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Abstract

Factor analysis has historically been used for myriad purposes in

the social and behavioral sciences, but an especially important

application of this technique has been to evaluate construct

validity. Since in the present milieu both exploratory factor

analysis (EFA) and confirmatory factor analysis (CFA) are readily

available to the researcher, it is interesting to note several

differences in the analytic traditions between the two techniques,

even though they are both part of a single general linear model. The

present paper presents heuristic data to compare these two analytic

methods, in addition to discussing recent published exemplars of

both practices.
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Some Comments on Analytic Traditions in EFA as Against CFA:

An Analysis of Selected Research Reports

The utilization of factor analytic techniques in the social

sciences has been indelibly intertwined with developing theories and

evaluating the construct validity of measures. As stated by Gorsuch

(1983, p. 350), "A prime use of factor analysis has been in the

development of both the theoretical constructs for an area and the

operational representatives for the theoretical constructs." Since

factor analysis has been deemed the "reigning queen of the

correlational methods" (Cattell, 1978, p. 4), it is not surprising

that Pedhazur and Schmelkin (1991, p. 66), stated that, "Of the

various approaches to studying the internal structure of a set or

indicators, probably the most useful is some variant of factor

analysis."

The majority of researchers utilizing factor analytic

techniques have employed what are contemporaneously termed

"exploratory" factor analytic techniques (EFA). In this application

of factor analysis, researchers are primarily concerned with the

development of theories or the generation of alternative

explanations for commonly accepted theories about a phenomenon of

interest. More recently, however, a growing number of researchers

have been employing "confirmatory" factor analytic techniques (CFA)

that directly permit the testing of extant theories and/or the

evaluation of instrument structure based on theoretical expectations

by generating maximum likelihood parameter estimates. A hybrid of

these two techniques utilizes exploratory factor extraction in
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combination with confirmatory factor rotation (Thompson, 1992); this

hybrid, however, is only considered here briefly.

The purpose of the present paper was to briefly explicate both

analytic techniques using a small heuristic data set that permits

readers to grasp the conceptual underpinnings of both methods. The

two techniques are directly compared using the Holzinger and

Swineford (1939) data set that has been utilized extensively in

illustrating factor analytic principles (cf. Gorsuch, 1983). The

data set consists of the scores of 301 junior high school students

on 24 different psychological inventories. For the purpose of the

present heuristic example, however, only 13 of the original 24 tests

were utilized. In addition to the comparison of EFA and CFA analytic

techniques using the Holzinger and Swineford (1939) data set,

various published exemplars of both approaches from the counseling

psychology literature were examined as well.

Exploratory Factor Analysis

Historical Overview

The genesis of the analytic technique commonly referred to as

exploratory factor analysis (as well as its confirmatory variant)

can be traced back to the seminal work of Pearson (1901) and

Spearman (1904). Pearson (1901) first conceptualized a general

method of examining and extracting latent variables underlying data

structures. Spearman (1904), through his work on personality theory,

provided the conceptual and theoretical rationale for both

exploratory and confirmatory factor analysis. Despite the fact that

the conceptual basis for these methods have been available for many
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decades, it was not until the genesis and widespread availability of

the computer that these analytic techniques were employed with any

regularity.

Spearman (1904) was interested in providing support for his

theory that there was one singular and universal personality factor,

the G factor, that undergirded the larger sense of the self. He

developed a mathematical and statistical method of evaluating the

tenability of his hypothesis by subtracting a matrix of cross-

products of structure coefficients from a matrix of correlation

coefficients. The resultant residual matrix was examined to discern

how much of the original variance remained after the variance

associated with the G factor was extracted. Unfortunately, Spearman

(1904) soon realized (as did others) that large coefficients

remained in the residual matrix and that other "factors" could also

be removed to better explain the variance in the data. Although the

G factor theory of personality was not supported, an important

statistical procedure was developed to help researchers evaluate the

construct validity of a theory.

The complexity of the mathematical and statistical

manipulations necessary to complete a factor analysis prevented many

researchers from employing them prior to the advent of computers. A

renewed interest in factor analytic techniques was evidenced,

however, in the middle of the 20th century following a schism within

the American Psychological Association (APA). Many practitioners

abandoned the flagship organization of psychologists during the late

1930's and early 1940's due to an overemphasis on research interests

6
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and a paucity of practice related pursuits (Thompson & Daniel,

1996). Following the reunification of the organization, new

standards of practice and research evolved out of the separation.

Practitioners and researchers alike understood the need for

standards to guide practice, and the first test standards were then

developed concurrently with codes of ethical practice.

The test standards emphasized demonstrating the construct

validity of test scores which, historically, had even been referred

to as factorial validity. As stated by Guildford (1946, p. 428),

The factorial validity of a test is given by its loadings

in meaningful, common reference factors. This is the kind

of validity that is really meant when the question is

asked "Does this test measure what it is supposed to

measure?"

Following the test standards developed by APA, many researchers and

test constructors began utilizing factor analytic techniques to

demonstrate the validity of scores generated by their instruments.

The true power of factor analytic techniques, however, was not

realized until the latter half of the 20th century when the computer

facilitated the development of better exploratory techniques as well

as the derivation of confirmatory analytic techniques that then

became widely available to most researchers.

Theoretical Underpinnings

Contemporaneous exploratory factor analysis (EFA) is an

analytic technique in which the primary concern is to reduce a set

of larger variables into a smaller and more manageable set based on

7



Analytic Traditions 7

the consistency of the data. As indicated by Gorsuch (1983, p. 2),

The purpose of factor analysis is . . . to summarize the

interrelationships among variables in a concise but

accurate manner as an aid in conceptualization. This is

often achieved by including the maximum amount of

information from the original variables in as few derived

variables, or factors, as possible to keep the solution

understandable.

Gorsuch (1983, p. 90) further stated, "Reducing the number of

variables to a more reasonable subset is often a prime goal of

factor analysis. A reduced variable set is sought that will contain

as much of the information in the initial set of variables as

possible."

Thus, EFA is a data reduction technique that permits the

reduction of a large number of variables (e.g., test items,

individuals) into constituent components by examining the amount of

variance that can be reproduced by the latent or synthetic variables

underlying the observed or measured variables. Tinsley and Tinsley

(1987, p. 414) summarized the purpose of factor analysis by stating,

"The goal of factor analysis is to achieve parsimony by using the

smallest number of explanatory concepts to explain the maximum

amount of common variance in a correlation matrix."

EFA has historically been utilized for two general purposes in

the social sciences (Pedhazur & Schmelkin, 1991). The first general

purpose has been to better understand the internal structure of an

instrument or a data set when no previous information on the data
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structure is available. This is an example of utilizing EFA as a

tool in the generation of theories about phenomena of interest, and

is an example of an appropriate application of this analytic

technique. The second general application of EFA has been to re-

examine patterns in data sets when researchers have questioned the

tenability of the emergent factors in previous research. Many

researchers have utilized EFA to determine if the data structure in

a current study resembles the factor structure of previous research

on the same phenomenon of interest or when utilizing the same

instrument. In this second application, many researchers have

erroneously employed EFA to evaluate whether a given theory

adequately fits a set of data by examining if the same general

factors reemerge in subsequent studies. This use of EFA is often

more appropriately explored through confirmatory factor analysis, as

model-to-data fit can be directly evaluated in the confirmatory

case. The more common and appropriate of these two applications of

EFA has been in exploring the factor structure of a set of

indicators (e.g., variables, test items, individuals, occasions)

when no previous research is available.

EFA is not conceptually different from other techniques, as all

analytic techniques are correlational (Thompson, 1997a, Cohen, 1968)

and are part of one general linear model (GLM) subsumed by canonical

correlation analysis (Knapp, 1978). Like other analyses, the goal of

conducting an EFA is to explain the maximum amount of shared

variance with the fewest number of explanatory concepts. The

conceptual unity of factor analysis with canonical correlation
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analysis (and thus all other analyses) was illustrated by Hetzel

(1996, p. 178):

[S]ince all parametric methods are actually special cases

of canonical correlation analysis . . . and since

canonical correlation analysis itself invokes a principal

components analysis [as factor analysis does] . . . [a]l1

parametric methods actually invoke principal components

mathematics.

Thus, EFA is not conceptually dissimilar from other statistical

analyses as all analyses attempt to explain shared variance through

principal components mathematics. The manner in which EFA permits

the examination of shared variance among a set of indicators,

however, is somewhat different from other analyses. Thus, to

understand the conceptual and practical distinctions between

exploratory and confirmatory factor analysis, it is critical to

understand the terminology and mechanics of the both techniques.

Logic and Mechanics of EFA

Performing an EFA can be conceptualized as a series of steps

which require that certain decisions be addressed at each individual

stage. Consequently, there are many different ways in which to

conduct a factor analysis, and each different approach may render

distinct results when certain conditions are satisfied (cf. Gorsuch,

1983). The one consistent element in conducting an EFA, however, is

that the results of the analysis are based solely on the mechanics

and mathematics of the method and not on the a priori theoretical

considerations of the researcher (Daniel, 1989).
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Matrices of Association. One of the first decisions to be made

in performing an EFA is to determine the manner in which the data

matrix will be represented in the analysis. Since all statistical

analyses are correlational, the focus of every statistical analysis

is on the relationship among a set of variables or other entities

(e.g., people) that may be factored. Matrices of association (e.g.,

correlation matrices, variance-covariance matrices) are arrays of

numbers that are utilized to concisely express the linear

relationships between a larger set of variables and an even larger

set of scores on the variables. The most common matrices of

association utilized in EFA are correlation matrices (in which

values of 1.0 are on the main diagonal and bivariate correlation

coefficients between the variables are on the off-diagonals) and

variance-covariance matrices (in which the variance for a given

variables is on the main diagonal and the covariances between pairs

of variables are on the off-diagonals). The common analytic

tradition in EFA, however, is to utilize the correlation matrix in

computational analyses, perhaps partly because this is the default

in most statistical software packages.

