require alternate confidence interval construction procedures pro-
cedures allowing both signed coefficients in Equation 1 and highly variable degrees of free-
dom. With respect to variance components, even the simplest designs produce variance
components that are linear combinations of expected mean squares with both positive and
negative coefficients. With respect to error variances, linear combinations of expected mean
squares with both positive and negative coefficients and with only positive coefficients are
not uncommon. Two recently derived procedures accommodate these scenarios and, in gen-
eral, provide superior confidence coefficients to those produced using the Satterthwaite and
Welch procedures.

Before presenting the specific results, a brief survey on confidence intervals warrants
presentation. Let a designate a prescribed significance level, then 1 2a denotes the
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confidence coefficient of the two-sided interval {a2(7) L < u2(7) < U} and 1 a denotes
the confidence coefficient of the two one-side intervals {(12(7) L < 0-2(7) < co} and{u2(7) 0 < 0.2(7) < Ul. More fOrmally, 1 2a = P[L < a2(ry) < [I] and 1 a = P[O <
u2(7) < = P[L < u2(7) < oo]. In relatively few cases do the preceding equalities hold.
When they do such intervals are called exact. In cases when equality fails to hold, intervals
are called approximate. Moreover, if the probability exceeds the designated confidence
coefficient, then the approximate interval is called conservative; otherwise the approximate
interval is called liberal. Three types of approximate intervals are hereafter considered:
Upper intervals of the form [L, co), lower intervals of the form [0, U], and two-sided intervals
of the form [L, U].

Graybill and Wang (1980) and Ting, Burdick, Graybill and Gui (1989) began by
considering confidence intervals on positive sums of expected mean squares. Building on
these results, Lu, Graybill and Burdick (1988) and Ting, Burdick, Graybill, Jeyaratnam,
and Lu (1990) developed confidence interval estimation procedures on linear combinations
of expected mean squares with both signs. With respect to the former, the researchers
employed a modified large-sample procedure similar to that suggested by Welch (1956).
Let (72(7) be defined as in Equation 1 and let 6-2(-y) be defined as follows:

.62(7) = >2CkS Z
k=1

Graybill and Wang defined the confidence interval containing 472(7) as follows:

Ck > 0.

nn
er2(7) E GINS!! 0-2(y) < er2(7)

4\1

k=1
+ E HICigt

k=1

where

(2)

Gk = 1
1

and Hk =
1

1
Fa:nk,00 r 1a:nk,00

Using two methods, the authors tested the accuracy of these intervals against those
available from the Satterthwaite and Welch procedures: (a) when k = 2 the authors em-
ployed numerical integration via an elegant result due to Fleiss (1971), and (b) when k > 2,
the authors conducted simulation studies based upon 10,000 replications. In their study
of two-sided intervals containing cr2(-y), Graybill and Wang demonstrated that their pro-
cedure was superior to those provided by Satterthwaite and Welch in cases where k = 2.
Specifically, their confidence coefficients maintained at the stated a-level or were conserva-
tive across varying degrees of freedom. Later tests with k > 2 on one-sided intervals gave
less conclusive results (Ting et al., 1989). On lower intervals the Graybill-Wang interval
was superior to its Satterthwaite and Welch counterparts. In contrast, the Graybill-Wang
interval was somewhat liberal with respect to upper intervals.

In cases where the variance component is a sum of expected mean squares with coef-
ficients of both signs, analogous equations result from the modified large-sample approach
just considered. Consider cr2(7) defined by the following equation:

5
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cr2 (7) = EcqE(S) E cr E(S,?),
q=1 r=i +1

where Cj, 1 < i < k, are positive. If 6-2(7) is defined by

(3)

a-
2 2(7) = cgs, E CrSr2,

q=1 r= j+1

where Si represents the mean square associated with effect i, then the upper bound for a
lower 1 a confidence interval is given by (Burdick & Graybill, 1992)

where

vu =

Hq =

Efeic2,74 E Gr2cr2 sr4

q=1

j k k 1 k
+E E Hqrcgcrsq2s,?+ E EH:tCrCtS,W

q=1 r=j+1 r= j+1 t>r
1

1 q =17
F1.--amq,00

1
GT. = 1

Fa:nr,cx)

