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Abstract

The issue of person fit has received an increasing amount of attention by researchers in the past few years.

Several studies have focused on the issue of how nonmodel-fitting responses effect the accuracy of ability

estimates (e.g., Meijer & Nering, in press; Reise, 1995). The purpose of this study was to examine the

effects that nomnodel-fitting response vectors (NRVs) have on the estimation of person parameters for

model-fitting response vectors (MRVs). Under the assumption of local dependenc in item response

theory, one examinee should not influence the test results of other examinees. However, if NRVs are

present in a calibration sample, and they affect the quality of item parameter estimates, and this could

cause error in person parameter estimates for MRVs. In this study ability estimates and person-fit

statistics were estimated for MRVs in calibration samples that contained different amounts and types of

NRVs. It was found that an expected a posterior estimation procedure tended to result in reduced bias in

ability estimates, while a Biweight estimation procedure resulted in person-fit statistics that were more

normally distributed. The ZU3 nonparametric person-fit index was much less sensitive to NRVs

compared to the parametric person-fit statistic 4. The results of this study demonstrated that researchers

should seriously consider the calibration sample when estimating person parameters.

Key words: Person fit, appropriateness measurement, ability estimation, nonparametric item response
theory, item response theory.
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The Influence of Nonmodel-Fitting Examinees

in Estimating Person Parameters

The extent to which an ability estimate (6j) for an examinee j represents the underlying latent

trait of interest (0) is commonly referred to as person fit (e.g., Nering, 1995). This area of research has

recently received a great deal of attention (e.g., Meijer & Nering, in press; Meijer, 1996; Meijer &

Sijtsma, 1995), and has continued to assist researchers in studying a variety of measurement related

problems (e.g., Reise & Waller, 1993; Schmitt, Cortina, & Whitney, 1993; Zickar & Drasgow, 1996).

Although this area of research has continued to expand over the past few decades, many issues regarding

person fit continue to be problematic for measurement specialists. For example, as discussed by Nering

and Meijer (in press) most methods used to index person fit cannot be used to determine the cause of the

nonmodel-fitting behavior. Methods that can be used to determine why an examinee may have a poorly

estimated 0 may be useful in selecting candidates for a job, in a college admissions test, or within the

context of classroom assessment.

As discussed by Levine and Rubin (1979) and Wright (1977), there are many examinee response

behaviors that could potentially lead to a poorly estimated 0 value. For example, an examinee may lack

English skills necessary to answer a test question used in measuring mathematics ability, or an he or she

may be overly anxious or experience fatigue on longer tests. Nering (1996) suggests that examinees in a

computerized adaptive test may lack computer familiarity or may experience a warm-up effect, which

could result in a poorly estimated 0 value. Behaviors such as these may result in an examinee responding

to test questions in a manner that does not reflect his or her 0, that is, in a manner that is not in

accordance with the underlying test model. Certainly, as researchers continue to find new methods for

indexing person fit and new applications for using person fit, this topic will play an important role in

educational and psychological measurement.

Although an increasing number of researchers have found applications for which person fit is

useful, much of the work done in this area has focused on the development of person-fit statistics, on the

detection of person fit, or on the influence that nonmodel-fitting responses has on ability estimation. The

purpose of the present investigation, however, was to study the influence that nonmodel-fitting response
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vectors (NRVs) have on the estimation of person parameters for model-fitting response vectors (MRVs).

Past researchers have typically only focused on how accurately O values are estimated for NRVs [i.e.,

manipulated response vectors (e.g., Meijer, 1996; Nering. 1996)]. Ideally, within the context of item

response theory (IRT), one examinee should not influence another examinee's 6 ; however, in a real

testing situation an examinee's 6 is determined using estimated item parameters. Estimated item

parameters are typically found from a calibration sample of examinees using a program such as BILOG

(Mislevy & Bock, 1982). If the sample contains NRVs then the item parameters may be poorly estimated,

and these poorly estimated item parameters will affect 6 values for MRVs, and one goal of this study was

to determine the extent to which these 6 values are affected. Along with the estimation of 0, NRVs may

influence other estimated person parameters, such as indices of person fit. Thus, a second goal of this

study was to investigate how NRVs affect indices of person fit for MRVs.

