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Development of the angle concept

ABSTRACT

A framework for research on the development of the angle concept, based on the

theories of abstraction (Skemp, 1986) and situated knowledge (Brown et al., 1989) is

proposed. It is suggested that children initially acquire a body of disconnected angle

knowledge situated in a large number of everyday experiences; they then group situations to

form angle contexts such as turns and corners; and finally they form an abstract angle concept

by recognising similarities across several angle contexts. To investigate this framework, 36

Grade 4 students were interviewed to find how they classified and conceptualised six angle

contexts (represented by models of six physical angle situations). The students appeared to

have formed distinct concepts of turns, slopes, hinges, bends, rebounds, and corners, but were

often not aware of the common angle features of these six contexts. Specific irrelevant features

of each context appear to hinder abstraction of a general angle concept. In particular, it would

seem that many students do not recognise turning in all contexts. Implications for curriculum

and instruction are discussed.
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DEVELOPMENT OF THE ANGLE CONCEPT BY ABSTRACTION FROM SITUATED

KNOWLEDGE

Length and angle are arguably the two most basic concepts which we use to analyse

our spatial environment, and they are also fundamental to the study of geometry. But whereas

most students master length early in primary school, angle causes difficulties well into

secondary school (Close, 1982; Mitchelmore, 1983). One difficulty for teachers is knowing

what definition of angles to useamount of turning, union of two rays with a common end

point, intersection of two half-planes have all been suggested (Close, 1982; Krainer, 1989).

Each definition has its advantages and disadvantages (Strehl, 1983).

We shall make the basic assumption that the angle concept, like all other elementary

mathematical concepts, derives ultimately from our experience of the physical world through

the process Piaget called reflective abstraction (Dubinsky, 1991). The curriculum equivalent

assumption is that teaching should link abstract ideas to students' everyday experience

(National Council of Teachers of Mathematics, 1989). It would therefore seem imperative to

look at common physical experience as a possible explanation for the complexities of the angle

concept and for students' difficulties in learning it.

There has, however, been very little research on how students conceptualize the angles

in their everyday experience. (We exclude here research on perceptual and graphic skills as

peripheral to the question of how the angle concept develops.) Studies of how students

interpret the word "angle" give some insights. For example, KraMer (1989) obtained a vast

number of responses when he asked 12-year-old students to name everyday situations

involving angles. The majority of the examples involved some sort of turning motion, and most

of the static angles included a horizontal or vertical arm. Other researchers have specifically

asked students to say what an angle is. For example, Davey & Pegg (1991) surveyed students

from Grades 1 to 10 and reported that their descriptions of an angle went through a sequence

of four stages: (1) a corner which is pointy or sharp; (2) a place where two lines meet; (3) the

distance or area between two lines; and (4) the difference between the slopes of the lines.

Clements & Battista (1989) found that Grade 3 students most commonly described an angle as

a sloping line, a place where two lines meet, the two lines themselves, or a turn (the last only

by students who had studied Logo). Foxman and Ruddock (1984) reported that the description

most frequently given by 15 year olds was the distance or area between two lines (29% of
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responses); and although only 4% spontaneously mentioned turning, 41% referred to amount

of turn after being shown a movable angle model.

Such studies suggest that students do conceptualize their surroundings in terms of

angles, and that the way they do this develops in sophistication as they get older. But there are

many questions left unanswered. From what physical experiences do students derive their angle

concepts? Do students conceptualize different physical situations in different ways? How does

physical experience influence students' angle concepts? How do students eventually develop a

general concept of angle out of their physical experiences? We have, in fact, found no study

which investigates students' understanding of any of the physical situations which underlies the

angle concept or of the relation between physical angles and their abstract representations.

As Davey and Pegg (1991) put it, "the key issue that has plagued work on angles is the

lack of a theoretical framework from which to consider the results of various studies" (p. 1).

We shall now propose such a framework, derived by integrating the two theories of situated

knowledge and abstraction.

A New Framework for Research on the Angle Concept

The theory of situated cognition (Brown, Collins & Duguid, 1989; Greeno, 1989) is

the first component on which our framework is based. According to this theory, "the activity in

which knowledge is developed and deployed ... is not separable from or ancillary to learning

and cognition ... it is an integral part of what is learned" (Brown et al., 1989, p. 32). Most of

what humans do is situated in particular contexts, drawing on knowledge of that context which

has been built up as a result of previous experience. Situated knowledge comes only from the

particular situationit is not the result of applying general, abstract principles to that situation.

Recent ethnomathematical studies have, for example, revealed sophisticated, mathematics-like

activity among illiterates who show no evidence of abstract mathematical knowledge (Nunes,

1992).

