
DOCUMENT RESUME

ED 414 340 TM 027 880

AUTHOR Colton, Dean A.; Gao, Xiaohong; Harris, Deborah J.; Kolen,
Michael J.; Martinovich-Barhite, Dara; Wang, Tianyou; Welch,
Catherine J.

TITLE Reliability Issues with Performance Assessments: A
Collection of Papers. ACT Research Report Series 97-3.

INSTITUTION American Coll. Testing Program, Iowa City, IA.
PUB DATE 1997-08-00
NOTE 137p.; The paper by Welch and Martinovich-Barhite was

presented at the Annual Meeting of the American Educational
Research Association (Chicago, IL, March 24-28, 1997), and
versions of the other five papers were presented at the
Annual Meeting of the American Educational Research
Association (New York, NY, April 8-12, 1996).

PUB TYPE Collected Works General (020) Speeches/Meeting Papers
(150)

EDRS PRICE MF01/PC06 Plus Postage.
DESCRIPTORS *Decision Making; Error of Measurement; Item Response

Theory; *Performance Based Assessment; *Test Reliability
IDENTIFIERS Bootstrap Methods; Polytomous Items; Weighting (Statistical)

ABSTRACT
This collection consists of six papers, each dealing with

some aspects of reliability and performance testing. Each paper has an
abstract, and each contains its own references. Papers include: (1) "Using
Reliabilities To Make Decisions" (Deborah J. Harris); (2) "Conditional
Standard Errors, Reliability, and Decision Consistency Performance Levels
Using Polytomous IRT" (item response theory) (Tianyou Wang, Michael J. Kolen,
and Deborah J. Harris); (3) "Assessing the Reliability of Performance Level
Scores Using Bootstrapping" (Dean A. Colton, Xiaohong Gao, and Michael J.
Kolen); (4) "Evaluating Measurement Precision of Performance Assessment with
Multiple Forms, Raters, and Tasks" (Xiaohong Gao and Dean A. Colton); (5)

"Weights that Maximize Reliability under a Congeneric Model for Performance
Assessment" (Tianyou Wang); and (6) "Reliability Issues and Possible
Solutions" (Catherine J. Welch and Dara Martinovich-Barhite). (SLD)

********************************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.

********************************************************************************



epori cries

O

Reliabili .Issues. PeifotmanCe
Ass6sstoeritSi:A C611:eCtion of Papers

Dean A. Co ItorL

Xiaohong Gap'
Debotah J. Harris
Michael Jr. Kolen

Dara Martinovich-Barhite
Tianyou Wang
Catherine J. Welch

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

151,1<document has been reproduced as
received from the person or organization
originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

- -

EST COPY AVAILABLE



For additional copies write:
ACT Research Report Series
PO Box 168
Iowa City, Iowa 52243-0168

© 1997 by ACT, Inc. All rights reserved.



Reliability Issues With Performance Assessments:
A Collection of Papers

Dean A. Colton
Xiaohong Gao

Deborah J. Harris
Michael J. Kolen

Dara Martinovich-Barhite
Tianyou Wang

Catherine J. Welch



Table of Contents

Page

Introduction iii

Using Re liabilities to Make Decisions 1

Deborah J. Harris

Conditional Standard Errors, Reliability, and Decision Consistency
Performance Levels Using Polytomous IRT 13

Tianyou Wang, Michael J. Kolen, Deborah J. Harris

Assessing the Reliability of Performance Level Scores Using Bootstrapping 41
Dean A. Colton, Xiaohong Gao, Michael J. Kolen

Evaluating Measurement Precision of Performance Assessment
With Multiple Forms, Raters, and Tasks 57

Xiaohong Gao, Dean A. Colton

Weights That Maximize Reliability Under a Congeneric Model
for Performance Assessment 77

Tianyou Wang

Reliability Issues and Possible Solutions 95
Catherine J. Welch, Dara Martinovich-Barhite

ll



Introduction

This report consists of six papers, each dealing with some aspect of reliability and
performance testing. One of the papers, Welch and Martinovich-Barhite, was presented at
the 1997 Annual Meeting of the American Educational Research Association in a
symposium called Issues in Large-Scale Portfolio Assessment. Versions of the other five
papers were presented at the 1996 Annual Meeting of the American Educational Research
Association as part of a symposium called Technical Issues Involving Reliability and
Performance Assessments. The authors would like to thank the discussants of the two
symposia, Ed Wolfe, and Robert L. Brennan and Nancy L. Allen, respectively, for their
comments during the two sessions, and Bradley A. Hanson and E. Matthew Schulz for
their comments on a draft report.
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Using Re liabilities to Make Decisions

Deborah J. Harris
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Abstract

For a variety of reasons, there has been an increased use of performance

assessments in high stakes and/or large scale situations. There is a long history of using

performance assessments for classroom measurement; however, using these types of

assessments beyond a single classroom (where a single administration has more long

term consequences than whether to reteach the previous day's lesson) leads to an

increased need for valid, reliable assessments. Validity and reliability issues relating to

performance assessments have been much discussed, but further research and technical

development is needed. For example, reliability with performance assessments has

frequently been relegated to solely the agreement among the raters scoring the

assessments. Although this is certainly an important component, it is not sufficient to

ensure a reliable assessment.

This paper addresses the use of reliability information, such as that provided in

the later papers in this report, in decision making. Specifically, choosing a score scale,

forming a composite score, choosing a cut score, selecting a test, and similar issues are

briefly discussed. Making a decision by choosing the highest reliability estimate does not

always appear to be the optimal decision, particularly when reliability can be assessed in

different ways (e.g., rater agreement, generalizability coefficient, using a theoretical

model, or bootstrapping), and when the typical reliability estimate used with

performance assessments, rater agreement, may not be the most relevant, given the

purpose of the assessment.

The author would like to thank Michael J. Kolen and Catherine J. Welch for their

comments on an earlier draft.



3

Using reliabilities to make decisions

There appears to be nearly universal agreement that reliability is an important

property in measurement. Although the validity versus reliability argument may rage on

in some quarters, few professionals seem to be arguing that reliability in and of itself is

not a desirable property for a measurement instrument.

Nearly all technical manuals seem to report some sort of reliability value, and

generally more than one. When a new method of testing is proposed, reliability is one of

the first properties users want information about. The difficulty with reliability,

therefore, lies not in the fact that it is not viewed as a valuable property, but in that there

is no clear consensus as to the definition of reliability, or what it means, or what to do

with reliability estimates. This difficulty appears more of a problem with performance

assessments than it has in the past with multiple choice tests for various reasons.

Multiple choice tests can be made very reliable. Lengthening multiple choice

tests to increase reliability is generally practical. Increasing reliability by lengthening the

test also tends to increase some types of validity in that more items tend to more

adequately cover the domain of interest. The various ways of defining/measuring

reliability are less at odds in multiple choice testing. It is possible to develop a well-

defined table of specifications, and to construct reasonably interchangeable forms from it,

which not only are comparable to each other, but which also serve to cover the domain of

interest reasonably well.

With performance assessments, increasing reliability may mean limiting the

domain coverage either by constraining the domain itself or through more highly

structuring responses, which may be at odds with how validity is viewed. Increasing the

length of the test is more problematic than with multiple choice tests. Although it is

certainly possible to develop a well defined table of specifications for performance
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assessments, there may be too little time available for testing to adequately cover the

table of specifications in each form.

Test/retest or parallel forms reliability estimates are easier to obtain with multiple

choice tests than with most performance assessments, because of the time involved and

because of the possible lack of truly comparable performance assessment forms. In

some instances, such as portfolios, parallel forms reliability may not even be a sensible

consideration.

Another issue is the rater aspect. Multiple choice tests are generally viewed as

being objectively and consistently scored. Performance assessments may be scored

differently depending on who does the scoring.

Performance assessments often have very few score points, such as the situation

the several of the papers in this report deal with, where level scores are reported. This

impacts some types of reliability estimates.

Given the arena of performance assessment, aspects of reliability need to be

further examined.

Definitions of Reliability

Reliability can be conceptualized in different manners, and how it is defined and

computed should influence how it is interpreted. Conceptually, test users appear to

believe reliability has something to do with consistency, or getting the same 'score' twice,

but often there is no distinction beyond that.

In multiple choice settings, reliability is often viewed as dealing with stability,

equivalence, or both, and various methods have been derived to provide estimates of

these types of reliability. Performance assessment adds the aspect of rater/scorer

consistency. Factors influencing reliability values include the objectivity of the

task/item/scoring, the difficulty of the task/item, the group homogeneity of the

examinees/raters, speededness, number of tasks/items/raters, and the domain coverage.

40
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Not all of these factors affect each type of reliability estimate, or influence multiple

choice and performance assessments equally.

How one intends to use an assessment should determine which type of reliability

estimate is of most interest. The papers in this report use different approaches to

examining reliability of performance assessments. The Gao and Colton (1997) paper

examines reliability from a parallel forms framework. The Wang, Kolen and Harris

(1997) and Wang (1997) papers assume a psychometric model (IRT or congeneric model)

in examining weighting schemes and in looking at internal consistency estimates of

reliability and conditional standard errors. In contrast, the Colton, Gao and Kolen (1997)

paper uses bootstrapping, and therefore does not require a strong psychometric model.

Other factors such as rater effects, whether facets are considered fixed or random

in a generalizability model, whether ranking examinees or decision consistency is of

more interest, how important being able to generalize to a domain is for individual

examinees, which types of errors have the harshest consequences, also need to be

considered in determining which reliabilities matter most in a given situation.

Additionally, the interaction between validity and reliability needs to be considered. For

example, it may be easier to develop comparable forms by limiting the table of

specifications, but this would alter the domain that could be generalized to. Also, it may

be possible to increase rater consistency by more rigidly defining scoring rubrics, but

again, this might limit the generalizability.

Many reliability values are often reported for any given instrument. The purpose

one has in mind for testing should color how these various values are interpreted,

weighted, and used in decision making.

How to Use Reliability Values

The APA Standards (1985) emphasize the importance of identifying sources and

the magnitude of measurement error, but there is not clear guidance on what to do with

11
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the information, especially in an arena such as performance assessment where

consistency in scores/ lessening measurement error tends to be bought at the price of

limiting/lessening validity, in terms of generalizing to the domain of interest. That is,

with so few items on an instrument, increasing parallel forms reliability coefficients as a

surrogate index to generalizing to the entire domain may require the constraining the

domain of focus. Likewise, to increase the consistency of raters, it may be that the

scoring criteria need to become more rigid, thus again limiting some of the scope of

coverage.

The purpose of the rest of this paper is to sketch out some issues relating to using

reliability indices (including standard errors) in the performance assessment arena.

Selecting a test

The first focus in choosing an assessment is to determine if it indeed measuress

what you are trying to assess (validity), then to determine if it measures with consistency

(reliability). What one is trying to measure and the uses one plans to make of the results

will affect the judgment on how reliable a test needs to be. There is definitely a trade-off

between reliability and validity in the performance assessment area. Having an

instrument that samples from a large well defined domain may be desirable, but if each

individual form of the assessment can only cover a small portion of the domain,

reliability in terms of generalizing to a domain score will be severely jeopardized.

However, if one is interested in a classroom level score (matrix sampling or NAEP-like),

this may not be a serious constraint if content coverage is adequate over some reasonable

number of forms. However, at an individual level, this instrument would not be

adequate. Therefore, for individual level scores, it may be necessary to decrease validity

in terms of constraining the domain of interest somewhat in order to obtain a more

reliable estimate of an examinee's domain score. Another alternative may be to

complement the performance assessment with a multiple choice measure.

12
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There is no magical cutoff to determine if a reliability value is adequate for one's

intended purpose. More is generally better than less, but a small decrease in validity may

offset a larger increase in reliability. The purpose of testing needs to be considered

carefully in determining how to interpret reliability estimates, and it should be recalled

that the severity of consequences of measurement errors are not equal. For example,

certification or admissions decisions may require a higher level of reliability than norm-

referenced tests used for program evaluation or instructional effectiveness. Likewise,

errors of classification may not be equally important to errors of generalizing to a domain

in a given situation.

Selecting scores/forming a composite

Wang's (1997) paper discusses using reliability as a way to select weights to

form a composite. This may not be an optimal way to select weights in all situations, but

does give a criterion for selecting weights, given a definition of reliability. (For example,

equal weights may be used when there does not appear a logical basis for unequally

weighting).

Reporting scores

In performance assessment, a raw score is often reported because the way the task

is scored often results in a raw score having inherent meaning, in that it is directly tied to

the scoring rubric. However, there is sometimes a need to have comparable scores over

time, which generally means over tasks /forms. Reliability values may be used to help

select a score scale. For example, several methods of dealing with prompt raw scores

were considered in deriving a score for Work Keys Listening and Writing Tests (see

Wang, Kolen, & Harris, 1997). The reliability of the various scores was one aspect

considered in selecting the operational method of reporting scores.

Cl



8

A prime consideration is that reliability be considered on both the raw scores, and

on the scores that are actually reported and used. Relatively small measurement error in

determining raw scores will not necessarily translate to small measurement error in

derived scores based on those raw scores. This may be especially important in situations

using IRT, where the responses/ratings to the tasks/items are translated to a reported score

in a rather complicated fashion, or when there are a small number of scale score points.

Choosing a cut score

When cut scores are used, they should be based on content considerations, but

decision consistency is also an issue. For example, setting a criterion at a level where no

consistency is found will be problematic, regardless of the logical basis involved in

setting it.

Comparability of forms/instruments

When one is comparing different forms or instruments, such as trying to

determine if two modes of testing are interchangeable or if a less expensive test may be

substituted for a more expensive version, reliability considerations may help inform the

judgment. For example, when comparing two forms, the generalizibility coefficients

may be one way of examining the similarities between the forms.

Choosing test length

Reliability values may be examined to determine if they appear adequate for the

purposes of the assessment. The trade-offs between the length of the assessment and the

validity, especially in terms of content coverage and comparability of forms, may be

considered in light of logistical and fiscal concerns.

14
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Choosing raters

Raters are an important component in obtaining performance assessment scores,

and reliability indices can help inform on several decisions regarding raters. How one is

conceptualizing the rater pool needs to be determined. For example, is a specific group

of raters all that is of interest (such as employees at a national scoring center) , or is there

a domain of raters one would like to generalize to (such as all qualified applicants who

might answer an ad to become raters operationally)? Raters may have different outlooks,

and different view points, experiences, etc. that they bring to the task. Are these

important aspects to include? For example, should a variety of viewpoints be used in

determining the quality of a piece of prose writing, or is it important that the raters have

the same view point, for example, such as in judging some aspects of a liscensure test?

The comparability of raters over time with their own previous ratings, and across

raters (and thus the comparability of scores) are important components of establishing

trend data, or trying to chart examinee progress over time. Whether to retain a particular

rater can be examined using consistency with his/her. own ratings over time, and

consistency with other raters, and with 'master' raters. The number of raters to employ

may also be examined using reliability values, noting the expected increase in

consistency for each additional rater per examinee.

An important issue that appears to be much neglected is how reliability values

obtained using a national scoring center translate to local scoring; and how results from

one local site generalize to others. This is directly affected by the consistency of trainers

and training materials across settings, as well as the 'qualifying' measures that are used at

each location.

Rater inconsistency can be due to inadequate training of raters, or inadequate

specification of the scoring rubrics, or the inability of the raters to internalize the rubrics.

An interesting factor of rater reliability is how it is viewed inthe literature. Generally it

has been found that it is possible to define rubrics so well that raters can be trained to
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score reliably. Currently, progress is made using computers to score written essays,

demonstrating that it is indeed possible to score a well-defined task in at least some

instances with computers. It is interesting, therefore, that most of the focus on use of

reliability with performance assessment focuses on rater aspects, rather than on

generalizing to a domain. This is unfortunate, as score reliability is generally lower than

rater consistency. And increasing the number of raters is generally a less effective

strategy than increasing the number of tasks or items on a test in terms of increasing

reliability for score use. (See Gipps, 1994). This is especially true when the desired

responses can be codified in a qualified sense--such as key words or phrases,

conventions, length of response.

How much to weight/interpret score

A score that is subject to a great deal of measurement error should be interpreted

more cautiously than a score that appears subject to little measurement error (assuming

the interpretations are accurate with respect to validity issues). Another consequence of

low reliability is not to use the scores for important decisions.

One of the purposes of reliability values are to communicate to an examinee the

uncertainty in his/her score, and to alert the user of test scores regarding the replicability

of the scores. Usually uncertainty is communicated using a standard error of

measurement, or error bands. With some performance assessments, there may be too few

points for these to be the best way to communicate information. For example, some

performance assessments have taken to providing level scores, where 3-5 levels are not

uncommon. In these cases, using a distribution of level scores conditional on

performance to illustrate an examinee's chances of truly being at the level designated,

above that level, or below that level, may all be illustrated using distributions.

Distributions may be more interpretable than, say, standard errors, to both the examinee

and the user of test scores. This may therefore provide information helpful in

1.6
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determining how likely a particular score is, and how much weight should be given it in

making decisions, such as course placement.

