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ABSTRACT

The present paper presents the methodology for performing and

interpreting second-order factor analysis. Procedures for

extracting and rotating solutions are presented. Critical issues

of interpretation, such as interpreting second-order factors from

variables rather than first-order factors are discussed. Two

methods for accomplishing this are explained, including

multiplying the first- and second-order factor pattern matrices

and the Schmid-Leiman (1957) orthogonalized solution. Methods

and interpretation is discussed for both exploratory and

confirmatory second-order models. Results of example heuristic

analyses are presented to aid understanding of both approaches.
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Second-Order Factor Analysis: Methods and Interpretation

As Gorsuch (1983) noted, one of the common goals of all

scientists is to "summarize data so that the empirical

relationships can be grasped by the human mind" (p. 2). In this

regard, factor analysis is often quite useful. Specifically,

when a researcher is faced with scores on a large number of

variables, conceptualization of the relationships between those

variable is extremely difficult, if not impossible. Factor

analysis can aid in the conceptualization since one of its

primary functions is to explain the "maximum amount of

information from the original variables in as few derived

variables, or factors, as possible to keep the solution

understandable" (Gorsuch, 1983, p. 2).

While many researchers are familiar with the methods of

factor analysis, probably not as many are familiar with second-

order factor analysis (Kerlinger, 1984). The basic concept of

second-order factor analysis derives directly from that of

ordinary factor analysis. As many researchers know, factor

analysis involves extraction of factors from a matrix of

associations between the variables (or other factored entities)

under study, usually_ A correlation_ matrix or variance-covariance

matrix. Then, the extracted factors may be subjected to one of

the many available rotation procedures, which redistributes the

variance contributed by the variables to the factors in a way

that yields a more understandable structure. However, if an

4
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oblique rotation is used, this leads to factors that are

themselves correlated. In that case, there would be a factor

correlation matrix, which could itself, in turn, be factor

analyzed. As Gorsuch (1983) put it, "...if we have a correlation

matrix, we can factor it" (p. 239). The factors that are

extracted from such an analysis are called "higher-order" or

"second-order" factors.

The present paper has three purposes. One is to provide a

conceptual explanation of second-order factor-analysis, including

the rationale for its use. The second purpose is to explain the

method for performing a second-order factor analysis. The third

purpose is to describe how to interpret the results of a second-

order factor analysis. Methods and interpretation will be

discussed for both exploratory and confirmatory second-order

models, highlighting their similarities and differences. Results

of example analyses using actual data will be presented as an to

aid understanding the methods and interpretive issues for both

exploratory and confirmatory models.

The present paper does not present first-order analysis in

detail, and it is assumed that the reader is familiar with the

concepts of _ordinary_factor_anelyBia. Thoise who are not

are directed to other sources for a detailed treatment of first-

order factor analysis (cf. Gorsuch, 1983; Kim & Mueller, 1978).

BEST COPY AVAILABLE
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Hetzel (1996) provides an excellent chapter-length review of

these same issues.

Conceptual Overview and Rationale

To start, a conceptual overview and rationale for using

second-order analysis is presented. Just because one can factor

analyze a factor correlation matrix does not imply that there is

good reason to do so. However, when factors are correlated,

there is, in fact, a broader level of generalization that is not

captured by the first-order analysis alone (Gorsuch, 1983), and

thus a second-order analysis can be conducted to obtain a

different perspective on the data. A useful analogy was offered

by Thompson (1990): "The first-order analysis is a close-up view

that focus on the valleys and peaks of mountains. The second-

order analysis is like looking at the mountains at a greater

distance and yields a potentially different perspective on the

mountains as constituents of a range" (p. 597). McClain (1996)

expands on this analogy, proposing that that first-order analysis

is like examining the mountains (the "observed variables") with

zoom-lens binoculars, while the second-order analysis uses wide-

angled lens.

Implied by this analogy is that higher-order factors offer a

different perspective because they offer more generalizability.

It is important to keep in mind, however, that even though this

is true, the greater generalizability is gained at the expense of

detail. Alternatively, the first-order factors offer more detail

G
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but with less generalizability. These concepts can also be

related back to Thompson's (1990) analogy. Since first-order

factors are a close-up view (zoom lens), we can see minute

details, but we also have only a limited, narrow view.