Factor Extraction. After the researcher has chosen which matrix

of association will be utilized in the analysis, the researcher must

then determine which extraction method to employ in conducting the

analysis. Factor extraction refers to removing the common variance

that is shared among a set of variables. There are currently several

different techniques available for the extraction of common

variance, and the results generated by the analysis can differ based

li
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on the particular method of extraction utilized.

Of the techniques available, principal components analysis and

principal factors analysis are the two most widely used extraction

methods in EFA. Although some researchers have argued that the

difference between these extraction methods is negligible (cf.

Thompson, 1992), other researchers have contended that the

difference is substantial enough to warrant careful consideration of

the extraction method utilized (cf. Gorsuch, 1983). Although the

relative advantages and disadvantages of the two extraction methods

have been discussed elsewhere (cf. Gorsuch, 1983; Stevens, 1996;

Tinsley & Tinsley, 1987), factor extraction methods demand brief

consideration in the present paper.

Principal components analysis (PCA) uses the total variance of

each variable in examining the shared variance between variables

(Hetzel, 1996). This is accomplished by placing values of 1.0 on the

main diagonal of the correlation matrix (as each variable is

expected to correlate perfectly with itself) and leaving the

bivariate correlation coefficients on the off-diagonals. One

limitation in utilizing PCA is that as the number of factored

variables decreases or as the factored variables become less

reliable, "... some of the factors represent correlated error

variance and as such would be unlikely to be replicated in

subsequent studies" (Hetzel, 1996, p. 186). Conversely, (a) as the

number of factored variables increases and (b) as the factored

variables become more reliable, the differences associated with

utilizing PCA versus other extraction methods becomes negligible

12



Analytic Traditions 12

(Thompson & Daniel, 1996).

Snook and Gorsuch (1989, p. 149) explained this first influence

(i.e., the number of factored entities), noting that "As the number

of variables decreases, the ratio of diagonal to off-diagonal

elements also decreases, and therefore the value of the communality

has an increasing effect on the analysis." For example, with 5

factored variables the 5 diagonal entries in the correlation matrix

represent 20% (5 / 25) of the 25 entries in the matrix, but with 50

variables the diagonal entries represent only 2% (50 / 2,500) of the

2,500 matrix entries. Thus, Gorsuch (1983) suggested that with 30 or

more variables the differences between solutions from these two

methods are likely to be small and lead to similar interpretations.

Of course, researchers rarely factor data involving only a small

number of variables.

In principal factors analysis (PFA), an estimate of the

reliability of each variable is placed on the main diagonal of the

correlation matrix rather than a value of unity (i.e., 1.0). The

reason for restructuring the correlation matrix is that it is

believed that only the common or reliable variance indigenous to a

variable will correlate with other variables in the matrix (Gorsuch,

1983). Thus, since placing a value of unity on the main diagonal

would introduce error variance into the factor extraction procedure,

proponents of PFA have contended that the most appropriate value to

place on the main diagonal of the correlation matrix is some index

of the common or reliable variance of a variable. Several indices of

common or reliable variance can be utilized on the main diagonal of

S
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the correlation matrix, and the interested reader is referred to

Gorsuch (1983), Stevens (1996) or Tinsley and Tinsley (1987).

Factor and Coefficient Generation. After the researcher has

decided which factor extraction method to employ, the analysis can

be conducted. One advantage in employing a factor analysis is that

each latent or synthetic variable (factor) extracted from the

analysis is perfectly uncorrelated with all of the other factors.

This is often advantageous when the purpose of the EFA is theory

generation as the interpretation of the extracted factors is thereby

greatly simplified.

The extracted factors represent an attempt by the researcher to

mathematically re-express the relationships between a set of

variables with the fewest explanatory concepts possible. By doing

this only a certain portion of the variance for any given variable

will be reproduced by the factors (although it is theoretically

possible for all of the variance associated with a variable to be

reproduced by the factors, this rarely occurs in practice). The

resultant mathematical manipulations required to extract the factors

result in the formation of two matrices, the factor pattern matrix

and the factor structure matrix. Regardless of the type of

extraction method, the rows of the factor pattern and structure

matrices are composed of the variables in the study and the columns

of the matrices are composed of the latent constructs, or factors.

The factor pattern matrix is comprised of a series of weights

(identical to B weights in multiple regression analysis) that

indicate the relative importance of a given variable to the

14
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extracted factors with the influence of the other variables removed

(Stevens, 1996). The factor structure matrix, however, is simply the

bivariate correlation of a measured/observed variable with scores on

the extracted latent/synthetic factor. Factor structure coefficients

are identical to structure coefficients in other analyses as they

are simply the correlation between observed and latent variables

(Thompson, 1997b; Thompson & Borrello, 1985). The extracted factors

are perfectly uncorrelated, which always results in the equality of

the factor pattern matrix and the factor structure matrix. Since the

two matrices are equivalent, both matrices can be accounted for by

employing the term, "factor pattern/structure matrix," to describe

both matrices.

After the factor pattern/structure matrix is contrived, it is

possible to generate two variance-accounted-for statistics that help

the researcher determine the amount of variable variance that is

reproduced by the latent constructs. The first of these is the

communality coefficient, h2, which can be defined as the amount of

variance on a variable that is reproduced by the factors. This value

is calculated by summing the squared pattern/structure coefficients

across the row for each variable. The resultant coefficient is an

index of the proportion of total variance for a given variable that

is reproduced by the extracted factors. Since it is a squared,

variance-accounted-for statistic, it can range from 0 to 1.0.

Another variance-accounted-for statistic that is generated from

the factor pattern/structure matrix is the eigenvalue. An eigenvalue

represents the amount of variance in the original data set that is

15
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reproduced by a given factor. For the principal components case,

eigenvalues can be computed by summing the squared factor

pattern/structure coefficients down the columns of the matrix.

Eigenvalues represent the amount of factor-reproduced variance and

their values can range from 0.0 to the total number of variables in

the analysis. Eigenvalues can also serve as an effect size measure,

as each eigenvalue can be divided by the number of total variables

in the analysis and a percentage of the total variance for a given

factor can be computed. Due to the mathematics of EFA, factors with

the largest eigenvalues are always extracted first, and each

additional factor extracted will have a smaller eigenvalue than the

first factor that was removed. The eigenvalues sum to the number of

factored entities (e.g., variables), so if the first two eigenvalues

for an EFA of 10 variables were 6 and 4, the remaining 8 eigenvalues

would all be zero (and the pattern/structure coefficients on the

last 8 factors would each also be zeros).

Factor Retention. After variance-accounted-for statistics and

factor pattern/structure matrices have been computed, the researcher

must decide the number of factors to retain in the analysis. Since

different retention methods can often generate divergent results,

two of the most popular retention methods will be briefly discussed.

The most popular method of determining the number of factors to

retain is the eigenvalue greater than 1.0 rule. This decision rule

was initially developed by Kaiser (1960), based on the work of

Guttman (1954) and is often the default option on statistical

software packages (Hetzel, 1996). Since eigenvalues are variance-

16
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accounted-for estimates that can range from 0.0 to the number of

variables in the analysis, only the most salient factors are usually

retained when this retention method is employed. It is important to

carefully examine all of the eigenvalues, however, as previous

research has reported that in certain situations the eigenvalues

greater than 1.0 rule can underestimate or overestimate the number

of factors that should be retained (cf. Hetzel, 1996).

A second popular decision rule utilized to determine the number

of factors to retain is the scree test developed by Cattell (1966).

The scree test is a graphical technique in which the eigenvalues are

listed along the X-axis and their magnitude is plotted on the Y-

axis. The resultant chart is visually inspected to ascertain the

point at which the slope of the line connecting the eigenvalues

becomes zero (horizontal). All of the factors above the point at

which the slope of the line becomes horizontal are retained in the

analysis. This technique has been considered by some researchers as

too subjective to be considered noteworthy, but other researchers

have contended that the scree test is one of the most accurate

retention methods currently available (Zwick & Velicer, 1986).

Interpretation of Results. After the appropriate number of

factors are retained in the analysis, it is necessary to interpret

the results. It is often difficult to interpret the initial

factor/pattern structure matrix as many of the variables typically

manifest noteworthy coefficient magnitudes on many of the retained

factors (coefficients greater than 10.601 are often considered large

and coefficients of 10.30 are often considered moderate) and

17
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especially on the first factor. Thompson (184, pp. 31-34)

demonstrates how the unrotated pattern/structure matrix actually

misrepresents the true nature of the factors, and how rotation

resolves this misrepresentation. Interpretation of the factor

analytic results is therefore almost always aided by the rotation of

the factor solution, as it is possible to redistribute the common

variance across the factors to achieve a more parsimonious solution.

It is important to note, however, that factor rotation is not

"cheating" and does not generate or discover more common variance;

rather, factor rotation merely redistributes the variance that has

been previously explained by the extracted factors.

After a factor solution is rotated, the first factor may not

account for the largest portion of the variance and thus may not

have the largest variance-accounted-for value. Since the variance

has been redistributed throughout the factors, any of the factors

could account for the largest proportion of the total variance.

Additionally, after the rotation is conducted, eigenvalues are no

longer termed as such; rather, after rotation, the variance-

accounted-for statistic for the factors (columns of the factor

pattern/structure matrix) is termed "trace." One of the most common

mistakes that researchers frequently commit is believing that the

eigenvalue for a given factor after extraction will equal the trace

after the factor solution is rotated (Hetzel, 1996).

