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Abstract

In constrained adaptive testing, the numbers of constraints needed to control the content of the

tests can easily run into the hundreds. Proper initialization of the algorithm becomes a

requirement because the presence of large numbers of constraints slows down the
convergence of the ability estimator. In this paper, an empirical initialization of the algorithm

is proposed based on the statistical relation between the ability variable and background

variables known prior to the test. The relation is modeled using a two-parameter logistic

version of an IRT model with manifest predictors discussed in Zwinderman (1991). An

empirical example shows how an (incomplete) sample of response data and data on
background variables can be used to derive an initial ability estimate or an empirical prior

distribution for the ability parameter.

4



Empirical Initialization of Adaptive Testing - 2

A Procedure for Empirical Initialization of

Adaptive Testing Algorithms

Item response theory (IRT) models the probability of a response to a test item as the

result of an interaction between the properties of the item and the ability of the examinee.

Typically, this interaction is mapped on a parameter structure for the probability function for

the response with separate parameters for the examinee and the item. One of the main

advantages of separate parameterization of examinees and items is that it is possible to select

items to match the abilities of examinees. If a conventional linear test has to be assembled, a

standard approach is to set a target for the information function of the test with optimal values

for the part of the ability scale where the examinees are expected to be and select a

combination of items that meets the target best in some sense (Birnbaum, 1968). A more

powerful application of the principle is found in computerized adaptive testing (CAT) where

each individual item in the test is selected to match the current estimate of the ability of the

examinee. A popular implementation of the principle of adaptive testing calculates the

maximum-likelihood (ML) estimate of ability from the updated response vector of the

examinee and selects the next item to have maximum statistical information at the estimate.

An alternative Bayesian procedure is to select the items to optimize the posterior distribution

of the ability parameter.

Under general conditions, both the MLE and the Bayesian estimator defined on the

posterior ability distribution are known to converge to the true ability (Chang & Ying, 1996;

Gelman, Carlin, Stern, & Rubin, 1995, Appendix B). The speed of convergence of the

algorithm depends on the initialization of the algorithm. Generally, the farther the initial

ability estimate or prior distribution away from the true ability of the examinee, the slower the

algorithm converges to an estimator with prescribed precision. On the other hand, a perfect

initialization does not imply an immediate stop of the algorithm. IRT models define a

stochastic relation between the ability and the responses, and even with a perfect start a CAT

algorithm needs some time to accept the true ability value with enough certainty.

In constrained adaptive testing the objective is to select items from the pool to

maximize the statistical precision of the ability estimator subject to constraints on item or test

attributes, or constraints needed to deal with a possible item-set structure or to control item

exposure. For a realistic testing program, the number of constraints can easily run into the

hundreds (van der Linden & Reese, 1997). Generally, the presence of such constraints slows

down the convergence of the ability estimator reinforcing the need for optimal initialization of
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Empirical Initialization of Adaptive Testing 3

the algorithm.

An obvious way to improve initialization of a CAT procedure is to use empirical

predictors of the ability of the examinee. These predictors may be available in the form of

information on background variables at hand when administering the test. For example, to

register for a CAT sessions examinees usually have to fill out a form with biographical

information, and a useful statistical relation may be present between the data in the form and

the abilities of the examinee. Also, most CAT sessions begin with the examinees reading the

instruction to the test and responding to a few exercises before the actual test starts. The time

needed to work through the instruction and/or the responses given to the exercises may

already contain statistical information on the ability of the examinee. As a final example,

knowledge of scores on previous attempts to pass the same test, possibly in combination with

the amount of time elapsed since the last attempt and/or information on intermediate coaching

could be used to predict the ability of the examinee.

The point of view that additional sources of information on ability available at the time

of testing should be exploited is certainly not new. The principle forms a standard belief in

Bayesian statistics. However, application of the principle has been inhibited by the perception

that in testing the abilities of the examinees should "speak for themselves" and that it may be

unfair to let (possibly unfavorable) background information creep into score test scores. This

concern is unfunded because it does not make the important distinction between the

experiment of selecting the items and the one of generating responses to the items once they

are selected. The key question is whether the former can be ignored when estimating the

ability of the examinee from the responses obtained through the latter (for a formal definition

of ignorability, see Little and Rubin, 1987). As shown in Mislevy and Wu (1988), in adaptive

testing the item selection mechanism can be ignored under maximum-likelihood estimation if

the interest is in the value of the ability estimate and not in inferences with respect to the

sampling distribution of the estimator. Bayesian inference is legitimate provided the

knowledge of the background variables has been incorporated into the prior. More formally,

the condition means that if data on P background variables Xp, p=0,...,P with a statistical

relation to the ability variable 6 have been inspected by the statistician, the conditional

distribution of 0 given X1=x1,...,Xp=xp is the correct prior in Bayesian inference. This paper

addresses the question of how to obtain an empirical estimate of the prior from data on the

background variables Xp. The estimate can be used to initialize an empirical Bayes algorithm

in adaptive testing. Also, the mean of the prior provides an initial point estimate of the ability

of the examinee and can be used to select the first item if the interest is in point estimation of
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ability, for example, in combination with maximum-information item selection.