Summary

This paper addresses the use of reliability information in choosing a score scale,

forming a composite score, choosing a cut score, selecting a test, and similar situations.

Making a decision by choosing the highest reliability estimate does not always appear to

be the optimal decision, particularly when reliability can be assessed in different ways

(e.g., rater agreement, generalizability coefficient, using a theoretical model, or

bootstrapping), and when the typical reliability estimate used with performance

assessments, rater agreement, may not be the most relevant, given the purpose of the

assessment. Test users are encouraged to consider what definition of reliability is most

meaningful, given their setting, and to make use of the reliability estimates in decision

making.

17
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Abstract

This paper describes two polytomous IRT -based procedures for computing conditional

standard error of measurement (CSEM) for scale scores and classification consistency indices for

performance level scores. These procedures are expansions of similar procedures proposed by

Kolen, Zeng and Hanson (1996) and Hanson and Brennan (1990) on different reliability indices.

The expansions are in two directions. One is from dichotomous items to polytomous items and the

other is from dichotomous (two-level) classification to multi-level classification. The focus of the

paper is on performance assessments where the final reported scores are on a performance level

scale with fewer points than traditional score scales. The procedures are applied to real test data to

demonstrated their usefulness. Two polytomous IRT models were compared, and also a classical

test theory based procedure for assessing CSEM was included for comparison. The results show

that the procedures work reasonably well and are useful in assessing various types of reliability

indices.

20
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Conditional Standard Errors, Reliability and Decision Consistency

of Performance Levels Using Polytomous IRT

Performance assessment items are usually scored on a polytomous score scale. In some

testing programs (e.g., Work Keys, ACT 1995), the final reported scores are on a performance

level type of scale, i.e., the examinees are classified into a finite number of levels of performance.

Classifications are often based on converting raw scores to levels, because levels are relatively easy

to use. In other testing programs, total raw scores are converted to reported scale scores using

some linear or non-linear transformation. In either case, it is useful to obtain and report

information about the conditional standard error of measurement (CSEM, conditioned at each level

score or scale score), and the overall reliability. In the case of performance levels, it is also helpful

to report information about classification decision consistency. To provide test users with the

above information is in accordance with the recommendation by the Standards for Educational and

Psychological Testing (AERA, APA, NCME, 1985), especially Standards 2.10, 2.12, and 11.3.

Kolen, Hanson, and Brennan (1992) presented a procedure for assessing the CSEM of

scale scores using a strong true-score model. In that article, they also investigated ways of using

non-linear transformations from number-correct raw score to scale score to equalize the conditional

standard error along the reported score scale a property that facilitates score interpretation.

Kolen, Zeng, and Hanson (1996) presented a similar procedure for assessing the CSEM, but used

item response theory (IRT) techniques. Both of these procedures were primarily developed for

tests with dichotomously scored items and for scale scores. The primary purpose of this paper is

to extend the procedure described in Kolen et al. (1996) to tests with polytomous items using a

polytomous IRT model approach. A second purpose is to adapt the procedure to performance level

scores and to discuss the similarity and difference between scale scores and level scores. A third

purpose of this paper is to describe a polytomous IRT-based procedure for assessing decision

consistency of performance level classification based on alternate test forms, which is also an

21
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expansion of a similar procedure by Hanson and Brennan (1990) based on the strong true score

model.

Performance level scores differ from scale scores in three primary aspects. First,

performance level scores usually have fewer score points than scale scores. Second, scale scores

are usually transformed from the total raw scores whereas the derivation of the level scores may

not necessarily be based on the total raw scores. Third, different reliability conceptions and indices

might be appropriate for these two types of scores. Typically, scale scores are regarded as discrete

points on a continuum. Indices such as the standard error of measurement (SEM), and parallel

form reliability naturally applies to scale scores. On the other hand, level scores might be viewed

as only ordered nominal categories, i.e., the numerical numbers assigned to the levels are just

nominal symbols and do not have real numerical values. In this case, only classification

consistency indices apply to the level scores. In some situations as in the examples in this paper,

however, levels scores can also be viewed as scale scores. In this case, both SEM type of indices

and classification consistency indices apply to the level scores.

In the next section, two polytomous IRT-based procedures are described. The first

procedure, which can be used to assess CSEM and reliability, applies to both scale scores and

performance level scores. The second procedure, which can be used to assess decision

consistency, only applies to performance level scores. After the descriptions, some examples are

given using some real test data to demonstrate the usefulness of these procedures.

.IRT Procedure for CSEM and Reliability

The general approach for assessing the CSEM and reliability is the same as the procedure

described in Kolen et al. (1996). The central task is to first obtain the probability distribution of

the performance level score (or scale score) conditioned on a given e and then compute the

conditional mean and conditional standard deviation (or variance) of the scale scores or the level

scores. The CSEM of the level score is the conditional standard deviation. Given a e

distribution for an examinee population, conditional means and conditional variances can be
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integrated over the 0 distribution to obtain the overall error variance and true score variance.

Reliability can thus be computed based on this information. The main difference between the

present procedure and the one described in Kolen et al. (1996) lies in the step for obtaining the

conditional level score distribution. In their procedure, the scale scores are converted from the total

raw scores using some non-linear conversion table. As mentioned previously, the derivation of

level scores might not be based directly on total raw score. In the examples of this paper using the

Work Keys (ACT, 1995) tests, the conversion was originally based on a ninth order statistic from

the 12 ratings given by two raters on six items. In this paper, we will describe in detail the

computation procedure for level scores derived from the total raw scores and will provide some

general guidelines for computing conditional standard errors for level scores that are not derived

from total raw scores.

The Polytomous IRT Probability Models

Various polytomous IRT models have been developed: nominal response model (Bock,

1972), rating scale model (Andrich, 1978), graded response model (Samejima, 1969), partial

credit model (Masters, 1982), and generalized partial credit model (Muraki, 1992), etc. With any

of these models fitted to the polytomous test data, the probability of getting a particular response on

a polytomously scored items can be computed given a 0 value. In the present paper, the

(generalized) partial credit model is used to fit the test data, though the polytomous IRT -based

procedures described in this paper apply with any of the models just mentioned. Let Uk be the

random variable for the score on item k with scores from 0 to m . With the generalized partial

credit model, the probability of getting a particular response j is given by

Pr ( Uk = jl e) = exp
[ak (e bk +d,)

v=o

m c

exp ak ( bk + d, )1
c=o v=o

23

(1)
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where ak is the discrimination parameter, bk is the difficulty parameter, and dki, (v=0, 1, m)

are the category parameters for item k

Conditional Distribution of Raw Total Scores

Assume there are K polytomous items and let Uk be a random variable for the score on

item k (Uk = 0,1,...,nk ). Let Pr(X = xl e) (x = o,i,...,T) represent the conditional distribution of

[
K

X =the raw total score I uk . For dichotomous items, this distribution is a compound binomial
k=1

distribution as indicated by Lord (1980). Lord and Wingersky (1984) provided a recursive

algorithm for computing this distribution. For polytomous items, this distribution is a compound

multinomial distribution. Hanson (1994) extended the Lord-Wingersky algorithm to the

polytomous items. (The same extension was also provided by Thissen, Pommerich, Billeaud, &

Williams, 1995.) This recursive algorithm is described as the following:

Let Yk =1(.1j with X = YK.
l=1

For item k =1,

Pr(Y1 = xl 0) = Pr(U, = xl 0), for x = (2)

For item k = 2,...,K,

n,

Pr( Yk = x10) = Pr(Yk_, = x u10) Pr(Uk = ul 0) , for x = 0,1,..., n (3)
u=0

Pr ( Uk = til 0) is given by Equation 1 if a generalized partial credit model is used. The total raw

score distribution is obtained after all the K items are included in this recursive procedure.

With this algorithm, we can compute the conditional distribution Pr (X = xi e)
K

(X = 0,1,...,T), where T =Ink .

k=1

24
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Conditional Distribution of Level Scores

If the level scores are derived from the total raw score, the following procedure can be used

to compute the conditional distribution of level scores. Let S symbolize the raw-to-level

transformation, following the same logic as in Kolen et al. (1996), the conditional distribution of

the level scores can be expressed as:

Pr[S(x) = sI 8] = E Pr(X = xl 0) , s = 1,2,...,L (4)
x:S(x) =s

The mean and variance of the conditional level score distribution are:

4(8). E[s(x)18]. E spr(s(x) = me) (5)
s=1

a2 [s( x)1 e] = Ei[s(x) 4(9.)121e1= E s2pr(sW = sie) 4(0)2 (6)
s=i

The conditional mean is just the conditional true level score; the square root of the

conditional variance is the CSEM conditioned on e scale. To find the CSEM conditioned on the

level score, let n = 4(e)and express 0 in terms of level score: 8 = -1(n). Substituting this

expression in Equation 6 yields the CSEM conditioned on level score ri

If the level scores are not converted directly from the raw total scores, then the conditional

distribution of the level scores must be obtained by the other approaches. If the theoretical

distribution of the statistic that is used to compute the level scores is known, then a theoretical

approach can be used. In settings where theoretical approaches are not available, simulation

techniques can be used to estimate the conditional distribution of the level scores. The steps after

that are the same as those described by Equations 5 and 6. The simulation technique to obtain the

conditional level score distribution is illustrated in a later part of this paper.
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Average Error Variance and Reliability

Following the same logic used by Kolen et al. (1992), and Kolen et al. (1996), average

error variance and reliability of the total raw scores and level scores can be computed if a e

distribution is given. To summarize their procedure, the following equations are presented here.

Let E denote error scores, 'Il(e) denote the distribution e, and the subscript S denote

level scores. The average error variance is given by

a2 (E) = 62 (XI e)%p(e)de (7)

The marginal distribution of the raw total score is obtained by

Pr(X = x)= iPr(X= xle)w(e)de (8)
0

The observed raw score variance a2 ( X) is the variance of this marginal score distribution. The

reliability of raw total scores is given by

62(E)rel. .1
0- .(X) (9)

Similarly, average error variance for the level scores and observed score variance for level

scores can be computed also by substituting S(X) for X in Equations 7 and 8.

a2 (Es )= a2 (SI E)YMA+ (10)

Pr(S= s)=.1Pr(S=s119)T (0)d0 (11)
0

The observed level score variance 62 (S) is the variance of this marginal score

distribution. The reliability of the level scores is then given by
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a' (E
relsade =1 2a (S)

(12)

IRT Procedure for Decision Consistency

Decision consistency is an important type of reliability concept for educational assessments

that involve classification decisions. Previous literature in this area mostly dealt with dichotomous

classifications, namely mastery and non-mastery, and with dichotomous items. In recent years,

both performance assessments with polytomous scoring and multiple level classification have

become more popular practices. However, most of the procedures and indices developed for

dichotomous classifications can be extended to multiple level classifications and to situations with

polytomous items.

Usually, assessing decision consistency requires a data collection design that would require

each examinee to take more than one test form. With this type of data, for a test of L performance

levels, a L XL contingency table can be constructed based on examinees' performance levels on

two test forms. Subkoviak (1984) presented some decision consistency indices which can be

computed based on the contingency table. In many testing situations, however, this type of data

collection design is not feasible due to time constraints or other conditions. With each examinee

only taking one test form, conventional methods for assessing decision consistency do not readily

apply. Subkoviak (1984) reviewed several alternative procedures using stronger statistical

assumptions for obtaining the contingency table based on data from a single form. For example,

Huynh (1976) proposed a complicated method based on Keats and Lord's (1962) beta-binomial

model. Subkoviak (1976) proposed a simpler method which uses the binomial distribution for the

approximation. Hanson and Brennan (1990) proposed a method using a strong true score model.

In their procedure, the strong true score model is used to compute the conditional contingency table

and the conditional contingency table was integrated over a distribution of the true score. Their

methods might be extended to polytomous classification case. IRT-based techniques, however,

can also be used to obtain the contingency table based on data from a single form. In the next
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sections, we will first discuss some important decision consistency indices and some procedures

for calculating these indices and then we will describe in detail an IRT-based procedure to assess

decision consistency for multiple level classifications. This procedure is a natural extension of the

Hanson and Brennan (1990) procedure except it uses IRT techniques instead of the strong true

score model.

Decision Consistency Indices

Subkoviak (1984) reviewed some decision consistency indices and procedures to compute

them. Based on his review, two important indices are po and K. Po is the proportion of

consistent classification based on two parallel forms and K is the proportion of consistent

classification adjusted for chance. These two indices are computed based on a classification

outcome table (we will refer to it as the contingency table) as illustrated by the following

hypothetical example of 3-level classification:

Form 2

Level 1 Level 2 Level 3 Low total

Level 1 0.12 0.11 0.07 0.30

Form 1 Level 2 0.09 0.23 0.08 0.40

Level 3 0.03 0.10 0.17 0.30

Column Total 0.24 0.44 0.32 1.00

L

With this table, consistent proportion po=I P kk = 0.12 + 0.23 + 0.17 = 0.52. In order
k=1

to compute K, we must first compute pc which is the consistent proportion due to pure chance,

that is, if the two forms are independent and the entries of the table would be the product of the

corresponding row and column totals. So pc =Ikk.k.k = 0.30*0.24 + 0.40*0.44 +
k=1

0.30*0.32 = 0.346. And
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Po Pc 0.52 0.346
.

1 pc 1 0.346
(13)

It is observed that with multiple levels the classification indices usually appear to be lower

than classification with dichotomous levels. Taking the above example as an illustration, if level 1

and level 2 are collapsed into a single level, then we have a dichotomous classification problem.

Following the same computational procedure with the collapsed 2 X 2 contingency table, it is

found that po=.72, and K'=.346.

IRT Procedure for Obtaining the Contingency Table

Earlier in this paper, procedures for computing the conditional distribution of the level

scores based on the item parameters and the classification criterion were presented. Here it is

assumed that the conditional distribution of the level scores are known. By the assumption of local

independence, the responses to items in two parallel forms are independent conditioned on a single

O value, thus the classifications based on the two forms are also independent given that e. Based

on this result, a conditional contingency table can be computed by multiplying the corresponding

conditional level score probabilities. Let [Azi 1 0] denote the entry i, j of the conditional

contingency table, it is expressed as the following:

[AiJie] =pr(si = ile)pr(s, = fie) , i=1,2,...,L, j=1,2,...,L . (14)

Given a e population distribution IP( 8), the overall contingency table can be computed

by integrating the conditional contingency table over W(e) using numerical integration.

[AU]. j[A,ile]x (e)de , i=1,2,...,L, j=1,2,...,L . (15)

After the contingency table is obtained, decision consistency indices Po and K can be

computed using the procedure illustrated in the hypothetical example in the previous section.
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Examples with Real Test Data

Tests and Test Scores

In this paper, Work Keys (ACT, 1995) test data are used to illustrate the computations and

usefulness of the previously described IRT -based procedures. The Work Keys Listening and

Writing tests each consist of 6 items. The response to each item is rated on a 0 to 5 rating scale by

two independent raters. When the two ratings differ by more than one point, a third "expert" rater

is used. In this case, the third rater's ratings replace the ratings of each of the first two raters.

Each examinee has 12 ratings.

The analyses here involved two types of performance level scores. The original

performance levels correspond to the ninth order statistic of the 12 ratings. That is, the 12 ratings

are sorted from highest the to the lowest, and the ninth from the highest score is the level score

assigned to this examinee. This process was followed so that 75% of the 12 ratings earned by the

examinee would be at or above the reported level. In the scale development process for the Work

Keys tests, some alternative procedures for assigning level scores have been considered, one of

which is to assign level score according to the rounded mean of the 12 ratings. For convenience,

we will call the former the old level scores and the latter new level scores. It is also desirable to

compare the psychometric properties of this new level score assignment procedure.

The analyses reported here used data for three forms (10, 11, and 12) of the Work Keys

Writing tests. (Because of the limited space of the paper and because of a calibration problem with

the Listening test using the PARSCALE program, only the results for the Writing test is presented

in this paper. Interested readers can refer to Wang, Kolen & Harris, 1996, for the results for the

Listening test calibrated using the FACETS program.) The sample sizes for these three forms are

7097, 2035, and 1793, respectively.
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Method and Analysis

The primary purpose of this example is to illustrate the polytomous-IRT based procedures

for estimating CSEM, reliability and decision consistency indices described in this paper. A

second purpose is to compare the partial credit model which has a fixed discrimination parameter

across items with the generalized partial credit model which has varying discrimination parameters

across items. A third purpose is to compare the IRT based procedure with a classical test theory-

based procedure described in Feldt and Qualls (1996) for estimating CSEM.

A partial credit model (Masters, 1982) was fit to the response data using the FACETS

(Linacre, 1989) computer program. A generalized partial credit model (Muraki, 1992) was fit to

the same data using the PARSCALE (Muraki & Bock, 1993) program. Each item originally has 6

score categories (0 to 5). The sum of two ratings results in 11 score categories for each of the six

items. Because the sample size for Form 10 is too large for FACETS, only half of the data set

(every other examinee) was used in the calibration.