The proponents of situated cognition have argued that school primarily teach abstract

principles which students cannot then apply to specific situations. "The primary concern of

schools often seems to be the transfer of ... abstract, decontextualized concepts" (Brown et al.,

1989, p. 32), based on the theory that "knowledge acquired in 'context-free' circumstances is

supposed to be available for general application in all contexts" (Lave, 1988, p. 9). However,

"much of what is taught turns out to be almost useless in practice " (Brown et al., 1989, p. 32),

5
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consonant with "the meager evidence for transfer garnered from a very substantial body of

work [in cognitive psychology]" (Lave, 1988, p. 32). We have recently called abstract,

decontextualized knowledge abstract-apart and given further clear examples of students'

inability to use abstract-apart mathematical knowledge to solve application problems (White &

Mitchelmore, in press).

On the other hand, abstract mathematics is very powerful simply because it can be

applied in so many situations (Freudenthal, 1983). We call such widely applicable knowledge

abstract-general. If schooling led to abstract-general rather than abstract-apart concepts, the

knowledge would be much more useful in practice. But if knowledge is inextricably located in

separate situations, how can abstract-general knowledge develop?

One answer is provided by the theory of abstraction in mathematics. This theory was

developed by Piaget, Dienes, and Skemp earlier this century and recently extended by Dreyfus,

Dubinsky, and Sfard (Mitchelmore & White, in press). The core of this theory is summarised

by Skemp as follows:

Abstracting is an activity by which we become aware of similarities ... among our experiences.

Classifying means collecting together our experiences on the basis of these similarities. An abstraction

is some kind of lasting change, the result of abstracting, which enables us to recognise new

experiences as having the similarities of an already formed class. ... To distinguish between abstracting

as an activity and abstraction as its end-product, we shall ... call the latter a concept. (Skemp, 1986, p.

21, emphasis in original)

Skemp also distinguishes between primary concepts, those derived from our sensory and

motor experiences of the outer world, and higher-order concepts, those derived from other

concepts.

A mathematical concept is thus first formed when children recognise a communality

between superficially very similar situations. For example, the concept of whole number is

initially formed from the process of counting small sets of objects. After that, a concept

develops in two different ways (Mitchelmore, 1994). Firstly, it gradually becomes more and

more general as other situations are seen to be similar to the original situations. For example,

the concept of a whole number is extended to large numbers which cannot be counted and to

measurement situations. Secondly, several distinct concepts may be seen as similar to one

another at a deeper level; a new, higher-level concept is then formed which embraces them all.

For example, whole numbers, negative integers, and rational and irrational numbers become

subsumed in the concept of real number. Both kinds of concept development result in a

BEST COPY AVAILABLE



Development of the angle concept

concept becoming more abstractin the sense that it is general to an increasing variety of

superficially different situations.

On the basis of the above theories and previous research on angle, we suggest that the

angle concept develops in three broad stages.

1. Well before coming to school, children experience many physical situations which will later

be seen to involve angles. Children make their first abstraction when they recognise angle-

related similarities between repeated experiences of physically and socially very similar

objects or events (for example, walking up and down steep paths). Each similarity defines a

class of objects or events that we shall call a physical angle situation. Each class

corresponds, in Skemp's terms, to a primary concept (in our example, a sloping path). The

initial class may extend to very similar situations (such as riding up and down hills.)

Children develop knowledge of many angle situations which is specific to each situation

and makes no sense in similar situations. For example, knowledge of sloping paths (such as

knowing that steeper hills are more difficult to ride up) has no applicability to roofs. We

shall use the term situated angle knowledge to refer to specific knowledge of individual

physical angle situations.

2. At some stage, children begin to recognise deeper similarities between physical angle

situations. For example, they might see that paths and roofs both slope and then gradually

extend the idea to other examples of sloping objects. We shall call such a class of angle

situations a physical angle context. Each angle context corresponds to a concept such as

slope, turn, bend, and corner. Children develop what we might call contextual angle

knowledge: knowledge which applies to all the situations included in each context but not

necessarily across contexts. For example, children may be able to compare two slopes, or

compare two turns, without being able to compare a slope and a turn. The formation of

angle contexts represents the second level of abstraction from children's physical angle

experiences.

3. Students then become aware of even deeper similarities between physical angle contexts.

They gradually see that each angle context involves two lines meeting at a point and some

relation between them. As students see that more and more angular relations (previously

described as inclination, turning, relative direction, and so on, according to context) are

"really the same", an abstract angle concept emerges until it is general to all angle contexts.

Concepts such as slope, turn, bend, and corner may therefore be regarded as angle
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subconcepts. What we might call abstract angle knowledge is that which applies to all

angle subconcepts.