A schematic of the basic research questions studied here can be best summarized by Figure 1.

Notice that there are two datasets, which are similar except that the dataset to the right contains NRVs.

The comparisons made in this study were in the estimated person parameters for the MRVs under

different calibration conditions.

Past Person Fit Research

In the past 20 years several methods have been developed to index person-model fit, and to detect

examinees whose 6 may not be accurately estimated. Most of the person-fit indexing methods developed

within the context of parametric IRT models can be categorized into two general approaches (Nering,

1997). One approach uses the peak of the likelihood function of a response pattern (Drasgow, Levine, &

Williams, 1985; Levine & Rubin, 1979), and the other approach evaluates the discrepancy between

observed and model predicted responses (Tatsuoka, 1984; Trabin & Weiss, 1983). Many studies have

been conducted that have compared how well different person-fit indices detect NRVs under a variety of

conditions (e.g., Birenbaum, 1985, 1986; Drasgow, Levine, & McLaughlin, 1987, 1991).

Although a single person-fit index has not been found to be uniformly superior at detecting

NRVs, the /, index has received a great deal of attention. For example, researchers have studied the
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distributional characteristics of I. ( Nering. 1995, 1997) and the detection rate of 1, (Reise & Due, 1991;

Nering 1996) under many experimental conditions. These studies, along with others (e.g., Li & Olejnik,

1997), have shown that the tz index may be the most promising tool in detecting NRVs witin the context

of the two and three-parameter logistic 1RT models. This index can be defined as:

/a EN)

[var(10 )11/2

(1)

where, to represents the log of the peak of a likelihood function for a particular response pattern and E(10)

and var(to) represent the expected value and the variance of /0, respectively. The terms in Equation 1 can

be computed by:

10= In npior
1.1

n

(2)

E(10) = CO p, (6) + (6) in o, and (3)

i=1

vail/a) -= I Pi (A)Q; (6){1n

respectively, where

n

i indexes the items (i = 1, 2, ... n),
P is the probability of a correct response given the IRT model,

Q is 1-P, and
u represents the item score (0 or 1).

(4)

Although the distribution of 1, has been studied under many conditions by past researchers, how

NRVs affect the distribution of person fit for MRVs has not been investigated. If NRVs degrade how well

6
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item parameters are estimated, and how well8 values are estimated for MRVs, then it is possible that

NRVs will also affect how well other examinees appear to be fitting the underlying test model.

Indexing the extent to which 8 is an accurate representation of the latent trait of interest is not

limited to a context in which parametric IRT models are used. For example, the ZU3 index can be used

within the context of nonparametric IRT (Mokken, 1971; Mokken & Lewis, 1983). This ZU3 index was

developed by van der Flier (1982) and can be defined by:

ZU3 =
U3 E(U3)

V (U3)1I2
(5)

If we let g represent an item index (g=1,2, ...,k), r represent the total score for an examinee, ;rg represent

the difficulty of item g (i.e., proportion correct score), and Xg represent the item score (0/1) then the terms

in Equation 5 can be found by:

E in(
)

g g) Eg=, xg
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(6)

, and (7)

V (U3) = R 2 , where
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g
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)
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(9)

(10)

Researchers have shown that ZU3 has high detection rates under many conditions (Meijer, 1996);

however, little work has been done concerning the distributional characteristics of this index. Like the

index, the ZU3 index standardized and should have an expected value of 0.0 and a standard deviation of

1.0. Additional work is needed to determine if this ZU3 index is distributed as expected, and to determine

if NRVs affect the distribution of ZU3 for MRVs.