Conversely, when we examine second-order factors, we are viewing

the mountains from a much greater distance, where we have a much

broader view of the mountains, allowing a view of how they

cluster together to make up a mountain range. At this distance,

however, it becomes difficult to discern details from any

particular mountain. The close-up and distance views both yield

important information and there is no reason why anyone would

only want one view if both were available. This, then, is the

rationale for using a second-order factor analysis. Indeed, both

McClain (1996) and Gorsuch (1983) argued that when factors are

correlated, a second-order analysis should always be performed to

obtain as much understanding of the data as possible.

Exploratory Second-Order Factor Analysis

A second-order factor analysis must always begin with a

first-order analysis. Any extraction procedure (for example,

principal components or principle axes) may be used for the

first-order analysis. When the first-order factors are rotated

to do a hierarchical factor analysis, an oblique rotation must be

used so that the factors are allowed to be correlated; if

orthogonal rotation were used, factors would be perfectly

uncorrelated and a higher-order analysis would be impossible.
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Promax rotation (Hendrickson & White, 1964) is a commonly used

oblique rotation method that generally yields good simple

structure solutions (Gorsuch, 1983).

An oblique rotation of the first-order analysis will yield a

first-order factor correlation matrix which is then the subject

of the second-order analysis. As in the first-order analysis,

any extraction procedure may be used. The factors extracted from

the first-order factor correlation matrix are called the second-

order factors.

Rotation of Second-Order Factors

At this point, the second-order factor solution can and

usually needs to be rotated to make the solution more

interpretable. For rotation of the second-order solution,

however, the researcher is not constrained to an oblique

rotation, but rather may make the decision to perform either an

oblique or an orthogonal rotation. Just as with first-order

factors, the researcher may have reason to believe the factors

should be correlated. However, if the factor correlations are

nonexistent or deemed trivial, the researcher may use an

orthogonal solution instead (Gorsuch, 1983).

Third-Order Analyses.

If an oblique solution is used for the second-order

analysis, the second-order factors are correlated. If so, then

yet another factor analysis could be conducted, extracting

"third-order" factors from the second-order factor correlation

8
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matrix. Theoretically, this process of factoring higher and

higher could continue indefinitely until (a) orthogonally-rotated

(uncorrelated) factors are identified or (b) only one facotor is

extracted.

Interpretive Guidelines

Whenever factors are correlated, it is important to

interpret both pattern and structure coefficients (Thompson,

1997; Thompson & Borrello, 1985). Pattern coefficients indicate

the weight given to the variable in calculating scores on the

latent factors while the structure coefficients are the

correlations between the variables and the factors.

There is at least one more step before higher-order

factors can be interpreted. Since a second-order analysis is a

factor analysis of the correlations between first-order factors,

the analysis yields a factor-pattern matrix indicating the

weights given to the first-order factor scores in determining the

second-order factors. The problem with interpreting the analysis

using this matrix is that one has become so far removed from the

original variables that it becomes very difficult to determine

the meaning of the higher-order factors. As Gorsuch (1983) put

it, one is "basing interpretations upon interpretations of

interpretations" (p. 245). This has also been referred to as

"interpreting shadows of the shadows of mountains rather than the

mountains themselves" (McClain, 1996, p. 233).
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The answer to this problem is to interpret second-order

factors in terms of the original variables rather than in terms

of the first-order factors. There are two useful strategies for

accomplishing this (see also Wherry, 1959).

First, Gorsuch (1983) recommends postmultiplying the

first-order factor pattern matrix by the second-order factor-

pattern matrix. This operation yields a product matrix (first-

order by second-order) containing the pattern coefficients for

the second-order factors in terms of the original variables.

Thompson (1990) argued that this product matrix can itself

then also be orthogonally rotated by the varimax procedure to

make the results more interpretable (Thompson, 1990). Of course,

if the second-order factors are rotated obliquely (allowing them

to be correlated) it is important to interpret both pattern and

structure coefficients, just as with the first-order solution.