Models and Procedures

It is assumed that the probability of a successful response to item i=1,...,I in the pool

can be described by the 2-parameter logistic (2-PL) model:

P;(19) Prob(U, =110) =
1+ exp[a,(8-131)]

exp[a, (6
(1)

where 9 e (-e.,.) is the parameter representing the ability of the examinee, and b, E (-00,c.)

and a, e [0,..) are the parameters for the difficulty and discrimination of the item, respectively.

Further, it is assumed that the P predictor or background variables, Xp, p=0,...,P, have

the following statistical relation to the ability parameter:

e=,30+0,x,+...+x,f3,+E,

with error term E distributed as

E_ N(0, cr2) .

(2)

(3)

Recall that the model in (2) only has to be linear in the parameters f3p . The model therefore

covers the wide class of relations that can be brought into linear form by a monotonic

transformation of the original predictor variables (for some examples, see Neter, Wasserman &

Kutner, 1990, chap. 4). Also, the variables in (2) can be chosen to represent higher-order

predictors in an original polynomial model. Generally, the assumption of normality in (3) is a

better approximation to reality, the larger the selection of predictor variables in (2).

From (1)-(2) it follows that

Pp xP,a2) (4)

is the empirical distribution of the ability of an examinee randomly sampled from a

subpopulation with Xi=xi, Xp=xp. Before introducing the distribution in (4) as an empirical
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prior in adaptive testing, the adaptive procedures considered in this paper will be introduced.

The items in the pool are denoted by index i=1,...,I, and index k=1,...,n is used to

represent the position of the items in the test. Thus, ik is the index of the item in the pool

administered as the kth item in the test. The set Sk-1E is used to denote the first k-1

items in the test. The set of remaining items in the pool is denoted as Rk

Finally, ri) represents the estimator of B after k-1 items have been administered.

In adaptive testing with the maximum-information criterion, 0.(k) is chosen to be the

ML estimate of e and the next item is selected according to

ik = maxi, fib (e(k-I)); h E Rk} , (5)

where Th( ) is defined as Fisher's information in Uh on 6 . In a Bayesian approach, the response

= ulk-1 is used to update the posterior distribution of 6 by an application of Bayes theorem:

r
1 f(116,10) d

f(u,k.,10) f(01u , '114.)

(6)

where f(uik.,19) is the probability function of U,,, = u4.1 defined by (1). Several Bayesian item

selection criteria are possible. For example, a well-known practice is to choose ri) to be the

expected a posteriori (EAP) estimator, which is the expected value of 6 over the distribution in

(6), and use this estimator to select the item with maximum information. Another example is the

minimum expected posterior variance criterion which for each remaining item in the pool,

h E Rk.i, predicts the posterior variance of the ability estimator both after a correct and an

incorrect response and selects the item with minimum expected variance over the responses;

that is,

ik = maxh [1- Ph (0") Var(0114...,u.Uh = 0)

+ Pi (0(k-1)) Var(Olui uik. Un = 1); h E Rk-11 (7)

Other examples of Bayesian item selection criteria are given in van der Linden (1996).
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Empirical Initialization of Adaptive Testing 6

Initialization of the Algorithm

Both the maximum-information and Bayesian item selection criteria need proper

initialization to accelerate the convergence of the algorithm. If ML estimation is used, the

initial item often is chosen to be informative near the middle of the ability distribution

expected for the population of examinees, but this choice may be suboptimal for a substantial

portion of the examinees. In a Bayesian procedure, a typical choice of the prior distribution is

a flat prior or a normal prior with large variance located at the middle of the expected ability

distribution. The former ignores possible information available about the examinee and the

latter may also be suboptimal for a substantial portion of the examinees.

In this paper, an empirical estimate of (4) as the prior in the adaptive procedure is

proposed, that is, the density fte1x1,...,xp ) belonging to the normal distribution in (4) is used to

initialize the procedure. This prior defines the following EAP estimate

6(0) )30 + /31x, +...+ Pp Xp (8)

which can be used as an initial point estimate for the ability parameter in the maximum-

information criterion. In a full Bayesian procedure, f( 01x1,...,xp ) can be used as an empirical

prior, yielding as the first posterior:

f(uh10) f(61x1,...,xp)
h Ro,f(Olun, xP) f(uble)f(01x1,...,xp)de (9)

where f(uhI0, xp) = f(uhl(9) due to conditional independence of 'Oh and Xi,...,Xp given 8.