Ability Estimation

Person-fit researchers have not only been interested in the detection of lack ofmodel fit, but also

how different estimation procedures perform in the presense of NRVs. Reise (1995) found that Biweight

estimation (BIW; Mislevy & Bock, 1982) resulted in higher detection rates for 1Z compared to maximum

likelihood estimation (MLE) and expected a posterior estimation (EAP). Although the detection rates

using BIW were only slightly better, Reise's findings do suggest that the manner in which 8 is estimated

may alleviate the effects of some types of nonmodel-fitting response behaviors.

The BIW procedure is a robust estimation method in that it down-weights items that have

difficulty values that are different from an examinee's ability. As discussed by Reise and Due (1991), for

an examinee to be considered nonmodel fitting, it is necessary that they respond inappropriately to items

that they (probabilistically) should have gotten right or wrong. Thus. by down weighting the items where

8
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there is a large difference in item difficulty and the examinee's ability, BIW may result in 9 values that

are a more accurate representation of 0 when nonmodel-fitting responses are present.

Meijer and Nering (in press) were able to extend Reise's (1995) findings and show that not only

were there better detection rates when BIW was used, but also that BIW resulted in less bias in 8 for

NRVs compared to when MLE and EAP were used. The findings in Meijer and Nering, however, were

specific to the tails of the 0 distribution, and examinees at or around 0=0.0 were less affected by what

estimation method was used.

Both the Reise (1995) and the Meijer and Nering (in press) studies only investigated the

influence that nonmodel-fitting responses had on the ability estimation for NRVs, and additional work is

needed to determine what influence these response behaviors have on MRVs. Moreover, it is necessary to

determine if there is an estimation procedure for MRVs that is less affected by NRVs.

Purpose

The primary goal of this study was to tie together various lines of research in an attempt to

understand how NRVs affect the estimation of several different person parameters for MRVs. Having

many NRVs in a calibration sample will cause poor item parameter estimation, but the number and type of

NRVs necessary to cause inaccuracy in 6 , lZ, and ZU3 for MRVs has yet to be determined. A secondary

goal of this study was to evaluate the distributional characteristics of the I index and compare it to the

nonparametric ZU3 index. Studying the distributional characteristics of person fit will provide insight

into how the context in which an examinee is evaluated affects not only the accuracy of 8 but also how

well an examinee appears to fit the underlying test model.

Method

A sample of 10,000 examinees was drawn from an administration of the ACT math test. This

original dataset was fit to the three parameter IRT model using BILOG where item parameter estimates

were obtained for all 60 items. 10,000 new 0 values were randomly drawn from a N(0,1) distribution, and

9
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using monte carlo procedures a 60 item 0/1 response vector was simulated for each 0 value. This 10,000

by 60 response data matrix served as an initial dataset from which NRVs could be simulated.

Actual response data from real examinees was not used here, because the number of NRVs and

the type of NRVs would not have been known. By simulating response vectors we know that all the

examinees (probabilistically) fit the underlying model. Real item parameters were used, so that the results

reported here would be more like what would be found in a real testing situation compared to using

contrived item parameters [e.g., uniformly distributed in difficulty (see Davey, Nering, & Thompson,

1997, for a discussion of this issue)]. Also, NRVs were simulated so as to represent response behaviors

that might be found in a real testing situation (Meijer, 1996).

The 10,000 by 60 initial dataset was fit to BILOG where 6 values were found for each examinee

using an MLE, BIW, and EAP estimation procedure. These initial 0 values served as a basis of

comparison to which they were evaluated against 0 values found from datasets where NRVs had been

simulated. Also, for each simulee initial and ZU3 indices were determined, and the first four moments

of the distributions of I, and ZU3 were found. For each examinee three different /, values were

determined, where Ei in Equations 2 through 4 were found using either MLE, BIW, or EAP.

Simulation Procedures

As discussed above, there is a variety of response behaviors that may result in the IRT model not

fitting an examinee's responses. Meijer (1996) suggests that there are two response behaviors that may be

of particular interest, namely cheating and guessing. These two behaviors have always been challenging

for measurement specialists and it is important to understand what influence they have on other

examinees. As in the Meijer study these behaviors were simulated under several different experimental

conditions. Two different levels of cheating were simulated, cheating on 20% of the most difficult items

and cheating on 20% of the items with middle difficulty. In the cheating conditions responses to selected

items were changed to correct, regardless of the original monte carlo generated response. Two levels of

guessing were also simulated where examinees either guessed on 20% of the items or they guessed on all
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the items, where item responses were changed with a 20% chance to correct response. Thus, there were a

total of four response manipulation conditions.