Because it is cumbersome to derive the conditional distribution of the ninth order statistic

based on a probability model, a simulation technique was used to find the conditional distribution

of the old (ninth order statistics-based) level score. The steps after that are the same as those for

the new level score.

Computational Steps for the Polytomous IRT-Based Procedure for CSEM

For the new level scores, the computation follows these steps:

(1) Conditioned on a certain point on the 0 scale, (a) the raw score distributions were

estimated using the extended Lord-Wingersky algorithm in Equations 2 and 3, (b) the level

score distributions were estimated using Equation 4 with the raw score-to-level score

conversion table, (c) the conditional expected (true) level score and error variance were

computed using Equation 5 and 6, (d) the conditional 6x6 contingency tables were

computed using Equation 14.
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(2) Using an empirical 0 distribution, the following overall indices were computed using

numerical integration: (a) error level score variance, observed level score variance and true

level score variance, and reliability (using Equations 10, 11, and 12), (b) the overall

contingency table (Equation 15) and classification indices ( Po and K) (Equation 13), (c)

the marginal distribution of the level scores (Equation 11). To obtain the empirical e

distribution, the 0 estimates for examinees from the FACETS output are used whereas a

directly estimated 0 distribution is output from the PARSCALE program.

For the old level scores, the computation follows these steps:

1) Conditioned on a quadrature point on the 0 scale, simulate responses to each of the six

items for 200 simulees with the same theta. Each response, which ranges from 0 to 10,

were broken into two ratings which range from 0 to 5 based on the rule that the two ratings

can not differ more than one point. For instance, a score of 9 was broken into 4 and 5, and

a score of 8 was broken into 4 and 4, etc. The ninth order statistic was used as the old

level score. Based on these simulated data, (a) the level score distribution, (b) the

conditional mean (true) level score and error variance (Equations 5 and 6), (c) the

conditional 6x6 contingency table (Equation 14) were computed.

(2) Using an empirical 0 distribution based on the 0 estimates from the FACETS output,

the following overall indices were computed using numerical integration: (a) error level

score variance, observed level score variance and true level score variance, and reliability

(using Equations 10, 11, and 12), (b) the overall contingency table (Equation 15) and

classification indices ( Po and K) (Equation 13), (c) the marginal distribution of the level

scores (Equation 11).

The Feldt/Qualls Procedure for Estimating CSEM

Feldt and Qualls (1996) proposed a procedure for computing the CSEM which is a

modification of the Thomdike's (1951) procedure. This procedure assumes that the test consists

of d essentially tau-equivalent parts and uses the square term of the parts difference scores to
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estimate the error variance. (For details see their paper.) In the present study, we assume the six

items are six essentially tau-equivalent parts and mainly use Equation 7 in the Feldt and Qualls

(1996) paper. Although the assumption of essential tau-equivalency may be violated in our case, it

was considered useful to use this procedure to provide some comparisons.

Results

Model fit was partially checked by comparing the expected score distribution based on the

model and the actual score distribution based on the test data. The fitted total score distribution

was computed based on Equation 11. Figures 1 plots the fitted and observed total score

distributions. It was found that the fitted distributions were close to the observed score

distributions both for the FACETS and PARSCALE models, suggesting that both the partial credit

model and the generalized partial credit models fit reasonably well. Note, however, that for the

FACETS model the upper tail of the fitted distribution is somewhat higher than the tail for the

observed distribution. This might have resulted from using the examinee ability estimates in the

integration process. These higher tails are consistent with a similar finding discussed by Han,

Kolen and Pohlmann (1997) for multiple choice tests.

Figure 2 contains plots of the conditional expected (true) level scores for the old and new

levels using both FACETS and PARSCALE models. These plots consistently show that the new

level scores are easier than the old level scores, particularly at low levels. This result is not

surprising because the mean score corresponds to the 6th or 7th order statistic, which is easier than

the 9th order statistic. The plots of the expected levels are quite close for the two models.

Tables 1 and 2 contains the marginal distributions of the old and new level scores for the

FACETS and PARSCALE models. Comparisons between the old and new level scores are

consistent with the trends shown in Figure 2. For the old level scores, the estimated marginal level

score distributions are flatter than the observed level score distribution. For the new level scores,

the estimated marginal level score distributions are quite close to the observed level score

distributions, particularly with the PARSCALE model. These results suggest that the polytomous
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IRT models fit the data better at aggregate score level (from which the new level scores are derived)

than at individual item level (from which the old level scores are derived).

The conditional standard errors (CSEM) of the old and new level scores are presented in

Figures 3 and 4. Figure 3 plots CSEM along the e scale whereas Figure 4 plots CSEM along the

level score scale. The conditional level scores in Figure 4 are the expected level scores conditioned

on e and can be regarded as the true level scores according to the usual definition. Thus,

fractional true level scores are possible whereas in reality fractional observed level scores are not

possible. These plots show that CSEM for the old and new levels have quite different patterns.

The old level scores have big CSEM around level one. Generally, the old level scores have larger

CSEM than the new level scores. Generally, the CSEM of the new level scores bump at each

level, with the mode between two adjacent level scores. The bumps resulted from the rounding in

deriving the level scores. In between two adjacent level scores, the rounding will result in larger

error than around each of the levels. That is, conditioned at a true level score of, say, 2.5,

examinees may receive level scores of 2 or 3, thus the variance for this examinee group is much

larger than the group with a true level score of 2 or 3. The bumps for the old level score do not

have a clear and consistent pattern and is more difficult to explain. In general, the CSEM plots are

similar for the PARSCALE and FACETS models.

The CSEM computed for the new level scores based on the Feldt and Qualls procedure are

presented in Table 3. Because the conditional variable level scores are integer points, they cannot

be plotted as in Figure 4. Overall, these estimates are close to the IRT-based CSEM estimates

conditioned at those exact level points where there are minimal rounding errors for the IRT-based

estimates. This happens because the Feldt and Qualls procedure did not take rounding error into

consideration. The CSEM estimates based on Feldt and Qualls procedure decrease as level scores

go from low to high. This trend can also be observed from Figure 4 for those exact level points.

However, the bumpy modes in Figure 4 stay almost always constant, an interesting result not

readily interpretable.
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The classification consistency and reliability indices for the two models are summarized in

Tables 4 and 5. Again, these results clearly suggest that the new level scores have higher reliability

and classification consistency than the old level scores. This result is consistent with the findings

for the CSEM. It is interesting to notice that the FACETS-based reliability and classification

consistency are both slightly higher than the PARSCALE-based indices. But because we do not

know the true value of these indices, it is difficult to judge which model gives more accurate

estimates. Compared with the overall error variance based on the Feldt and Qualls procedure, the

polytomous IRT-based overall error variance are slightly higher. This difference may reflect the

fact that the IRT-based procedure can take into account the error caused by rounding.

Discussion and Conclusions

This paper described two polytomous IRT-based procedures for computing CSEM for

scale scores and classification consistency indices for performance level scores. The former is a

natural extension of a dichotomous IRT -based procedure by Kolen, Zeng and Hanson (1996); the

latter is an expansion of a strong true score model-based procedure by Hanson and Brennan (1990)

in two directions: from dichotomous items to polytomous items and from dichotomous (two-level)

classification to multi-level classification. The focus of the paper is on performance assessments

which normally use polytomous scoring. In particular, the procedures apply to those performance

assessments where the final reported scores are on a performance level scale with fewer points than

traditional score scales. Because the scoring process involves classification, classification decision

consistency type of reliability indices are also relevant in addition to more conventional reliability

indices.

The application of these two procedures to the Work Keys Writing assessment seems to

indicate that they work reasonably well. The results demonstrate that these procedures can be used

to assess the various aspects of psychometric properties of an assessment with polytomously

scored items, particularly the CSEM for scale scores and classification consistency for performance

level scores. The analyses also examined one scoring procedure which is not based on the total
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score but based on a ninth-order statistic and compared it with a new scoring procedure which is

based on the total score. The results of the analyses was instrumental in the final adoption of the

new scoring procedure in the Work Keys assessment program.

The polytomous IRT-based procedures proposed in this paper apply with different types of

polytomous IRT models. There are two general categories of polytomous models that apply to the

type of test data discussed in this paper: the graded response models and the (generalized) partial

credit models. The analyses in this paper included only one of these categories even though it is

expected that the procedures should work equally well with the other category of models. In

particular, we applied and compared the partial credit model with FACETS and the generalized

partial credit model with PARSCALE. This comparison is analogous to the Rasch model versus

the two-parameter IRT models for the dichotomous items. The results indicate the two models

yield slightly different results with the PARSCALE model producing marginally better results

based on the criterion of the observed marginal level score distribution. Overall, the FACETS

model also seems to produce reasonably accurate estimates. The comparison between the IRT

-based results and the Fe ldt and Qualls procedure on CSEM also gave some interesting results,

particularly the ability of the IRT-based procedure to take into account the error due to rounding.

In a related study by Colton, Gao and Kolen (1997) on the same Work Keys data, the

bootstrapping procedure they used produced for Form 10 error variance estimates .1922 for the old

level scores and .1177 for the new level scores. These error variance estimates are remarkably

close to the FACETS-based estimates which are .1902 for the old level scores and .1190 for the

new level scores. These results are also close to the PARSCALE-based estimates which are .2050

and .1367 respectively. Considering that these procedures used totally different methodologies,

the similarity of the results provides evidence of the accuracy of the polytomous IRT-based

procedures.
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Table 1. FACETS based marginal distribution for the Writing test.

Marginal Distribution
Old Level New Level

Form Level Estimated Observed Estimated Observed

10 0 0.0343 0.030 0.0054 0.003

1 0.0098 0.014 0.0245 0.018

2 0.2450 0.245 0.1730 0A61

3 0.4295 0.538 0.4249 0.458

4 0.2808 0.172 0.3675 0.353

5 0.0006 0.001 0.0047 0.007

11 0 0.0443 0.039 0.0069 0.001

1 0.0143 0.025 0.0362 0.034

2 0.2921 0.266 0.1930 0.179

3 0.3742 0.495 0.3951 0.422

4 0.2686 0.170 0.3501 0.344

5 0.0065 0.006 0.0188 0.020

12 0 0.0912 0.091 0.0103 0.005

1 0.0193 0.027 0.0617 0.049

2 0.3561 0.328 0.2513 0.240
3 0.3439 0.461 0.4319 0.467

4 0.1886 0.093 0.2417 0.235

5 0.0008 0.001 0.0031 0.004
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Table 2. PARSCALE based marginal distribution for the Writing test.

Marginal Distribution
Old Level New Level

Form Level Estimated Observed Estimated Observed
10 0 0.0301 0.030 0.0036 0.003

1 0.0089 0.014 0.0221 0.018

2 0.2608 0.245 0.1650 0.161

3 0.4241 0.538 0.4504 0.458
4 0.2745 0.172 0.3539 0.353

5 0.0016 0.001 0.0049 0.007

11 0 0.0406 0.039 0.0040 0.001

1 0.0127 0.025 0.0328 0.034
2 0.3037 0.266 0.1878 0.179
3 0.3818 0.495 0.4121 0.422
4 0.2560 0.170 0.3487 0.344
5 0.0053 0.006 0.0146 0.020

12 0 0.0926 0.091 0.0078 0.005
1 0.0193 0.027 0.0625 0.049
2 0.3672 0.328 0.2351 0.240
3 0.3588 0.461 0.4736 0.467
4 0.1617 0.093 0.2195 0.235
5 0.0004 0.001 0.0015 0.004
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Table 3. The standard error of measurement for the level scores for the Writing test from the Feldt and Qualls procedure

Forrn\Level 0 1 2 3 4 5 Overall

10 0.2058 0.3761 0.2421 0.2215 0.1957 0.1526 0.2186

11 0.2541 0.3632 0.2533 0.2520 0.2209 0.1664 0.2439

12 0.2771 0.4451 0.3055 0.2518 0.2243 0.1534 0.2691

Table 4. FACETS based classification consistency and reliability indices for the Writing test.

Form Old Level New Level
po pc kappa po pc kappa

10 0.6945 0.3247 0.5476 0.7638 0.3461 0.6387
11 0.6484 0.2997 0.4980 0.7285 0.3176 0.6021
12 0.6196 0.2894 0.4648 0.6959 0.3120 0.5579

var(T) var(E) reliability var(T) var(E) reliability
10 0.6793 0.1902 0.7812 0.5677 0.1190 0.8267
11 0.7897 0.2244 0.7787 0.6771 0.1372 0.8315
12 0.9226 0.2963 0.7569 0.6635 0.1566 0.8090

Table 5. PARSCALE based classification consistency and reliability indices for the Writing test.

Form Old Level New Level
po pc kappa po pc kappa

10 0.6643 0.3242 0.5032 0.7292 0.3559 0.5796
11 0.6290 0.3054 0.4659 0.7007 0.3280 0.5547
12 0.6159 0.2987 0.4523 0.6655 0.3317 0.4995

var(T) var(E) reliability var(T) var(E) reliability
10 0.6358 0.2053 0.7559 0.5024 0.1367 0.7861

11 0.7279 0.2359 0.7552 0.5972 0.1522 0.7969
12 0.8948 0.2761 0.7642 0.5823 0.1727 0.7713
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Figure 2. The conditional expected (true) level scores for old and new levels.
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Figure 3. The conditional standard error (CSEM) for old and new levels conditioned on theta.
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Abstract

This paper describes a bootstrap procedure for estimating the error variance and reliability of

performance test scores. The bootstrap procedure is used in conjunction with generalizability

analyses to produce estimated variance components, measurement error variances, and reliabilities

for two types of performance scores using data from a large scale performance test that measures

both listening and writing skills. The first type of score was simply the rounded average of the

performance ratings. The second type of score was a performance level score related to the

difficulty and complexity of the items as assembled in test development. Results on the two tests

and two types of scores are reported, and the described methods are suggested for use with other

performance measures.
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Assessing the Reliability of Performance Level

Scores Using Bootstrapping

Total raw scores for performance assessments typically are calculated by summing raw

scores over raters and items. These raw scores sometimes are transformed to integer-value

proficiency level scores. Although the reliability of raw scores might be readily estimated by

generalizability theory (Brennan, 1993) when the sum of the scores is used, there does not appear

to be a straightforward way to use generalizability theory to find reliability of scale scores that are

not linear transformations of raw scores. In the present paper, the bootstrap resampling procedure

(Efron & Tibshirani, 1993) is used to estimate conditional standard errors of measurement and

reliability for performance level scores.

Data

The data for this study were from 7097 examinees who took Form 10 of the Work Keys

Listening and Writing assessment. The Listening and Writing assessment contains six prompts

(tasks). Examinees are asked to listen to six audio-taped prompts ranging from easy and short to

difficult and long. After each prompt, they are told to construct a written summary about the

prompt. The written responses were scored separately for Listening and Writing by two different

pairs of raters. If the ratings differ by more than one point, a third "expert" rater is used. The

rating of this third rater replaces the ratings of each of the first two raters. Each rating ranges from

0 to 5. For Listening or Writing, each examinee receives a total of 12 ratings (6 prompts x 2

raters).

Level Scores are reported as indicators of examinees' Listening and Writing performance.

Each of the ratings in the 0 to 5 range is intended to represent the proficiency level of the

examinee's response. For example, a rating of 3 is intended to indicate that the response is at

Level 3. To be conservative, it was decided by Work Keys development staff that the Level Score
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reported to the examinee should be one at which 75% of the 12 ratings are at or above that rating.

To find this Level Score, the 12 ratings are ranked from highest to lowest. The Level Score

reported to the examinee is the 9th from the highest, which we refer to here as the 9th order

statistic. For example, an examinee with ratings 5, 5, 4 ,4 ,4 ,4 ,4, 4, 4, 3, 3, 3 would receive a

Level Score of 4. An examinee with ratings 5, 5, 4 ,4 ,4 ,4 ,4, 4, 3, 3, 3, 3 would receive a Level

Score of 3.

Because of concerns about the unreliability of Level Scores, an alternate procedure based on

the rounded average was used to create Rounded-Average Level Scores. Each examinee's 12

ratings were summed to get a total score ranging from 0 to 60. The total score was then divided by

12 and the unrounded average score was rounded up at .5 to obtain an integer value ranging from 0

to 5. For example, a total score of 30 was averaged to 2.50 and was then rounded up to 3.

Analyses

Bootstrap procedures were used to estimate conditional standard errors of measurement at

each level for both the Level Scores and the Rounded-Average Level Scores. In addition,

reliabilities for both types of scores were calculated.

Bootstrap

The bootstrap procedure was implemented separately for Listening and Writing for each

examinee as follows.

1. Generate a random integer from 1 to 6, and refer to this integer as i. For each

examinee, select the observed Rater 1 and Rater 2 ratings on prompt i.

2. Repeat step 1, 6 times. At the conclusion of step 2, for each examinee we have 12

ratings based on selecting the prompts, with replacement.

3. For each examinee, calculate the Level Score and Rounded-Average Level Score from

the 12 ratings assembled in Step 2.