(1 F1 q 1.--a:nq ,nr Gr2_ ocnq ,nr ) H2F22

Hqr = and
Fl a:nq ,nr

H;:t =
R1 Famr +nt ,00 )

1 (nr + nt)2 GT.2nr G?nt
nrnt nt n,,.

1 (k j 1)

t = r + 1, . . . , k

A similarly formidable set of equations gives the lower bound for an upper 1 a confidence
interval.

(4)

where

L =6.2(7)- FL, (5)
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v, E G2 c2 S4q q q

Gq

G qr

q=1

j k

+ E E
1

q=1 r= j-1-1

1

Fa:nq

F1-a:nr ,00

EHr2cr2 sr4

r=j+1
j-1 j

Gqrcqc-TS + E E G q* uCqC4S,2,
q=1 u>q

q = 1, ...,j

1 r = j +1, ...,k

(Fecnq ,nr 1)2 G2F2q cenq

1

Fa:ng,nr

1

Fa:NA-nu Po )
n +nq u

)2

n nq u
GF7nq

nu

and

G!nu]nq

In a similar fashion as Graybill and Wang (1980) and Ting et al. (1989), Ting et
al. (1990) applied two methods to test the prescribed intervals accuracy depending upon
the number of terms in Equation 3. When a2(y) = ci.E(57) c2E(S3), the authors utilized
numeric integration and the corrolary due to Fleiss (1971) to determine the accuracy of the
confidence coefficients. When k > 2 the authors conducted a simulation study based upon
10,000 replications for all possible signed combinations of the expected mean squares with
variable degrees of freedom across the different signed combinations. Put in the context
of the variance components encountered in generalizability theory, their results cover all
variance components encountered in one and two facet designs as well as most encountered
in three facet designs. Results (Burdick & Graybill, 1992, Table 3.3.1, p.42) are superior
across the three types of confidence intervals. Particularly impressive were the results for
the lower and two-sided intervals these results either held at their stated a-level or were
conservative. Like with the Graybill-Wang interval, the upper one-sided interval, under
certain conditions, proved too liberal.

Methodology and results

Building on the results of Ting et al. (1989) and Ting et al. (1990), this paper further
examines their confidence interval estimation methods and tests their appropriateness for
6-2(A) and er2(6) in all possible one and two facet designs, and select three facet designs.
Consider the following inequalities implied from Equations 4 and 5:

VFIL a2(7) 6'2()) + \Fit

7

(6)
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Table 1: Simulated Ranges of 95% Confidence Coefficients of Lower and Upper Intervals and 90%
Two-Sided Intervals on 6-2(A) and 6.2(6).

Error
Variance Interval

Design
p x i i :p pxixh px(i:h) (i : p) x h

ii2 (A )

[L, co) .942-.951 .941-.953 .935-.959 .938-.950 .937-.955
[0, LI] .948-.952 .949-.953 .946-.955 .947-.954 .948-.953
[L,U) .901-.905 .900-.905 .896-.905 .899-.903 .900-.906

[L, co) .944-.950 .941-.951 .943-.954 .944-.952 .939-.952
[0, U .947-.952 .949-.953 .946-.960 .947-.957 .951-.958
[L,U .902-.908 .899-.908 .898-.908 .897-.902 .902-.905

Error
Variance

Interval
Design

i : (pxh) (ixh):p i:h:p pxixhxo (pxixh):o

6-2 (6. )

[L, oo) .944-.954 .945-.950 .939-.947 .928-.960 .935-.956
[0, U] .946-.957 .950-.959 .946-.954 .945-.964 .948-.962
[L,U1 .899-.909 .904-.915 .897-.902 .889-.928 .900-.916