The difference between a physical angle situation, physical angle context, and an

abstract angle can be seen in the way they are modelled. (1) A physical angle situation is

modelled by a realistic physical model. Many children's toys, such as Lego houses and toy

cranes, model angle situations. (2) A physical angle context is modelled by representing that

which is common to all situations in that context. For example, slopes may be modelled by a

sloping pencil and corners in general by cut-out cardboard corners. We conjecture that

children's abstract models of angle contexts would pick out the superficially obvious

geometrical features of that context, so that different contexts would be modelled in different

ways. (3) An abstract angle is modelled by that which is common to all physical angle contexts:

two lines meeting at a point and some relation between them.. When students have formed an

abstract concept of angle, they would be able to match the lines on such an abstract model to

lines in each physical angle context in such a way as to demonstrate the appropriate angular

relation between them.

In summary, we are proposing that the angle concept develops from situational >

contextual abstract knowledge.

The present study

The above theoretical framework has, we believe, the potential both to explain many

research results and to guide the design of more effective teaching strategies. For example, the

various definitions of angle used in curriculum materials and given spontaneously by students

would seem to model different angle subconcepts. Possibly not enough is done in school to

help students link these subconcepts into a single, general concept of angle. It is also possible

that students do not link the abstract models of angle used in textbook diagrams to the various

physical angle contexts with which they might be familiar.

Nevertheless, the framework is purely theoretical and needs empirical verification. For

example, we do not know whether students categorize their physical angle experiences into

situations and contexts as we have described themor, if they do, what physical angle

situations and contexts they recognise. We have extended Krainer's (1989) list of angle

situations from our own experience and classified them into 14 putative contexts

(Mitchelmore, in press). An exploratory study of Grade 2 students (Mitchelmore, 1995)
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suggested that there was some validity in this classification and provided valuable insights into

the difficulties students encounter in abstracting a general angle concept. The present study

was designed to explore the proposed framework further. It investigates the following

questions among Grade 4 students.

What situated knowledge of some typical physical angle situations do students have?

Into what angle contexts do students classify these physical angle situations?

How do students model the angles in the various physical angle contexts? In particular,

do they tend to model the superficially obvious geometrical features of each context?

What characteristics of various physical angle contexts hinder students from recognising

(a) the abstract angles implicit in these contexts, and (b) the angle-related similarity

between different contexts?

How is students' modelling of physical angle contexts related to their formal knowledge

of the angle concept?

METHOD

Design

Six common but varied contexts (unlimited turns about a fixed axis, linear slopes,

hinges, bends, rebounds, and plane corners) were selected and one supposedly familiar

situation was chosen from each context (body turns, hills, scissors, road bends, cricket, and

tiles). These were the same contexts and situations as previously investigated (Mitchelmore,

1995). Each context was represented by a simple physical model of the situation chosen (see

Figure 1).

<Insert Figure 1 about here.>

For the interviews, the six contexts were divided into three pairs: two contexts

expected to be seen as similar (slopes and corners), two with some physical similarities (hinges

and bends), and two with no obvious similarity (turns and rebounds). In the previous study,

these pairs were recognised as similar by all, half and none of the students respectively.

A sample of 36 students, average age 9.6 years, was selected from two Grade 4 classes

in two schools in western Sydney. Twelve students (3 boys and 3 girls from each school) were

interviewed on each pair of contexts, with order counterbalanced.

All interviews were conducted by a trained research assistant. For each situation

presented, she probed three aspects of students' understanding: (1) their situated angle

Si
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knowledge; (2) the extent of the physical angle context in which they included that situation;

and (3) their methods of modelling the angle implicit in that context. After students had

responded to their two contexts, two further aspects were probed: (4) the similarities which

students recognised between the two contexts; and (5) students' knowledge of the formal

concept of angle. Details of each phase are given below.

The interviews followed a fixed protocol, the interviewer using neutral prompts such as

"Good; anything else?" or "OK; show me how" whenever necessary to obtain a better

understanding of students' responses. All interviews were audiotaped and transcribed the same

day onto a response sheet by the interviewer; the authors then categorized non-quantitative

responses and recoded them later.

Situated Angle Knowledge

The interviewer demonstrated or asked students to demonstrate various configurations

of each physical model, including the most extreme configurations they could imagine. Angles

of 30° and 45° were included in all contexts except turns, together with whichever of 0°, 90°

and 180° were meaningful. The demonstrations were accompanied by questions intended to

probe students' understanding of the consequences of varying the implicit angle. The following

describes the general procedure for each context. The precise knowledge items assessed are

given later in Table 1.