The objective of factor rotation is to achieve simple structure

(Thurstone, 1947) through the manipulation of the factor pattern

matrix. The most parsimonious solution, or simple structure, has

18



Analytic Traditions 18

been explained by Gorsuch (1983, pp. 178-179) in terms of five

principles of factor rotation:

1. Each variable should have at least one zero loading.

2. Each factor should have a set of linearly independent

variables whose factor loadings are zero.

3. For every pair of factors, there should be several

variables whose loadings are zero for one factor but

not the other.

4. For every pair of factors, a large proportion of

variables should have zero loadings on both factors

whenever more than about four factors are extracted.

5. For every pair of factors, there should only be a small

number of variables with nonzero loadings on both.

Thus, factor rotation is a technique devised to shift the factors in

their factor space so that each variable in the analysis has a large

factor pattern coefficient on only one factor and has very small or

zero factor pattern coefficients on the other extracted latent

constructs.

Two types of factor rotation are available: orthogonal and

oblique. Orthogonal rotation shifts the factors in the factor space

at 90 degree angles to one another to achieve the best simple

structure. This rotation strategy maintains the perfectly

uncorrelated nature of the factors after the solution is rotated,

and often aids in the interpretation process since uncorrelated

factors are easier to interpret. There are several orthogonal

rotation strategies available, but one of the most popular

S
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orthogonal rotation technique is the varimax criterion developed by

Kaiser (1960). In this technique the factors are "cleaned up" so

that every observed variable has a large factor pattern/structure

coefficient on only one of the factors. Varimax rotation produces

factors that have large pattern/structure coefficients for a small

number of variables and near-zero or very low pattern/structure

coefficients with the other group of variables.

There are several advantages to employing orthogonal rotation

strategies. First, the factors remain perfectly uncorrelated with

one another and are inherently easier to interpret. Secondly, the

factor pattern matrix and the factor structure matrix are equivalent

and thus, only one matrix of association must be interpreted. This

means that the solution is more parsimonious (i.e., fewer parameters

are estimated) and thus, in theory, is more replicable.

Orthogonal rotation strategies do, however, have limitations.

Orthogonal rotations often do not honor a given researcher's view of

reality as the researcher may believe that two or more of the

extracted and retained factors are correlated. Secondly, orthogonal

rotation of factor solutions may oversimplify the relationships

between the variables and the factors and may not always accurately

represent these relationships. Consequently, some researchers have

challenged the utility of orthogonal rotation strategies. Thurstone

(1947, p. 139) contended that the use of orthogonal rotation

indicates "...our ignorance of the nature of the underlying

structure...The reason for using uncorrelated [factors] can be

understood, but it cannot be justified." Similarly, Cattell (1978,
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p. 128) argued in regard to researchers performing orthogonal

rotation, "...in half of [the] cases it is done in ignorance of the

issue rather than by deliberate intent." Consequently, even though

orthogonal rotation eases the interpretability of the factor

solution, it may not accurately portray the relationships between

the variables and the emergent factors.

The second type of factor rotation is termed oblique rotation.

This method of rotation provides for correlations among the latent

constructs. This rotation strategy is termed oblique because the

angle between the factors becomes greater or less than the 90 degree

angle that is utilized to perform an orthogonal rotation.

One of the most popular oblique rotation strategies is promax

(see Hetzel, 1996). In this technique, the researcher is attempting

to achieve the most parsimonious simple structure given that the

factors are allowed to be correlated with one another. However, an

oblique factor solution inherently tends to be less parsimonious.

For example, if 5 factors for 100 factored entities (e.g.,

variables) are extracted and orthogonally rotated, only 500 factor

pattern/structure coefficients are estimated (the 5 x 5 factor

correlation matrix is not estimated, since it is constrained to have

l's on the diagonal and 0's everywhere else). If the same EFA

factors are rotated obliquely, 1,010 coefficients (500 factor

pattern coefficients, plus 500 factor structure coefficients, plus

10 factor correlation coefficients (the 10 non-redundant off-

diagonal entries in the 5 x 5 factor correlation matrix)) are

estimated. [It might be argued, however, that only 510 coefficients

21
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are estimated in this case, since with either the 10 unique factor

correlation coefficients, and either the 500 pattern or the 500

structure coefficients, the remaining 500 pattern or structure

coefficients are fully determined.]

Oblique rotation strategies can be useful to researchers for a

variety of reasons. One advantage of using an oblique rotation

strategy is that the solution more closely honors the researcher's

view of reality. Secondly, oblique rotations often demand more

careful consideration of factor results by the researcher which can

increase the generalizability of the results to other situations and

which may increase the likelihood that the results will be

replicated. Unfortunately, oblique rotations may be difficult to

interpret, especially if there is a high degree of correlation among

the factors. Since the factor pattern and factor structure matrices

are not equal, both have to be interpreted in conjunction with the

other.

However, a simpler structure for the pattern matrix resulting

from an oblique rotation will always be the benefit of paying the

price for this interpretation difficulty. But as the degree of

correlation between the factors decreases, both orthogonal and

oblique solutions will tend to provide increasingly similar results.

Given that oblique solutions are less parsimonious and therefore

less replicable, an oblique rotation would therefore only be

employed when the benefits of simpler, more interpretable structure

outweigh the costs of less replicability (i.e., when the orthogonal

factors are not readily interpretable, and the oblique factors are

22
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fairly highly correlated but more interpretable).

Heuristic Example Using EFA

Since the basic conceptual tenets of EFA have been described in

the preceding sections, of the present paper, a heuristic example

can be utilized to illustrate in concrete terms the manner in which

an analysis would be conducted. For the purposes of the heuristic

example in the present paper, only tests Ti, T3, T4, T7, T8, T10,

T13, T15, T16, T17, T19, T22, T23 from the original Holzinger and

Swineford (1939) data set will be utilized. The means, standard

deviations and labels for the raw data are presented in Table 1.

Insert Table 1 About Here.

As described previously, the first step in completing a factor

analysis is determining which matrix of association will be utilized

in the analysis (e.g., the correlation matrix or the variance-

covariance matrix). Since the analytic tradition in EFA has been to

utilize the correlation matrix as the analyzed matrix of

association, the correlation matrix for the 13 measured variables

will be utilized in the present computational solution as well. The

correlation matrix for the example data is presented in Table 2.

Insert Table 2 About Here.

After the matrix of association is chosen, it is possible to

determine the extraction method. Since principal components analysis

(PCA) yields results similar to principal factors analysis as the

number of factored entities increases and since PCA requires no
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further manipulation of the data array, PCA was chosen to extract

the latent constructs. The results of the PCA factor extraction are

presented in Tables 3 and 4.

Insert Table 3 and 4 About Here.

Notice that two matrices are contrived as a result of the PCA:

one is a factor pattern matrix (Table 3) and the other is a factor

structure matrix (Table 4). Since PCA was utilized to extract the

factors, the extracted factors are perfectly uncorrelated and,

consequently, the factor pattern and structure matrices are exactly

equal. Thus, the factor pattern matrix and the factor structure

matrix can be combined into one factor pattern/structure matrix

since all of the values are identical and no information will be

lost.

The next step in completing the EFA is to determine how many

factors to retain. To conserve space, only the retained factors are

presented in Tables 3 and 4. The eigenvalue greater than one rule

was utilized to determine an appropriate number of factors to retain

and resulted in the retention of four factors. In practice, it is

often helpful to utilize several methods in determining the final

set of factors to retain since each method tends to produce

different results in some instances (cf. Zwick & Velicer, 1986).

Notice that the first factor had an eigenvalue of 3.99744 and

accounted for 30.7% of the total variance (total variance is

calculated as (3.99744 / 13) * 100). The eigenvalues of the

subsequent factors decrease as the factor pattern/structure matrix
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is scanned from left to right. Correspondingly, the percentage of

variance-accounted-for by each factor decreases in magnitude as the

matrix is scanned from left to right.

The factor correlation matrix is presented in Table 5. The

table indicates that each of the factors correlates perfectly with

itself but does not correlate with any of the other factors (i.e.,

the factors are perfectly uncorrelated). This is the universal

result of factor extraction, and if any other result where attained

it would alert the researcher to either a serious psychometric or

data entry/analysis problem.

Insert Table 5 About Here.

An examination of Table 4 will reveal that the factor

saturation (which observed variables have large coefficients on

which latent constructs) is so complex that it is difficult to

interpret the factor pattern/structure matrix in its present form.

That is, as reported in Tables 4 and 5, 12 of the 13 variables have

pattern/structure coefficients greater than 1.301, and the

thirteenth coefficient is almost 1.301 (i.e., .29739 for variable

T10). Thus, to more easily interpret the results, the four factor

solution was first rotated to the varimax criterion. The results of

the varimax rotated solution are presented in Table 6.

Insert Table 6 About Here.

An examination of the results presented for the four factor

solution rotated to the varimax criterion reveals that ascertaining
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which variables are associated with which factors has been greatly

facilitated by the rotation procedure. Factor I is most highly

saturated with tests T7, T8, T19, T22, and T23. By examining the

Table 1 information, it is possible to see that the five tests which

were associated with Factor I seem to have a strong verbal

component. Thus, it might be possible to name this factor the verbal

comprehension factor, as all of the tests associated with this

factor may measure verbal ability.

Factor II is most highly saturated with tests Ti, T3, and T4,

each of which seem to be assessing spatial ability. Consequently,

this factor might be termed the spatial ability factor, as all the

tests associated with it seem to be measuring perceptual ability.

The third factor is most highly saturated with tests T15, T16, and

T17. All of these tests appear to be measuring a memory component.

Finally, Factor IV is most highly saturated with tests T10 and T13,

which seem to be strongly associated with the speeded execution of

tasks.

