DOCUMENT RESUME

ED 422 938 IR 057 096
AUTHOR Schrage, John F.

TITLE Six Thinking Aspects of Programming.

PUB DATE 1997-00-00

NOTE 9p.; In: Proceedings of the International Academy for

Information Management Annual Conference (12th, Atlanta, GA,
December 12-14, 1997); see IR 057 067.

PUB TYPE Information Analyses (070) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC0l1 Plus Postage.
DESCRIPTORS Academic Achievement; Computer Oriented Programs; *Computer

Science Education; *Computer Software Development; Critical
Thinking; Design Requirements; Higher Education;
Programmers; *Programming; Teaching Methods; *Thinking
Skills

ABSTRACT

Based on literature and student input, six major concerns
have been noted for student programming progress for the academic class and
work environment. The areas of concern are module driver programming, program
documentation, output design, data design, data validation; and reusable
code. Each area has been analyzed and examined in the teaching of computer
programming over a period of about 20 years. The key element continues to be
thinking. Getting programming students to think about each of the concerns
and applying those principles to their environment leads to a better
programmer. (Contains 15 references.) (Author/AEF)

khhhkhhkhkhhhkhhhkhkhkhkhkhkhkhkhhkhhhhkhhhhhkhkhhkhkhkhhkhkhhkhkhhrhkhhkrbhbkhbkhkrhrkhrhrhrrrhrhkrhrhbhbrhhrhrhrrhrhrhrhhih

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
22222 2R RARRRR RS R R R SRR AR R RS2 RRS 22222ttt Rl S]

ERIC

Aruitoxt provided by Eic:

SIX THINKING ASPECTS OF PROGRAMMING

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)
O This document has been reproduced as
received from the person or organization T ° Case

originating it. John F. Schrage :

O Minor changes have been made to ' ‘

improve reproduction quality. Southem Illinois University at Edwardsville

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

® Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

Based of literature and student input, six major concerns have been noted for student programming
progress for the academic class and work environment. The areas of concern are module driver
programming, program documentation, output and data design, data validation, and reusable code. Each
area has been analyzed and examined in the teaching of computer programming over a period of about
twenty years. The key element continues to be thinking. Getting programming students to think about
each of the.concerns and applying those principles to their environment leads to a better programmer.

ED 422 938

INTRODUCTION

After reviewing student's comments from course
evaluations on the programming class for over 20
years, a continuing concern regarding thinking
prevails. In addition to the normal course
evaluation, the author continues to periodically
evaluate class topics in the programming course
to determine clarity of presentation and to follow-
up student questions or lack thereof in the class.
Students believe that the major effort for the
programming course is getting the correct answer
to the programming problem. But life normally
does not have just one answer and that mirroring
is not realisticc. While the concerns expressed
from students relate to the COBOL programming
course, much of the material is tangential to
almost any language. Even in home page design
and its coding, the relationship of the concerns
has been noted by and to students.
Programming-related concerns have been noted
by students and thus should be addressed more
by faculty in the process of teaching programming
courses — no matter what language is used. Over
the last twenty years, six major concerns
continue to be expressed by students over the last
twenty years have been the following:

a. module driver programming

In the first years of teaching, the faculty member
normally leans heavily on the textbook and its
ancillaries. As teaching time passes, the faculty
member should be aware of the fact that books
change but many of the programming constructs
continue. The textbook provides one view in the
logical progression on programming plus
examples for the student to follow in that
progression and finally situations to program
which illustrate the progression of topics. The
programming assignment should not just be a
coding assignment but a means for the student to
think about results for the user and what really is
involved in the process. This is leading to a more
realism, which seems to be a missing element for
the student. No matter which textbook is used,
the faculty member should be providing an
instruction mode to student learning not just
lecturing from a book.

MODULE DRIVER PROGRAMMING

One of the first concerns given by students
centered on the aspect of structured
programming, which leads to the module mode of
programming and thus the driver programming
method. GO-TO programming was the way
programming was initially' taught. Then
structured programming made the GO-TO verb

E' ﬁzﬁﬁe‘i‘i’;memmn fade — in BASIC, COBOL, dBASE and
)) (insert your choice of language). Programming in
e. datadesign the middle of the seventies was starting to
e. data validation emphasize the structured approach and changed
f. reusable code the process of programming. An experienced
242 Proceedings of the 12* Annual Conference of the International Academy for Information Management

2

programmer taking an academic course generally
fought with the faculty member who used the
structured approach based on the process of
"getting the program completed". The author
vividly remembers arguments with working
students who would argue about being able to
code the program faster by ignoring structured
concepts. Coding the program was easy but the
thinking part really caused students some
concerns. Over - time structured methods
prevailed and thus the module driver approach
appeared. In the sixties, the author remembers
the COBOL programming course in which four
programs were the normal number written for
the whole course. When the structured methods
were applied much more coding could be
accomplished. The applied theory of the New
York Times programming project directly effected
the academic expectation of programming. With
the driver method in COBOL, the academic level
of programming approached at least 30
statements per day per credit hour production.