Because the number of NRVs is important, four different proportions of NRVs were studied. The

initial dataset was subjected to the four response manipulation conditions where so that either 5, 10, 15, or

20% of the examinees were manipulated to not fit the model. Thus, a total of 16 different response

manipulated datasets were studied (4 response manipulation conditions X 4 proportion of NRVs).

Evaluation

Bias charts similar to those Meijer (1996) used were constructed to study the influence that the

NRVs had on MRVs. These charts were constructed not only to determine how the type and number of

NRVs influenced estimation for the MRVs, but also to study how accurate O was using the different

ability estimation procedures. For each condition studied MRVs were grouped by their 8 level, where

simulees with -1.75<0<-1.25 were grouped at the 0=-1.5 level, simulees with -1.25<0<-0.75 were

grouped at 0=-1.0, and so forth. This was done so that there were several thousand examinees in each

group so that bias statistics were less influenced by sampling error. Bias for each group of simulees was

computed by the typical average signed difference (ASD) formula:

K

E(6;-6,)
ASD = i=1

where

K

j indexes the persons in an ability group (j = 1, 2, ..., K),

O the ability estimates found in the initial dataset, and

represents the ability estimated in the condition with NRVs present.

The distributions of the 4 and the ZU3 indices were evaluated by the first four moments of their

distributions for each condition. As with the ASD charts, the distributional characteristics were evaluated



Estimating Person Parameters 11

only for the MRVs. Because we are interested in the change in the distribution of person fit for MRVs

that may be caused by NRVs, ASD and root mean squared difference (RMSD) statistics were calculated

for the 1z and ZU3 indices for the MRVs. The RMSD values were found for 4, for example, by:

RMSD =\
K

(12)

The ASD and RMSD statistics for the person fit indices were found using the same method that was used

for 0 by subtracting the person fit index found in the various conditions (4) from the person fit index

found in the initial dataset (1: ).

Results

Ability Estimation

In Figures 2 through 5 are ASD charts found for the various conditions studied. The ASD due to

different amounts of cheating on 20% of the most difficult items is presented in Figure 2, where the

different panels represent the different estimation methods. By comparing the graphs in Figure 2, it is

obvious that the amount of ASD in the EAP estimates (Figure 2c) was much lower at the negative end of

the 0 continuum compared to when MLE and BIW were used (i.e., Figures 2a and 2b). ASD was largest

(over 0.5) when MLE and BIW estimation were usedand 20% of the simulees in the calibration sample

were NRVs for examinees in the 0=-1.5 group. It is important to note that the bias presented here is

relative bias, that is the bias between 6 values found for MRVs under different conditions. Thus, the

EAP estimates, for example, contain the usual bias relative to true 0 that has been found by previous

researchers (e.g., McBride, 1977).

Interestingly, ASD was larger when examinees cheated on 20% of the medium difficulty items

(Figure 3), than when they did so on 20% of the most difficulty items (Figure 2). Simulees on the

negative end of the continuum were much more affected, For example, in Figure 3a where MLE was used

12
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and when there were 10% NRVs ASD was close to 0.0 for all 0>-0.5, but ASD was approximately 0.4 for

simulees located around 0=-1.5. The ASD was smallest when an EAP method was used, but for simulees

where 0<= -1.0 ASD was approximately 0.36 (see Figure 3c). ASD in Figures 3a and 3b found when

MLE and BIW were used was extremely large for simulees below 0=0.0. Even with only 10% of the

simulees not fitting the model in the calibration sample, for simulees around 0=-1.5 ASD was larger than

0.30.