4. Repeat steps 1 through 3 nb = 500 times.
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Following these procedures produced 500 bootstrap Level Scores and 500 bootstrap Rounded-

Average Level Scores for each of the 7097 examinees.

Conditional Standard Errors of Measurement and Reliability

For examinee, p, the absolute standard error of measurement was calculated as follows:

&op). er(XpB)=\

n n,

(XX pb)2 I nb
b=1 b=1

nb 1

(1)

where Xpb is the Level Score or Rounded-Average Level Score and the summations in Equation 1

are over the nb = 500 bootstrap replications. Brennan (1996) proved that the absolute standard

error of measurement is the square root of the variance of a distribution of means.

Separately for each type of level score, the examinees were then assigned to six groups

according to their mean score using the bootstrap data. That is, true Level Score was defined as

the mean Level Score over the 500 replications, and true Rounded-Average Level Score was

defined as the mean Rounded-Average Level Score over the 500 replications. In this study, the

average standard errors for each level (1) were computed using the following equation:

no
CY (Ap),

no p=1
(2)

where the summation is over persons originally classified at Level 1.

To find reliability coefficients, the 7089 person by 500 bootstrap sample matrix of Level

Scores was treated as a person (p) by form (b) generalizability analysis and analyzed using

GENOVA (Crick & Brennan, 1982). Using generalizability theory notation, the average, over

examinees, of the absolute error variance, which is the square of the expression in Equation 1, can

be expressed as 62(0) 62(B) + 62(p"D) where 62(B) is the variance of form means over
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bootstrap replications and &2(pb) is the combined person by form interaction and residual variance.

Also, the average, over examinees, relative error variance from generalizability theory can be

expressed as 62(8) = 2(pb). Generalizability, 0'2, and dependability, to, coefficients can also

be estimated for each level using the following equations:

cn2
a2

1 = 2 "a (P)+ a2 (8)'
and

a2(P)
,i2(p) 62(x),

(3)

(4)

where 62(p) is person variance.

Finally, to find the relative conditional standard errors, the variability due to form differences

was subtracted from the error variance based on the absolute standard errors in Equation 2 as

follows:

ai(8)= -\,1('q(A) cTA12(B)- (5)

Results

The average error variances, reliabilities, and variance components are shown in Table 1. .As

expected, the relative error variances are smaller than the absolute error variances, and the relative

generalizability coefficient is larger than the absolute generalizability coefficient. The Writing test

is more reliable than the Listening test. The Rounded-Average Level Scores are more reliable than

the Level Scores.

The bootstrap procedure was conducted twice for each performance test and the estimated

absolute error variances were compared. For both the Level Scores and the Rounded-Average

Level Scores, the absolute error variance values in the replication analysis were very close to the

values obtained in the first bootstrap analysis. For the Listening test, the two estimates of absolute
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error variance for the Rounded-Average Scores differed in the third decimal place, and the

estimates for the Level Scores differed in the second decimal place. For the Writing test, the two

estimates for the Rounded-Average Scores differed in the fourth decimal place, and the estimates

for the Level Scores differed in the third decimal place. Even though the bootstrap procedure was

carried out by sampling from only six prompts, the estimates of absolute error variance appeared to

be fairly stable.

Insert Table 1 about here

Figures 1 through 4 were constructed to display the relationship between conditional standard

errors and level scores. The horizontal axis in these figures is the mean (for each examinee) level

score over the 500 bootstrap replications. The vertical axis is the standard deviation of the

examinee's level scores over the 500 bootstrap replications as calculated using Equation 1. One

finding that is clear from these figures is that there is much less variability of the estimated standard

errors for the Rounded-Average Level Scores than for the Level Scores. Also, the estimated

standard errors for the Rounded-Average Level Scores tend to be lower than those for the Level

Scores. There is some spread of estimated standard errors at all points on the vertical axis, and

there is a tendency for the estimated standard errors to be somewhat larger at middle scores than at

the more extreme scores. Some examinees had estimated standard errors of zero. (Note that when

examinees have 12 identical ratings, the standard errors estimated using the bootstrap necessarily

are zero.)

Insert Figures 1 through 4 about here

Mean standard errors and error variances conditional on level score as calculated using

Equation 2 are given in Table 2. The standard errors differ across levels, with the largest standard
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errors tending to occur for examinees receiving a level score of 1. Also, the conditional standard

errors for the Rounded-Average Level Scores tend to be smaller than those for the Level Scores.

Insert Table 2 about here

Discussion and Conclusions

The findings presented indicated that the Rounded-Average Level Scores tended to be more

reliable than the Level Scores. This finding led the Work Keys program to reconsider the use of

the Level Scores for new Level Scores that were more reliable. The findings also suggest that

conditional standard errors differ across levels. This difference should be used when interpreting

scores.

It should be noted that the item sampling procedure used here did not simulate item sampling

as done in construction of operational forms. In the procedure used here, the sampling of items

could result in form to form differences in difficulty, since items were sampled with replacement.

The methodology presented here can prove useful in situations in which ratings are

nonlinearly transformed to level scores. Because the use of proficiency levels has become

pervasive with performance assessments, the reliabilities and conditional standard errors of the

proficiency levels need to be estimated. The methods presented here can be used to estimate these

quantities.
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Table 1

Results of Generalizability Analysis of Bootstrap Level Scores

Source

Listening Writing
Rounded

Average Level
Level Score Score Level Score

Rounded
Average Level

Score

Person: &2(p) 0.32803 0.31259 0.62569 0.54281

Form: a2(b) 0.02451 0.02892 0.01182 0.01016

Person x Form: 62(pb) 0.21548 0.15981 0.19220 0.11773

Relative Errol% '62(S) 0.21548 0.15981 0.19220 0.11773

Absolute Error: 62(0) 0.23999 0.18873 0.20402 0.12789

Relative G Coefficient: 432 0.60354 0.66171 0.76501 0.82177

Absolute G Coefficient: 4) 0.57750 0.62353 0.75411 0.80932
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Table 2

Conditional Standard Errors of Measurement

Listening

Level Scores Rounded Average Level Scores

Level Number of
Examinees

46^,(

A"
) 61(8) Number of

Examinees 161(A) 61(8)

0 129 0.50418 0.47926 23 0.33003 0.28284
1 373 0.74375 0.72708 134 0.51495 0.48606
2 4431 0.46049 0.43306 1753 0.44507 0.41130
3 2100 0.49075 0.46511 4647 0.42352 0.38788
4 64 0.54093 0.51777 535 0.47291 0.44127
5 5 0.43349 0.39874

Writing

Level Scores Rounded Average Level Scores

Level Number of
Examinees

6100 61(5) Number of
Examinees

61(0) 61(5)

0 121 0.52011 0.50862 19 0.34847 0.33357
1 300 0.93071 0.92434 132 0.51769 0.50778
2 1785 0.55617 0.54544 1167 0.39277 0.37962
3 3682 0.35216 0.33496 3259 0.35331 0.33863
4 1203 0.34791 0.33048 2471 0.33327 0.31766
5 6 0.40472 0.38985 49 0.42024 0.40797
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Abstract

Single-form scores are likely to be used to judge individuals' performance levels

due to high cost in performance assessments. However, it is not clear whether estimates of

individual performance are consistent from one test form to another. If people are willing

to make decisions based on a single-form score, it is important to know the score

generalizability across forms. The purpose of the present study was to examine

measurement precision of performance scores when multiple forms, raters, and tasks were

used in the measurement.

Moreover, raw scores are usually non-linearly transformed into scale scores. Little

research has been done about measurement precision of such scores. A bootstrapping

method combined with generalizability analyses was used to estimate conditional standard

errors of measurement and generalizability of scale (level) scores. The results indicate that

(a) examinees' scores vary from one form to another; (b) within a form, the rank ordering

of task difficulty is substantially different for the various examinees; (c) measurement

errors are mainly introduced by task sampling variability not by rater sampling variability;

(d) writing scores are more generalizable than listening scores; and (e) level (scale) scores

are less generalizable than average raw scores.
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Evaluating Measurement Precision of Performance Assessment

With Multiple Forms, Raters, and Tasks*

Research on the sampling variability and generalizability of performance assessments has

indicated that (a) an individual's performance score varies greatly from one task to another, (b) a

large number of tasks are needed to obtain a generalizable measure of an individual's performance,

and (c) well-trained raters can provide reliable ratings (Brennan, Gao, & Colton, 1995; Gao,

Shavelson, & Baxter, 1994; Shavelson, Baxter, & Gao, 1993). However, in most performance

assessments, an individual takes only one test form due to resource constraints, and a single form

score is likely to be used to make judgments about the individual's performance. With a narrower

universe than the one to which generalization is likely to be made, measurement errors are likely to

be underestimated.

A test form is a collection of test items (tasks) and is built according to certain content and

statistical specifications. Although test developers attempt to assemble test forms as parallel

(equivalent) as possible they usually differ somewhat in difficulty and contribute to sampling

variability. In some performance assessments, equating may not be conducted to adjust for

differences in difficulty among forms. It is also not clear whether an individual's performance

scores are consistent from one test form to another. If there is a large personby form interaction,

conventional equating methods may not be applicable. Under these circumstances, can test forms

designed to measure the same construct be used interchangeably? If people are willing to make

decisions or judgments about individuals based on single-form scores without any score

adjustment, it is essential to investigate sampling variability across forms. Furthermore, when

multiple raters and tasks are used, in addition to multiple forms, it is important to examine the

magnitude of sampling variability associated with those sources and their impact on measurement

errors and generalizability.

* The authors gratefully acknowledge the contributions of Robert L. Brennan to the design of the original study and
his comments on an earlier version of the paper. We also express our appreciation for the comments and
suggestions of Michael J. Kolen and Deborah J. Harris.
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In practice, raw scores of a test are usually non-linearly transformed into scale scores (e.g.,

proficiency or level scores) which are reported to examinees. Naturally, it is essential to estimate

measurement errors, especially conditional standard errors of measurement, and reliability

associated with scale scores. Although extensive research has been done about measurement

precision of raw scores, literature on issues related to scale-scores is scarce (but see Brennan &

Lee, 1997; Colton, Gao, & Kolen, 1996; Feldt & Qualls, in press).

The purpose of the present study was to examine sampling variability and generalizability

of a performance-based listening and writing assessment with multiple forms, raters, and tasks

involved. More specifically, the study addresses the following questions: (a) Whatare the major

sources of measurement errors associated with the measurement procedure used in the assessment:

forms, raters, and/or tasks? (b) What are the effects of changing measurement procedures (e.g.,

using different numbers of raters, tasks, and/or forms) on measurement errors? (c) What are the

effects of changing measurement procedures on score generalizability? (d) What are the conditional

standard errors of measurement (CSEM) at different performance levels? and (e) How

generalizable are aggregated proficiency (level) scores? Generalizability theory (Cronbach, Gleser,

Nanda, & Rajaratnam, 1972; Brennan, 1992; Shavelson & Webb, 1991) and a bootstrap method

(Efron & Tibshirani, 1993) can be brought to bear on these technical issues.

Method

Data

The data were collected in a 1993 study conducted by ACT, Inc. to evaluate the Work Keys

assessment system. Two forms (A and B) of the Work Keys Listening and Writing assessment

were administered to 167 examinees. Although a plan was made to counter-balance the two test

forms, the procedure was not followed strictly during the test administration. For a given form,

three raters assigned Listening scores to all six tasks (prompts) for all examinees. A different

group of three raters assigned Writing scores to all six tasks for the examinees. The groups of

raters were also different for each form.

64



61

Instrument

An important feature of the Work Keys Listening and Writing assessment is that a single

set of tasks (prompts) are administered, but two different performance scores--Listening and

Writing--are provided. The Listening score indicates an examinee's skill at listening to and

understanding work-related messages, whereas the Writing score indicates the examinee's skill at

composing and writing work related messages. The assessment was administered via an audio

tape that contained all directions and messages (prompts). Examinees were asked to listen to six

audio-taped messages ranging from shorter and easier to longer and more complex. After listening

to each recorded message, examinees were told to construct a written summary of the prompt. The

written responses were scored once for listening and again for writing skills. The Listening score

was based on the accuracy and completeness of the information in the examinee's written

responses, and the Writing score was based on the writing mechanics (such as sentence structure

and grammar) and writing style used in the examinee's written responses. All scoring was done

by three raters in the situation reported here. In the usual operational scoring, only two raters are

used. The raw scores ranged from 0 to 5 for each task.

Design and Analysis

The analyses were carried out in two parts: both sample estimates and bootstrap estimates

of sampling variability and generalizability were generated. In the sample-estimation part, two

designs were used to conduct generalizability analyses of the Work Keys Listening and Writing

assessment: person x [(rater x task):form] and person x form. In the bootstrap-estimation part, a

person x form design was used. The analyses examined sampling variability, standard error of

measurement and score generalizability. Separate analyses were conducted for Listening and

Writing.

Sample estimation. A performance assessment score is subject to sampling variability. An

important contribution of generalizability theory to measurement is that it allows researchers to

disentangle multiple sources of measurement error associated with various measurement

procedures. The purpose of the Work Keys study was to examine sources of variability related to
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forms, raters, and tasks. The original data collection design contained three facets--forms, raters,

and tasks. More specifically, the examinees (p) took two test forms (f), each form contained six

tasks (t), and each written response was scored by three raters (r). The linear model and variance

components for the design are presented under the first four headings in Table 1. (The bootstrap

formulas shown under the last two headings in Table 1 are described later.) The generalizability

analysis allows us to examine the magnitudes of sampling variabilities of forms, raters, and tasks,

as well as the interactions.

Work Keys reports aggregated proficiency scores (Level Scores) for Listening and Writing

to individuals and to educational and business agencies. Operationally, two raters score each of the

six tasks. An examinee receives a particular level score if at least 9 of the 12 ratings (6 tasks x 2

raters) are at or higher than that score. Since there were three raters in the present study which

generated three pairs of raters (i.e., raters 1 and 2, raters 1 and 3, raters 2 and 3), three level

scores were assigned to each person. To use all these ratings in the analyses these three Level

scores were then averaged and rounded to represent each person's level score (0-5). In addition,

rounded mean raw scores averaged over the three raters and six tasks were also calculated for the

examinees on each form (i.e., Rounded-Average Level Scores). Person x form generalizability

analyses were carried out using Level Scores and Rounded-Average Level Scores to examine

form-sampling variability when aggregated scores were used (see Table 1). The measurement

precision of the two types of aggregated scores were also compared.

Decision (D) studies, more precisely D-study considerations, with various numbers of

conditions were then conducted using the two designs: p x [(R x T):F] and p x F. The uppercase

letters are indices of the sources of variability in the D-study considerations which are used

interchangeably in this report. Since the Work Keys assessment scores are used to index

individual performance levels, the present study focuses on absolute error variances and absolute

generalizability (G) coefficients or dependability coefficients (0) (see Table 1).
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TABLE 1

Equations for Generalizability Analyses

Linear Models

X(prt:f) = P + gp- +14- + + + µpf~ + gpr:f- + gpt:f- + + liprtf-

Xpf = + + + tipf

G-Study Total Variances
2 2 ,,2 2 2 .2 2 2 2a = ap "1- .11-r r:f -T- -'prf pt:f rt:f p rt : f

2 2 2 2a (Xpf)=ap+of + a pf

Absolute Error Variances
2 2 2 2 a2 (72 a2 a2

art:f pri:i(72 of
arf + t:f +a Pf + Pr:fi + n7tni; +-A n'f + ric.:fn'f K fn 'f n'f n',.:fn f r:f f n;.: frit', fn f'

+
nr' frit': fn f'

2 ,2
2 ai 4_pi

-LI = , rof of

Dependability Coefficient

a2

(13 = P

G2 + 02
P A

Standard Error of Measurement (Individual)

a(Ap)=a(Xpb)=*\

nb nb
y x2 - X )2 / npb pb b
b=1 b=1

nb 1

Conditional Standard Error of Measurement (Level)

1 np:1 2Ea (Ad
no P=1

Note. The equations for calculating individual standard error of measurement and conditional

standard error of measurement in generalizability theory were initially discussed by Brennan

(1996).
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Bootstrap estimation. The p x f generalizability analysis in the previous section provided

only sample estimates of variance components, error variances, and generalizability coefficients for

level scores. A bootstrap method (Efron & Tibshirani, 1993) can be used to further estimate an

individual's standard error of measurement and conditional standard error of measurement (CSEM)

at each performance level. A generalizability analysis using the p x f bootstrapping data provides

estimates of variance components and generalizability coefficients for the level scores.

In a bootstrap analysis, repeated samples (usually 500 or more) are drawn from a data

matrix. This data matrix is treated "as if' it were the population and repeated samples with

replacement are drawn from it. Statistics (e.g., means) are calculated from each bootstrapping

sample and the stability of parameter estimates (i.e., standard deviations) can be computed. In the

present study, two raw data matrices, one for Listening and another for Writing, were used as data

bases for the simulation and bootstrap analyses. Each matrix contained 167 persons by 24 scores

(6 tasks, 2 raters, and 2 forms). More specifically, the 167 examinees took two forms and their 12

written responses were scored by two raters. If the two raters disagreed by more than one point a

third rater's score was used to replace the original two raters' scores. (This procedure is referred

to resolution by an expert rater in operational administrations). Raters for the two forms were

different.