In pushing students, two studies were attempted
to note programming prowness. For about two
years, a now retired faculty member and the
author controlled the programming level of
students using the academic quarter (10 weeks
with 4 fifty-minute meetings weekly). The initial
failure rate in classes was high based on students
not allocating the expected time for class as
requested by academic theory — at least one hour
of outside class time devoted to the class for every
hour of class. After students accepted the time
expectation in programming, the passing rate
climbed. In fact, the "A" grade rate was so high
that questions arose on giving grades in the class.
Students were most inclined to complete the work
at a high level based on the expected first job
being in COBOL programming. In the last three
years, the grades have come down, based mainly
on students finding out that programming
required much thinking and also the fact that
companies were hiring less programmers. In the
last year, the intensive COBOL seminar
approach has increased based on the lack of
COBOL programmers and the year 2000 project.

In teaching the module and driver approaches,
the student had to think in a manner that the
whole is made up of several parts, and thus the
student tried to solve programs in pieces. The
building module approach has again increased
the level of student coding with the number being

between 30-50 statements per day. This was not
the only reason for the programming increase but
seemed to be the root of the solution. The
microcomputer with its availability of compilers
has also played a part in productivity.

With the driver approach, the student better
organized his or her thoughts to come to a
conclusion. The author provides a series of
generic programs for the whole process which
follow a building approach for listing,
calculations, totals, page breaks, conditional
logic, control breaks, sorting, tables, and screens.
The course problems also lean heavily on the
building approach but requires design thinking
for the student. [A sample set of programs noted
in this section is available in the public domain.)

PROGRAM DOCUMENTATION

The author brings into class what is left of a 50-
page program of the early seventies with no
documentation and asks several questions of the
students in the class about the program after the
initial programming lectures and first student
program. The general student comments deal
with the junkiness of the production program,
which came from a Fortune 500 company.
Program documentation should be emphasized in
any class in which some level of programming is
attempted. Program documentation includes not
only internal comments but data name
construction rules for field and calculation
clarity.

Even when HTML is discussed in the creation of
home pages, the program comment aspect is
explained and required to aid the student in
further refinement of the code — even when most
of the class are not computing majors. As a part
of any programming class, program
documentation should be emphasized. In
reviewing over 167 course outlines from an
Internet search, only twenty-seven (27) outlines
had the topic of documentation as part of lecture
materials and six (6) outlines had an internal
document on standards that should be applied to
programming assignments. From work
experiences with the US Army, their Computer
Science School previously provided a fifteen-page
document on standards and program
documentation. Dr. Janet Hartman of Illinois
State University had standards on her Web page
for her C programming class. From other

Proceedings of the 12* Annual Conference of the International Academy for Information Management 243

research and faculty interaction on the topic, Dr.
R. Wayne Headrick of New Mexico State
University, has a programming standards
handout, which details program documentation
and COBOL coding standards, which is also,
noted on his course web pages.

For COBOL, minimum standards include general
programming conventions, internal program
comments, spacing, data name conventions, and
module name conventions. Some of the general
programming conventions include:

IDENTIFICATION and ENVIRONMENT
DIVISION considerations:

a. IDENTIFICATION and ENVIRONMENT
DIVISIONS can be placed on separate pages
by placing a /in column 7.

b. The sequence in which files are selected in
the SELECT statements is not critical, but
the more logical approach is to select and
define the input file(s) first and then the
output file(s).

¢. Code each SELECT statement on two lines
and avoid the use of device-specific file-names
such as SALES-DISK.

PROCEDURE DIVISION considerations:

a. A Mainline or Driver module should control
execution of the program modules in the
PROCEDURE DIVISION. That module
should be the first module in the
PROCEDURE DIVISION.

b. Each program module should include only the
statements required to accomplish a process.

¢. Each READ and WRITE statement required
by the program should be coded into a
separate program module.

d. STOP RUN should be the last executed
statement in the Mainline or Driver module.

e. Only code a single statement per line for the
sake of clarity and to make debugging easier.