Turns. The interviewer turned the doll through various multiple, half and quarter turns,

asking "How much did the doll turn?" The students were also asked to explain the effect of the

various turns on the direction the doll faced.

Slopes. A model sports car was provided which could roll down the hill or could be

pushed up it. The interviewer set the slope of the road at approximately 30°, 45° and 15°.

Students were asked to predict whether the car would travel faster or slower (both uphill and

downhill) as the slope was varied, and to explain how they reached their conclusions.

Hinges. Students were asked how they knew how much to open scissors when cutting

different objects.

Bends. Students drove a toy ambulance as fast as they could from the "factory" on the

left side to the "hospital" on the right, using the two possible routes. They were then asked to

state which bends were the most difficult and which were the easiest to drive around. They

were also asked to say how they could tell whether a bend would be hard or easy.
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Rebounds. A ball was rolled along a groove to a "batter"a block of wood, faced in

plastic foam, which could be rotated to deflect the ball in various directionsand a second

block of wood representing a fielder was used to provide a target. After the interviewer had

demonstrated how to set the batter to deflect the ball to a fielder on the right, she asked the

student to do the same for various positions on the right and to explain their method.

Corners. The interviewer first made a flooring pattern using nine 45° tiles. She then

asked whether, if one of these tiles were to become damaged, it could be replaced by a 30° tile;

and if not, why not. Students were then asked how the corners of the two tiles differed.

Context Definition

The interviewer next asked students to name other situations that they regarded as similar to

the given situation in an angle-related sense. For example, for the doll model students were

asked if they knew of "anything else which turns like this".

Abstract modelling

Seven abstract models were constructed to represent possible ways in which students might

model the angles in various contexts (see Figure 2). The interviewer presented the abstract

models in the order A to G and asked students if they could be used to show the given context.

Students were also asked to demonstrate how each accepted abstract model would show the

corresponding physical model. All models were set to show a 45° angle, except for the turns

context where 360° was used. After all abstract models had been presented, students were

asked to state what they regarded as the best model for showing the given context.

<Insert Figure 2 about here.>

Similarity Between Contexts

After students had responded to their two contexts, students were asked what similarities they

saw between them. The interviewer first asked "Are these things the same, at all?' Students

were then asked whether and how their best abstract model of each context could also show

the other context; if they had chosen the same best model, this was simply pointed out to them.

Finally, the interviewer asked students to look more closely at their best model(s) and to say

again "what things are the same" in the two contexts.

Formal knowledge of angle

The interviewer first asked students if they had done "anything like this" in school.

They were then asked to say what they understood by the word "angle" and if they knew what

11
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a "right angle" is. They were then asked if there were any angles and right angles in their two

contexts, and to demonstrate them on the respective physical model.

According to the State mathematics syllabus (New South Wales Department of

Education, 1989), which both class teachers said they adhered to, students should have met

ideas of corner, sloping lines, angle as "the amount of turning between two lines about a

common point" (p. 79), large and small angles, everyday examples of turning, methods of

comparing angles, and square corners. Apart from the word "angle", no formal terminology is

mentioned in the syllabus.

RESULTS

In interpreting the following results, recall that 12 students responded to each context.

Situated Angle Knowledge

Table 1 summarises student's responses to the interview questions probing their

situated knowledge of the six angle contexts.

<Insert Table 1 about here.>

Items with 10 or more correct responses were interpreted as showing mastery modified

by misunderstanding, lack of attention or ineffective prompting. There seemed to be three

reasons why students did not reach mastery on all items.

Firstly, students' responses often showed failure to use standard terminology rather

than lack of knowledge of the underlying physical relations. For example, all the students who

called a forward-to-left turn "a little bit" recognised that a right-to-forward turn was the same

size. Also, in explaining how to predict speed of ascent and descent, 10 students used the word

"slope" at least once and the other 2 at least once referred to the "height" of the road. In

explaining how corners fit, all students who did not explicitly use words like "sharp" or

"pointy" correctly used terms like "skinny", "narrow" or "small".

A difficulty of a different kind occurred when students were asked to imagine extreme

slopes and corners. Almost all responses which were not exact were approximately correct. A

few students gave such explanations as "You couldn't drive up it if it was straight up" or "If it

was any smaller, there wouldn't be any tile there." It seems likely that most approximately

correct responses in the slopes and corners contexts were occasioned by such insights and not

by an inability to imagine the extreme case. This was, however, not the case in the bends
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context. Only 7 students described the hardest possible bend within 10° and only 8 described

the easiest bend as straight or almost straight.

Finally, the relatively poor performance on the cricket model can be put down to its

unfamiliarity. In fact, all students did eventually set the batter correctly in all positions.