6.20)
[L, co) .944-.960 .935-.957 .943-.959 .924-.972 .934-.964
[0, U] .947-.961 .945-.959 .948-.958 .943-.977 .941-.967
[L,U] .896-.918 .894-.908 .897-.905 .890-.942 .893-.925

Dividing all terms by ciOi and utilizing the fact that niS?/01, i = 1, , k, are in-
dependently distributed chi-square distributions for balanced, random, normal probability
models, the inequality becomes a function of ci.E(S?)/ ciE(.5?). Notice that if all the
cis are equal, as is the case with variance components, then the inequality reduces to a
function of E(S)1 Ei_.1E(S?). This is an explicit assumption in Ting et al. (1989) and an
implicit assumption in Ting et al. (1990). Though the assumption doesn't impinge on the
confidence interval tests associated with variance components, it does affect tests involving
6-2(1) and PM, since all cis are not equal in those cases.

The study examined several combinations of n, i = 1, , k, which yield different
ci, and pi = ciE(S?)/ ciE(S?) > 0. Because not all the cis are equal, the simulation
study placed particular emphasis on non-standard values of A. Dependent upon whether
the linear combination of expected mean squares for ei2(A) and '62(0 contained all positive
or both negative and positive signs, a SAS program produced 10,000 values associated
with Expressions 2 and 6 using the random number generator for the gamma distribution,
RANGAM, with a = v/2 degrees of freedom and 13 = 2. These were used to determine
the number of lower, upper and two-sided intervals containing E-1,7=1 pq Erk=j+1 pr. Based
on the simulation study involving 10,000 replications and the normal approximation to the
binomial distribution, the chance that the simulated values differ from the actual values
in magnitude by more than 0.004 is less than 5 percent. Table 1 provides results of the
simulation study. The range of values for each error variance and design represents the
variation across different A and ni combinations.
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The results parallel those found by Ting et al. (1989) and Ting et al. (1990). Overall,
the lower one-sided and two-sided confidence intervals either held at' the designated a-level
or were conservative. The performance of the upper one-sided intervals is not as good,
sometimes yielding liberal confidence coefficients. Because of the excellent results, both for
error variances and variance components, the intervals provided by Inequalities 2 and 6 are
excellent candidates for use with generalizability theory applications. Indeed, because of
the excellent performance of the lower one-sided intervals and because upper bounds for
variance components and error variances provide more crucial information than do lower
bounds, the lower one-sided intervals provided by (2) and (6) are particularly appropriate
for generalizability theory applications. The following section provides an application of
these confidence intervals to a situation involving cut-scores.

An application

In a number of circumstances, the numerical score received by a student on a test
has a set of standards applied to it. In some instances, these standards provide a cut-
score, above which the students pass and below which the students don't. Classification
errors within this pass-or-fail scenario are directly proportional to the standard error of
the measurement instrument, 0(A). Clearly, as sampling error increases the variability of
6-2(6.), the potential for classification errors increases. The following is an investigation of
the extent to which misclassification increases using the above tested confidence intervals.

Data collected from 100 students responding to five different essay prompts were used
to test misclassification rates with respect to the variability of error variances. Three raters
assessed each prompt from each student and issued scores ranging from one to nine. Using
mean squares available from the GENOVA output, confidence intervals about 6-2(A) were
derived using the same number of raters and tasks originally provided in the G study,

= 5andri,,./ = 3, as well as with n = 10andn. = 3. A Mathetnatica notebook designed
for computing said intervals performed the necessary computations. Borrowing an efficient
graphical depiction from Cronbach et al. (1995), results are presented in Figure 1.