It is important to notice that the communality coefficients for

the varimax rotated solution are identical to the communality

coefficients in the unrotated four factor solution. The reason for

this is that the variable variance reproduced by a given factor is

redistributed in the rotated solution as no new variance is ever

generated through a rotation procedure.

As stated previously, after the solution is rotated, the first

extracted factor often does not account for the preponderance of the

total variance. By examining the trace in Table 6, it is possible to
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view this dynamic in the present data set. Factor I accounted for

30.7% of the total variance in the unrotated factor solution and is

still the strongest overall factor, but after rotation this factor

accounts for only 19.7% of the total variance. However, the total

variance-accounted-for the by the four factor solution before

rotation (60.8%) is exactly equal to the total variance-accounted-

for after rotation. As previously stated, no new variance is

generated when the factors are rotated; rather the variance is

merely distributed differently among the factors.

For the sake of comparing the parsimony of the results

generated by orthogonal and oblique rotations, the unrotated factor

pattern and factor structure matrices in Tables 3 and 4 were rotated

to the direct oblimin criterion with delta equal to zero (cf.

Gorsuch, 1983 for a more detailed explanation of the effects of

varying the value of delta). The results of the direct oblimin

rotation are presented in Tables 7 and 8.

Insert Table 7 and 8 About Here.

When interpreting the results of an oblique rotation, it is

necessary to interpret two separate factor association matrices

since the factor pattern matrix is no longer identical to the factor

structure matrix. Similarly to multiple linear regression, however,

it is critically important to interpret both pattern coefficients

(standardized weights) and structure coefficients as each can

provide only one piece of information regarding the larger

relationship (Thompson, 1997b).
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By examining the variance-accounted-for by each factor (trace),

the results of the direct oblimin rotation appear to closely

resemble the results generated by the varimax rotation. The

communality coefficients in the oblique case are exactly equal to

the results attained in the unrotated and varimax rotated factor

solutions, thus again illustrating only the redistribution of common

variance. The sum of the communality coefficients is still equal to

60.8%, as in all of the prior analyses. The trace and communality

coefficients are computed slightly differently, however, as it is

necessary to multiple a given factor pattern coefficient by the

corresponding factor structure coefficient and then to sum down the

columns or across the rows to derive the various variance-accounted-

for estimate (see the note on Table 6 and Table 7 for a more

detailed explanation).

After examining both the factor pattern and structure

coefficients, the saturation of the factors can be determined.

Factor I is most highly saturated with tests T7, T8, T19, T22, and

T23 which is identical to the results generated by the orthogonal

rotation. Factors II is most highly saturated with T15, T16, and T17

(similarly to Factor III in the varimax rotation), Factor III is

most highly saturated with tests Ti, T3, and T4 (similarly to Factor

II in the varimax rotation) and Factor IV is most highly saturated

with tests T10 and T13 (identical to Factor IV in the varimax

rotation). Thus, based on the present example, both the orthogonal

and oblique rotations provide generally the same conclusions in

terms of factor-variable saturation. In the oblique case, however,
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it is necessary to consult two different matrices of association

whereas in the orthogonal rotation is it necessary to examine only

the single factor pattern/structure matrix.

The primary difference between these two rotation strategies is

the correlation between the factors. The factor correlation matrix

for the oblique rotation is presented in Table 9. As is evidenced by

the table, all of the factors are correlated with one another. One

of the difficulties incurred in interpreting ,oblique rotations is

how to explicate a high degree of correlation among the factors.

Most of the correlations in the present example are relatively small

(with the possible exception of Factor I with Factor II, where r2 =

.300592 = 9.0%) and pose little difficulty in the present analysis.

Since both solutions are similar and the orthogonal rotation is

interpretable and more parsimonious, most researcher would select

this as the preferred solution.

Insert Table 9 About Here.

Summary of Exploratory Factor Analysis

The present heuristic example of EFA has demonstrated the

usefulness of EFA as a tool in theory development and construct

validation. EFA, however, does not invoke an inherent theoretical

rationale for the determination of the number of factors to retain

or for which rotation strategy to employ. Consequently, researchers

must use subjective judgment in determining the extraction methods

and rotation strategies that will be utilized in completing the

analysis. EFA, therefore, is very useful in assessing the construct
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validity of scores and for examining the structure of data for which

there is either a paucity of research or for which no research has

previously been conducted.

Since exploratory methods do not directly address the issue of

theory validation, their application is this realm is extremely

limited. A second class of factor analytic techniques, confirmatory

maximum likelihood techniques, are more appropriate to utilize when

evaluating the fit of data to previously delineated theories. Thus,

the limited value of EFA have predisposed some to characterize

exploratory methods as neither ". . . a royal road to truth as some

apparently feel, nor necessarily an adjunct to shotgun empiricism,

as others claim" Nunnally (1978, p. 371).

Confirmatory Factor Analysis

As mentioned previously, the conceptual base upon which both

contemporaneous exploratory and confirmatory factor analysis rest

was initially developed as a method of providing statistical

confirmation for a psychological construct (Spearman, 1904). Thus,

factor analysis has historically been associated with issues of

construct validation as illustrated in the statement, "factor

analysis is intimately involved with questions of validity . .

Factor analysis is at the heart of the measurement of psychological

constructs" (Nunnally, 1978, p. 112).

It was not until the development of the "true" confirmatory

factor analytic techniques that directly permit the testing of

hypotheses and theories in the latter half of the 20th century that

the true power of factor analytic techniques has been realized. As
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stated by Thompson (1992, p. 83), "Without question, confirmatory

factor analysis is more important to evaluating theory than is

exploratory analysis." Similarly, Gorsuch (1983, p. 134) has stated,

"...confirmatory factor analysis is the more theoretically

important--and should be the much more widely used--of the two major

factor analytic approaches."

Since one variant of confirmatory factor analysis (confirmatory

rotation) invokes an exploratory analysis in its execution, the

demarcation between EFA and CFA has been blurred in the minds of

some researchers. Dickey (1996, p. 221) conceptualized the

ditinction between the appropriate use of EFA and CFA with the

following statement:

The decision over the legitimate use of either exploratory

or confirmatory factor analysis depends, to a large

degree, on what the presenting question is that the

researcher wishes to address. In situations where the

researcher has a specific detailed hypothesis and

theoretical support, the confirmatory process makes more

sense and provides more information than does the

exploratory analysis. In situations where the researcher

is charting new territory, or does not have a specifically

outlined theory of underlying constructs, the use of

exploratory analysis is a necessary first step.

The utilization of exploratory techniques to assess the tenability

of specific research hypotheses, therefore, is unacceptable in light

of the ready availability of true confirmatory techniques that
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directly permit theory evaluation.

Confirmatory techniques have long been needed in social science

research to provide support for the theories that have been

generated through exploratory analyses. Although other researchers

had attempted to develop CFA prior to the mid 1960's, the seminal

work of Joreskog (1966, 1969) forever redefined the landscape of

factor analysis. JOreskog (1966, 1969) developed a group of maximum

likelihood estimation techniques that has since been loosely termed

confirmatory factor analysis (CFA). As stated by Thompson (1992, p.

83), the CFA methods are,

a truly confirmatory class of maximum likelihood methods;

that is, the methods assume a sample and focus use of the

sample data on best estimating population parameters. The

methods are truly confirmatory because the methods allow

the testing of any of the many possible factor analytic

hypotheses as a model representing a complete omnibus

system of hypotheses [emphasis in original].

Thus, the development of true confirmatory factor analytic methods

has allowed researchers to directly test the fit between theories

and data structure with a sample of data in hand rather than

allowing a factor structure to emerge from a set of data without

regard to theoretical expectations as in exploratory analysis.

Confirmatory Rotation Through Exploratory Factor Extraction

Of the methods of CFA currently available, two methods,

confirmatory rotation through exploratory factor extraction (hence

referred to as confirmatory rotation) and confirmatory factor
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extraction procedures (hence referred to as confirmatory

extraction), are discussed in the present paper. The first method,

confirmatory rotation, refers to a procedure of extracting factors

through an EFA and then rotating only the expected factors (which

are based on past research or theoretical assumptions) to a best fit

"Procrustean" criterion consistent with previous research findings.

Since the purpose of CFA is to determine if a set of data support

previous research, this approach can be used to dete'rmine the degree

of fit between the structure of present data and past research

findings.

Confirmatory rotation consists of three general steps. First,

the researcher must extract the latent constructs from the data

array using an exploratory analysis (typically principal components

analysis) and then rotate the factor solution to an orthogonal

criterion. The resultant factor pattern/structure matrix is then

examined to determine which factors are saturated with which

observed variables. A saliency level of 10.40 is typically employed

to evaluate which variables are associated with which factors. The

researcher can then determine if the extracted and rotated structure

resembles past research, and, subsequently, interpret the emergent

factors.

The second step in the confirmatory rotation procedure is to

rotate the varimax solution to a best fit Procrustean fit with a

theoretical target or a target defined using the factor solution

from a previous study. Procrustean rotation

involves projecting the observed and expected solutions into
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the same factor space by rotating actual results to the best

fit position with the expected factors. The cosines of the

paired factors across the observed and "target- models are

actually correlation coefficients, and hence provide estimates

of the degree of goodness (or badness) of fit between the two

factor solutions. (Daniel, 1989, p. 18)

The Procrustean rotation procedure is utilized to determine the

adequacy of fit between the attained (observed) model and the

expected (hypothesized) model. The observed factor structure is said

to fit the hypothesized model if the cosines among paired factor

axes approach unity (1.0), and if the observed factors correlate

weakly with all other factors than the one they are hypothesized to

embody. The computer program RELATE developed by Veldman (1967) can

be utilized to evaluate the adequacy of the fit between the observed

data and the hypothesized model. Thompson (1992) provides a test

distribution.