To implement (8), the values of the parameters /3 ....,/3p should be known. To

implement (9), in addition the value of the parameter c3-2 is needed. This value can be

interpreted as an empirical measure of the prior uncertainty about e. A method for estimating

the values of these parameters is discussed in the following section.

Estimation of Regressions Parameters

A seemingly straightforward approach to estimating the regression parameters in (2)

would be to regress on the predictors X1,...,Xp using the minimum least-squares criterion.
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However, though the approach might yield satisfactory estimators of the parameters fl0,...,13,),

it does not give sound results for the estimation of the variance of the prior, a2 , due to

confounding of the prediction error E with the estimation error in 6. Thus, though this

approach would allow empirical prediction of the initial ability estimate in a CAT procedure, it

would not give us a proper empirical estimate of the prior uncertainty needed for the update in

(9). Therefore, a better alternative is direct estimation of flO Pp and a from response data.

Substitution of the regression equation in (2) into the 2-PL model in (1) for an

examinee with Xi=xi,...,Xp=xp gives the following logistic regression model:

Me) a Prob{U; =1191 a
1 + exp[ai (flo + fi, +...+ xp bi)]

exp[a, (So + )6, +...+ Sp xp + e -b,)]
(10)

For ai=1, i=1,...,I, the model in (10) was discussed by Zwinderman (1991, 1997) as a

generalized Rasch model with manifest predictors. Following an approach in Rigdon and

Tsutakawa (1983), Zinderman presents an EM algorithm for joint estimation of the item

difficulty and the regression parameters. The algorithm is adapted here to the case of the 2-PL

with item parameters known from previous item pool calibration. In addition, a discussion is

included on how to use the algorithm to estimate the regressions parameters from data

collected in an operational adaptive testing program for which it holds that responses to some

of the items in the pool are missing.

Let IN, i=1,...,I, j=1,...,N, denote the response of examinee j on item i. For each

examinee, there is an unknown realization ei of the error term E in (3) which is treated as

missing data in the EM algorithm. The values of the predictor variables Xij=xij,...,Xpi=xpi are

treated as known parameters. For examinee j, let p(341xj,g,e;) be the probability of the

observed response vector u; = (14,...,4) given predictor values x, = (xi xp) , parameter

vector g=y3o,...13p) , and missing datum E;. In addition, p(silo-) is the (normal) probability

density of Ej. It follows that

= npi(ei)U (1 (0)(1') (11)
k=1

and
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P(s ,10") = (27r a2)-12 exp(-
/ 2 a2)

The log-likelihood function associated with the complete data is given by

(12)

= -1n(27r cr2) 12 0-2Euiiiu( p,(8,))+(l-uo ln(1- pi (0,)) .(13)

The expectation of the complete-data log-likelihood over the posterior predictive distribution

of is is calculated. The density of this distribution is given by

p(eilu,,x,,g,cr) p(u,lx,,gi,e)p(e,lcr)

nil+ exp[a,(130+...+13,, x,p + bi)] }
i=1

The expected complete-data log-likelihood for N examinees is equal to

Epp,o-,llix) - 2 ln( 2,r 02 )- (1 /202)EJs2P(elu;,x;,p3 0)de
J=1

N I

+ EEf[ui; In pi (9) + (1- uki) ln(1- (19;))]P(elui ,x; , g, 0) d E , (15)
j=1 i=1

where u = (4) .

The algorithm consists of repeated application of expectation and maximization steps

until convergence. At step t the calculations are:

E-step. Calculation of the expected complete-data log-likelihood in (15) given the

values of a) and Pp") , p=0,...,P calculated at the step t-1.

M -step. Calculation of the values of the estimates & and Ot), p=0,...,P, maximizing

the expected complete-data log-likelihood from the E-step.

111
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As shown in the Appendix, the two steps boil down to iterative use of the following

recursive relations:

N
0.20) N-11,1e2p(shli,xi,gti),(70-0)de

j =1

N I

Xjp aiut =
j=1 1=1

N I exp[ai (i3g) XiP +...+ PP XjP bi)10,

ExipEai
j=1 i=i 1 + exp[ai (130(t) +...+ p(t)Xip++ fip(t) XjP

p(EIE, p =

(16)

(17)

where xio = 1. Note that in the first equation the prior variance al is equated to the average

posterior predicted variance. Likewise, the left-hand sums in (17) are equated to their posterior

predicted expected values. Standard numerical procedures can be used to solve the equations.