In summary, students seemed to have an excellent situated knowledge of the angle

relations implicit in the six contexts. Only the extreme angles in the bends context were

somewhat unfamiliar.

Context Definition

Table 2 summarises the responses students gave when they were asked to name situations

which were similar to the given situations in an angle-related sense. In effect, the data show

how students interpreted the phrases "turn like", "slope like", "open and shut like", "bend

like", "bounce like" and "have corners like" the given models.

<Insert Table 2 about here.>

Angle-related similarities were predominant in all contexts except bends. Unlimited

turning about a fixed axis was apparently very familiar and clearly distinguished from other

types of turning. Sloping was also familiar and not limited to linear objects; it seemed that

sloping 3-dimensional objects (such as a roof) were often represented by a cross-section, thus

reducing them to the 2-dimensional case. Hinging was well-known but mostly limited to

objects with two movable parts. Rebounds were mostly limited to ball games, but a few

responses recognised the implicit V-shape. Corners were very familiar; all the abstract

examples were 2-dimensional, but it was not clear whether students were thinking of the 2- or

3-dimensional corners of the concrete objects. By contrast, only a few responses to the bends

context picked out the implicit V-shape of the abstract angle model.

Abstract modelling

Students' methods of representing the six angle contexts using the seven abstract models were

easily classified into four categories as follows. (1) The abstract model was used in a standard

manner, representing two lines on the physical model by two lines on the abstract model in a

way that suggested that a concept of angle had been abstracted from that context. (2) The

angle only partially modelled, indicating the abstraction of some angle-related features but not

the complete angle concept. (3) Features not related to the angle concept implicit in that

context were modelled. (4) The abstract model was rejected as a means of representing the
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given context. Table 3 shows the distribution of responses when students were asked to state

whether and how each abstract model could represent a given context.

<Insert Table 3 about here.>

Non-standard but angle related methods of modelling occurred most frequently for

slopes, hinges and bends. For slopes, such responses used a single line to model the hill. For

hinges, lines of the abstract models were laid on the arms of the scissors but did not meet at the

pivot. For bends, lines on the abstract model were again laid somewhat casually on the road so

that they were within the bend but not parallel to the edges of the two segments. All the angle-

related methods of modeling turns represented a full turn by an angle of 180°.

Most non-angle related modelling occurred in the rebounds context, where 18% of the

responses indicated that the ball travelled directly between the ends of the two arms of the

angle model. One student started with the two arms together and then opened them quickly,

suggesting that these responses were modelling the action of the batter in hitting the ball rather

than the path of the ball. The rebounds context also showed by far the largest percentage of

responses in which students could not explain any way of using the abstract models to

represent the context.

In the introduction, we conjectured that students would represent physical angle

contexts abstractly using the most obvious lines in each context. On the basis of this

conjecture, we would expect an abstract angle model which clearly models the lines in a

context to be selected more often than other models. The expected models for each context are

given in Table 4, along with data on model selection. Only in the case of bends and rebounds

was an expected model most often used in standard modelling and most often selected as the

best model. In the slopes context, there was in fact no preferred abstract modelall models

were used in a standard manner or selected as best with approximately equal frequency. The

most frequently selected models overall were C, F and G.

<Insert Table 4 about here.>

Recognition of Similarities

Students' descriptions of the similarities they perceived between their two contexts were

classified into four categories according to whether they indicated (1) common abstract

features including two lines, such as angles; (2) common concrete features implying two

relevant lines, such as corners; (3) common concrete features implying only one relevant line,

such as a slope; and (4) non-angle related features, such as the rotation of a rolling ball, or no
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common features. In terms of the angle concept, these categories seemed to show four

decreasing levels of similarity recognition. Table 5 shows the distribution of the highest level of

recognition found in students' responses to the interviewer's two questions on similarity.

<Insert Table 5 about here.>

All students recognised some angle-related similarity between slopes and corners.

However, nearly half of them could not get beyond explanations such as "If a tile is placed on

edge, it slopes like a hill" which only matched one line in each context; and only one-third gave

an abstract explanation such as "They both have two lines". The angular similarity between

hinges and bends was also well recognised, almost all students picking out two lines. Most

students gave initial explanations such as "Both have bends" or "The blades of the scissors can

fit down both roads in a bend" and refined their explanations after looking at the abstract

models. Two-thirds of the students eventually gave an abstract explanation. By contrast, only

one-third of the students recognised any relevant similarity between turns and rebounds. Most

students remarked that both the doll and the batter turned, despite the fact that the batter did

not move during the rebound. In this last context pair, students did not change their responses

greatly after looking at their abstract models.