Confirmatory Factor Extraction

A second type of CFA procedure is the confirmatory extraction

procedure. Confirmatory extraction is considered a "pure" form of

CFA and does not require the rotation of factor results, because the

maximum likelihood estimates generated through the analysis are

final estimates. The purpose of confirmatory extraction is to

determine the true fit of the observed variables with the

theoretical assumptions of the researcher. In this pure application

of CFA, no consideration is given to exploratory techniques as they

are not useful in determining the fit of the data with the
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theoretical model.

It is necessary in confirmatory extraction to utilize a

statistical software package such as LISREL 7 (Joreskog & Sorbom,

1989). Several competing models are input into the computer program,

rather than only the single expected model, as more than one model

can adequately represent a given data structure. When inputing the

models, the researcher must decide which parameters of the model are

"fixed" and which are "free." Free parameters refer to those

specific parameters that will be estimated by the analysis.

Conversely, a fixed parameter is a parameter that the researcher

does not wish to estimate during the analysis. Fixed parameters are

denoted as zeros in the target matrix, whereas freed parameters are

generally demarcated as 1.0. Factor correlation coefficients,

factor coefficients (pattern/structure coefficients) and the

variance/covariance of the error of measurement are typically freed

or fixed during a given analysis based on the a priori theoretical

assumptions of the researcher.

The purpose in conducting the analysis is to determine which

model or models best fit the data. Consequently, the analysis

generates several statistics which help the researcher determine if

the fit of the model with the data is supported. These "fit"

statistics include the Bentler Comparative Fit Index (CFI; Bentler,

1990), the chi square--degrees of freedom ratio, the parsimony

ratio, The Goodness of Fit Index and the Adjusted Goodness of Fit

Index (GFI, AGFI; Joreskog & Sorbom, 1989), the Root Mean Square

Residual (RMSR) and the Root Mean Square Error of Approximation.

35



Analytic Traditions 35

More complete explanations of these fit statistics are presented

elsewhere (cf. Daniel, 1989; Gillaspy, 1997), but each of the fit

statistics is not an individual indicator of the model fit. Only

when the fit statistics are used in conjunction with one another can

the model-to-data fit be accurately assessed (Campbell, Gillaspy &

Thompson, 1995).

If the analysis is successful in identifying the freed

parameters, then the model is said to demonstrate a fit with the

data. This does not mean that the results have been confirmed,

however, as more than one model can fit the data (even models that

were not hypothesized in the original analysis). Fit is assessed

through the consultation of a variety of the aforementioned fit

statistics. If the model is not identified by the data, it is

possible to use the analysis to generate better fitting models. For

instance, LISREL provides diagnostic information as to the fit of

the model if certain parameters would have been freed (termed

modification indices) or fixed in the analysis (often evaluating by

considering "fixing" parameters when the ratio of a given parameter

to its standard error is less than 2.0). Although it is not always

appropriate to change the model based on these statistics, in

certain situations it might be appropriate to alter some of the

fixed and freed parameters to generate a better data to model fit

(see Byrne, 1989; 1994).

Heuristic Example Using CFA

Since confirmatory factor extraction is considered a pure form

of CFA, it is the only technique that is examined in some detail in
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the present paper. However, confirmatory rotation is a viable

methodology and in some instances may provide important explanatory

information. When using the confirmatory rotation procedure, the

retained factors and the expected factors are projected into the

same factor space. Using a Procrustean or best fit rotation

strategy, the retained exploratory factors are rotated to a position

that best honors the expected factor structure. The cosines between

the expected factors and the retained factors are then computed. If

there is a high degree of fit between the expected and retained

structure, then the cosines should approach unity (Daniel, 1989).

Since this is the lesser utilized of the two types of CFA analyses,

it is not considered any further in the present paper. Interested

readers are referred to Daniel (1989), Gorsuch (1983), and Thompson

(1992).

The same heuristic data set utilized in the example application

of EFA (Holzinger & Swineford, 1939) was again employed to

demonstrate the completion of a confirmatory extraction procedure.

As noted previously, only tests Ti, T3, T4, T7, T8, T10, T13, T15,

T16, T17, T19, T22, and T23 of the 24 original tests were utilized

in the analysis.

Model Specification

The first step in completing a CFA is typically to specify

several competing models. Since several models can fit a given data

set, the finding that a particular model best fits the data given

testing of several models, provides stronger support for the fitting

model. Both of the tested models fixed factor variance to 1.0 and
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freed selected factor pattern and factor correlation coefficients.

The covariance matrix among the 13 variables was utilized to

complete the two analyses. In addition to the two posited models,

each of the models was compared to a null model indicating that no

factors would be identified by the analysis. Further, Model #2 was

also compared to a CFA analysis which utilized the same fixed and

freed parameters but which used the correlation matrix rather than

the covariance matrix in completing the analysis.

Model #1 (v=13, n=3011. This model indicated that the original

five factors delineated by the Holzinger and Swineford (1939) study

would be identified in the analysis. The expectation is that each

variable will have large factor pattern coefficients on only the one

factor with which the variable is expected to be associated: (a)

Verbal Factor: T7 and T8; (b) Visual Factor: T1, T3, and T4; (c)

Speed Factor: T10 and T13; (d) Memory Factor T15, T16, T17, and T19;

and (e) Math Factor: T22 and T23. Holzinger and Swineford (1939)

indicated that the five expected factors were uncorrelated, but for

the purpose of the present analysis, the factor correlation

coefficients were estimated. Furthermore, in all of these analyses

involving factors presumed to be measured by only two variables, the

pair of pattern coefficients were constrained to be equal.

Model #2 (v=13, n=301). This model indicated that the four

factors retained in the EFA completed in the present paper would be

identified by the analysis. The expectation is that each variable

will have large factor pattern coefficients on only the one factor

with which the variable is expected to be associated: (a) Verbal
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Factor: T7, T8, T19, T22, and T23; (b) Visual Factor: Ti, T3, and

T4; (c) Speed Factor: T10 and T13; (d) Memory Factor T15, T16, and

T17. Based on the results from the oblique rotation in the present

EFA, it was expected that all of the factors would be correlated.

It very is important to emphasize a distinction between the

heuristic rationale for the models specified in the present CFA

analysis and the rationale that would be invoked in actual practice.

In actual practice it would be considered inappropriate to utilize

the same data set in both an EFA and CFA analysis, since the CFA

application would no longer be truly confirmatory. Thus, if the

present CFA were being conducted for anything other than heuristic

value, two separate samples of data would be required to conduct the

EFA and CFA analyses. Similarly, if the CFA were being conducted in

practice, it would be necessary to test several other models as

well. The more models that are included in the analysis, the more

support that can be demonstrated for the model being supported (or

conversely not being supported) by the data. It is important to

remember, however, that CFA does not ever prove that a model is

true; rather, a CFA only indicates which of the tested models best

fits the data.

Interpretation of the CFA Results

The next step in completing the CFA is to run the analysis and

interpret the generated fit statistics. The current analysis was

completed using LISREL 7. Selected fit statistics from the CFA

analysis are presented in Table 10. It is important to note that the

presented fit statistics are only a few of the several dozen fit



Analytic Traditions 39

statistics currently available (Fan, Wang & Thompson, 1996). Fan,

Wang and Thompson (1996) indicated that since many of the fit

statistics have been developed with different rationales, it is

important to first appreciate the rationale and the differential

interpretation of the statistics as well as to understand that these

statistics may vary across research situations.

Insert Table 10 About Here.

There are three general types of fit statistics currently

available: covariance matrix reproduction indices, comparative model

fit indices, and the parsimony weighted indices. The three types of

fit statistics are explained more fully by Fan, Wang and Thompson

(1996, pp. 6-7):

covariance matrix reproduction indices . . . attemp[t] to

assess the degree to which the reproduced covariance

matrix based on the specified model has accounted for the

original sample covariance matrix . . . . [These include]

the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-

of-Fit Index (AGFI). . . . The second type of fit index- -

comparative model fit indices--assesses model fit by

evaluating the comparative fit of a given model with that

of a more restricted null model. . . . [These include]

Bentler and Bollen's normed and non-normed fit indices

(NFI and N NFI) and Bollen's incremental fit index

(DELTA2). . . . The third type of fit index -- parsimony

weighted indices--specifically takes the model parsimony
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into consideration by imposing penalties for specifying

more elaborate models. More specifically, these fit

indices consider both model fit and the degrees of freedom

used for specifying the model.

Since there is not currently one accepted fit statistic that

accurately determines the model-to-data fit, it is necessary to

examine several of these different types of indexes to determine if

a given model fits (Thompson & Daniel, 1996). The researcher hopes

that a variety of fit statistics jointly corroborate the fit of a

model.

The maximum likelihood estimates and factor correlation matrix

for model #1 are presented in Tables 11 and 12, respectively. The

maximum likelihood estimates and the factor correlation matrix for

Model #2 are presented in Tables 13 and 14, respectively. Both of

the factor correlation matrices indicated a moderate to large degree

of correlation between the factors for each model (ranging from .328

to .786). The chi-square statistic for Model #1 (z
2

= 165.16, df =

58) was smaller in relation to the number of degrees of freedom

utilized than in Model #2 (the ratio of chi-square to df should be 2

to 1 or less to indicate a good model-to-data fit), indicating that

Model #1 better fit the data on this statistic. The GFI index

indicated a better fit for Model #1 (GFI = 0.960) than for Model #2

(GFI = 0.899) as well. After sample size was taken into account, the

AGFI still indicated that Model #1 better fit the data than Model

#2.
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Insert Tables 11, 12, 13 and 14 About Here.

In terms of the parsimony of the two models, both parsimony

ratios indicated that Model #2 was the less complex of two models.