The bootstrap procedure was carried out separately for Listening and Writing in the

following steps:

1. A form was randomly selected and the first task in the form was used. A form was

randomly chosen again and the second task from that form was selected. This process was

repeated six times until the sixth task was sampled to create a bootstrap form that would

have a similar structure as the original forms (i.e., six tasks were ordered from easy to

difficult and from short to long).

2. A 167 x 12 bootstrap sample was created using the examinees' scores on these selected

six tasks given by two raters.
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3. Steps 1 and 2 were repeated 500 times to' create 500 bootstrap samples (replications),

each containing a 167 x 12 matrix.

4. Bootstrap Level Scores and Rounded-Average Level Scores were computed for the

examinees in each of the bootstrap samples. These scores were based on two raters'

ratings only. Consequently, 500 Level Scores and 500 Rounded-Average Level Scores

were computed for each examinee.

The two new 167 x 500 data sets, one containing Level Scores and another containing

Rounded-Average Level Scores, were used to calculate standard deviations of the bootstrap

estimates. These standard deviations were considered as estimates of the standard error of

measurement (or absolute error) for each examinee. The examinees were then assigned to six

groups according to their average scores over the 500 bootstrap replications. The average standard

errors at each of the six levels were computed and considered as estimates of absolute CSEM.

In addition, a person x form (i.e., bootstrap sampled forms) random-effects generalizability

analysis was carried out to estimate variance components for person, form, and person by form

interaction, measurement errors and dependability coefficients for Listening and Writing.

Equations for these conditional standard errors are provided under the last two headings in Table 1.

In these equations, the "b" subscript refers to a bootstrap replication, nb is the number of bootstrap

replications, np:i is the number of persons nested within levels.

Results and Discussion

Sampling variability and generalizability of the Work Keys Listening and Writing

assessment were examined using generalizability theory and the bootstrap method. A series of

generalizability (G) analyses were conducted to (a) estimate variance components associated with

various sources of sampling variation (i.e., form, rater, and task), (b) assess standard errors of

measurement for different measurement procedures (i.e., different numbers of conditions in the

facets), and (c) examine the generalizability of the Listening and Writing assessment scores.

Besides the sample estimates, the bootstrap method was used in conjunction with the use of

generalizability theory to estimate conditional standard errors of measurement and generalizability
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coefficients. The results provide information about likely psychometric characteristics of the

assessment.

Sample Estimates of Measurement Precision

Estimated variance components . Table 2 provides the estimated G-study variance

components, a2(a), for the p x [(r x 01 design and the associated percents of total variability (%)

for Work Keys Listening and Writing scores. The estimates indicate the magnitudes of sampling

variation associated with each source (forms, raters, and tasks) and their relative contributions to

measurement errors. The person by task interaction contributes most to measurement errors for

both Listening and Writing, indicating that the rank orders of examinees vary from one task to

another. The finding of a large person by task interaction is consistent with other reported results

on performance assessments (see Brennan et al., 1995; Gao et al., 1994; Shavelson et al., 1993).

Moreover, the estimated task variance component is the second largest for Listening, suggesting

that the tasks within a form differ in difficulty. The task means for Listening Form A range from

2.383 to 3.473. The results are consistent with the test descriptions which state that the tasks are

ordered from easy to difficult. However, tasks do not.differ so greatly in difficulty for Writing.

The means for Writing Form A range from 2.764 to 3.200. The most notable difference in the

results for Listening and Writing is the (t:f) component: Listening score is affected by task

complexity, but one's ability to construct a good sentence is not.

Further, the form difficulty, averaging over examinees, raters, and tasks, is different for

Listening but not for Writing. For example, the mean is 2.795 for Listening Form A but is 3.226

for Listening Form B. The average Writing scores are 2.977 for Form A and 2.913 for Form B,

respectively. However, the individual scores vary somewhat from one form to another (i.e.,

person by form interaction) for both Listening and Writing. The results suggest that some score

adjustment may be needed so that the Listening and Writing scores obtained from different forms

are comparable.
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TABLE 2

Variance Component Estimates of the p x [(r x t):f] Design

Listening Writing

Source of Variability 0'^ 2 (a) &2(a)2 (a)

Person (p) 0.26104 21.04 0.37201 45.83

Form (f) 0.04529 3.65 0.00000 0.00

Rater:form (r:f) 0.00472 0.38 0.00410 0.51

Task:forrn (t:f) 0.26973 21.75 0.01136 1.40

pf 0.01767 1.42 0.01964 2.42

pr:f 0.00755 0.61 0.01908 2.35

pt:f 0.47268 38.11 0.23229 28.61

rt:f 0.00338 0.27 0.00353 0.43

prt:f 0.15833 12.76 0.14976 18.45

For Writing, the universe score (true score) variance is larger than the other estimated

variance components and is larger than that for Listening, suggesting that there is considerably

more variation among examinees with respect to their levels of proficiency in writing than in

listening. Similar fmdings were reported on Work Keys data collected in a previous year (see

Brennan et al., 1995).

As seen in Table 2, the rater-sampling variability is small, especially for Listening. The

fact that rater variance is small means that raters are about equally stringent on average. The fact

that the rater-by-person interaction is small means that examinees are rank ordered about the same

by the various raters. The results, thus, suggest that raters are not nearly as large a contributor to

total variance as are tasks. It is possible to use a small number of well-trained raters to score each
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examinee's responses in future operational forms if the training and scoring procedures continue to

be well developed and used. It is noteworthy that the variance component (prt:f) for a person by

rater by task interaction confounded with other unidentified sources of error is relatively large.

The estimates in Table 2 are for single person-rater-task-form scores only. In practice,

decisions about examinees are typically made based on average or total scores over some numbers

(n') of tasks, raters and/or forms defined by a universe of generalization. Assuming one form,

two raters and six tasks are used in the p x [(R x T):F] D-study considerations, Table 3 provides

the estimated variance components for the Listening and Writing assessment. Increasing the

number of tasks from one to six dramatically decreases the estimated task variance components,

and the person by task interactions for both Listening and Writing although tasks still count for a

large proportion of the total variability.

TABLE 3

Variance Component Estimates of the p x [(R x T):F] Design

Listening Writing

Source of Variability ^ 2a (a) ^ 2a (a)

Person (p) 0.26104 55.86 0.37201 81.47

Form (F) 0.04529 9.69 0.00000 0.00

Rater:form (R:F) 0.00236 0.50 0.00205 0.45

Task:form (T:F) 0.04496 9.62 0.00189 0.41

pF 0.01767 3.78 0.01964 4.30

pR:F 0.00378 0.81 0.00954 2.09

pT:F 0.07878 16.86 0.03871 8.48

RT:F 0.00028 0.06 0.00029 0.06

pRT:F 0.01319 2.82 0.01248 2.73
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The above generalizability analysis was conducted on raw scores of the Listening and

Writing assessment. The p x f generalizability analysis dealt with Level Scores transformed non-

linearly from raw scores and Rounded-Average Level Scores. As indicated in the top part of Table

4, the form variability is notably larger for Listening than for Writing, indicating that the two forms

are not equivalent in average difficulty for the Listening test. The form variance component

estimates for Writing are negligible. The results are consistent with those reported earlier in the p x

[(r x t):f] generalizability analysis with raw scores. Moreover, the large person by form

interactions for both Listening and Writing scores suggest that the rank orders of examinees vary

by forms.

Estimated standard errors of measurement. For the measurement procedure used in the

original data collection (i.e., nr = 3, nt = 6, and of = 2) the measurement errors are smaller for

Writing (0.20) than for Listening (0.32). Figure 1 at the end of this report demonstrates that

standard errors of measurement, ey(A), are reduced when D-study sample sizes (n't-, n't, and n'f)

increase. Although increasing the number of raters doesn't improve the measurement precision

very much, especially for Listening, adding more tasks and/or forms does. In the p x F D-study

with n'f = 1, the standard errors, a(s) for relative decisions and 8(A) for absolute decisions, are

smaller for Writing than for Listening and are smaller for the Rounded-Average Level Scores than

for the Level Scores (see the sample estimates in Table 4).

In practice, the estimated standard errors of measurement, a(A), can be used to construct

the confidence intervals (or bands) that are likely to contain universe (true) scores, assuming that

errors are normally distributed (Cronbach, Linn, Brennan, Haertel, 1997). The 90% confidence

interval containing an examinee's true performance level would be in the range of ± 1.645 a(A).

For example, with a 6(A) = 0.62, the interval for the Listening Level Scores is ±1.02, and with a

a(A) = 0.51 the interval for the Rounded-Average Level Scores is ±0.84. Likewise, the

Listening scores have wider confidence intervals than the Writing scores due to the larger standard

errors. In addition, 6(A) can provide information on the probability (or the percentage) of

misclassification of the examinee(s) and can be used to estimate minimum passing and maximum
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failing scores given a specified standard of proficiency with a certain level of confidence (Linn &

Burton, 1994).

TABLE 4

Variance Component Estimates of the p x f Design

Listening Writing

Source Level Rounded Level Rounded

Sample Estimates

Person (p) 0.27151 0.26312 0.44643. 0.40608

Form (f) 0.11221 0.08754 0.00052 0.00008

pf 0.27202 0.17394 0.20745 0.16590

a(s) 0.52156 0.41706 0.45547 0.40731

ey(0) 0.61986 0.51135 0.45604 0.40741

E02 .50 .60 .68 .71

chi .41 .50 .68 .71

Bootstrap Estimates

Person (p) 0.33180 0.30124 0.48500 0.45026

Form (f)a 0.01865 0.02794 0.00061 0.00118

pf 0.25987 0.17934 0.15648 0.12519

&(8) 0.50977 0.42349 0.39558 0.35382

&(0) 0.52775 0.45528 0.39633 0.35550

Ei32 .56 .63 .76 .78

ci) .54 .59 .76 .78

aBootstrap replications.
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Estimated generalizability coefficients . The generalizability (G) coefficients for the

p x [(R x T):F] design depend, in part, upon the numbers of raters (WO, tasks (n't), and/or forms

(n'f) used in decision considerations. If only one form, two raters, and six tasks were used (see

Table 3 for the variance component estimates), the absolute G coefficient or dependability

coefficient (4)) would be .56 for Listening and .81 for Writing. Figure 1 demonstrates that

dependability coefficients (PHI) increase when D-study sample sizes (n'f, n'r, and nit) increase.

However, increasing the number of raters beyond two doesn't improve the score generalizability

substantially, especially for Listening; but adding more tasks and/or forms does.

In the p x F D-study, the generalizability coefficient ( Efi2) and dependability coefficient

( 4) for Writing are higher than those for Listening (see the sample estimates in Table 3),

suggesting that the Writing scores are more generalizable than the Listening scores for relative and

absolute decisions. In addition, the Rounded-Average Level Scores are more generalizable than

the Level Scores.

Bootstrap Estimates of Measurement Precision

Generalizability estimates. The bottom of Table 3 presents the bootstrap variance

component estimates, standard errors of measurement, a(8) (relative error) and a(A) (absolute

error), generalizability ( Ef32) and dependability coefficients ( 4)) for both Level Scores and

Rounded-Average Level Scores. The results have similar patterns as those from sample estimates:

the Writing test is more generalizable than the Listening test; the Rounded-Average Level Scores

are more generalizable than the Level Scores. They are consistent with findings from a study

conducted by Colton, Gao, and Kolen (1996) using a different Work Keys data set.

It is noteworthy that the bootstrap estimates of the universe-score variance are larger than

the estimates based upon the generalizability analysis of the sample. The differences in the

magnitudes of these estimates may be partly due to the bootstrap sampling procedure used in the

study. Brennan, Harris, and Hanson (1987) show that the variance component for persons is

likely to be overestimated in a person x item design when only items are bootstrapped.
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Conditional standard errors of measurement. Table 5 reports the estimated CSEM of

bootstrap Level Scores and Rounded-Average Level Scores. The estimated standard errors for the

Rounded-Average Level scores tend to be lower than those for the Level Scores in both Listening

and Writing (see also Colton et al., 1996). The Writing CSEMs are lower than Listening CSEMs

at Levels 2, 3, and 4. The CSEM estimates are not stable at the extreme score levels due to small

sample sizes.

TABLE 5

Conditional Standard Errors of Measurement

Listening Writing

Level

Level Scores Rounded Average Level Scores Rounded Average

n CSEM n CSEM n CSEM n CSEM

0 2 0.50412 0 N/A 2 0.93333 0 N/A

1 7 0.67571 1 0.54304 4 0.85620 0 N/A

2 64 0.51874 17 0.49102 62 0.38652 44 0.36508

3 91 0.51243 112 0.44758 80 0.34227 78 0.35771

4 3 0.75096 36 0.45771 19 0.39230 45 0.34188

5 0 N/A 1 0.49372 0 N/A 0 N/A

Conclusions

The generalizability and bootstrap analyses reported here reveal that (a) examinees' scores

vary from one test form to another which may be partly due to large task-sampling variability, (b)

the rank orderings of task difficulty differ across the examinees, (c) measurement errors are mainly

introduced by task-sampling variability not by rater-sampling variability, (d) the Writing scores are
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more generalizable than the Listening scores, and (e) Level Scores are less generalizable than

Rounded-Average Level Scores. The results portray some important psychometric properties

about Work Keys Listening and Writing scores.

The finding that examinees are rank ordered differently on different forms of the Listening

test suggests that measurement errors are likely to be underestimated in situations where

individuals take only one test form. Further, score adjustments may be needed to make scores

generated from different forms comparable in making decisions. However, conventional equating

methods may not be entirely satisfactory here due to the person-by-form interaction. The result

that examinees' performanceS vary from one task to another is consistent with other findings in

performance assessments. These findings strongly indicate the importance of domain specification

and task sampling in test development (Shavelson, Gao, & Baxter, 1995). The finding that one or

two well-trained raters can reliably score examinees' performance is encouraging for future test

operations.

The present study combines generalizability theory and the bootstrap method to examine

sampling variability, conditional standard errors of measurement, and generalizability of scale

(level) scores. These methods may be used to evaluate technical qualities in other performance-

assessment situations where a single score is used to index individuals' levels of performance

(absolute decisions) or to rank order individuals (relative decisions). The bootstrap method can be

used to generate level scores for examinees using their individual raw scores (see Colton et al.,

1996). Generalizability analyses can then be used to estimated conditional standard errors of

measurement and generalizability coefficients for both relative and absolute decisions.
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Abstract

In many measurement situations, there is often a need to weight different scores to form a

composite score. One important factor in determining the weights may be the desirability to

maximize the reliability of the composite score. Procedures derived in the past usually require

information about the reliability of each part score and are computationally complex. In some

situations, reliability estimates of the part scores may not be readily available. In this paper,

formulas for computing the weights that maximize the reliability of a test with multiple parts are

derived using a congeneric model. A direct derivation for the three-part case and a two-step

derivation for the n-part case are presented and results for these two approaches are shown to be

consistent for the three-part case. The formulas are rather simple and are all based on the variance-

covariance matrix of the part scores. Two examples are given to show the computations and the

usefulness of the formulas.
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Weights that Maximize Reliability Under a Congeneric

Model for Performance Assessment

In educational measurement, it is not uncommon to assign weights to several scores when

it is needed to combine them to form a composite score (Wang & Stanley, 1970; Fe ldt & Brennan,

1989, p. 116). Combining scores to form a composite score may occur at different levels. At the

highest level in one possible direction of ordering, we may combine scores from different tests

built on different score scales. This happens when we use different test scores and school grades

to predict, say, college grade point average (GPA) using a multiple regression model. The

predictor is in effect a weighted composite of these individual predictors with the weights being the

regression coefficients . At lower levels, we may combine scores from tests within a test battery,

or parts scores within a test. With this ordering, the lowest level may be the individual test item

level.

In conventional multiple-choice based testing, although the typical practice is to use

unweighted number-correct raw scores as the basis for scoring, it is possible to assign empirically

derived weights to form some kind of optimal scores. For instance, Lord (1980, pp. 73-77)

discussed ways of using item response theory (IRT) based item statistics as weights for optimal

scoring. An emerging form of testing situation that may make combining scores at the item level a

useful practice is performance assessment. Performance assessment instruments typically consist

of more than one task or prompt. The tasks are typically of unequal depth or difficulty level. So it

is a common practice to assign some weights to those task scores to form a composite score. The

weighting scheme can be designed based on different considerations such as content validity

(importance), testing time, and reliability. Though the final decision about the weights may depend

on several different factors, empirically derived weights based on certain criteria can be used to

facilitating the process of choosing weights. One such criterion can be the reliability of the

composite score; i.e., to find a set of weights to maximize the reliability of the composite score.

(For simplicity in expression, the weights that maximize reliability will be referred to as the optimal
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weights.) The purpose of this paper is to derive formulas for such weights that are potentially

useful in performance assessments and other assessment settings.