Formal knowledge of angle

The majority of the students claimed not to have done "anything like this" in school, or

gave non-angle related responses. Only 11% explicitly mentioned angles, a further 6%

mentioning specific angle contexts (corners and tessellations). However, all offered a definition

of an angle or demonstrated some examples. Many students gave several definitions which

previous researchers have regarded as different; a total of 55 responses was noted. Of these,

45% stated essentially that an angle consisted of two lines meeting at a point, 22% the point

where two lines meet, and 15% the area between two lines. Only 11% of the students

mentioned turning at all. Correct demonstrations of right angles were given by 78% of the

students-11% also showed some "left angles"!

Almost all students were able to show how each context involved angles. Most

exceptions occurred with turns, where 33% of the students referred to the irrelevant corners of

the base supporting the doll and 25% saw no angles. Also, 17% referred only to the sloping

line in the slopes context and the same percentage referred only to the point in the corners

context. In all contexts, about half the students were able to show a right angle.

BEST COPY AVAILABLE
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DISCUSSION

As in the earlier study of Grade 2 students (Mitchelmore, 1995), the Grade 4 students

in the present sample showed good situated angle knowledge in the contexts investigated.

They seemed to be thoroughly familiar with the physical correlates of turns, slopes, hinges,

bends, rebounds and corners, although several students showed a limited vocabulary for

describing the relations involved. The only angle-related difficulty students had was in

imagining the easiest and most difficult bends in a road.

Students' definitions of the six contexts were not always the predicted unlimited turns

about a fixed axis, linear slopes, hinges, bends, rebounds, and plane corners. The contexts

could be more accurately described as unlimited turns about a fixed axis, all slopes, 2-part

hinges, all bends, ball rebounds, and all corners. In particular, the bends context appeared to

include both bends which can be modelled by angles and bends which can better be modelled

by curves. Nevertheless, all the contexts were well-defined and distinct from one another. The

data confirm that, by age 9, most students have formed angle subconcepts of turns, slopes,

hinges, rebounds and corners based on similarities between different physical angle situations.

The concept of bends has in many students not yet taken on the status of an angle subconcept.

Again, the results are not radically different from those obtained from Grade 2 students in the

earlier study.

Contexts varied greatly in the way students modelled them using abstract angle models.

The percentage of responses using standard angle modelling varied from 40% on rebounds to

89% on corners. Our conjecture that, if students did conceptualise a context in terms of angles,

they would primarily represent the physically present lines, was only confirmed for bends and

rebounds. Students who used standard modelling seemed to prefer to represent angles in all

contexts by two half-lines with a common end point.

In five of the six contexts, there was a marked increase in the proportions of standard

modelling from Grade 2 to Grade 4. However, comparisons are limited because of changes in

the schools sampled and the models used. Hinges were probably made easier in Grade 2 (71%

standard as compared to 60% in Grade 4) because the scissors in the Grade 2 study were

represented by two thin strips of wood, thus making the geometrical structure clearer; and

bends were probably made more difficult (15% compared to 65%) because the curved parts of

the bends in the Grade 2 model were almost as long as the lines on the abstract models. The
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other four models were not altered significantly, and the change from Grade 2 to Grade 4

seems to represent genuine growth. The frequency of standard modelling of turns increased

from 45% to 76%; slopes 27% to 62%; rebounds 14% to 40%; and corners 47% to 89%. In

particular, a tendency among Grade 2 students to represent turns by a single line (17% of the

responses) was not found at all in Grade 4. It seems at least possible that most of the gains

were due to the intervening instruction in angle which, as noted, had a significant emphasis on

locating angles in everyday situations.

Students who used non-standard methods of modelling angles showed through their

methods and their incidental comments that each angle context has specific features which

hinder the abstraction of the standard angle model. These features may be summarised as

follows.

Turns. The main problem seems to be that turning, although it is very familiar, leaves no

physical trace. The context is best modelled by a rotating half -line which is often not

physically present in a turning situation. If, however it is modelled by a line which extends

on both sides of the centre of rotation, whole turns and half turns may be confused. Also,

even if the half-line is present in the given situation, it cannot simultaneously be in both the

initial and final positions as is required in the standard angle model.

Slopes. Clearly many students see slope as a property of a single line. When they do

represent a second line, it is probably the horizontal base or run-off road on the physical

model rather than a general horizontal. The vagueness of the horizontal is confirmed by the

fact that there was no strong preference for a particular abstract angle model. We

conjecture that there would have been far fewer standard uses of the abstract angle models

if the hill had been held in the air.

Hinges. Although the two arms of the angle appear to be obvious in this context, the

significance of the pivot as the vertex of the angle seems not to be so well known.