To obtain the structure matrix for the second-order factors in

terms of the original variable, one simply has to postmultiply

the product matrix described above by the second-order factor

correlation matrix (Gorsuch, 1983).

Second, another useful procedure for interpreting second-

order analyses was outlined by Schmid _and Leiman (1957) _This__ _ _ _

solution is also referred to as an orthogonalized solution,

because it produces a pattern matrix of both higher- and first-

order factors in terms of the original variables, but with the

common variance accounted for by the second-order factors
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residualized from the first-order factors. In other words, the

pattern coefficients of the variables for the first-order factors

represent the unique variance accounted for by the first-order

factors which is not accounted for by the higher-order factors.

Therefore, first-order factors are orthogonal to the second-order

factors, and thus the term orthogonalized solution.

It is important to note, however, that the name refers to

orthogonality between factors across successive levels of

analysis, and not between factors within a given level of

analysis. As discussed previously, orthogonality between factors

within a given level of analysis can only occur at the highest

level of analysis, or else higher-level factoring would not be

possible. Since an available computer program (described later)

computes a Schmid-Leiman (1957) solution, the mathematics of the

solution will not be presented. The interested reader is

directed to Schmid and Leiman (1957) and Gorsuch (1983) for a

mathematical treatment of the topic.

Heuristic Example of Exploratory Second-Order Factor Analysis

This section presents a heuristic example of an

exploratory second-order factor analysis using 11 ability

measures_selected from_of_groqp of_24_that were administered to

301 junior high children (Holzinger & Swineford, 1939). The raw

data for the complete set of 24 measures can be found in

Holzinger and Swineford (1939). The correlation matrix for the

11 selected measures can be found in the Appendix so the

11
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interested reader can replicate the example analyses of the

present paper. A description of the selected measures appear in

Table 1.

INSERT TABLE 1 ABOUT HERE

The analysis was performed using the FORTRAN program

SECONDOR (Thompson, 1990). For information about the

availability and use of SECONDOR, see Thompson (1990). The

program begins by extracting first-order factors using principal

components analysis. In the present example, 3 factors were

extracted and rotated obliquely using the Promax procedure. The

factor-pattern coefficients are presented in Table 2. Since

structure coefficients are also important aids to interpretation,

these appear in Table 3. [Pattern and structure coefficients

differ for a given data set whenever factors are correlated,

i.e., rotated obliquely (see Hetzel, 1996).]

The first factor was labeled Verbal Ability, given the

salient pattern and structure coefficients for the following

variables on that factor: General Information (V5), Paragraph

Comprehension (V6), Sentence Completion (V7), and Word Meaning

(V9). The second factor was called Speed, given the salient

pattern and structure coefficients for the following variables on

that factor: Speeded Addition (V10), Speeded Coding (V11),

Speeded Counting of Dots (V12), and Speeded Discrimination of

12 BEST COPY AVAILABLE
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Letters (V13). Factor III was called Memory ability, with high

correlations on Memory of Target Words (V14), Memory of Target

Numbers (V15), and Memory of Object-Number Associations (V17).

INSERT TABLE 2 AND TABLE 3 ABOUT HERE

Since an oblique rotation was used with the first-order

solution, the factors were correlated, in this case ranging from

.155 to .273. Thus, second-order factors were implied and a

higher level of generalization could be obtained with a second-

order analysis. One second-order factor was extracted from the

first-order factor correlation matrix, which was given the label

General Intelligence. The second-order factor pattern matrix is

presented in Table 4. Again, this matrix consists of the weights

given to the first-order factors to determine the second-order

factor.

INSERT TABLE 4 HERE

As noted previously, interpretation should not be based on

this matrix,_ but rather should proceed from an analysis_of the

original variables making up the second-order factor, using the

two previously mentioned methods. The first method,

postmultiplying the first-order pattern matrix by the second-

order pattern matrix, results in the second-order product matrix,

13
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which is presented in Table 5 along with the communalities (h2).

From this matrix it can be seen that all of the variables make a

noteworthy contribution to the second-order factor, as evidenced

by the magnitudes of their pattern coefficients, which range from

.413 to .709.