When the parsimony ratio was utilized to weight the GFI and the

Comparative Fit Index (CFI), a better model-to-data fit was

indicated by Model #1. Similarly, the Root Mean Square Residual

(RMSR) and the Root Mean Square Error of Approximation (RMSEA) both

indicated that Model #1 was a better fit to the data than Model #2.

It is generally accepted that a good fit on the RMSR and RMSEA

statistic is indicated if the value attained by the model is less

than 0.05 (a better fit is indicated as the statistics approach 0).

Thus, the RMSEA statistic indicates a good fit for both models

whereas the RMSR statistic indicates a very poor model-to-data fit

for both models. Consequently, it is apparent from the present

analysis that it is critical to interpret several fit statistics

when assessing model fit, as each statistic can provide a divergent

conclusion.

After examining the fit statistics, it is important to examine

the modification indices and the parameter-to-standard-error ratios,

respectively, to determine if a better model-to-data fit would be

generated if some of the parameters were freed or fixed,

respectively. It is important to note that utilizing the

modification indexes and parameter-to-standard-error ratios to alter

the expected model constitutes using the CFA in an exploratory

manner, as the only theoretical rationale invoked in altering which
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parameters are fixed or freed results from the mathematics of the

technique. Based on the information generated by the modification

indexes, a noteworthy reduction in the chi-square would be achieved

in Model #1 if the T10 and T13 parameters were freed on the Visual

factor (39.939 for both variables). Similarly for Model #2, a

noteworthy reduction in the chi-square would be evidenced if the

T10, T13, and T23 parameters were freed on the Visual factor

(estimated reduction of 40.758 for T10 and T13 and a reduction of

30.331 for T23). Freeing these parameters, however, would decrease

the parsimony of the two models and therefore effect the parsimony

weighted fit statistics.

An important consideration in completing a CFA is the effect

that utilizing the correlation matrix versus the variance-covariance

matrix will have on the analysis. As stated previously, the

correlation matrix is a symmetric matrix with l's on the main

diagonal and correlation coefficients on the off-diagonals. The

variance-covariance matrix has the variance of each variable on the

main diagonal and covariances on the off-diagonal. Using the

correlation matrix has the effect of standardizing the solution, as

here both the factors and the variables would be constrained to unit

variance (1,0). It can be argued, therefore, that using the

correlation matrix can be likened to utilizing a variance-covariance

matrix where the measured variables have been standardized to a

variance of 1.0. If the fit statistics generated by utilizing the

correlation matrix are equivalent to those generated by using the

covariance matrix, then the correlation matrix solution can be
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interpreted. If the results are divergent, however, the variance-

covariance matrix should be used in calculating the fit statistics,

although a standardized or completely standardized solution would

still be used to interpret the results (see Cudeck (1989) or Byrne

(1989, 1994) for more detail).

Comparatively, utilizing the correlation matrix versus the

covariance matrix in the analysis of Model #2 made very little

difference in the present analysis as the generated GFI, AGFI, and

chi-square were very similar. In terms of interpretation of the

results, the same conclusions would be rendered in this instance by

using either matrix of association.

Based on the results presented in the present paper, Model #1

best fit the data presented in Holzinger and Swineford (1939). Model

#1 posited that each variable was associated with only one of five

expected factors and that the factors were correlated.

Summary of Confirmatory Factor Analysis

The present heuristic example of CFA has demonstrated the

usefulness of CFA as a tool in providing support for the theoretical

expectations of data structures. CFA allows researchers to directly

test the theoretical expectations generated either by previous

research or through intrinsic value assessment. As stated by Daniel

(1989, p. 24), "Used alone or in tandem with exploratory methods,

confirmatory methods can help the researcher avoid erroneous

conclusions about factor structures which might emerge using

exploratory methods alone."
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Analysis of Select Research Articles in the Counseling Literature

Since exploratory methods should be reserved for true

conditions in which there is no prior research on a given area of

inquiry, and since some have stated that CFA should be the more

widely utilized of the factor analytic approaches (cf. Gorsuch,

1983), the present author randomly reviewed the factor analytic

practices in the counseling psychology literature. Since the Journal

of Counseling Psychology is the flagship journal of the American

Psychological Association (the primary association of

psychologists), this resource was deemed the best and most accurate

indicator of the practices throughout the field of counseling

psychology. Ten journal articles (five articles each that reported

to be either exploratory or confirmatory factor analyses) were

randomly selected from all of the articles utilizing CFA or EFA

techniques over the past 10 years (1988-1997). The chosen articles

are presented in Table 11.

Insert Table 15 About Here.

As with many disciplines in the social sciences, factor

analytic techniques have been employed in counseling psychology to

help confirm the findings of past research as well as to provide

initial evidence for the construct validity of test scores and

psychological theories. Tinsley and Tinsley (1987) noted that most

studies which employed factor analytic techniques in counseling

psychology did not provide adequate information for independent and

post hoc analysis of the study results. Consequently, these authors
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found that interested and even skeptical researchers were simply

forced to rely on the interpretation posited by the authors of the

study rather than to have the necessary statistics to independently

evaluate the analysis themselves. It is not surprising, therefore,

that several authors have recommended that researchers routinely

include pertinent information or make such information available to

interested readers (Gorsuch, 1983; Hetzel, 1996; Thompson & Daniel,

1996).

In a recent review of select issues of JCP, Hetzel (1996)

revealed that the remarks posited by Tinsley and Tinsley (1987)

nearly 10 years before had seemingly passed unnoticed by researchers

publishing in the journal. Hetzel (1996, p. 198-199) noted the

information necessary to permit other researchers to replicate a

given analysis:

(a) background information, such as sample size, sample

composition, method of selecting the subjects, and that

method of selecting the variables; (b) matrix of

association used; (c) method of factor extraction; (d)

initial communality estimates used; (e) the criteria used

for determining the number of factors to retain; and (f)

the method of rotation used. In addition, the following .

. . should be included . . . (a) the means and variances

of the items; (b) the matrix of associations among the

items; (c) the rotated factor pattern and structure

matrices; and (d) the final communality coefficients,

eigenvalues, and the proportion of variance explained by
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each rotated factor.

Regrettably, Hetzel (1996) found that despite the ardent efforts of

other authors to promote good reporting practice, none of the 13

articles reviewed reported all of the necessary components. An even

more disparaging result indicated by Hetzel (1996) was that none of

the reviewed articles reported the matrix of association utilized in

the analysis (which is necessary to replicate the analysis), and

only 7% of the articles reported the means and variances of the

variables. Hetzel (1996, p. 202) concluded his review by somberly

stating that,

As . . . noted over two decades ago, complete reporting of

a factor analysis can permit re-analysis of obtained

results by other researchers or use of other methods that

may lead to new and valuable insights. If such replication

is the cornerstone of the science, then the field of

counseling psychology stands upon a less-than-sturdy

foundation.

In a recent editorial, Thompson and Daniel (1996) delineated

several guidelines for authors to follow when reporting the results

of factor analytic studies. In reference to reporting exploratory

analyses, authors were (a) admonished on the use of the term

"loading" as it is ambiguous and does not clearly indicate whether

the specified coefficient is a factor pattern or structure

coefficient; (b) encouraged the use of multiple criteria to

determine the number of EFA factors to retain; (c) demanded

distinctions between prerotation eigenvalues and postrotation trace;
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and (d) required reporting of the factor extraction method utilized.

Similarly, in regard to confirmatory analyses, authors were (a)

encouraged to utilize several competing models in providing support

for the confirmation of the theory under consideration; (b)

requested to provide and interpret several fit statistics since the

"characteristics of the fit statistics are not yet entirely clear"

(p. 204); and (c) asked to base the analysis on the variance-

covariance matrix, as recommended by other authors in the

literature. Thompson and Daniel (1996) concluded their editorial by

stating that the inclusion of appropriate information in reporting

factor analytic studies "facilitate[s] further tests of rival models

and the more rapid accumulation of insight" (p. 206).

Analysis of Selected Articles

To facilitate comparison of the present review with previous

conjecture on the subject, the articles included in the present

review were evaluated on the basis of the guidelines presented by

Hetzel (1996) and Thompson and Daniel (1996). All of the articles

were examined on the same dimensions explored in the Hetzel (1996)

review and additionally on the recommendations provided by Thompson

and Daniel (1996). These data are presented in Table 12.

Insert Table 16 About Here.

Consistent with the findings in the Hetzel (1996) review, all

of the studies in the present analysis presented sufficient

background information that included the size of the sample utilized

and the composition of the sample. In regard to the exploratory
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analyses, all of the studies reported the criteria for factor

retention, the method of factor rotation, and the eigenvalues of the

retained unrotated factors. Unfortunately in several cases it was

not possible to determine if the term "eigenvalue" truly referred to

prerotation eigenvalues or if the authors intended this term to more

precisely indicate the postrotation trace. This finding is in

contrast with results reported in Hetzel (1996), as the previous

review indicated the reporting rates of these variables to be 69%

92% and 53%, respectively.

Other exploratory findings in the present study were consistent

with results reported in Hetzel (1996). For instance, Hetzel (1996)

noted that communality coefficients, method of factor extraction,

item means and variances, rotated factor pattern coefficients,

rotated factor structure coefficients and final communality

coefficients were reported in 23%, 92%, 7%, 38%, 33%, and 23% of the

studies, respectively. The present study indicated that the same

information was reported in 20%, 80%, 20%, 60%, 60%, and 60% of the

studies examined. The most striking difference between the results

of the present study and the prior review is that the matrix of

association utilized in the analysis was reported in 40% of the

studies examined in the present review compared to none of the

studies reviewed by Hetzel (1996). Even though the articles included

in the present review did not fare well on many of the evaluated

dimensions, the trend of reporting the matrix of association is an

improvement over prior reporting practice.