Bends. As for hinges, the arms of the angle (assuming the bend is modelled by an angle,

which is often not the case) are physically present but broad. Because of rounding, there is

not even a point which the vertex of the angle could represent. Perhaps because roads

cannot overlap (as the arms of scissors can), it is difficult to conceive of a 180° bend.

Rebounds. In this context, both lines of the standard angle model have to be imagined. The

turning movement of the batter (not present in other rebound situations) also has to be
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ignored. It may also be difficult to conceptualise the path of the ball as a pair of straight

lines.

Corners. Perhaps because both lines and the vertex of the standard angle are physically

present in corners, this context is most frequently modelled in a standard manner.

Nevertheless, many students identify a corner with the point at or near the vertex. It is

worth remarking on the fact that it is only in the corners context that students show any

tendency to model the implicit angle by the point of intersection of two lines.

A further difference between the six contexts lies in the relation between the visual

angle and its physical correlates. The size of a turn, the opening of a hinge, and a the size of a

corner are all represented by the visual angle itself, as shown in Figure 3(a).. In these contexts,

there is a direct relation between the size of the visual angle and its physical consequence. A

"sharp" angle represents a small turn, opening or corner. However, the amount of bending and

the deflection in a rebound are not represented by the visual angle, but by the angle shown in

Figure 3(b). In these two contexts, there is an inverse relation between the size of the visual

angle and the related physical quantity. A sharp bend or deflection makes a small visual angle.

In the slopes context, the relation is direct if you represent slope by the acute angle between

the sloping line and the horizontal and inverse if, as some students did, you represent slope by

the obtuse angle (see Figure 3(c)).

<Insert Figure 3 about here.>

Our results show clearly that the specific features of each context strongly affect the

probability of students recognising angle-related similarities. Hinges and bends were almost

always recognised as similar, apparently on the basis that they both have broad arms with a

rather indeterminate intersection. Slopes and corners both have one obvious slanting line and

were always recognised at similarbut often only on this basis. Turns and rebounds have

nothing obvious in common, so most students grasped at irrelevant similarities.

Many of the similarities students reported were a sort of lowest common denominator

of the two contexts and therefore often omitted essential attributes of the angle context. If

students adopted this approach consistently, the only angle concept they could abstract would

be the attribute which is common to all angle contextsa slanting line. (Clements and Battista

(1989) report that many students do indeed conceive of angle in these terms.) In most

contexts, lines have to be imaginedor at least made more definitein order to construct a

standard angle. What is it that drives this construction, that leads students to note that "a slope
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is like a corner if you imagine a horizontal line" rather than "one edge of a corner slopes if you

put the other edge on a table"? It is surely this drive to find the greatest common denominator

that eventually leads to a general angle concept.

Perhaps the answer lies in formal tuition. Although most of the students in the present

sample did not spontaneously recognise the six contexts as related to the angles they had

studied in school, they were able to identify relevant angles (which they usually defined as two

lines meeting at a point). This was one of the objectives of their previous instruction, and it

may have been activities related to this objective which led to the observed increase in standard

modelling between Grades 2 and 4. A closer look at several contexts to identify exactly what

lines meet at which pointunder a teacher's guidancecould lead to an even bigger increase

in standard angle modelling. Students would gain in their understanding of each context (for

example, by clarifying the concept of horizontal) as well as in their ability to recognise the

similarity between different angle contexts.

Although students had been taught that an angle was an amount of turning, very few

gave this defmition and more than half could not see angles in the turns context. The definition

of angle as an amount of turning has been widely promoted in the curriculum literature; see, for

example, Wilson and Adams (1992). There would seem to be three reasons why it has not been

effective. (1) Although turning about a point is familiar, students have difficulties representing

a turn as an angle. (2) Those contexts which do involve turning are very different, not least in

the relation of the amount of turning to the size of the visual angle. (3) Some contexts (such as

slopes and corners) do not appear to involve any sort of turning. It might be more productive

to work with a definition of an angle as two lines meeting at a point, and to relate the size of

the visual angle to its physical correlates in several different contexts separately.

In fact, it might be better not to work with any definition at all. We suspect that the

reason students give so many different responses to the question "What is an angle?" is that the

concept is so many-sided. In some contexts, the angle is two lines, in others the point is

crucial, in others the angle is the turn between two linesthere are many other possibilities.

Younger students probably define an angle as a point because they only know of angles in the

corners context; definitions broaden as students try to include more and more contexts which

they have recognised to involve angles. "Angle" is that which is common to all such contexts

but, apart from the two lines meeting at a point, it is very difficult to say exactly what is

common. So how can we expect a "correct" definition from students?