Previous research has studied ways of finding the optimal weights of the composite score

for tests that have subtests. This research can be organized into three categories. The first

category (Thomson, 1940; Mosier, 1943; Peel, 1947) uses the classical test theory formulation for

composite score reliability for a test battery. In their approaches, the reliability of each subtest

needs to be estimated using classical test theory methods such as internal consistency indices. Li,

Rosenthal, and Rubin (1996) and Li (1997) presented expressions for the maximum reliability for

this category of methods. The second category (Joe & Woodward, 1976; Conger, 1974) uses

multivariate generalizability theory to fmd weights that maximize the reliability of the test battery

composite score. Solutions for these two categories involve finding the largest eigenvalue and the

associated eigenvector for a certain matrix, and so the solution does not have a closed form. Also,

these methods generally require that the subtests contain multiple items in order to estimate subtest

reliability or variance components. The third category (Kaiser & Caffrey, 1965; Bent ler, 1968)

uses factor analytical methods to fmd weights for each individual item to maximize the internal

consistency reliability of the test. These methods involve estimating communalities and do not

have a closed form because they also require solving for the largest eigenvalue and associated

eigenvector for a certain matrix.

The present paper aims to address a situation where there is no information about the

reliability of each part score. The only available data may be the variance-covariance matrix of the

part scores. This situation makes the first two categories of the previously described methods

difficult to implement. The factor analytical methods may also not be very practical because of the

computational complexity. Practitioners often need some simple straight forward formulas that can

be used to compute reasonably good estimates of the optimal weights to help them to decide the

final weights.

The procedure proposed here assumes a congeneric model for the test. The congeneric

model states that the items are measuring the same construct but that their true score variances and
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error score variances may differ. Reliability here is defined as the correlation of the scores derived

from parallel forms. The parallel forms are supposed to use the same score weighting.

Define X as the total observed score on a test that has n parts, and Xi and E1 as,

respectively, the observed score and error score for part i. Under the congeneric model, the test

scores can be expressed as follows:

X = X1 + X2+ +Xn , where

= T +

X2 = T E2

X, = + En,

and the 's are the congeneric coefficients.

It is assumed that all of the Ai 's are positive (if not, one can reverse the scale to make them

positive), that E A, = 1, and that all of the error variances, 6E2 's, do not have to be equal. The

reliability formulas under a congeneric model are summarized in Feldt and Brennan (1989, p.

115). The expression for the reliability coefficient is much more complicated when the test has

more than three parts than when it has only three parts. Therefore alternative procedures for

deriving the optimal weights must be used when a test has more than three parts. First a derivation

for the three-part case will be given. For the more than three-part case, a two-step derivation is

given, and the two-step derivation will be shown to give the same result as the direct derivation in

the three-part case.

A Derivation for the Three-Part Case

Using the assumptions given above about the congeneric model and without prior

information about the congeneric coefficients, the reliability coefficient for a three-part congeneric

test is given by (Kristof, 1974; Feldt & Brennan, 1989):
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where CT is the covariance between part i and j and 62i is the variance of part i. Let

Y =w1X1 + W2 X2 ± W3 X3 .

(1)

(2)

where the wi 's are weights. Usually, it is assumed that the weights sum to unity, but here for the

convenience of a solution expressed below, the weights are not assumed to sum to one. Because

multiplying the weights by a constant does not change the value of the reliability, the weights may

be standardized to sum to one after they are found . The reliability of Y is

c(w1612013 w2 012 0'23 w3a13623
)2

Pyy 2
k

2 2
w2 C72 2 w363 2w1w2612 2w1w3613 2w2w3a23

(3)

where c = 1/( (712 0-13 a23 ) is a constant which can be omitted in the process of finding the optimal

weights.

One approach to solving this problem is to take the first partial derivatives with respect to

w1, w2, and w3. Then set the derivatives equal to zero and simultaneously solve for w1, w2,

and w3. To check if the results truly maximize the reliability, either the second derivatives can be

taken and checked to see if they are negative at those solutions, or they can be empirically verified

with some test data. It turns out the derivatives are too complicated to be presented in this paper.

The equations will involve quadratic terms of the weights, which render them almost impossible to

solve. But there is another indirect approach for solving this problem, and it is much simpler to

present. This approach maximizes the numerator of the right side of Equation 3 while holding the

denominator to be an arbitrary constant. If the relation between the weights is found not to depend

on this constant, then this relation maximizes the reliability coefficient. As stated earlier, only the
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relation between the three weights, not the absolute value of the weights, affects the reliability

coefficient. Maximizing this numerator is equivalent to maximizing the term inside the parenthesis

because this term is positive. Using a Lagrange multiplier, the problem becomes one offinding the

relative values of the weights that maximize

f = w2012023 + wicruan + W3(713023 A,(qa? + Cri +w363

+2w04,201.2+2w1w3013±2w2w30-23-d) (4)

where A is the Lagrange multiplier (readers should not confuse this A , which has no subscript,

with the congeneric coefficients Ai 's, which have subscripts), and d is a constant at which the

denominator of the Equation 3 is fixed.

Taking partial derivatives off with respect to w1, w2, and w3 and setting them to zero

yields

612 613 A(2 a 12 Iv' ± 2w 2a u 2w3 ) 0

612623 -242622w2 +2w1612 +2w3623) =0

613 623 (2 a32W3 + 2W1 +2w2623) =0

Solving (5) for and substituting this expression into (6) and (7) yields the following two

equations:

61 23 a12 a13w2 = 2
'2 '13 612 623

1

2
'1 '23 a12W =
,y

3 1

63 612 613 a23

(5)

(6)

(7)

(8)

(9)

for the three unknowns w1, w2, and w3 . Note that this set of relationships does not depend on

the constant d, which indicates that any set of weights that satisfies this set of relationships is
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optimal. Using f, g, and h as subscripts for the three parts (XI, X2, X3) and letting f denote any

one of the three parts, then the expression .

12Wf = (af agh afg (TA , (10)

satisfies Equations 8 and 9.

It can be seen that if the variances and covariances for all three parts are equal (which

corresponds to the parts being parallel except for possible mean differences) , then equal weights

are optimal. The formulas for optimal weights suggest that a part will get high weight if it has a

small variance but large covariances with the other two parts.

Example One:

The following example used data from one form of the Work Keys Listening assessment

(ACT, 1995). The data contain item scores for 1793 examinees who took six writing items. This

example used the first three items in the test. Table 1 contains the results. The optimal weights are

approximately .2, .6, and .2. The reliability increases from 0.618 for the unweighted sum to

0.677 for the weighted sum with the optimal weights. The increase is sizable, suggesting that the

optimal weights might be useful in this case.

A Two-Step Derivation for the n-Part Case

Using the assumptions about the congeneric model given previously, and without prior

information about the congeneric coefficients, the reliability coefficient for a test of four or more

parts (assume there are n parts) is given by (Gilmer & Feldt, 1983; Feldt & Brennan, 1989):

D ==
u )0c.

2ar (1, D1)2 Oix 0-2f) (11)
6x

[(V n2
kLi'

n
f

a2
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afg afi
where D1 = g , and row 1 is the row of the variance and covariance matrix with

Za1g- 6fl -61
g

the largest sum of inter-part covariances. When f =1, Df =1.0.

This expression is so complicated that it is impossible to use the previous approach to find

the optimal weights. A two-step approach to this problem is thus proposed here. In the first step,

we will find a set of weights that makes the parts have equal true score variances, i.e., the parts

become tau-equivalent. In the second step, we will find a set of optimal weights for the tau-

equivalent model. The weights for each part thus obtained from these two steps are multiplied

together to get the final weights for the original scores. It will be shown below that the weights

thus obtained are optimal for the original part scores.

Theorem: For a test that has n parts with subscores X1 , X2 , , Xn , it is assumed that

there exists a set of optimal (maximizing reliability) weights. If we transform XD's to YT's by

multiplying them with an arbitrary set of non-zero weights, Y1 = w; Xi , i=1, 2,- n and if a

set of weights w;' , w2 , , wn are optimal for Y1 , Y2 , Yn . Then it is claimed that the set of

weights wi = , i=1, 2, n , are optimal for X1 , X2 , , Xn .

Proof- By assumption, there is a set of optimal weights for X1, X2 , , Xn . Denote them

as w1 , w2 , - - , wn , and let pmax be the maximum reliability.

Because w1 , w2 , - , wn are optimal for Y1, Y2 , Yn , the reliability of the left side of

the equation

W1 171 +w2 Y2 +. ±WnYn =W1W1X1 ± W2 W2 X2 + +Wn Wn Xn

is also Pmax Because if it is less than p. then there exists another set weights

wi/1171,q 2,- , w°/wn , which when applied to Y1, Y2 ,

equal Pmax, and this contradicts the condition that wi , w2 ,

(12)

Yn would make the reliability

, wn are optimal for
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, Y2 , Y.,. If it is greater then pma, then by Equation 12, the right side of Equation 12 also

has reliability greater than pina, which contradicts the condition that pmax is the maximum

reliability of original parts using the optimal weights. Therefore, the left side of Equation 12 must

have reliability equal to pn...

By Equation 12, we have that the weights w1 , w2 , , wn are optimal for

X1, X2 , , Xn ., because the right side of Equation 12 also has reliability equal to Pmax . This

completes the proof.

The two-step derivation for finding the optimal weights for an n-part test is described

below.

Step One:

If we can estimate the A.i's for each part, the inverse of the Xi's are the weights that make

the transformed part scores tau-equivalent. Thus, the step one weights are

where

w; , i--1, 2,--, n.

Now

Y = Y2+*±Yn

Yl = w1X1 = (A.1T + Ei)P4 = T +E1 /A.1

172 = w2X2 = (.1.2T + E2)I 112 = T + E2 1 2,2

Yn =w,,Xn = (AnT + En)/ = T + En! An

(13)

(14)

Step Two:

We need to find a set weights 14/;' , w2" , , Wn that are optimal for Y1, Y2 , Yn ; that is,
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the reliability of Z = wl Y1 + w2 Y2 ±...+ Yn is maximized. To simplify the derivation, it is

assumed that this set of weights sums to one (this condition is not necessary because if we fix the

sum to be an arbitrary constant, we will have the same final solution). We have

WnZ=(Wi" +±Wn" )T -FEi-F+ n En =T , (15)
Ai An 1 n

2 2
W1 Wn+...

2 E
A

(16)

Notice that the true score part is not affected by the values of the weights. Hence the reliability

may be maximized by minimizing the error variances in Equation 16. Again, using the Lagrange

multiplier, the problem becomes one of minimizing the function f where

f = a +...+
2

a2 + (wi +.+w,; - 1) (17)
Ai

Taking the first derivatives off with respect to the Wi 's, setting them to be zero and solving the

resultant equations for Wi 's yields

tv2
W" A"1 W2 "E2 n E

A21 A22 A2n 2
(18)

By Equation 18, we have the relationships among the weights. Because only the relative values of

the weights affect the reliability, any weights that satify these relationships are optimal. The

following expression for the weights satisfies these relationships even though they do not add up

to one.

W = , i=1, 2,..., n,
CTE,
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Then these w; 's satisfy Equation 18, and combining them with Equations 13 and 19, yields the

following final weights for the original scores:

2
1 A, Ai

wi = wiwi = ' = , i=1, 2, n. (20)
(TE CTE,

The remaining problem is to fmd the error variances for the original score parts. Denoting

the sum of the i'th row of the variance-covariance matrix of the original score parts as 1/1 , yields

the following two equations

= az; = ( + 2,2 -F. +2.,)C4 +62E = +6E

= + 62E

Solving them yields

Substituting the right side of Equation 23 into Equation 20, yields

Ai (1- )
wi =

i
2

(21)

(22)

(23)

(24)

Noting that 6ii = lif Cr?' = (1- Ai )67.2 . Dropping the common term a2, we have
j*i

,T2

Wi = 2
, i=1, 2, n

ai f i

(25)
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Equations 24 and 25 are not equivalent, but they differ only by a constant 6T2, so they both

represent the optimal weights.

To complete the solutions, formulas for the Ai's are needed. Gilmer and Fe ldt (1983).

provide the solutions for the s .

A, =
Dl

, i =1, 2, n.

All the computations for the weights are based on the variance-covariance matrix.

(26)

Example Two:

The following example used the same data as used in the previous example for the three

parts. This example.used all six items in the test. Table 2 contains the results of the computation.

Item 5 gets the largest weight, followed by item 4 and item 6. The reliability increases from 0.751

for the unweighted sum to 0.796 for weighted sum with the optimal weights. This increase is

moderate but is still valuable in this setting.

It is shown in the next part that EquatiOn 25 gives the same results as Equation 10 in the

three-part case. From Feldt and Brennan (1989), we have:

_ agh ±agh+a gh -1
A, (

f afg a fh Crgh

Substituting this equation into Equation 25 gives

Wf
a fg + fh afg a fh ± afg agh a fh agh

2 2

f + afg + afh af CTgh afg a fh

a gh gh gh

afg 6fh agh

90

(27)

(28)
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The numerator of Equation 28 is the same for all the three weights, and thus can be dropped from

the formula. It then gives the same expression as Equation 10.

Discussion

This paper gives two formulas for computing the weights that maximize test reliability, one

for a three-part test, the other for a general case. It was shown that these two formula are

consistent in the three-part case. There are some potential advantages for these formulas. First of

all, they are easy to compute. Second, they enable us to gain insight into the factors that contribute

to high or low weight for a particular part.

A natural question a reader might ask is about the two-part case. Because it is not possible

to estimate the two congeneric coefficients based on one covariance, the approach presented in this

paper cannot be applied to the two-part case. However, if the congeneric coefficients can be

somehow obtained, then the general expression for the optimal weights in Equation 25 can still be

applied to the two-part case.

As stated at the beginning of the paper, the decision on what weights to use may depend on

a number of factors of which maximizing reliability may be just one. Wang and Stanley (1970)

presented many different rationales for deriving the weights. Some of them are judgmental, others

are empirically derived. The question of what factor should be weighted more than the others is

entirely situation dependent. As reviewed by Wang and Stanley, however, using weights that

maximizing the reliability are often considered a desirable alternative in the absence of an external

criterion.

For most testing situations, particularly for those with high stakes on the part of the

examinees, it is a good measurement practice to let the examinees know the score weighting at the

testing time. So, it is necessary to collect pre-testing data for estimating the empirical weights such

as the ones derived in this paper. It is usually not a good practice to change the weights after

operational test administration. As with any sample of the data, the pre-test sample data collected
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for deriving these weights also contains sampling error. So the numbers computed using the those

formulas should not taken at face value. It is advisable to estimate the weights based on more than

one sample and compare the results whenever multiple samples are available.

A congeneric model is used in the derivation, which implies that if the situation is such that

the congeneric model is not applicable, then these formula are probably also not applicable. How

robust these formulas are to the deviation from the assumptions of the congeneric model needs to

be studied empirically.

A final note is that these formula not only apply to performance assessment situations

where they may be most useful, but that they also apply to other testing situations where each

subtest may contain multiple items. They also apply to tests that contain both multiple-choice type

items and constructed response type items. The major advantage of these formulas is that they

only need the variance-covariance matrix of the part scores and do not need the reliability estimates

of the part scores. In situations where reliability information for part scores are available, it is

desirable to obtain weights using other procedures that require part score reliability estimates and

compare them to weights derived using the formulas derived in this paper.
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Table 1. Computations for the three-part example.
Item The variance-covariance matrix Row sum Coy. sum Lambda Weights
1 7.388 2.373 1.207 10.968 3.580 0.390 0.197
2 2.373 4.241 1.252 7.866 3.625 0.404 0585
3 1207 1.252 3.066 5.526 2.459 0.206 0.218

Table 2. Computations for the six-part example.

Item The variance-covariance matrix Row sum Coy. sum Lambda weights

1 7388 2373 1207 1.114 1.886 1.283 15.250 7.862. 0.164 0.076
2 2373 4.241 1.252 1.084 1343 1.060 11.353 7.112 0.147 0.130

3 1.207 1252 3.066 1.095 1.057 1.147 8.824 5.757 0.116 0.133

4 1.114 1.084 1.095 4.199 2.266 2.717 12.474 8.275 0.173 0.191

5 1.886 1343 1.057 2.266 4.151 2.841 13.543 9392 0.205 0323
6 1.283 1.060 1.147 2.717 2.841 5.759 14.807 9.048 0.195 0.148
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Abstract

Portfolio assessment is becoming popular in classrooms. ACT is striving to produce a

portfolio assessment system that not only fosters good classroom instruction, but can be used to

make decisions on a larger scale. Reliability is an important consideration in assessment,

especially in assessment that is large-scale and high-stakes. This paper discusses the reliability

of ACT's PASSPORT Portfolio System and how reliability has improved during PASSPORT's

development. Possible reasons for this improvement in reliability, such as a broader distribution

of scores and less variability due to readers, are examined.
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Reliability Issues and Possible Solutions

Portfolio assessment is becoming a popular form of assessing student outcomes because

it integrates classroom instruction and assessment. Many educators believe that portfolio

assessment provides students the opportunity to use their classroom work, and their reflections

on that work, to supply a richer and more valid picture of students' competencies than do other

types of assessment (Gearhart & Herman, 1995). Portfolios challenge teachers and administrators

to focus on meaningful outcomes, while providing a bridge between the worlds of public

accountability and classroom practice. LeMahieu, Gitomer and Eresh (1995) assert that portfolio

assessment supports instructional practice through the use of comprehensive and consistent tasks,

providing detailed evidence of student thinking and encouraging students to become more active

in their learning.