INSERT TABLE 5 ABOUT HERE

As discussed earlier, the Schmid-Leiman (1957) solution is

another method of interpreting the second-order factors from the

perspective of the original variables. The Schmid-Leiman

solution for the present example, along with communalities, is

presented in Table 6. Again, the solution presents the first-

order solution in terms of the variables not accounted for by the

second-order solution. Inspection of this solution reveals that

while there is a meaningful General Intelligence factor made up

of noteworthy contributions from all 11 variables, there is also

a noteworthy amount of unique variance accounted for by the

first-order factors that is not captured by the General factor.

This is evidenced by the fact that the pattern coefficients for

all the variables in _the first-order factor retain_ noteworthy_

magnitudes (ranging from .419 to .671) after being residualized

of the variance accounted for by the second-order factor. One

can also see that the traces for the first-order factors are

meaningful (ranging from .98 to 1.76).

14
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INSERT TABLE 6 ABOUT HERE

The pattern of results found in this example is only one

of many that are possible. It may be the case that the first-

order factors do not explain any variance above and beyond that

of the second-order factors. In such a case, all of the pattern

coefficients for the first-order factors in the Schmid-Leiman

solution would be approximately zero. Alternatively, the pattern

coefficients for the second-order factors may be relatively small

in magnitude relative to those of the first-order factors, even

though this analysis does inherently emphasize the second-order

factors over the first-order factors.

Confirmatory Second-Order Factor Analysis

So far, the analyses discussed have all been exploratory

factor analysis (EFA). Another type of factor analysis, called

confirmatory factor analysis (CFA), is often more appropriate

than EFA when there is an explicit theory or a strong empirical

base suggesting a specific model. CFA is notable for its ability

to test specific hypotheses, and has less of a tendency to

capitalize on chance than EFA (Stevens, 1996; Thompson &

Borrello, 1992). While EFA examines all possible relationships

between all variables, in CFA the researcher specifies one or

more particular models of relationships and examines how well the

models fit the data at hand. The present discussion will present

15
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an overview of second-order CFA within the framework of LISREL

(Joreskog & Sorbum, 1986). However, other software packages,

such as EQS (Bentler, 1983), are available that utilize graphic

model specification rather than specification of models via

matrix programming.

In the LISREL framework, the model is specified by

indicating hypothesized patterns of relationships in a series of

matrices, corresponding to factor pattern and factor correlation

matrices. This is accomplished by "fixing" certain parameters in

the matrices while "freeing" other parameters, allowing them to

be estimated in the analysis. As in most CFA models, the Lambda-Y

matrix is used as the first-order factor pattern matrix. This

matrix consists of as many rows as measured variables and as many

columns as the number of hypothesized first-order factors.

Within this matrix, the only parameters freed to be estimated are

those parameters relating measured variables to latent factors

with which the measured variables are hypothesized to be

associated. Parameters relating measured variables to latent

factors with which they are not hypothesized to be related are

fixed to zero. In order for there to be a unique solution to the

model (a situation in which the_model_ia said_to.be

mathematically "identified"), one parameter within each factor is

constrained to be one. This also creates a scale for the

parameter estimates. [Although this is one common method of

identifying the model, another method is described later.]

16
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The second matrix, called Gamma in LISREL, is the second-

order factor pattern matrix. The number of rows will be equal to

the number of first-order factors and the number of columns equal

to the number of second-order factors. Parameters are freed to

be estimated based on the hypothesized model of first-order to

second-order relationships. Also, since the model must be

identified at both the first- and second-order levels, the Gamma

matrix can be used to identify the model at the second-order

level, by fixing one parameter for each second-order factor to

one.

The third matrix, called Psi, is the first-order factor

variance-covariance matrix. Often the diagonal elements of the

matrix are fixed to be one, which turns Psi into a correlation

matrix. Also, this is another way of identifying the model at

the first-order level. Thus, this is a common alternative to the

previously discussed method of model identification in which one

parameter for each first-order factor in the Lambda-Y matrix is

fixed to be one.