Figures 4 and 5 contain the ASD charts for the conditions where NRVs in the calibration sample

were guessing on some or all of the items. In Figure 4 where there were different numbers of simulees

guessing on all the items, the estimation procedure used appeared to have less of an influence on the ASD

compared to when simulees were cheating (Figures 2 and 3). However, as with Figures 2 and 3 there was

a larger amount of ASD for MRVs located at the negative end of the 0 continuum. With only 5% of the

simulees in the calibration sample and guessing on all the items, the ASD for MLE and BIW at 0=-1.5

was 0.25, and for the EAP procedure the value was approximately 0.20. Thus, having a small proportion

of the examinees guessing on all of the items can cause rather large ASD in the estimation of 0 for MRVs

located at the negative end of the score continuum. In Figure 5, where the NRVs were guessing on 20%

of the items there was very little ASD regardless of the estimation method and regardless of how many

simulees were not fitting the model in the calibration sample. Thus, having NRVs guessing on a portion

of the items on a test did not affect 6 for MRVs.

Distribution of Person Fit

Null condition. In Table 1 are the distributional characteristics of the /, and ZU3 found from the

initial (i.e., model fitting) dataset. As discussed above, the distributions of l and ZU3 should have an

expected value of 0.0, and a standard deviation of 1.0. When an EAP estimation procedure was used the

mean of the lz distribution was 0.126, which was slightly larger compared to when MLE (0.024) or BIW

(0.018) were used. However, the mean of ZU3 (-0.386) was quite different compared to what was

expected. Interestingly, the standard deviation of /z was less than expected (around 0.85 for all

conditions) while the standard deviation for ZU3 was larger (1.255) than expected. Also, indices of

13
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skewness and kurtosis where much larger for I, compared to ZU3 (columns 3 and 4 of Table 1). For

example, indicies of skewness for I, ranged from -0.263 to -0.402, while for ZU3 the index of skewness

was -0.103.

The I, Index. In Tables 2 and 3 are the distributional characteristics, along with the ASD and

RMSD, for I, found in the various cheating conditions studied. Comparing the distributional

characteristics in Table 2 to Table 1, having NRVs where cheating was simulated in the calibration

sample clearly affected the distribution of 4 for MRVs. For example, in the case where 10% of the sample

contained response vectors that were cheating in 20% of the most difficult items, the mean of 4 was

consistently above 0.2 regardless of the estimation procedure used. While the SD values presented in

Table 2 tended to be close those values found in the null condition (all around 0.85), there were cases

where the SD was smaller than what was expected. For example, when 20% of the simulees were

cheating on the most difficult items and when EAP was used the SD of 4 was 0.783. Comparing the top

half of Table 2 to the bottom half, the distribution of 4 appeared to be most affected when simulees were

cheating on the most difficult items. However, when 20% of the simulees were cheating on the most

difficult items, the means of 4 when MLE and BIW were used (0.046 and -0.001, respectively) were closer

to what was expected compared to when simulees where cheating on the medium difficulty items (-0.149

and -0.168, respectively). Also, the SD values for I, tended to be closer to what was expected when

simulees were cheating on the most difficult items compared to the medium difficulty items when BIW

was used. For example, in the conditions where 20% of the simulees were cheating the SDs of I, when

BIW was used were 0.967 and 0.905 when cheating occurred on the most difficult items and the medium

difficulty items, respectively.

The indices of skewness and kurtosis in Table 2 suggest that, in general, the distribution of 1,

followed a normal distribution when cheating response vectors were present, except when BIW was used.

The kurtosis, in particular, suggests that the BIW procedure results in a sometimes dramatic level of

kurtosis (e.g., over 26 when 20% cheating on the most difficult items). The distribution of 1 where 20%

of the simulees were cheating on the most difficult items and when BIW was used is presented in Figure 6

(Also plotted in this figure is a normal curve to serve as a reference). Notice that ###. The ASD and

14
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RMSD values presented in Table 2 also demonstrated that having NRVs in the calibration sample tended

to affect the distribution of Ii for MRVs compared to that found in the null condition. As with the

distributional characteristics larger values of ASD and RMSD were found when the cheating occurred on

the most difficult items. One interesting finding occurred when comparing ASD values found in the 15%

cheating conditions to the 20% cheating conditions. In these conditions the ASD values were much closer

to 0.0 when more examinees were cheating, for example, when EAP was used ASD changed from -0.206

to -0.098 as the number of cheating NRVs increased from 15% to 20%.