Portfolio assessment fits naturally with good instruction. In addition to its potential as

a tool for thoughtful classroom assessment, portfolio assessment can also be used for large-scale

testing (Freedman, 1993). The hope for connecting large-scale and classroom assessment is

directly tied to gaining a better understanding of the measurement concerns and the classroom

issues associated with the successful implementation of portfolios. ACT, in the development of

a portfolio system, has attempted to address the practical issues, while striving to produce an

equitable, technically-sound assessment system. One of the more important issues associated

with the development of a portfolio system is the ability to consistently evaluate student

responses. Consistency (or, reliability) is desirable, because it demonstrates that scoring criteria

are being applied fairly, which means that everyone can agree on the significance of the results.

Reliable results may be interpreted, summarized, compared, and used to make important

decisions.
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The purpose of this paper is to document the reliability results of ACT's PASSPORT

portfolio system following year one, the changes that were instituted between years one and two

to address reliability concerns, and the results of the year two pilot after the changes had been

incorporated.

An Overview of PASSPORT

ACT's portfolio system, PASSPORT, is an assessment system designed to augment

existing assessments, improve instruction, and complement ongoing classroom activities. The

skills assessed by PASSPORT have been selected from an analysis of national curriculum

standards and state curriculum frameworks, and PASSPORT provides a means for directly

connecting class activities to these standards and frameworks. The portfolio involves students

from start to finish and reflects real class work. Students and teachers enter into a dialogue as

they agree on goals, define projects, and assess progress. Although PASSPORT is classroom-

centered and flexible enough to adapt to a variety of school settings, PASSPORT also provides

a framework of materials and support services.

ACT's portfolib system is the product of a three-year developmental process. During the

first year of the project, ACT staff worked with schools (secondary and post-secondary),

employers, national educational organizations, and curriculum organizations to identify the

potential need for and uses of a large-scale portfolio assessment system. The goal for the first

year of the project was to determine the feasibility of developing a portfolio system that could

meet a wide variety of needs for a wide variety of groups and to identify what materials and

services should be provided by such a system. The second year of development involved the

field test of PASSPORT with a sample of seven schools that represented a range of school types,

geographic locations, and student populations. These schools were selected to be as

101



99

representative as possible of the nation's diverse geography and population. An initial pilot

administration followed the field test during the third year of development; at that point, the

Work Sample Descriptions and accompanying scoring rubrics were prepared for a second round

of piloting. It is the changes seen between the field test administration (1994-95) and the pilot

administration (1995-96) that are summarized in this paper.

Work Sample Descriptions

So that it may fit within a classroom setting, PASSPORT provides flexible guidelines

concerning the types of student work that can be submitted as portfolio entries. The portfolio

framework is built from a menu of broadly-defined categories of activities that students already

do in class. These categories are called Work Sample Descriptions. For each Work Sample

Description, a variety of class activities can produce related student work. Teachers select the

five most appropriate Work Sample Descriptions from this menu of options for assignment in

their particular classes. Students are asked to submit work from their regular class assignments

that matches each of these five different Work Sample Descriptions. Each student is provided

an opportunity to complete, select, and reflect upon the work that will represent their skills in

each of three areas: Language Arts, Mathematics, and Science. Thus, students complete five

entries in a particular content area.

The PASSPORT Science portfolio component is specifically designed to cut across a

broad range of skills that are of value in the secondary science classroom. A variety of

approaches is presented to the teacher and student that allows for the identification and selection

of student work that matches class activities. For example, the Work Sample Descriptions in

Science include literature review and evaluation, integrating sciences, the societal context of

science, historical perspectives, evaluating scientific claims, laboratory observations, laboratory

d.02
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experiments, designing studies, and performing studies. Each of these Work Sample Descriptions

is evaluated using its own rubric, which lists criteria relevant to the task being performed. These

criteria evaluate the student's proficiency at communicating the depth of scientific understanding,

specifying the appropriate purpose and hypotheses, developing and following an appropriate

design, presenting procedures and results in an organized and appropriate format, analyzing and

evaluating information, drawing conclusions, and using and citing varied sources of information.

The PASSPORT Mathematics portfolio component provides the opportunity to analyze

data, use mathematics to solve problems from another class, solve challenging problems, collect

and analyze data, compare notions, use a technological tool, construct logical arguments, solve

a problem using multiple solution strategies, solve real-world problems, and show connections

among branches of mathematics. The Mathematics component also contains a different rubric

for each Work Sample Description. Some of the features used to evaluate student work are the

choice of problem, description of the problem, accuracy of analysis, correctness and interpretation

of data, correctness of solution, interpretation of results, justification, understanding, and

comparison of concepts.

The PASSPORT Language Arts portfolio follows the same format as the Science and

Mathematics in that it encompasses a broad range of activities. The Language Arts Work Sample

Descriptions allow teachers to select from explanation, analysis and evaluation, business and

technical writing, poetry, writing a short story or drama, persuasive writing, relating a personal

experience, research/investigative writing, responding to a literary text, writing a review of the

arts or media, and writing about the uses of language. Each Work Sample Description is

evaluated according to its own rubric. Some of the common features found in these rubrics
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include completeness, development, clarity, audience awareness, voice, word choice, sentence

variety and mechanics.

Finally, PASSPORT requires students to reflect on their learning and accomplishments

by writing a self-reflective cover letter. One of the most important benefits of PASSPORT is

a student's self-reflection on his or her growth and development as a learner. The cover letter

is intended to help people who read the student's portfolio understand how the portfolio

demonstrates the student's mastery of specific skills and concepts and how that mastery relates

to the student's growth and goals.

Scoring

A modified holistic scoring procedure was adopted for the scoring of PASSPORT results.

Each entry (there are five entries per content area) receives a single score on a six -point scale.

In addition, the entire student portfolio receives an overall score, on a four-point scale, that takes

into account the features found at the individual Work Sample Description level as well as the

variety of entries and evidence of growth and depth found in the self-reflective letter and the

entries. This paper will focus on the individual Work Sample Description results, on the six-

point scale.

During the development of PASSPORT, a specific scoring rubric was designed for each

Work Sample Description, and actual student responses from the pilot test administration were

used to illustrate each score point of the rubric. Teachers and ACT staff who participated in this

rubric-writing process examined student responses from all participating schools, taking into

account the varied interpretations and approaches to the particular Work Sample Descriptions

across the schools. This review process helped to ensure that various cultural backgrounds,

course offerings, and opportunities were taken into account. Based on this process, the Work
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Sample Descriptions were refined to be as broad as possible while still considering readers'

ability to evaluate them in a consistent manner. Readers noted particular difficulties associated

with Work Sample Descriptions during the scoring process. This information was used to further

refine the Work Sample Descriptions. Work Sample Descriptions that proved to be too difficult

or were misinterpreted in their intent were reviewed and revised prior to the second pilot test

administration.

As with the development and design of the Work Sample Descriptions, a variety of

classroom teachers, multicultural educators, content experts, and measurement specialists worked

to develop the scoring rubrics. Throughout the training and scoring process, reader consistency

was monitored, evaluated, and documented.

Reliability

The reliability of the portfolio was addressed by two separate analyses. To address

reliability, 25% of the portfolios, sampled randomly, were evaluated by a second reader. The

first analysis estimates indices of reader agreement [such as interrater reliability (Pearson's

correlations) and interrater agreements (expressed in percents)], which describe the degree to

which readers agree with each other when scoring the same work sample. Indices of reader

agreement identify how well the scoring standards have remained fixed throughout the scoring

process. Interrater agreements serve as an indication of the degree to which the responses have

required a third reading, as the percent of papers requiring a third reading is expressed as the

percent of papers whose scores were resolved. The third readers were team leaders, who

supervised the readers and who had more experience working on scoring projects.

The second reliability analysis, called generalizability analysis, is used to estimate the

various sources of measurement error. The scoring process is designed so that the most
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appropriate variance sources (such as the particular Work Sample Descriptions chosen, the sample

of examinees, readers, and various interaction components) can be identified and estimated. A

reliability-like coefficient, the generalizability coefficient, is estimated from this analysis. For

these generalizability analyses, the SAS procedure MIVQUE was used in both 1994-95 and 1995-

96 to estimate variance components and assess generalizability. For a more thorough discussion

of generalizability designs and analyses, see the Gao and Colton (1997) paper in this report.

Results

During the 1994-1995 academic year, teachers at seven field test sites participated in the

project. During the 1995-1996 academic year, teachers at 20 pilot sites used PASSPORT in their

classrooms. At the end of each school year, students compiled their work into finished portfolios

which were sent to ACT for scoring. Scores were assigned on a scale of 1 to 6 for each Work

Sample Description and on a scale of 1 to 4 for the overall portfolio. Readers were content-area

experts, and most had teaching experience in the secondary classroom. Readers were trained to

score according to ACT-developed rubrics and needed to qualify before scoring began.

Tables 1, 2, and 3 (at the end of this report) show the descriptive statistics and frequency

distributions for each of the Language Arts, Mathematics, and Science Work Sample Descriptions

for the 1994-95 and 1995-1996 academic years. Italics denote 1994-95 data, which are recorded

below 1995-96 data.

Because the group assessed in 1995-96 was different than the group in 1994-95 (although

both groups were selected because they represented the entire spectrum of the national

educational system), differences in means and frequencies might have been due to these group

differences. However, at least some of the differences were due to teachers' having more

experience with PASSPORT and to changes made to the PASSPORT system.
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Language Arts

Overall, the results for the Language Arts portfolio were consistent from year one to year

two. Year two showed an overall increase in the mean performance on Work Sample

Descriptions, a decrease in the percent of low scores that were assigned and a slight increase in

the percent of high scores that were assigned. In 1994-95, the highest mean scores were obtained

on Analysis/Evaluation (3.17), Relating a Personal Experience (3.14), and Explanatory Writing

(3.15). In 1995-96, the highest mean scores on the individual Work Sample Descriptions were

obtained on the Research/Investigative Writing (3.47) and Analysis/Evaluation (3.46) Work

Sample Descriptions.

Means should not be interpreted without looking at the standard deviations and frequency

distributions. In 1995-96, the standard deviations of scores on the individual Work Sample

Descriptions ranged from 0.95 to 1.22, which shows that scores tended to cluster within a score

point or so of each mean. These were fairly consistent with 1994-95 results that ranged from

.88 to 1.30. However, overall there was a slight decrease in the standard deviations.

The frequency distributions in Table 1 also show where scores tend to cluster within each

Work Sample Description. In both years, most language arts Work Sample Descriptions showed

more scores in the lower-score end of the distribution than in the upper-end.

Mathematics

Comparing the individual Work Sample Descriptions (rated on a scale of 1 to 6), the

highest mean scores in 1995-96 were obtained on the Logical Argument (3.23) and Challenging

Problem (3.18) Work Sample Descriptions. The highest means in 1994-95 were found for

Logical Argument (4.30), Another Class (3.92), and Technology (3.88). In 1994-95 the mean

performance on Work Sample Descriptions ranged from 1.63 to 4.30, and in 1995-96 the means
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ranged from 2.22 to 3.23. The change in performance between years one and two was not as

systematic as found with the Language Arts. In Mathematics, only four of the 11 Work Sample

Descriptions showed increases in mean scores from 1994-95 to 1995-96. The rest showed

decreases. This may be due to the reworking of some Work Sample Descriptions and their

rubrics so that scores were distributed more evenly, making it harder to receive top scores. The

fact that more significant changes were seen between years in Mathematics may also be due to

an increase in the number of participating teachers and the variety of mathematics classes that

were included in the second year of the pilot. In addition, small sample sizes during the first

year likely contributed to unstable estimates of performance.

Unlike the frequency distributions in Language Arts portfolios, the distribution of scores

on some of the Mathematics Work Sample Descriptions are frequently bimodal. For example,

in 1995-96, the scores on the From Your Own Experience Work Sample Description peaked at

a score of 1 and at a score of 3. Scores on the Logical Argument Work Sample Description

show a large peak at a score of 3 and a smaller peak at a score of 5. Technology scores

demonstrate a large peak at 3 and a smaller peak at 1. A bimodal distribution could mean that

the Work Sample Description tended to be chosen in higher- and lower-level classes or the

curriculum emphasizes the necessary skills in higher and lower grades. Within all Mathematics

Work Sample Descriptions, there are more scores in the lower end of the distribution than in the

upper end. This was true for both years.

The standard deviations on the individual Work Sample Descriptions ranged from 0.85

to 1.54 in 1995-96. These results were similar for 1994-95 when the standard deviations ranged

from .64 to 1.54. In 1995-96, the largest standard deviation, 1.54, was seen in the scores of the
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Logical Argument Work Sample Description, which had a large peak of scores at 3 and a smaller

peak at 5 in 1996.

Science

In 1995-95, the individual Work Sample Descriptions receiving the highest average scores

were Literature Review and Evaluation (2.63) and Historical Perspective (2.44). Students in

1994-95 had also performed best on these same Work Sample Descriptions, with means of 2.64

for Literature Review and 1.95 for Historical Perspective.

In Science, none of the average Work Sample Description scores for 1994-95 or 1995-96

was 3 or over. Scores of 5 and 6 were more infrequent in science than in either Mathematics

or Language Arts. All of the science distributions had one peak, situated closer to the lower end

of the score scale.

The standard deviations of scores on the individual Work Sample Descriptions ranged

from 0.49 to 1.01 in 1994-95 and from .69 to 1.03 in 1995-96. Scores in Science clustered more

tightly than scores in Mathematics and Language Arts, as evidenced by fewer scores at the higher

end of the score scale in Science.

Reliability Results

In both years, twenty-five percent of the PASSPORT portfolios were double-scored by

a randomly-selected second reader to provide estimates of reliability. Indices of interrater

reliability [interrater correlations (Pearson's) and the percentage of scores in the perfect

agreement, adjacent agreement, and resolved categories] were computed for each Work Sample

Description. Perfect agreement was achieved when both readers assigned the same score to the

student's entry. Adjacent agreement was achieved when the two scores assigned to the student's

entry were within one point of each other. Resolved scores were originally more than one point

1o9
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apart and were settled through discussion among the two readers and the team leader (who serves

as the third reader).

Tables 4, 5, and 6 show the interrater statistics and accuracy statistics for each Language

Arts, Mathematics and Science Work Sample Description in each content area for both years.

The sample size was larger in 1995-96 than it was in 1994-95. Tables 4, 5, and 6 provide

indices of interrater reliability for only the Work Sample Descriptions for which 25 or more

papers were double-scored. Results from 1994-95 are in italics, and results from 1995-96 are in

plain text.

Language Arts

In 1995-96, in Language Arts, the percentage of readers in perfect agreement ranged from

73.9% for Evaluation of Print or Electronic Media to 49.2% for Proposing a Solution. The

percentage of readers in perfect or adjacent agreement ranged from 100% for Business and

Technical Writing and Proposing a Solution to 96% for Imaginative Writing.

As can be seen in Table 4, even the Work Sample Descriptions with the lowest interrater

agreements in 1995-96 still demonstrate good agreement among readers. This shows that readers

were in solid agreement with each other, most likely due to adherence to rubrics. In 1994-95,

the percentage of readers in perfect agreement ranged from 60.7% for Writing about Values,

Issues, and Beliefs to 34.3% for Persuasive Writing.

In 1994-95, the median interrater correlation was .60 with a high of .79 and a low of .47.

The median interrater correlation in 1995-96 in Language Arts was 0.78, with a low of 0.68 for

Writing about Uses of Language to a high of 0.86 for Business and Technical Writing. These

are all moderate to high correlations for portfolio assessment. Changes (described later) between

the two years seemed to result in substantial increases in interrater correlations.

1.10
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Mathematics

Among Mathematics Work Sample Descriptions in 1995-96, the percentage of readers in

perfect agreement ranged from 84.0% for Connections to 51.0% for Logical Argument. In 1994-

95, the percent in perfect agreement ranged from 42.5% to 90.6%. There was an overall increase

in the accuracy of the readers between the two years.

In 1995-96, the percentage of readers in perfect or adjacent agreement ranged from 99.3%

for Connections to 82.0% for Logical Argument. For the 1995-96 Logical Argument Work

Sample Description, 18.0% of readers' scores were resolved. All of the rest of the 1995-96

Mathematics Work Sample Descriptions had 6.0% or fewer of their readers falling into this

category. These results may be compared to 1994-95 results showing perfect or adjacent

agreement of 100% for Collecting and Analyzing Data to 79.9% for Comparing Notions. In

1994-95, Comparing Notions had the largest percentage of papers needing resolution, at 20.1%.