Internal Program Comment Requirements:

a. Immediately following the IDENTIFI-
CATION DIVISION, there should be
comments that indicate the overall function
of the program. So that the comments can be
easily identifiable as documentation text,
proceed and follow the comments with a line
of *s.

244

b. With the exception of the Mainline and
Initialization modules, all program modules
in the PROCEDURE DIVISION must be
proceeded by comments that indicate the
purpose of the module.

Spacing Requirements:

a. All indentation should be made in increments
of four spaces.

b. All PIC and VALUE clauses must be aligned.

c. If a COBOL sentence is too long to fit on a
single line, the second line must be indented
four spaces.

d. All "blank" lines should have an * in the 7th
column with the rest of the line being blank.

e. All division headers, with the exception of the
IDENTIFICATION DIVISION should be
proceeded by two or three "blank" lines.

f. All section headers should be proceeded by
one or two "blank" lines and followed by one
"blank" line.

g. All file descriptions (FDs) should be
proceeded by one "blank" line.

h. All Ol-level record descriptions should be
proceeded by one "blank" line.

i. All PROCEDURE DIVISION program
module names should be proceeded by one
"blank" line and followed by one "blank" line.

Data Record Naming Conventions:

a. All program accumulation, computation and
control fields should have a prefix or suffix of
WS. Temporary fields of this nature should
have similar fields grouped together at the 01
level, then each individual field listed at the
05 level.

b. All input data record and fields should have a
prefix or suffix to indicate input [I or IN]
followed by all output print records and fields
should have a prefix or suffix to indicate
output [O or OUT]. In the same manner, all
heading records and fields should have a
prefix or suffix that begins with the letter H
followed by a number indicating which
heading line is specified.

Module Naming Conventions and

General Considerations:

a. The module name should indicate the
specific function that the module is
performing.

Proceedings of the 12* Annual Conference of the International Academy for Information Management

4

b. Code module names on a line by themselves.

¢. Module names should be composed of a one-
word verb followed by a two-word object.

d. A naming convention should be used to
assign an appropriate 3 digit prefix to the
module name, such as:

e. Module # Module Function
000 Mainline
025-090 Sort & Other General

Items before Initialization

100-199 Initialization Processing
200-299 General Processing
300-399 End-of-Run Statistics
500-599 Input Processing
600-649 Output Processing
650-699 Headings
700-749 Page Processing
750-799 Called Programs
890-899 Detail Line Processing
999 Last Line paragraph

The above noted COBOL programming standards
and documentation items should be applied to
every programming course. Many students do
not see the need for the rules in the first set of
elementary program but then a light seems to
grow brighter on why the rules are applied to the
computer programs.

OUTPUT DESIGN

The output is what the user wants to view to be
able to make accurate decisions for company
actions. Based on the output, the programmer
must determine how the data must be
manipulated to produce that expected set of
output. Even in the beginning classes, the author
has the student design output. Whenever an
output design is given to the students, a
mirroring of that output has been accomplished
without much problem. When the output
becomes variable or designed by the student, then
problems seem to happen.

The author, in trying to get students to think, has
the student design the actual output for all

programs in the beginning class, based on
specifications provided. Initially in just telling
student which fields should be on the output
report, the student has to space the headings and
data in a useable manner. Rules are provided on
the general paper design and then students
layout the headings and fields. The basic output
format is presented to include company and
report titles, field headings, data detail lines,
total lines, and end of report indicators plus form
specification notation. Based on questioning
students on the first report format assignment,
over seventy percent worried more on the design
issue than the coding of the application. In the
advanced programming course, the first problem
deals with three small programs — formatted
report, data output dump, and audit report.
While the logic and code is as simple as the first
program written in the beginning class, about
seventy-five percent of the students struggle with
the output design issue with special concerns
about the audit report — which is noted as first
record, last record, nth record(s), and some
numeric totals or limitations.

At the beginning, the one-page reports provide a
start to the whole design process for user
expectations. The use then of multiple headings
and detail lines, then selected detail lines, and
multiple output design are just interations of the
primary output principle but various thinking
problems arise. Not all students have problems
but a majority has concerns until the thinking
light starts to lead the student. Integrated with
the module material are concepts of deviation of
the basic output to add such items as multiple
output lines, page routines, and total lines.