Since Psi is the factor variance-covariance matrix, it is

with this matrix that the researcher indicates whether or not

correlated first-order factors are hypothesized._ This highlights__

a major difference between EFA and CFA, because when using EFA, a

second-order factor analysis is not possible unless the first-

order factors are correlated. This is not true with CFA. In a

CFA model, second-order factors can be made up of uncorrelated

17
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first-order factors. If uncorrelated first-order factors are

hypothesized, then all the off-diagonal elements of Psi involving

the first-order factors are fixed to zero. If not, they are

freed to be estimated, allowing the first-order factors to be

correlated.

The fourth matrix, Phi, is the second-order factor

variance-covariance matrix. Again, it is the researcher's

decision whether or not to hypothesize correlated second-order

factors. If the model posits uncorrelated second-order factors,

then the off-diagonal elements of Phi are fixed to zero. The

diagonals can then be fixed to be one, or be freed to be

estimated. This decision must take into account the

identification of the model. Just as certain elements of the

first-order factor matrices must be fixed for identification,

certain elements of the second-order matrices must also be fixed.

If the diagonal elements of Phi are set to one, then the model

identification for the second-order matrices is accomplished.

However, if the researcher allows the second-order factor

variances to be estimated (the diagonal of Phi), then one

coefficient for each second-order factor in the second-order

factor pattern matrix (Gamma) must_be fixed to one, as discussed

previously.

The last matrix, Theta-epsilon, consists of the

error/uniqueness components of each measured variable. This

matrix may either take the form of a one-dimensional array, with

18



SECOND-ORDER 18

one element for each measured variable (Thompson & Borrello,

1992), or a symmetrical matrix with the diagonal elements as the

error/uniqueness estimates and the off-diagonal elements as the

error/uniqueness covariances (Marsh & Hocevar, 1985). However,

error/uniqueness covariances are typically not estimated unless

there is a specific reason to believe correlated errors to be

plausible. If such is the case, the diagonal elements as well as

specific off-diagonal elements in the matrix are freed to be

estimated. Using a symmetric matrix with all the off-diagonal

elements constrained to be zero would be analogous to a one-

dimensional array in which only error/uniqueness are estimated.

Interpretive Guidelines

Just as in first-order CFA, the first step to

interpretation is to determine how well the data fit the

specified model, for which purpose several "goodness of fit"

statistics are available. Three of the more commonly used are

the chi-square, the goodness of fit index (GFI), and the adjusted

goodness of fit index (AGFI). However, dozens of other fit

statistics are available (e.g., the comparative fit index (CFI),

and the root mean square error of approximation (RMSEA)). Fan,

_ and __Wang___( in_ pre s s.)___and __Fan , _Wang.4__and _Thompson _

provide a review. It is usually desirable to consult more rather

than fewer fit statistics when evaluating model fit.

The chi-square statistic tests the null hypothesis that

the model is consistent with the observed covariation in the

19
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data. Therefore, contrary to conventional statistical

significance testing, one does not want to reject the null

hypothesis when testing model fit with the chi-square statistic.

The problem with this statistic is that it is very sensitive to

sample size (Stevens, 1996), and if a large sample size is

obtained, as is desirable in CFA, the null hypothesis will quite

frequently be rejected. However, it is worthwhile to examine the

value of the chi-square statistic without regard to statistical

significance testing, where lower values are indicative of better

model fit. However, other statistics should also be used for

further confirmation.

One alternative to the chi-square is the GFI. The GFI is

an indicator of the amount of variance in the data that can be

explained by the model, and is analogous to the R2 in multiple

regression (Stevens, 1996). Since this statistic indicates more

variance accounted for simply by adding more parameters to the

model, the AGFI was developed to adjust for degrees of freedom

such that lower values are obtained as more parameters are added

to the model (Stevens, 1996). When interpreting goodness of fit,

a value above at least .90 is desirable. It is important to keep

in mind, however, that a good fit does not rule out the

possibility that alternative models may also fit the data

(Thompson & Borrello, 1992). Therefore, it is desirable to fit

several competing models to the data.

20
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Once the overall fit of the model has been determined to

be adequate, the values of individual parameter estimates are

examined, just as the pattern and structure coefficients are

interpreted in EFA. In addition to interpreting the magnitudes

of the parameter estimates, the standard errors of the estimates

should also be examined. Not only should parameter estimates

have noteworthy values, but they should also be at least twice

their respective standard errors (Marsh & Hocevar, 1985; Thompson

& Borrello, 1992).