For a possible choice of procedure, see the empirical example below.

Parameter estimation in operational CAT. The notation in the preceding section

assumes that the examinees respond to all of the items in the pool. However, as already

discussed, missing responses to items in an adaptive test can be ignored in ML estimation if

no inferences are made with respect to the sampling distribution of the estimator. Thus, if the

interest is only in point estimates of the parameters /3, and a2 and not in estimating

such quantities as their standard errors, data from an operational CAT program can be used to

calculate these point estimates. In doing so, for each examinee the items not administered are

simply omitted in the equations in (16)-(17).

In addition, it is possible to use new responses to update previous estimates of the

parameters by extending the sums in (16)-(17) over the new examinees and using the old

estimates as the starting values in new iterations of the EM algorithm.

Empirical Example

Adaptive versions of Dutch translations of four subtests of the General Aptitude Test

Battery (GATB) were studied in Schoonman (1989). In this study, the subtest Name

Comparison was first administered to the examinees in the sample (N=306) and total response

12
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time was recorded. Responses on the next subtest, Vocabulary, were used to estimate the

ability of the examinees measured by this subtest. Schoonman reported a linear correlation

between the log response times on the first test and the estimated abilities on the second test

equal to -.46.

The data set was reanalyzed to estimate both the parameters A, and 0, in the

regression equation of the true Vocabulary ability on the log response time and the uncertainty

parameter a directly from the data. The equations in (17) were solved for p=0,1 using Newton's

method which gives the updates

(0 , 604) ,
o ikpo 'p/ kpc, ,pi

-a21nE(L)

a)320

a21nE(L)-

afloaPi

a2InE(L) a2InE(L)

aPoafli

a E(L) a E(L)
( , ) . (18)

a/30 afli

The first derivatives in (18) are given in (A.5), whereas the second derivatives can be shown

to be equal to

a2E(L) N r exp[ai(g+gt)xi+e_boi
ado

2P(EI.)de,
J.11=1 [1 + exp[ai (goo +0,t)xj+ E bi)]]

a2E(L) N I exp [ai (0g) -F,6`)xj±e-bi)]
2

.J=1 [1 + exp[a1(130(`)
p(el.)d ,

/ no) am
a2E(L) eXp[aiki-,0 -1-P, xi+e-b1)]

i=1 [1 + exp[ai(60(`)+0,t)xj+ E
2 p(el.)dE ,

(19)

(20)

(21)

and p( el .) follows from (14). The integrals in (16) and (18) were calculated using Gauss-

Hennite quadrature. Several sets of starting values were tried, all resulting in the following

estimates: )60=5.833, )61=-1.279, and d2=.986. Thus, the best way to initialize the adaptive

procedure for the Vocabulary test is to use EP)) =5.833-1.279x or to use N(5.833-1.279x,.986) as

a prior distribution for 9 .

ZEST COPY AVAILABLE
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Empirical Initialization of Adaptive Testing - 11

The standard deviation of the log response times was calculated as .433. It follows that

the correlation between the true abilities and the log response times can be estimated as -.59.

The difference between this result and Schoonman's estimate of -.46 indicates the loss of

information incurred when estimating the regression parameters from the estimated abilities

rather than the true abilities using the model in this paper.
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Appendix

The equation for the estimator of 62 is found by setting the derivative of the expected

complete-data log-likelihood in (15) to a equal to zero. As only the first two terms are needed,

a
21n(27r 0-2) (1/ 262)Ele2p(elui,x,,g,a)del

1=1

= +63Ef E211,1j,Xpg,COde
pI

Multiplying by 62 yields

62 N-1ES ezp(sillpx Ade.
)=1

(A.1)

(A.2)

Likewise, the equations for Sp , p=0,...,P, are found by setting the derivative of the last

term of (15) equal to zero:

a N I

[Elf[ublnpij+(1-1101n(1- pijAp(elmi,xj,g,cr)d E
P

N 1 14(1-131) (1- Lib) pb a pi;
= EE ) =0.

R;(1- pu) pii - a)3p

Because

a pki

a P
= a; Xjp pi; pk;)

P

it follows that

(A.3)

(A.4)

N 1

EZfai xip (IN Pi) p(Elui,x; , g,a) de = 0. (A3)
J=11=1

5
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N I N I f eXP [ai (0 +Piixii+...+Ppx;p+E-bi)]
xji,/ a; ui; = ExipIaiJ

j=1 3=1 1 + exp[ai(po+fiixii+...+ppxjp+ E -bi)].

(A.6)
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