The use of screen design is presented for another
output design mode. Just as with paper output, a
screen design template is discussed with a basic
structure. That structure is enhanced in various
programming courses depending on the various
options that can be used in a normal manner.
Statistically, the trend for screen design concerns
has been lessening over the past five years.
When students are asked why screens seem
easier, the major answer is related to
microcomputer use and particularly the use of
word processing principles plus the relationship
to use of presentation graphics in classes. A new
aspect of screen design is being examined in
respect to the graphical interface presented with
windows and the multiple entities such as drop

Proceedings of the 12* Annual Conference of the International Academy for Information Management 245

down list boxes which are available in Visual
BASIC and also for other languages.

DATA DESIGN

For the person that thinks that output design
causes some concerns on student thinking, try
data design. With a systems class and
programming class required for the advanced
programming course, the author initially thought
that students would remember basic concepts on
the easy assignment of creating student-based
data for the problem. Data design blows away
more students that the other aspects previously
noted. For the faculty member that does not
agree with: this, you should design your own
programs for students to solve each time the
programming class is presented. As noted
previously,. the author does not teach from a
particular textbook but emphasizes content and
references the textbook. Programs from previous
terms seem to circulate in the academic
community: and thus there does not seem to be
enough of the textbook problems.

The actual design of data was a function of the
advanced: programming course for over ten years.
When the author went back to teaching the
beginning class, the data design issue was tried
in the beginning class with huge failure. The
recovery on data design hampered the normal
coverage: of programming expectation in the first
programming course. The particular time in
which the task was attempted did not matter.
Students without the first systems class really
struggled with data design. Thus other avenues
for data acquisition for the first programming
class are now being used.

Data design for the author has come from two
directions—students in the advanced
programming course and a very good graduate
assistant with work experiences. A third mode
was used for several years but the application
textbooks disappeared with the consolidation of
publishers. Alan Eliason at Oregon State
University had several editions of his business
applications book on the market over the past
twenty years and the material was excellent for
showing data flow and application aspects.

The advanced programming course had students
assigned applications in which file processing and
updating were the main focus. All of the

beginning class concepts were integrated such
that the application could, with minor
modification, be used in the first programming
class. With the application book and various
articles, students designed the file structure and
then created actual data in the file-based course.
Again a thinking process in the programming
course. Thirty-five application areas were
provided to the student with additional areas
negotiated between the student and instructor.
The application areas were noted in the reference
index titled, Computer Literature Index, which
was published quarterly.

The author also had an information systems
graduate student design a new data set in 1995
after reviewing the assignments given to the
classes for about seven years. The new case
design include: hotel management, television
programming with marketing, hardware store
inventory, customer tracking for a mail order
catalogue, and beer distributor. The data sets are

" now being revised again and some new sets

designed for use in other programming courses
taught by the author. On analyzing student
achievement in the course, the best results from
students have been with the beer distributor
application-something that interests some
students in spare/social moments. :

If after the above design concerns, the instructor
still want students to design the data, what
approach can be used? The author had the least
problems when the file structure was provided to
the student. Given the fields and their
characteristics, data can be extracted from
various sources. The telephone book and various
catalogues are the best sources of data content.
Even when the author has used this approach,
students seem to get stuck in providing realistic
data after about ten to twelve records. The main
success to data design seems to be related to the
maturity level of the student and his/her previous
work experiences. Thus, if you are teaching a
traditional student, data design can be a concern.
If you have older students with work experiences,
the data design aspect is even fun for the student,
based on student feedback.

DATA VALIDATION

Controls are obviously needed for any application
no matter how processed. Errors occur in the
processing” of the data with the severity

246 Proceedings of the 12* Annual Conference of the International Academy for Information Management

b

dependent on the dollar relationship between the
error and its results. The nature of each error,
from the bit to the file usage, can be traced to
specific sources. The cause frequently implies the
method of choice for correcting that situation.
Man, in a generic sense, has always used his
thinking ability coupled with business knowledge
to control and edit the manual process. These
same aspects must also be used in machine
processing. The - computer program can
methodically edit and control data for
applications, even to including examining
character bit structures, but only in so far as
human instructions are provided to the machine.

The organization should be examining all data
input/entry within every application such that a
minimization of errors affects the monetary
structure of the organization. Programmers
should be implementing general edit techniques
in all application areas. Surveying the normal
instructional procedures by which a beginning
programmer is taught data validation
programming and processing has given some
concern. Changes to data validation appears to
be happening in those organizations, which
emphasize interactive use of data.