In regard to the recommendations posited by Thompson and Daniel
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(1996), many of the articles again failed to report the critical

information necessary to replicate the analysis and/or to provide

readers with sufficient information to generate independent

interpretations. For instance, in the exploratory analyses all of

the articles simply termed the factor pattern or structure

coefficients, "loadings," rather than clearly indicating whether the

coefficients were indeed pattern or structure coefficients. Many of

the articles labeled the factor variance-accounted-for statistics

"eigenvalues" even after indicating that the factor solution had

been rotated to various criterion. Additionally, only 20% of the

articles included the method of factor extraction utilized.

The confirmatory analyses did not fare much better than the

exploratory analyses in regard to the evaluated dimensions. Only 60%

of the CFA studies reported the matrix of association utilized and

only 60% of the studies indicated that other models were used in the

falsification process. Of the studies that reported using other

models, only 40% actually indicated the structure of these models

(e.g., one general factor, three uncorrelated first-order factors).

Additionally, only 60% of the confirmatory analyses interpreted

several different fit statistics (i.e., more than three different

statistics). Regrettably, the most common fit statistic utilized was

the chi-square goodness of fit statistic which is subject to

inflation by the influence of large sample sizes, as all statistic

significance tests are (Thompson & Daniel, 1996). Based on the data

compiled in the present paper, therefore, the results reported in

Hetzel (1996) were corroborated, and present evidence suggests that
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many studies are failing to provide readers with necessary

information for independent evaluation of results.

Brief Comments on Analytic Traditions in EFA and CFA

Analytic traditions in EFA and CFA have differed to some

degree. For instance, most EFA analyses have historically utilized

orthogonal rotation strategies that allow the latent constructs to

remain perfectly uncorrelated after the factor solution is rotated

for the purpose of interpretation. One reason for the emergence of

this tradition is the degree of difficulty in interpreting the

results of the solution. When factors are removed from the

underlying data structure, it is generally easier to interpret the

results if the factors are perfectly uncorrelated.

Conversely, most researchers estimate the correlation among the

factors when performing a confirmatory analysis. One reason the

factors are allowed to be correlated in CFA is to evaluate the

independence of the factors and to ensure that two latent constructs

are not perfectly correlated and thus evaluating the same construct.

Another reason that factors are typically allowed to correlate in

CFA is so that a given researcher can evaluate the fit of the data

with the delineated model, especially if the expected factors were

correlated in previous research studies.

In the present study, 60% of the confirmatory studies and 80%

of the exploratory studies allowed the factors to be correlated.

This finding appears contrary to the analytic traditions present in

both analyses. A possible explication of this phenomenon is that in

several of the exploratory studies oblique rotation strategies were
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employed because previous research indicated that the factors could

be correlated. Since many of these researchers had theoretical

expectations about the structure of the data prior to analysis,

confirmatory analysis may have been more appropriate to utilize in

these instances. Other authors in the exploratory case indicated

that both orthogonal and oblique rotations were utilized initially,

but since there were small correlations between the factors, the

orthogonal results were interpreted. Similarly, several of the

authors that reported utilizing confirmatory analyses contended that

the correlations among the factors were indicated in previous

research. Based on the results of the present study, however, there

is little support provided for the notion that exploratory analyses

typically use orthogonal rotations.

Another tradition that is often evidenced in factor analytic

studies is a propensity to utilize one matrix of association more

often than another. For instance, most exploratory analyses

typically utilize correlation matrices in computations whereas most

confirmatory analyses use variance-covariance matrices. Several

authors have indicated that variance-covariance matrices are often

more appropriate to utilize with confirmatory techniques (Bollen,

1989; Thompson & Daniel, 1996) whereas either matrix is often

appropriate to use in exploratory analyses.

In the present review, it was difficult if not impossible to

evaluate this dynamic as only 40% of the articles reported the

matrix of association utilized in the analysis. Of those CFA studies

reporting which matrix was used, 30% employed the correlation matrix
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in the analysis compared with only 10% that utilized the variance-

covariance matrix. Similarly, 20% of the exploratory analyses

reported using the correlation matrix in computing the factor

analysis. While the trend manifested in the exploratory analyses

examined in the present study is consistent with analytic tradition,

the trend for the confirmatory analyses is contrary to both

recommendations in the literature and analytic traditions.

Support for two analytic traditions evidenced in exploratory

and confirmatory analyses (i.e., degree of correlation between the

factors and propensity for one type of matrix of association) was

not evidenced in the present review. It is possible that these

traditions are changing to some degree in the contemporary milieu of

factor analysis. Due to the small number of studies reviewed,

however, it is impossible to render definitive conclusions. The

present review, however, indicates that these traditions have not

been supported in the current counseling psychology literature.

Summary and Conclusions

The present paper has provided an introductory treatment of

both exploratory and confirmatory factor analytic techniques. The

pertinent aspects of each of the analyses have been illustrated and

the conceptual explanations have been illuminated by concrete

heuristic examples. In addition, exemplars of both techniques

published in recent issues of a prominent counseling psychology

journal have been examined in regard to analytic traditions and

practices of reporting indigenous to each technique.

Factor analysis remains a useful and viable analytic tool in
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social science research. Exploratory and confirmatory techniques

allow researchers to develop and critically examine theories

regarding the structure of data sets. Several critical decisions

must be rendered throughout the analytic process and these analyses

require careful and thoughtful consideration on the part of the

researcher. When utilized properly, however, factor analysis can be

a powerful analytic tool for both the purposes of data exploration

and theory confirmation.
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Table 1

Means and Standard Deviation of 13 Variables From Holzinger and
Swineford, (1939)

Variable Mean SD Label

Ti 29.61462 7.00459
T3 14.22924 2.83030
T4 18.00332 9.04784
T7 17.36213 5.16189
T8 26.12625 5.67544
T10 96.27575 25.05927
T13 193.46844 36.32946
T15 90.00997 7.72937
T16 102.52492 7.63306
T17 8.23256 4.91587
T19 14.03654 4.07701
T22 26.23920 9.19724
T23 18.13621 9.13992

Visual Perception Test
Paper Form Board (Spatial)
Thorndike Lozenges (Spatial)
Sentence Completion Test
Word Classification
Speeded Addition Test
Speeded Discrimination
Memory of Target Numbers
Memory of Target Shapes
Memory of Number-Object Assn.
Memory of Figure-Word Assn.
Math Word Problem Reasoning
Completion of Number Series

Table 2

Correlation Matrix for Example Data

60

T16 T7 T19 T10 T22 T13 T4

T16 1.00000
T7 .16554 1.00000
T19 .27723 .21636 1.00000
T10 .11697 .10204 .06949 1.00000
T22 .27768 .46978 .32246 .06934 1.00000
T13 .27755 .22747 .19590 .34065 .24529 1.00000
T4 .30530 .07720 .15858 .07193 .30618 .32865 1.00000
T15 .33817 -.01889 .11645 .10896 .07494 .07205 .21191
T17 .25924 .09230 .21645 .33090 .14452 .19811 .14747

Ti .36458 .29344 .18538 .06686 .39850 .39034 .44067

T23 .36969 .38528 .28307 .19040 .53497 .33216 .39663

T3 .18388 .17340 .09142 .03962 .18817 .22682 .30508
T8 .29240 .67441 .29742 .13157 .40326 .22283 .17149

T15 T17 T1 T23 T3 T8

T15 1.00000
T17 .30523 1.00000
Ti .18447 .10842 1.00000
T23 .18636 .20212 .48077 1.00000
T3 .03616 .02634 .36529 .27570 1.00000
T8 .05271 .10671 .33100 .42436 .21152 1.00000
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Factor Pattern Matrix
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Variable I II III IV h-squared

Ti .69068 -.02816 -.38058 .05191 .62537
T3 .43788 -.10197 -.48157 .24793 .49552
T4 .56234 .21117 -.49011 .03743 .60243
T7 .58618 -.53658 .35086 .01402 .75481
T8 .64814 -.42985 .29512 -.06185 .69577
T10 .29739 .39051 .45153 .58433 .78626
T13 .56813 .17673 -.02777 .51382 .61879
T15 .30666 .58832 -.01760 -.44019 .63425
T16 .59425 .29379 -.06148 -.29873 .53246
T17 .36849 .55471 .41229 -.02875 .61430
T19 .47415 -.00210 .25841 -.33303 .40251
T23 .75701 -.06298 -.04720 -.02451 .57986
T22 .67579 -.27936 .05491 -.14756 .55953

(Sum =)
Eigenvalues 3.99744 1.53436 1.27791 1.09216 7.90187
% of Variance 30.7 11.8 9.8 8.4 60.8

Table 4

Factor Structure Matrix

Variable I II III IV h-squared

Ti .69068 -.02816 -.38058 .05191 .62537
T3 .43788 -.10197 -.48157 .24793 .49552

T4 .56234 .21117 -.49011 .03743 .60243
T7 .58618 -.53658 .35086 .01402 .75481

T8 .64814 -.42985 .29512 -.06185 .69577

T10 .29739 .39051 .45153 .58433 .78626

T15 .30666 .58832 -.01760 -.44019 .63425

T16 .59425 .29379 -.06148 -.29873 .53246

T17 .36849 .55471 .41229 -.02875 .61430

T19 .47415 -.00210 .25841 -.33303 .40251

T22 .67579 -.27936 .05491 -.14756 .55953

T23 .75701 -.06298 -.04720 -.02451 .57986

T13 .56813 .17673 -.02777 .51382 .61879

(Sum =)

Eigenvalues 3.99744 1.53436 1.27791 1.09216 7.90187
% of Variance 30.7 11.8 9.8 8.4 60.8
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Table 5