Example Confirmatory Second-Order Analysis

Two example confirmatory analyses were conducted, again

using the 11 selected measures from the Holzinger and Swineford

(1939) data. The first example tested a first-order model with

correlated factors. The second example tested a second-order

model with uncorrelated first-order factors. In the second

example, the first-order factors were hypothesized to be

uncorrelated, primarily to show that this is possible with CFA

and to highlight this as a major difference between second-order

EFA and CFA approaches.

First-Order Example. The first matrix, Lambda-Y,

consisted of 11 rows and 3 columns, corresponding to the 11

measured variables and 3 hypothesized factors: Verbal, Speed and

Memory. Corresponding to the model of correlated factors, the

off-diagonal elements of Psi were freed to be estimated. The

diagonal elements of this matrix were fixed to be ones, which

21
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identifies the model at the first-order level and also turns Psi

into a correlation matrix. Since no correlated error variance

was hypothesized, only the diagonal elements of Theta-Epsilon

(error variances) were freed to be estimated and all off-diagonal

elements (error covariances) were fixed to zero.

First-Order Results. Table 7 presents the model fit to

the data. The chi-square statistic, with 41 degrees of freedom,

was 104.30. The goodness of fit index was .941, while the

adjusted goodness of fit index was .904. These results support

the plausibility of the hypothesized model. However, as

mentioned previously, a good fit does not rule out competing

models, since many different models may fit a given data set

(Thompson & Borrello, 1992). This idea will also be made more

clear when the second-order example is presented.

INSERT TABLE 7 ABOUT HERE

Second-Order Example. For the second-order example, the

same measured variables were again hypothesized to make up the

same three first-order factors. Further, it was hypothesized

that the first,order factors. were_uncorrelated. and .that_they_all___

contributed to a second-order factor of general intelligence.

The first matrix, Lambda-Y, consisted of 11 rows and 3

columns, corresponding to the 11 measured variables and 3

hypothesized factors: Verbal, Speed, and Memory. Corresponding
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to the hypothesis of uncorrelated factors, the off-diagonal

elements of Psi were fixed to zero. Also, in order to identify

the model, the diagonal elements of this matrix were set to one.

The second-order factor-pattern matrix, Gamma, consisted of 3

rows (first-order factors) and 1 column. All three of these

elements were freed to be estimated, corresponding to the

hypothesis that there would be one second-order factor (General

Ability) that would be made up of all three of the first-order

ability factors. Since there was only one second-order factor,

Phi consisted of only 1 element, which was fixed to one to allow

for model identification at the second-order level. Since no

correlated error variance was hypothesized, only the diagonal

elements of Theta-Epsilon (error variances) were freed to be

estimated, and all off-diagonal elements (error covariances) were

fixed to zero.

Second-Order Results. Table 8 presents the unstandardized

second-order model fit to the data. The reader will not that the

Psi matrix is depicted in this table even though no element in

this matrix were estimated. This is primarily to highlight the

fact that it is possible to have uncorrelated first-order factors

the factorin a second-order CFA model and also to show that th

variances were fixed to be one in order to identify the model at

the first-order level.
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INSERT TABLE 8 ABOUT HERE

The chi-square statistic, with 41 degrees of freedom, was

104.30. The goodness of fit index was .941, while the adjusted

goodness of fit index was .904. These fit indices suggest that

the hypothesized second-order model is plausible. The reader

will also note that these are exactly the same fit statistics for

the first-order model with correlated factors, meaning the data

fit both the first and second-order models equally well. Second-

order CFA expresses the first-order model used here in a

different structural model, but the CFA second-order model had no

more (or less) ability to reproduce the measured variables than

did the first-order model used here.