Some languages have added validation keywords
to the language structure to aid programming.
The Paradox package allows validation of fields
with limits (high and low) and the BASIC
language has built-in validation of numeric data
for numeric fields. Even the graphical
client/server application development tool of
PowerBuilder has data validation rules that can
be coded in the Database painter or the
DataWindow painter. The COBOL 97 standard
should have a new verb called VALIDATE, which
will allow the programmer to check the field
without writing several lines of code. Many
languages, such as COBOL, FORTRAN, C++, and
C, provide for data validation by the "brute force"
mode of checking fields or character by character
into a buffer mode. While the data validation
techniques seem to be taught in many academic
programs and business training settings, what is
taught and what is implemented seem to differ.

Thirty businesses in one geographic area were
analyzed using a validation technique matrix
(which is shown in the appendix). Only twenty-
two of the businesses were using some technique.

Twelve businesses were totally validating data as
entered into the system before processing. One
major financial institution did not validate any
data but expected the data entry people not make
mistakes. The absence of validation was treated
very lightly. The comment from the controller
was that, "no errors have occurred which have
been financially adverse to the company and the
insurance firm for the organization would handle
any losses". Based on the survey, twenty-seven
firms decided to re-evaluate their data validation
process. The author spent two working days with
three companies to examine validation. In the
stay, data errors, which were accepted by the
system ranged from one error for 500 fields,
entered to three errors in 120 fields in another
firm. Thus firms which validate data with the

. software still can allow an error to be entered into

the system. No system is totally fool proofin data
validation. Programming code was examined in
all cases to determine how errors were caught
and how errors were able to get into the system.
Only with extensive testing on the part of both
the programming staff and the user community
can errors be kept to an absolute minimum.
Those errors, which still were able to get into the
system, were not normal entities entered into the
application but some data items, which we were
trying to input to get the system to fail.

Many programming-related materials have
tended to minimize the aspects of data validation .
to concentrate on other programming specific
concepts. The current business-oriented
computer curricula of DPMA and ACM [and even
the new proposed joint curriculum between ACM,
DPMA, and AIS] implies the need for data
validations but seems to treat the concept as
learned in the academic environment and
reinforced in training programs. Most
programming-oriented training seems to imply
the need for data validation but expects the
programmer trainee to know what should be
done. Data validation and other controls are
essential for the preventative medicine aspects of
information processing. When educators are
teaching the programming sequence, bad data
must be used to alert the student to the real
world rather than just concentrating on
mirroring the output.

Proceedings of the 12* Annual Conference of the International Academy for Information Management 247

REUSABLE CODE

Reusable code is the newest student issue. The
original program coding and subsequent re-
coding of revisions is being done less but a code
library must be present for the reuse issue to be
used properly. The use of the COBOL COPY verb
is discussed during the lecture material on
formatting output for the second programming
assignment. The notation that file structures are
provided by the data base administrator and then
copied into the program rather than being
entered for each program by the programmer is
emphasized. While not required to be used in
that second assignment, over eighty percent of
the students take the hint to use the COPY verb
to bring in: the file description. The same copying
concept is. noted in the third assignment with
constants, page controls, report title, and end-of-
report expectations. Again, the use of the copy
verb is used by about fifty percent of the students.
The author relates his experience in designing
label producing programs with one to five up
labels and: the coding issue. Students then design
a label program with these principles in mind.
The program is then exchanged with other
classmates to produce a class-based label
program, which can be used in other
assignments..

As noted earlier in the article, a set of generic
programs- is used in the lectures on concepts. A
generic COBOL program is initially presented to
show the parts to the program and the
relationship of reserved word and programmer-
supplied data names. A series of programs then
use that generic code to present the course
concepts of data dumping, format report,
calculations, page insertions, conditional testing,
control breaks, sorting, multiple page breaks,
tables (internal and external), and screens.
Those programs thus become the COBOL library
for students to use and modify. While that set is
available, many students still code each program
from scratch. Modification are being made to the
course such that a student will have to use
selected programs from this generic library to
complete assignments in a timely manner.

In teaching home page design, students are given
a generic structure for a resume and then adapt
that code to their setting. Many students search
the Internet for selected backgrounds, graphics,

248

and page formats to design pages for themselves.
That correlation to reusable code is understood by
students more than as presented in the normal
programming course, but the point of using and
re-using code for whatever language is being done
more. A fine line is presented in the re-using
concept and copying code between students for
assignments.