Factor Correlation Matrix

I II III IV

Factor I

Factor II
Factor III
Factor IV

1.00000
.00000
.00000
.00000

1.00000
.00000
.00000

1.00000
.00000 1.00000

Table 6

Factor Pattern/Structure Matrix Rotated to the Varimax Criterion

Variable I II III IV h-squared

Ti .29746 .71254 .16817 .02997 .62537
T3 .09710 .68827 -.10955 .01932 .49552
T4 .02655 .72268 .27970 .03509 .60243
T7 .85134 .07042 -.11581 .10799 .75481
T8 .81827 .13268 .02134 .09026 .69577
T10 .04967 .00305 .05627 .88352 .78626
T13 .16236 .50177 .00800 .58360 .61879
T15 -.07740 .09731 .78645 .01706 .63425
T16 .24225 .33026 .60202 .04778 .53246
T17 .09254 -.08291 .57362 .51945 .61430
T19 .48274 -.00192 .41131 .01715 .40251
T22 .65956 .31295 .16239 -.01404 .55953
T23 .51801 .47819 .25162 .13984 .57986

(Sum =)
Trace 2.60968 2.23006 1.70444 1.40959 7.90187
% of Variance 19.7 17.2 13.1 10.8 60.8

Note. Coefficients greater than 1.301 are underlined.
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Table 7

Factor Pattern Matrix Rotated to the Oblimin Criterion

Variable I II III IV h-squared

Ti .19989 .10483 -.68259 -.01529 .62537
T3 .00964 -.15793 -.70851 -.00072 .49552
T4 -.09432 .24363 -.72701 .00121 .60243
T7 .88743 -.21232 .05608 .06136 .75481
T8 .83656 -.07057 -.00515 .03736 .69577
T10 -.01066 -.02467 .05456 .89644 .78626
T13 .06010 -.08385 -.46644 .57141 .61879
T15 -.14431 .80501 -.05699 -.01598 .63425
T16 .16866 .57154 -.26147 -.00245 .53246
T17 .03981 .53645 .16823 .50124 .61430
T19 .48319 .37328 .10672 -.03050 .40251
T22 .64195 .08869 -.21299 -.07086 .55953
T23 .45342 .17149 -.39272 .08624 .57986

Note. Communality coefficients are now computed differently. To compute the
h-squared for variable T16, each pattern coefficient is multiplied by its
corresponding structure coefficient and then summed across the rows. For T16,
h-squared = (.16866)(.35519) + (.57154)(.64395) + (-.26147)(-.40110) +
(-.00245)(.14579) = .53246 The new communality coefficient is identical to
the value attained in the Table 4 analysis.
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Table 8

Factor Structure Matrix Rotated to Oblimin Criterion

Variable I II III IV h-squared

T1 .42244 .24691 -.75717 .11690 .62537
T3 .19256 -.04560 -.68666 .06272 .49552
T4 .17059 .33944 -.73684 .11229 .60243
T7 .84036 -.04333 -.18501 .16663 .75481
T8 .83084 .09461 -.25015 .16380 .69577
T10 .11483 .10405 -.04769 .88422 .78626
T13 .27784 .08913 -.54109 .62509 .61879
T15 .02280 .78407 -.13734 .09243 .63425
T16 .35519 .64395 -.40110 .14579 .53246
T17 .17288 .59560 .01139 .57057 .61430
T19 .51688 .44347 -.09308 .09348 .40251
T22 .71120 .23262 -.41116 .07385 .55953
T23 .61808 .33215 -.56630 .23490 .57986

(Sum =)
Trace 2.57654 1.65173 2.21452 1.45908 7.90187
% of Variance 19.8 12.7 17.0 11.2 60.8

Note. Trace are computed differently than eigenvalues. To compute the trace
for Factor I, each pattern coefficient is multiplied by its corresponding
structure coefficient and then sum down the rows. For Factor I, Trace =
(.16866)(.35519)+(.88743)(.84036)+(.48319)(.51688)+(-.01066)(.11483)+
(.64195)(.71120)+(.06010)(.27784)+(-.09432)(.17059)+(-.14431)(.02280)+
(.03981)(.17288)+(.19989)(.42244)+(.45342)(.61808)+(.00964)(.19256)+
(.83656)(.83084)= 2.57654. The trace still sum to 7.90187, the sum of
communality coefficients in the Table 4 analysis.

Table 9

Factor Correlation Matrix after Rotation to the Oblimin Criterion

I II III IV

Factor I

Factor II
Factor III
Factor IV

1.00000
.18956

-.30059
.16350

1.00000
-.15612
.15535

1.00000
-.12193 1.00000
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Table 10

Selected Fit Statistics for Example CFA Analysis

Model #1 Model #2

v 13 13
n 301 301
Null chi sq 1009.30 1009.30
Null df 78 78
Noncentrality 931.3 931.3

Model chi sq 165.16 240.42
Model df 58 60
Noncentrality 107.16 180.42a
NC / df 1.847586 3.007b
GFI 0.960 0.899
AGFI 0.877 0.829
Parsimony Ratio 0.637362 0.659340c
GFI*Pars Ratio 0.611868 0.592747d
CFI 0.884935 0.806270e
Parsimony Ratio 0.743589 0.769230f
CFI*Pars Ratio 0.658028 0.620208g
RMSR 20.717 20.741
RMSEA 0.006158 0.010023h

alloncentrality = X- df

bNoncentrality / df

cParsimony Ratio = Model df / [(variables * (variables + 1)) / 2]

dGFI * Parsimony Ratio

[(Null x2 Null df) - (Model x- Model df)]
e
CFI =

I
Nadi')

(Parsimony Ratio = Model df / [variables * (variables - 1)) / 2]

gCFI * Parsimony Ratio

hRMSEA = [Model x
2

- Model df) / (Model df * (n-1))r5
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Table 11

Maximum Likelihood Estimates for Model #1

Variable
Factor

Verbal Visual Speed Memory Math

Ti 0.000 0.757 0.000 0.000 0.000
T3 0.000 0.458 0.000 0.000 0.000
T4 0.000 0.608 0.000 0.000 0.000
T7 0.850 0.000 0.000 0.000 0.000
T8 0.790 0.000 0.000 0.000 0.000
T10 0.000 0.000 0.635 0.000 0.000
T13 0.000 0.000 0.480 0.000 0.000
T15 0.000 0.000 0.000 0.438 0.000
T16 0.000 0.000 0.000 0.677 0.000
T17 0.000 0.000 0.000 0.455 0.000
T19 0.000 0.000 0.000 0.434 0.000
T22 0.000 0.000 0.000 0.000 0.717
T23 0.000 0.000 0.000 0.000 0.749

Table 12

Phi (Factor Correlation) Matrix for Model #1

Factor
Factor Verbal Visual Speed Memory Math

Verbal 1.000
Visual 0.425 1.000
Speed 0.328 0.450 1.000
Memory 0.360 0.606 0.544 1.000
Math 0.693 0.786 0.461 0.644 1.000
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Table 13

Maximum Likelihood Estimates for Model #2

Variable
Factor

Verbal Visual Speed Math

Ti 0.000 0.780 0.000 0.000
T3 0.000 0.465 0.000 0.000
T4 0.000 0.581 0.000 0.000
T7 0.679 0.000 0.000 0.000
T8 0.704 0.000 0.000 0.000
T10 0.000 0.000 0.637 0.000
T13 0.000 0.000 0.480 0.000
T15 0.000 0.000 0.000 0.463
T16 0.000 0.000 0.000 0.713
T17 0.000 0.000 0.000 0.436
T19 0.411 0.000 0.000 0.000
T22 0.686 0.000 0.000 0.000
T23 0.701 0.000 0.000 0.000

Table 14

Phi (Factor Correlation) Matrix for Model #2

Factor
Factor

Verbal Visual Speed Math

Verbal 1.000
Visual 0.667 1.000
Speed 0.439 0.441 1.000
Math 0.512 0.592 0.519 1.000
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Table 15

Selected EFA and CFA Studies from The Journal of Counseling Psychology

Author Year Type of Analysis

Cole & Jordan 1989 CFA

Good et al. 1995 CFA

Hayes & Tinsley 1989 EFA

Larson et al. 1992 EFA

Lee & Robbins 1995 CFA

Rice, Cole & Lapsley 1990 EFA

Sodowsky, Taffe, Gutkin & Wise 1994 EFA

Tinsley, Bowman & York 1989 EFA

Tinsley, Roth & Lease 1989 CFA

Tracey, Glidden & Kokotovic 1988 CFA
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Table 16

Analysis of Select Articles Based on Recommendations by Hetzel (1996) and
Thompson and Daniel (1996)

Information
% of Studies Reporting

Total CFA EFA

Coefficients Termed "Loadings" 100% 100% 100%
Criteria for Factor Retention 50% 100%
Eigenvalues 50% 100%
Factors Correlated 70% 60% 80%
Final Communality Coefficients 30% 60%
Initial Communality Estimates Used 10% 20%
Interpret Several Fit Statistics
Item Means and Variances 10% 20%
Matrix of Association

Correlation Matrix 30% 40% 20%
Variance-Covariance Matrix 10% 20% 0%

Method of Factor Extraction 40% 80%
Method of Factor Rotation 50% 100%
Method of Sample Selection 60% 80% 40%
Multiple Models Specified 40% 80%
Number of Variables 80% 80% 80%
Reliability Estimate Provided 40% 40% 40%
Rotated Factor Pattern Matrix 30% 60%
Rotated Factor Structure Matrix 30% 60%

Sample Size 100% 100% 100%
Sample Composition 100% 100% 100%

Note. Blank line indicates that information does not pertain to the
particular type of analysis.
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