Table 3 contains the distributional characteristics for I, found in the guessing conditions. After a

comparison of Tables 2 and 3 when NRVs were cheating rather than guessing the distribution of I, was

obviously much more affected. Overall, the mean and SD values of lz were much closer to 0.0 and 1.0,

respectivley, especially when NRVs were guessing on all the items. In the conditions where NRVs were

guessing on only 20% of the items the mean values tended to be larger compared to when NRVs were

guessing on all the items. For example, the mean varied from 0.168 to 0.274 when 15% NRVs were

guessing on 20% of the items, and 0.101 to 0.173 when NRVs were guessing on all the items. The

indices of skewness and kurtosis followed a similar pattern compared to the cheating conditions, where

values were largest when BIW was used. Interestingly, IASDI values were consistently larger when NRVs

were guessing on 20% of the items, while the RMSD values were less systematic.

The ZU3 Index. The distributional characteristics of the ZU3 index are presented in Table 4.

Compared to the null condition (Table 1), the ZU3 index continued to have relatively larger negative

means and SD values than expected in the experimental conditions. The mean of ZU3 was consistently

above -0.40 when cheating occurred on the most difficult items, but was much closer to the -0.386 value

found in the null condition (Table 1) when cheating occurred on the medium difficulty items. As with 4,

the mean of ZU3 was quite different from the null condition when examinees where guessing on all items

compared to when they were guessing on only 20% of the items. For example, when there were 15%

NRVs the mean changed from 0.170 to -0.324 when simulees were guessing on all and 20% of the items,

respectively. The SD values were slightly more consistent compared to the mean values, and ranged from

1.143 to 1.305.

1 5



Estimating Person Parameters 15

The indices of skewness and kurtosis presented in Table 4 demonstrated that the ZU3 index

tended to follow a more normal distribution compared to the /, index (Tables 2 and 3). The skewness, in

particular, was very small with values ranging from -0.01 to -0.201. The largest values of kurtosis were

found when NRVs were guessing on all items, with the largest value being -0.598 in the condition where

there were 20% NRVs. In most conditions studied, there was not a systematic change in ZU3 for MRVs.

This can be seen in the ASD values in Table 4, where they tended to be less than 0.1 (in absolute value),

except for the conditions where simulees were guessing on all the items. In these conditions ASD values

were much larger (e.g., -0.544 with 15% NRVs) as were the RMSD values (e.g., 2.542 observed in the

same condition).

Discussion

This study extends the findings presented by Meijer and Nering (in press) and Reise (1995), and

demonstrated that particular ability estimation procedures may be more robust to nonmodel- fitting

responses compared to other estimation procedures. In this study (unlike what Meijer & Nering and Reise

found), the EAP procedure tended to result in less bias in the ability estimate; however, the distribution of

lZ tended to more closely approximate a standard distribution (i.e., mean=0.0 and SD=1.0) when the BIW

procedure was used compared to the MLE and EAP procedures. Unfortunately, the indicies of skewness

and kurtosis presented in Tables 2 and 3 show that the /, index did not at all follow a normal distribution

when BIW was used. Thus, the relationship between the distribution of person fit and the accuracy in 6

for MRVs was not systematic under the various conditions studied here.

For the 1, and the ZU3 indices there did not appear to be a large difference in the distributions

when examinees were either cheating or guessing. In these respective conditions the distributions were

more affected when cheating occurred on the most difficult items, or when NRVs were guessing on 20%

of the items. The results for cheating conditions are not surprising. One possible explanation for why the

distributions may have been less affected by guessing on all items may be because in this condition there

was a large amount of estimation error (comparing Figures 4 and 5), causing the distribution of person fit

16
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to not reflect what was really happening. Certainly, additional work is 'needed to further evaluate this

issue.