Since the overall fit of the second-order model was

acceptable, the parameter estimates can be evaluated for further

interpretation. As in the previous example, the standard errors

of the estimates were first consulted. Most of the standard

errors for the Lambda-Y estimates ranged from .052 to .074 for

the Verbal and Memory factors. However, the standard error for

the Lambda-Y estimates of the Speed factor suggested a possible

_problem fox interpretation. ,The parameter estimates (ranging

from .249 to .290) were almost of the same magnitude as their

standard errors (ranging from .228 to .265). The same problem

occurred for the second-order pattern coefficients (Gamma

estimates). Here, too, the estimates for the Verbal and Memory
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factors were several times as large as their standard error (.115

and .164, respectively) while the estimate for the Speed factor

was actually smaller than its standard error (2.499). These

findings further suggest a problem with the Speed factor in the

second-order model. Possible sources of this problem will be

discussed later.

Since it is important to use the standardized solutions

for interpreting higher-order CFA models, the standardized

solution for the present example is presented in Table 4. The

only difference between the standardized and unstandardized

solution is that the variables are standardized before parameter

estimations to obtain the standardized solution. Although the

estimates for the Speed factor appear more stable for the

standardized solution, this is actually misleading because the

standard errors of the estimates also change for the standardized

solution, preserving the same ratio of parameter estimate to

standard error of the estimate.

INSERT TABLE 9 ABOUT HERE

Gi ven_the.._problem_with_the__Speed___factor_.in__the s e c ond

order model, a possible explanation is warranted. One

interpretation of the parameter estimates is that Verbal is a

very strong first-order factor, while the Speed and Memory

factors are not quite as strong, as evidenced by their lower
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standardized Lambda-Y estimates. However, based on inspection of

the standard errors, it is really hard to interpret Speed as even

a coherent factor. Speed appears to be more or less dominating

the second-order factor, but again, there is almost a one to one

ratio between its Gamma estimate and its standard error. Based

on this, the best explanation would probably be some kind of

model specification error. Specifically, it may be the case that

the Speed factor should not contribute to the second-order

factor. This model could be tested by fixing the Gamma estimates

only for Speed to zero. This model would also be theoretically

plausible given the traditional concurrence among intelligence

theorists that speed is not nearly as related to general

intelligence as other factors such as memory and verbal ability.

Such a model would say that speed exists at the first-order but

not at the second-order level.

Summary

In summary, second-order factor analysis is a useful, if

not necesary, aid to the interpretaton of factor structure when

first-order factors are correlated. An EFA approach is most

useful when the researcher as no a priori hypotheses about the

_ expected relationships, while CFA is a powerful t901_for

specific hypotheses. Ultimately, second-order analyses allow for

a more complex view of the often highly complex reality under

study in the social sciences.
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TABLE 1
Listing of Selected Ability Tests from the Holzinger and
Swineford (1939) Data

Variable Label Ability Test

V5 General Information - Verbal
V6 Paragraph Comprehension
V7 Sentence Completion
V9 Word Meaning
V10 Speeded Addition
V11 Speeded Coding (code shapes with letter)
V12 Speeded Counting of Dots
V13 Speeded Discrimination of Letters
V14 Memory of Target Words
V15 Memory of Target Numbers
V17 Memory of Object-Number Association

30



TABLE 2
Promax Rotated Factor Pattern Matrix

Variable Verbal Speed Memory h2

V5 .905 -.006 -.044 82.1%
v6 .888 -.013 .030 79.0%
v7 .861 -.009 .086 74.9%
v9 .876 .039 -.073 77.4%
v10 -.075 .780 .022 61.5%
vii -.069 .838 -.125 72.3%
v12 .072 .715 -.053 51.9%
v13 .183 .651 .135 47.6%
v14 .118 -.111 .808 67.9%
V15 -.087 -.070 .801 65.496

V17 -.077 .312 .608 47.3%
Trace 3.19 2.36 1.72 7.27
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TABLE 3
First-Order Factor Structure Matrix

Variable Verbal Speed Memory
V5 .896 .230 .095

V6 .889 .237 .164

V7 .872 .248 .217

V9 .875 .260 .073

V10 .141 .765 .213

Vii .140 .787 .083

V12 .259 .721 .144

V13 .382 .736 .333

V14 .212 .132 .798

V15 .018 .115 .769

V17 .102 .449 .677
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TABLE 4
Second-Order Factor
Pattern Matrix