With the reduction of programmers and the use of
design tools, the need for original code will
continue to decrease but only to the extent that
the software library grows with examples of the
coding procedures. The code libraries for Pascal,
C, C++, and Visual BASIC continue to grow in the
shareware area but little has been provided for
the COBOL language.

CONCLUSION

While emphasizing the above six topics will not
guarantee a good programmer, the author has
received much positive feedback from local area
companies and former students who have been
through the process. The initial "survival”
parties have disappeared but the concepts are
continually asked in the interview process. While
the programming topics have lessened, based on
the changing nature of the information system
student product, the carryover of these principles
are emphasized in the data base, data
communication, and systems courses. Using the
above items does put more pressure on both the
student and the instructor.

Thinking aspects are not just one direction. In
programming, the thinking process is two way
and should be made as interesting as possible for
both the faculty member and the students
enduring theé process of coding in the variety of
languages taught in the academic setting. The
first experience of the author using computers
was almost thirty years ago as a college senior in
a traditional business computer concept course,
which included FORTRAN programming. That
spark led to further courses in graduate school
and eventually teaching the material many times
during the last quarter century. In many ways,
the computer programming material reminds the
author of the first college accounting course
taught. The senior faculty members helped me
get organized as I was taking over for another
faculty member who became ill. The senior

Proceedings of the 12* Annual Conference of the International Academy for Information Management

8

accountant told me to remember that the
concepts stay the same over time plus will lessen
In importance but thinking will always provide
the challenge.

Note: For a copy of the diskette with sample
programs, documentation standards, and
PowerPoint slides, e-mail the author for reply
with a compressed file attachment.

REFERENCES

Charlton, John. "The Great Divide", Computer
Weekly, May 9, 1996, pages 38-40.

Dahlstrand, Ingemar. Software Portability and
Standards. West Sussex, England: Ellis
Horwood Limited, 1984, 150 pages.

Dunn, Robert H. Software Quality: Concepts and
Plans. Englewood Cliffs, NJ: Prentice-Hall,
1990, 296 pages.

Grauer, Robert T. A COBOL Book of Practice and
Reference. Englewood Cliffs, NJ: Prentice-Hall,
1981, 382 pages.

Humphrey, Watts S. Introduction to the Personal
Software Process. Boston: Addison-Wesley
Longman, Inc., 1997, 278 pages.

Miller, Philip L and Lee W. Miller. Programming
by Design. Belmont, CA: Wadsworth Publishing
Company, 1986, 567 pages.

Noll, Paul. Structured COBOL Methods. Fresno,
CA: Mike Murach and Associates, 1997, 208

pages.

Philippakis, A.S. and Leonard J. Kazmier.
Program Design Concepts with Application in
COBOL. New York: McGraw-Hill Book
Company, 1983, 217 pages.

Robertson, Lesley A. Simple Program Design,
second edition. Danvers, MA: Boyd and Fraser
Publishing Company, 1993, 203 pages.

Satzinger, John W. and Tore U. Orvik. The
Object-Oriented Approach: Concepts, Modeling,
and Systems Development. Danvers, MA: Boyd
and Fraser Publishing Company, 1996, 163

pages.

Seybold, Patricia. "Replace Waterfall Methods
with Workflow Methods", Computerworld, May
23, 1994, 28:21, page 37.

Shultz, Steven S., Joel A. Farrell, and Vladimir R.
Yakhoris. "Deriving Programs using Generic
Algorithms", IBM Systems Journal, March 1994,
33:1, pages 158-82.

Topper, Andrew. Object-Oriented Development in
COBOL. McGraw-Hill, Inc., 1995, 487 pages.

Vesely, Eric G. COBOL: A Guide to Structured,
Portable, Maintainable, and Efficient Program
Design. Englewood Cliffs, NJ: Prentice-Hall,
1989, 410 pages.

Young, Peter. "Australian Software Methods
may Become International Standards",
Computerworld, June 27, 1994, 28:26, page 116.

Proceedings of the 12 Annual Conference of the International Academy for Information Management 249

Caad A L VAN TRT g LS Ea b bt Aot 441 Sumin § 04 ML 2

U.S. DEPARTMENT OF EDUCATION

Offlce of Educatlonal Rasaarch and Improvemant (OERI)
. Educatlonal Resourcas Information Centar (ERIC) l' :

NOTICE

REPRODUCTION BASIS

This document is covered by a signed “Reproduction Release
(Blanket)” form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

This document is Federally-funded, or carries its own permission tu
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release
form (either “Specific Document” or “Blanket”). . .