In a real testing situation a dataset will not contain examinees that are either guessing or

cheating. In this study these types of nonmodel-fitting behaviors were studied under separate conditions,

and results from a real testing situation will more than likely be more complicated. Additional work is

needed where different types of NRVs are blended together in a calibration sample to determine how

accurately person parameters are estimated for MRVs in a more realistic testing situation. Also in this

study very large sample sizes were used, and in a real testing situation error in estimated person

parameters may be exacerbated by small sample calibration.

Previous work has not closely examined the distribution of the ZU3 index, and the results of this

study were promising. Although the distribution of ZU3 did not typically have mean and SD values close

to what was expected, this index appeared to be much less affected by NRVs compared to 1,. One reason

may be than in order to calculate 1z it was necessary (at least in this study) to estimate three parameters for

each item. However, for ZU3 only the Itg values needed to be calculated (Equations 6 through 10) for each

item. Thus, the inaccuracy in 1, may be the result of accumulation of estimation error across the various

item parameters.

The findings in this study suggest that researchers should seriously consider the issue of whether

there may be NRVs in a calibration sample. The results presented here demonstrate that MRVs may have

poorly estimated ability levels, and the extent to which they appear to fit the underlying model may not be

accurately estimated, when NRVs are present. One possible solution might be to run initial calibrations to

identify possible NRVs, remove these examinees, and recalibrate the dataset. This two-stage calibration

process may lead to more accurate item parameters, and thus more accurate person parameters.

17
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Figure 2
Bias Due to Different Amounts of Cheating on 20% of the Most Difficult Items
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Figure 3
Bias Due to Different Amounts of Cheating on 20% of the Medium Difficult Items
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Figure 4
Bias Due to Different Amounts of Guessing on All Items
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Figure 5
Bias Due to Different Amounts of Guessing on 20% of Items
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Table 1
Distributional Characteristics of /, and ZU3 with all Model Fitting Response Vectors

Person Fit Index
and Estimation

Method Mean SD Skewness Kurtosis

MLE 0.024 0.838 -0.263 0.551
BIW 0.018 0.885 -0.402 0.983
EAP 0.126 0.851 -0.368 0.499

ZU3 -0.386 1.255 -0.103 -0.198
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Table 2
Distributional Characteristic and Change in /, from Original Sample

% NRVs
&

Estimation
Method

Mean SD Skewness Kurtosis ASD RMSD

Cheating on 20% most difficult
5%

MLE 0.187 0.810 -0.146 0.506 -0.169 0.254

BIW 0.179 0.865 -0.430 1.676 -0.169 0.264

EAP 0.295 0.819 -0.276 0.493 -0.176 0.232

10%

MLE 0.217 0.811 -0.071 0.409 -0.203 0.383

BIW 0.203 0.882 -0.565 2.879 -0.196 0.414

EAP 0.349 0.813 -0.219 0.468 -0.230 0.352

15%

MLE 0.181 0.804 -0.079 0.446 -0.171 0.438

BIW 0.150 0.908 -1.015 6.828 -0.149 0.524

EAP 0.319 0.798 -0.240 0.563 -0.206 0.406

20%

MLE 0.046 0.793 -0.204 0.471 -0.040 0.535

BIW -0.001 0.967 -2.426 26.288 -0.002 0.706

EAP 0.208 0.783 -0.372 0.650 -0.098 0.467

Cheating on 20% medium difficult
5%

MLE 0.069 0.829 -0.274 0.561 -0,051 0.136

BIW 0.064 0.876 -0.413 0.970 -0.054 0.148

EAP 0.171 0.844 -0.383 0.504 -0.051 0.124

10%

MLE 0.029 0.830 -0.311 0.539 -0,014 0.235

BIW 0.020 0.879 -0.438 0.904 -0.013 0.257

EAP 0.139 0.851 -0.407 0.470 -0.021 0.218

15%

MLE -0.056 0.834 -0.356 0.500 0.065 0.351

BIW -0.073 0.884 -0.466 0.870 0.074 0.380

EAP 0.063 0.871 -0.404 0.365 0.050 0.331

20%

MLE -0.149 0.854 -0.418 0.432 0.154 0.458

BIW -0.168 0.905 -0.519 0.892 0.165 0.485

EAP -0.043 0.902 -0.412 0.290 0.154 0.453
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Figure 6
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Table 3
Distributional Characteristic and Change in 1 from Original Sample