The gullwings in Figures 1(a) and 1(b) are truncated normal ogives reflected about
the cut-score of seven. The outer gullwing in each case represents the upper bound on the
lower 95 percent confidence interval about or2(A), represented by the inner gullwing. Lower
confidence intervals provide the most relevant information in almost all generalizability
applications for the simple reason that knowing how small er2(A) is isn't nearly as important
as knowing how large it is. In Figure 1(a), with rei = 5 and = 3, er2(A) = .293 whereas the
outer gullwing was constructed from a normal distribution with standard deviation equal
to .674. The main reason for such a large upper bound for the lower 95 percent confidence
interval was a large mean square associated with the task effect. By doubling the number
of tasks and leaving the number of raters fixed at three, the standard deviation associated
with the outer gullwing is reduced to .544, as shown in Figure 1(b). The interaction between
increasing and decreasing the number of D study sampled conditions and the upper and
lower bounds for the confidence intervals is highly nonlinear and difficult to predict.

In either case, the results are troubling. If, for example, this test determined those
passing a writing course versus those failing. Across repeated administrations of the test
with respect to the intended universe of generalization, one should expect highly variable
misclassification rates. Misclassification rates based upon or2(A) = .3 might be considered
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(a) Depiction of 0 < 6.2(A) < U where 6-2(A) = (b) Depiction of 0 < 6.2(A) < U where er2(A) =
.293 and U = .674 .293 and U = .544

Figure 1. Absolute standard error with respect to the 95 percent lower confidence interval in two
D studies.

tenable under certain circumstances if a score of 6.5 represents the highest failing score,
then one should expect less than five percent of those students with a passing score of seven
to fail. Yet, misclassification rates based upon '6-2(A) = .6 are almost always indefensible
nearly 20 percent of those student with a passing score of seven fail. The importance here
being to recognize the amount of variability possible across administrations and its impact
upon misclassification.

Conclusions

Sampling error in variance components and error variances used in generalizability
theory is often overlooked when making determinations about the accuracy of a given test.
This paper attempts to address this shortcoming by presenting a number of results with
respect to confidence intervals about linear combinations of expected mean squares appropri-
ate for generalizability theory. Simulation results indicate that these intervals, particularly
the two-sided and one-sided lower intervals, are accurate or conservative both in simple and
complex designs with varying amounts of difference in degrees of freedom across effects. In
practice the lower intervals might prove to be most relevant since knowing how potentially
large an error variance is is important, while knowing how small it is isn't. The potential
for grossly underestimating standard errors seems a real possibility. More analysis using
larger data sets is needed.
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invites you to contribute to the ERIC database by providing us with a printed copy of your presentation.

Abstracts of papers accepted by ERIC appear in Resources in Education (NE) and are announced to over
5,000 organizations. The inclusion of your work makes it readily available to other researchers, provides a
permanent archive, and enhances the quality of NE. Abstracts of your contribution will be accessible
through the printed and electronic versions of RIE. The paper will be available through the microfiche
collections that are housed at libraries around,the world and through the ERIC Document Reproduction
Service.

We are gathering all the papers from the AERA Conference. We will route your paper to the appropriate
clearinghouse. You will be notified if your paper meets ERIC's criteria for inclusion in NE: contribution
to education, timeliness, relevance, methodology, effectiveness of presentation, and reproduction quality.
You can track our processing of your paper at http://ericae.net.

Please sign the Reproduction Release Form on the back of this letter and include it with two copies of your
paper. The Release Form gives ERIC permission to make and distribute copies of your paper. It does not
preclude you from publishing your work. You can drop off the copies of your paper and Reproduction
Release Form at the ERIC booth (424) or mail to our attention at the address below. Please feel free to
copy the form for future or additional submissions.

Mail to: AERA 1998/ERIC Acquisitions
University of Maryland
1129 Shriver Laboratory
College Park, MD 20742

This year ERIC/AE is making a Searchable Conference Program available on the AERA web page
(http://aera.net). Check it out!

Sinc rely,

Lawrence M. Rudner, Ph.D.
Director, ERIC/AE
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1If you are an AERA chair or discussant, please save this form for future use.
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