1.9
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Table 1

Frequency of correct responses to situated knowledge questions, by context

Context Knowledge item

Turns State amount of turning in demonstrated full turn 12

State amount of turning in demonstrated two turns 11

Indicate doll can turn large/unlimited number of times 10

Indicate doll would face forward after 20 turns 12

State amount of turning in demonstrated half turn 12

Indicate turn from facing backward to facing forward is a half turn 12

State amount of turning in demonstrated forward-to-left turn 4
Make same turn as forward-to-left turn, starting from left 11

Indicate right-to-forward is same turn as forward-to-left 12

Slopes Predict relation of demonstrated slope to speed of ascent/descent 12

Explain speed of ascent/descent in terms of slope 8

Demonstrate hardest possible hill as vertical 9
Demonstrate easiest possible hill as horizontal 8

Hinges Show typical scissors opening 12

Explain choice of opening 12
Show maximum opening 12
Show minimum opening 12

Bends Identify easiest/hardest bend on two routes 12

Explain difficulty of bend in terms of internal or external angle 12

Demonstrate hardest possible bend as coincident half-lines 6
Demonstrate easiest possible bend as a straight line 5

Rebounds Make 45° hit at first or second attempt 7
Make 30° hit at first or second attempt 7
Make 90° hit at first or second attempt 9
Explain need to set batter facing between bowler and fielder 9
Make 0° hit at first or second attempt 11

Explain need to set batter facing bowler for 0° hit 12

Corners Explain non-fitting in terms of sharpness of corner 0
Explain 30° corner sharper than 45° corner 7

Indicate skinniest possible tile has 0° corner 3

Indicate normal tile has 90° corner 10

Note. N is the frequency of correct responses to each knowledge item. The maximum N is 12 in each case.
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Table 2

Classification of situations regarded as similar to given situations, by context.

Context Category of situation named as similar N

Turns Unlimited rotations about fixed axis 30

Limited rotations about fixed axis 4

Other turns 2

No turning 1

Slopes Sloping linear objects 13

Sloping plane or curved surfaces 7

No slope 1

Hinges Hinged objects with two arms 15

Hinged objects with one arm 5

Rigid objects 1

Bends V-shaped objects 5

Tracks and paths 6

Closed regions 4

Junctions 3

Rebounds Rebounding objects 11

V-shaped objects 4

Corners Corners of objects in room 16

Corners of abstract figures 14

Note. N is the number of responses falling into each category. N is occasionally greater than 12 because of

multiple responses.
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Table 3

Percentage frequency of each method of abstract modelling a typical configuration, by angle

context.

Method of abstract modelling

Context Standard Angle-related Non-angle Rejected

Turns 76 13 0 8

Slopes 62 21 1 15

Hinges 60 29 4 8

Bends 65 25 0 10

Rebounds 40 4 19 37

Corners 89 1 0 10

Note. N = 84 responses in each row (12 students responding to 7 models).
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Table 4

Expected models for each angle context, and the models most frequently selected and used in

standard modelling.

Context Expected Models most often used in Model most often chosen

abstract model(s) standard modelling

(percentage usage)

as "best" (percentage use

in standard modelling)

Turns C, F C (100%) G (33%)

Slopes B, E F (65%) F (25%)

Hinges A, D C, G (each 75%) A (67%)

Bends C, F F (92%) C (25%)

Rebounds C, F C, F (each 75%) C (33%)

Corners G G (100%) C (42%)

Note. All percentages are out of 12 responses.
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Table 5

Percentage frequency of four levels of similarity recognition, by context pair.

Context pair 2-line 2-line 1-line Non-angle

abstract concrete concrete responses

Slopes and corners 33 25 42 0

Hinges and bends 67 25 0 8

Turns and rebounds 17 0 17 67

Note. N = 12 students in each row.
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FIGURE CAPTIONS

Figure 1. Physical models of situations representing six angle contexts. Sizes: doll 10 cm high,

ramp 32 cm long, scissors 18 cm long, roads plan 76 cm x 55 cm, cricket field 47 cm square,

tiles side 5 cm.

Figure 2. Abstract angle models. Models A-C were each made from two concentric plastic

circles slotted together so that they could rotate relative to each other; one line was marked on

each circle. Models D-F were made of straws joined either with thread (D) or a pipe cleaner

(E, F). Model G was made from two plastic circles, each with one semicircle shaded black,

fastened at and rotatable about their common centre. Radii: D-F 10 cm, others 8 cm.

Figure 3. Angles representing the physical correlates in various angle contexts: (a) turns,

hinges and corners, (b) bends and rebounds, (c) slopes.
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