Factor General

Verbal .670

Memory .765

Speed .655

Trace 1.460
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TABLE 5
Second-Order Product Matrix

Variable General h2

V5 0.574 32.9%
v6 0.605 36.6%
v7 0.626 39.2%
v9 0.570 32.4%
v10 0.560 31.3%
v11 0.513 26.3%
v12 0.560 31.4%
v13 0.709 50.296

v14 0.523 27.4%
v15 0.413 17.1%
V17 0.585 34.2%
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TABLE 6
Schmid-Leiman Orthogonalized Solution

Variable General Verbal Speed Memory h2

V5 .574 .671 -.004 -.033 78.1%
V6 .605 .659 -.008 .023 80.1%
V7 .626 .639 -.006 .065 80.5%
V9 .570 .650 .025 -.055 75.1%
V10 .560 -.056 .503 .016 56.9%
V11 ' .513 -.051 .540 -.094 56.6%
V12 .560 .054 .461 -.040 53.1%
V13 .709 .136 .419 .102 70.7%
V14 .523 .087 -.071 .611 66.0%
V15 .413 -.064 -.045 .605 54.3%
V17 .585 -.057 .201 .459 59.6%

Trace 3.59 1.76 .98 .98 7.31

Note. The column after the orthogonalized matrix presents the
sum of the squared entries in a given row. The first 1 column
represents the second order factors. The next 3 columns
represent the first order solution, based on variance
orthogonal to the second order (Gorsuch, 1983, pp. 248-254).
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TABLE 7
Confirmatory First-Order Solution
(n = 301, v = 11)

LAMBDA Y
Variable VERBAL SPEED MEMORY

V7 .859 .000 .000

V9 .858 .000 .000

V6 .825 .000 .000

V5 .834 .000 .000

V10 .000 .626 .000

V12 .000 .627 .000

V13 .000 .636 .000

Vii .000 .731 .000

V14 .000 .000 .604

V15 .000 .000 .527

V17 .000 .000 .637

PSI
VERBAL SPEED MEMORY
1.000

SPEED .381 1.000
MEMORY .211 .466 1.000

Note: Entries of ".000" were all fixed to be
zeroes; entries of "1.000" were all fixed to
be ones; all other results were maximum-
likelihood estimates that were considered
"free" in the model fit to the data.
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TABLE 8
Confirmatory Second-Order Solution (Unstandardized)
(n = 301, v = 11)

LAMBDA Y
Variable VERBAL SPEED MEMORY

V7 .781 .000 .000

V9 .780 .000 .000

V6 .750 .000 .000

V5 .759 .000 .000

V10 .000 .249 .000

V12 .000 .249 .000

V13 .000 .252 .000

V11 .000 .290 .000

V14 .000 .000 .521

V15 .000 .000 .454

V17 .000 .000 .549

PSI
VERBAL SPEED MEMORY

VERBAL 1.000
SPEED .000 1.000
MEMORY .000 .000 1.000

GAMMA
GENERAL

VERBAL .457

SPEED 2.311
MEMORY .589

Note: Entries of ".000" were all fixed to be
zeroes; entries of "1.000" were all fixed to
be ones; all other results were maximum-
likelihood estimates that were considered
"free" in the model fit to the data.
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TABLE 9
Confirmatory Second-Order Solution (Standardized)
(n = 301, v = 11)

LAMBDA Y
Variable VERBAL SPEED MEMORY

V7

V9
V6
V5
V10
V12
V13
V11
V14
V15
V17

PSI

VERBAL
SPEED
MEMORY

GAMMA

VERBAL
SPEED
MEMORY

.859

.858

.825

.834

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.626

.627

.636

.731

.000

.000

.000

VERBAL SPEED
1.000
.000 1.000
.000 .000

GENERAL
.415

.918

.508

.000

.000

.000

.000

.000

.000

.000

.000

.604

.527

.637

MEMORY

1.000

Note: Entries of ".000" were all fixed to be
zeroes; entries of "1.000" were all fixed to
be ones; all other results were maximum-
likelihood estimates that were considered
"free" in the model fit to the data.
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