% NRVs
&

Estimation Mean
Method

SD Skewness Kurtosis ASD RMSD

Guessing on all items
5%

MLE 0.084 0.835 -0.279 0.562 -0.063 0.129

BIW 0.076 0.894 -0.590 2.426 -0.062 0.152

EAP 0.162 0.846 -0.367 0.516 -0.040 0.073

10%

NILE 0.102 0.838 -0.267 0.560 -0.081 0.162

BIW 0.090 0.915 -0.886 5.901 -0.076 0.227

EAP 0.170 0.848 -0.345 0.513 -0.047 0.107

15%

MILE 0.117 0.838 -0.248 0.565 -0.097 0.186

BIW 0.101 0.936 -1.305 12.011 -0.088 0.290

EAP 0.173 0.845 -0.327 0.520 -0.052 0.139

20%

MLE 0.133 0.842 -0.239 0.562 -0.114 0.211

BIW 0.112 0.965 -2.019 26.141 -0.100 0.354

EAP 0.177 0.845 -0.316 0.524 -0.056 0.168

Guessing on 20% of the items
5%

MLE 0.097 0.825 -0.270 0.585 -0.076 0.109

BIW 0.093 0.872 -0.427 1.074 -0.079 0.112

EAP 0.193 0.839 -0.384 0.546 -0.071 0.099

10%

MLE 0.133 0.818 -0.253 0.601 -0.112 0.148

BIW 0.132 0.863 -0.394 0.966 -0.118 0.158

EAP 0.235 0.831 -0.379 0.571 -0.112 0.144

15%

MLE 0.168 0.810 -0.235 0.631 -0.148 0.188

BIW 0.170 0.851 -0.361 0.891 -0.157 0.208

EAP 0.274 0.821 -0.375 0.615 -0.153 0.189

20%

MILE 0.204 0.809 -0.232 0.622 -0.185 0.237

BIW 0.209 0.848 -0.343 0.749 -0.197 0.262

EAP 0.311 0.817 -0.375 0.642 -0.189 0.231
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Table 4
Distributional Characteristic and Change in ZU3 from Original Sample

Type of
Misfit &
% NRVs Mean SD Skewness Kurtosis ASD RMSD

Cheating on 20% most difficult
5% -0.421 1.231 -0.025 -0.244 0.036 0.159
10% -0.444 1.217 0.026 -0.242 0.058 0.281
15% -0.440 1.190 0.049 -0.190 0.060 0.370
20% -0.406 1.143 0.007 -0.140 0.033 0.445

Cheating on 20% medium difficult
5% -0.386 1.243 -0.087 -0.205 0.002 0.082
10% -0.382 1.238 -0.110 -0.172 -0.003 0.179
15% -0.360 1.234 -0.142 -0.081 -0.020 0.300
20% -0.318 1.240 -0.201 0.031 -0.055 0.446

Guessing on all items
5% -0.305 1.237 0.009 -0.373 -0.078 0.180
10% -0.232 1.246 0.062 -0.488 -0.150 0.338
15% 0.170 1.268 -0.063 -0.555 -0.544 2.542
20% 0.128 1.305 -0.055 -0.598 -0.507 2.553

Guessing on 20% of the items
5% -0.367 1.245 -0.069 -0.245 -0.017 0.041
10% -0.347 1.242 -0.038 -0.295 -0.035 0.081
15% -0.324 1.240 -0.028 -0.330 -0.051 0.120
20% -0.311 1.243 -0.010 -0.368 -0.068 0.158
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