Logical Argument had about the same percentage of papers needing resolution, at 17.1%.

In 1995-96, the median interrater correlation in mathematics was 0.79, with a low of 0.58

for Logical Argument and a high of 0.89 for Connections. The interrater correlations for all of

the Work Sample Descriptions were 0.70 or higher, except for Logical Argument. Similar

statistics in 1994-95 ranged from 0.46 for Comparing Notions to 0.96 for Collecting/Analyzing

Data. The change between 1994-95 and 1995-96 was not as consistent as with Language Arts.

The interrater correlations tended to fluctuate in both directions. Small, unstable samples in

1994-95 likely contributed to artificially high estimates.

Science

For the individual Work Sample Descriptions in 1995-96, the percentage of readers in

perfect agreement ranged from 82.7% for Design and Perform a Study to 69.0% for Literature

1 II
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Review and Evaluation. Also in 1995-96, the percentage of readers in perfect or adjacent

agreement ranged from 100% in Applications, Design and Perform a Study, Historical

Perspective, and Literature Review and Evaluation to 99.0% in Laboratory Experiment. Science

had very high interrater agreement in 1995-96, most likely due to strict adherence to rubrics.

In 1995-96, the median interrater correlation among Science Work Sample Descriptions

was 0.77, with a low of 0.72 for Design a Study and a high of 0.86 for Applications. In 1994-95,

similar values ranged from 0.44 to 0.62. Overall there was a positive effect on interrater

reliability between the two years. All Work Sample Descriptions increased with respect to the

interrater correlation and decreased with respect to the percent of papers needing resolution.

Generalizability Results

As seen in Table 7, the generalizability coefficients for the 1995-96 pilot were Language

Arts (0.75), Mathematics (0.79), and Science (0.65). These represented changes from the 1994-

95 year of Language Arts (0.73), Mathematics (0.33) and Science (0.31). Values within the

1995-96 range are expected, given the number of work samples a student submits (five, which

is far fewer than the number of items found on a typical multiple-choice test) and the fact that

human judgment is used in scoring, even though rubrics keep scoring as objective as possible.

The Discussion section seeks to explain the differences in generalizability between the two years,

especially in Mathematics and Science.

Discussion

The second year results, in all three content areas, were overall more reliable than the first

year results. However, Mathematics did have two exceptions to this generalization. The

increase in reliability is likely due to two factors: a broader distribution of scores that

represented the entire score range and a decrease in the variability due to readers. These effects
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were the result of a number of changes that were instituted between years. These changes were

deliberately introduced into the program following a review of the first year results. The changes

were also introduced and implemented in a larger sample of classrooms than the initial

framework. These changes included:

1. Work Sample Descriptions were more structured during year two than they were

during year one. This additional structure helped participating teachers to focus

on assignments that were appropriate for each Work Sample Description. The

teachers and students spent more time in the selection of the appropriate sample

of student work than they did the first year.

2. Teachers were given more examples of student work at each of the score points

than they were the first year. Prior to the beginning of the academic year,

samples of student work were shared with the teachers during an initial staff

development workshop. Additional samples of student work were shared with

teachers midway through the academic year.

3. More examples of classroom assignments were provided to participating teachers.

These assignments were selected from those that were submitted the first year and

may have provided more of a context for teachers who were selecting activities

for the work samples.

V 0
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4. Teachers participated in a two-day workshop that provided an exposure to the

scoring criteria and scoring practices used by ACT. This workshop provided

teachers with a variety of examples of student work and articulations for the

assigned scores. ACT staff worked with participating teachers to become more

familiar with the scoring criteria during this workshop. Teachers attending the

workshop had the opportunity to evaluate student work with the scoring guides

that accompany the program.

5. Scoring criteria were shared at the beginning of the school year with students and

teachers. This early dissemination of information helped both students and

teachers to focus on the evaluative criteria throughout the entire year.

6. Practicing teachers were hired as readers and trained by ACT staff to internalize

the scoring rubrics. The selection of practicing teachers helped to address the

issue of expectations and helped to define the scale used by the readers.

7. Readers were trained specific to each Work Sample Description in both years one

and two. However, year two readers were provided with more clear examples of

what type of performance constituted each of the possible points on the score

scale.

Conclusions

The successful implementation of a portfolio system that includes an assessment

component must include a refined set of rubrics that have been field-tested and pilot-tested on

114
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a representative group of students. The field test and pilot test must be designed to collect not

only student information but also information from the teachers with regard to impact,

correspondence to curriculum, interpretability, and generalizability.

Reliability of portfolio results can be increased through the systematic exposure of the

scoring rubric and assignments to participating teachers. Students must also know and be able

to understand the scoring rubric and the tie between examples of work selected for inclusion in

the portfolio and the scoring process.

In a large-scale assessment environment, there must be some constraints placed on the

types of assignments and selection of student work to enhance the ability to evaluate the work

reliably. A system that allows for student selection without these guidelines and constraints will

lead to results that are not generalizable beyond the specific assignment.

5
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TABLE 1
Distribution of Language Arts Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

WOrk'Sathrile DesCriptian' , Distribution Meail.,, ,. Number
A,y'Score'',':', dui 4W , - - - :2

_
'.., Level (*/(;)-

Analysis /Evaluation 1 = 2.0% 3.46 0.95 1325
_ 7.9% 3.17 1.13 313

2 = 10.3%
19.1%

3 = 42.6%
35.0%

4 = 32.1%
27.1%

5 = 11.3%
9.4%

6= 1.7%
1.5%

Business and Technical Writing 1 = 9.4% 2.95 1.10 235
27.8% 2.14 0.88 71

2 = 24.7%
40.0%

3 = 36.2%
26.7%

4 = 22.1%
5.6%

5 = 6.4%
0%

6= 1.3%
0%

Evaluation of Print or Electronic 1 = 8.7% 2.95 0.99 219
Media 25.0% 2.58 1.21 96

2 = 18.3%
21.0%

3 = 47.5%
32.0%

4 = 21.5%
15.0%

5 = 2.7%
7.0%

6 = 1.4%
0%
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TABLE 1
Distribution of Language Arts Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

WorIcSample Description _ _Distribution-,
- -

by Score
Level:(%) _

- _114,en.
Out of 6)'

S: D. Number '

Explanatory Writing .1 = 4.1% 3.17 1.00. 972
5.8% 3.15 1.13 67

2 = 19.7%
27.5%

3 = 41.7%
30.4%

4 = 25.7%
21.7%

5 = 7.6%
14.5%

6= 1.2%
0%

Imaginative Writing 1 = 5.4% 3.11 1.09 1960
15.8% 2.64 1.18 213

2 = 25.4%
35.0%

3 = 34.6% .

29.1%

4 = 24.0%
12.8%

5 = 9.4%
6.0%

6 = 1.2%
1.3%

Persuasive Writing 1 = 1.2% 3.35 0.96 1371
17.2% 2.95 1.30 291

2 = 16.3%
16.9%

3 = 42.3%
32.4%

4 = 28.1%
20.6%

BEST COPY AVAILABLE 5 =10.6%
10.5%

6= 1.5%
2.4%

11 v
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TABLE 1
Distribution of Language Arts Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work SainpleDeiCription' `InstributiOn
by:SCgre, ',,c ,,,

.Mein.
0:4-pf 6)

S.13; lquinber
;,,-,

LeVel'(°/(;),:' -
Proposing a Solution 1 = 8.0% 2.91 1.04 261

8.7% 2.92 1.09 126

2 = 25.7%
29.1%

3 = 40.6%
32.3%

4 = 19.5%
22.0%

5 = 5.0%
7.9%

6= 1.1%
0%

Relating a Personal Experience 1 = 1.7% 3.32 0.98 2093
11.9% 3.14 1.24 342

2 = 17.3%
16.9%

3 = 41.1%
30.7%

4 = 27.8%
25.8%

5 = 10.8%
13.0%

6 = 1.2%
1.7%

Research/Investigative Writing 1 = 4.5% 3.47 1.22 1314
19.3% 2.77 1.24 203

2 = 18.6%
22.4%

3 = 27.4%
28.1%

4 = 28.2%
22.8%

5 = 17.3%
6.6%

6= 4.0%
. 0.9%

1 i
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TABLE 1
Distribution of Language Arts Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Sample Description

,

Distribution '
by Store',

Level (%)

Mean
(out ',of 6)

S.D. ,Number

Responding to a Literary Text 1 = 7.9% 3.02 1.11 2194
14.1% 2.72 1.10 278

2 = 25.8%
28.5%

3 = 32.7%
32.4%

4 = 24.6%
19.7%

5 = 8.2%
4.6%

6 = 0.8%
0.7%

Writing about an Out-of-Class 1 = 8.9% 3.01 1.17 640
Reading . 9.5% 2.81 1.11 35

2 = 26.9%
35.7%

3 = 31.3%
28.6%

4 = 22.5%
21.4%

5 = 8.6%
2.4%

6 = 1.9%
2.4%

Writing about Uses of Language 1 = 0% 3.72 0.94 86
*NA *NA *NA *NA

2 = 9.3%
3 = 32.6%
4 = 36.0%
5 = 20.9%
6 = 1.2%

BEST COPY AVAILABLE
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TABLE 1
Distribution of Language Arts Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Sample Description: ,Distribution-:> =Mean ;S. D: : Number:
. by `Score ; . ; .(out;of 6)

,

Tevelr/,0 -

Writing about 1 = 3.7% 3.10 1.00 1051
Values/Issues/Beliefs . 21.5% 2.78 1.28 131

2 = 23.9%
27.1%

3 = 40.9%
25.7%

4 = 22.5%
16.0%

5 = 8.1%
7.6%

6 = 0.9%
2.1%

Writing a Review of the Visual 1 = 6.5% . 2.94 1.05 307
or Performing Arts 8.3% 3.64 1.12 11

2 = 30.3%
33.3%

3 = 33.2%
41.7%

4 = 22.8%
16.7%

5 = 6.8%
0%

6 = 0.3%

.......____ 0°A_
Overall Portfolio Score DistrifgutiOit s: Mean S. S.D. 71jurctber

`,by'SCore .(out 9f -4)'
,

'(%,Level )

Overall Language Arts Portfolio 1 = 32.3% 1.93 0.79 3341
2.20 0.90 619

2 = 45.1%
3 = 19.8%

4 = 2.8%

* In 1994-95, there were so few entries corresponding to this Work Sample Description that meaningful indices
could not be obtained.
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TABLE 2
Distribution of Mathematics Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Sample Distributicin 'Mean 'S. . 'Number
:Descriptfon` . 1v' Score, <out of 6)

Level ( frp) ,
,

Another Class 1 = 11.4% 3.02 1.05 458
0% 3.92 0.64 13

2 = 13.1%
7.7%

3 = 43.2%
0%

4 = 27.7%
84.6%

5 = 3.5%
7.7%

6= 1.1%
0%

Analyzing Data 1 = 28.5% 2.22 1.06 810
25.0% 2.55 1.24 60

2 = 36.9%
23.3%

3 = 21.1%
31.7%

4 = 11.2%
13.3%

5 = 1.7%
5.0%

6= 0.5%
1.7%

BEST COPY AVAILABLE 12,2
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TABLE 2
Distribution of Mathematics Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Saniple-
-Description s

,bistribution
-- by Score .,

LeVa-(%;)

'Mean'
,- (ont,of-§)

'-

S. . 'Number

Connections 1 = 22.0% 2.26 1.05 537
47.9% 1.63 0.70 73

2 = 47.1%
42.5%

3 = 18.8%
8.2%

4 = 7.3%
1.4%

5 = 4.3%
0%

6 = 0.6%
0%

Collecting and Analyzing Data 1 = 21.0% 2.23 0.85 671
62.0% 1.70 1.03 108

2 = 40.5%
13.9%

3 = 32.8%
17.6%

4 = 5.4%
4.6%

5 = 0.3%
1.9%

6= 0%
0%
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TABLE 2
Distribution of Mathematics Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Woric Sample ,

Description '
,

Distribtition
by SCOre----:
Level ,(%),'

...

*an T

,(ontolb):
S.D: °- NUmber

Consumer Beware 1 = 33.2% 2.39 1.15 334
50.0% 1.88 1.20 16

2 = 14.1%
31.3%

3 = 34.7%
6.3%

4 = 17.1%
6.3%

5 = 0.6%
6.3%

6 = 0.3%
0%

.

Comparing Notions 1 = 18.3% 2.45 1.04 273
7.4% 3.74 1.31 108

2 = 37.4%
10.2%

3 = 27.8%
22.2%

4 = 13.9% .

25.0%

5 = 2.2%
31.5%

6 = 0.4%
3.7%

BES COPY AVAILABLE. lj 24
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(table 2 cont.)

TABLE 2
Distribution of Mathematics Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work ,Sample
bisciiptiorf

:Distribution
.'bSI Score' ;

'Level (%), ,

Mean-, .
(out of '6)

S. ., Number

Challenging Problem 1 = 6.9% 3.18 1.09 1237
13.3% 2.82 0.91 442

2 = 15.0%
6.3%

3 = 45.9%
70.6%

4 = 19.2%
4.8%

5 = 11.5%
4.5%

6 = 1.5%
0.5%

From Your Own Experience 1 = 34.8% 2.17 1.02 279
9.5% 2.95 0.89 347

2 = 21.9%
4.3%

3 = 35.8%
75.2%

4= 6.5%
. 5.5%

5 = 1.1%
3.7%

6 = 0%
1.7%
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TABLE 2
Distribution of Mathematics Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Sample ,

Descriptibn,
, : ,

-Distribution
by Score

'' 'Level (4)

Mean
(Out,01, 0)

,

: . Number

Logical Argument 1 = 15.6% 3.23 1.54 409
8.7% 4.30 1.54 149

2 = 18.1%
3.4%

3 = 28.9%
16.8%

4 = 10.5%
19.5%

5 = 18.3%
23.5%

6 = 8.6%
28.2%

Multiple Methods 1 = 22.4% 2.55 1.14 939
16.2% 2.80 1.14 358

2 = 22.7%
19.0%

3 = 38.6%
39.9%

4 = 11.5%
19.8%

5 = 3.7%
4.7%

6= 1.2%
0.3%

BEST COPY AVAILABLE !26
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(table 2 cont.)

TABLE 2
Distribution of Mathematics Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

'Work Sample
-DeicriPstion' ''

Distribution
,

"Ibk'Seore,-
I.::,eyel(%),

'Mean ,

ottr:Of6)
S. D. - Number

1 = 20.3% 2.88 1.26 561
Technology 1.9% 3.88 1.08 212

2 = 13.0%
3.8%

3 = 36.7%
41.5% .

4 = 19.4%
10.8%

5 = 9.4%
41.5%

6 = 1.1%
0.5%

, , .....
' Overall Piortfolio :Distribiltiori-, ,

Weary , . Number
Sdore ,, ' by Score , but of

tever(7.;)

Overall Mathematics Portfolio 1 = 35.7% 1.77 0.65 1588
2.11 0.81 538

2 = 52.1%

3 = 12.1%

4 = 0.1% ,

1 2
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TABLE 3
Distribution of Science Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Sample ' ': ,',, tistribUtion by ,s Mean ..S.D.-.: :'& NUmbei
Description Score Level (outof,6)

, ..

Applications 1 = 30.6% 2.09 0.91 722
66.0% 1.46 0.73 153

2 = 36.4%
23.5%

3 = 27.3%
8.5%

4= 5.1%
2.0%

5 = 0.6%
0%

.6= 0%
0%

Design a Study 1 = 46.5% 1.65 0.69 396
NA** NA** NA** NA**

2 = 42.4%

3 = 10.4%

4= 0.8%

5= 0%
6= 0%

Design and Perform a Study 1 = 31.3% 1.88 0.74 275
33.7% 1.92 0.83 89

2 = 51.3%
44.9%

3 = 15.6%
16.9%

4= 1.5%
4.5%

5= 0.4%
0%

6= 0%
0%

BEST COPY AVA1LA LE 128



126

(table 3 cont.)

TABLE 3
Distribution of Science Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work Sample
'Description-

. ..,

,Distribution b'r
,:§eore,`t.,ev#-

,

:Meau
.,(out cof'a

S.D. Number

Evaluating Scientific Claims 1 = 31.5% 1.88 0.74 653
75.4% 1.27 0.49 191

2 = 51.9%
22.5%

3 = 13.9%
2.1%

4 = 2.6%
0%

5 = 0%
0%

6= 0%
0%

Historical Perspective 1 = 7.7% 2.44 0.78 626
35.6% 1.95 0.83 87

2 = 49.5%
34.5%

3 = 35.3%
28.7%

4 = 6.4%
1.1%

5 = 1.0%
0%

6 = 0.2%
0%

Integrating Sciences 1 = 18.8% 2.40 1.03 272
NA* NA* NA* NA*

2 = 40.8%

3 = 25.4%

4 = 11.8%

5 = 3.3%
.

6 = 0%
12 (3
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(table 3 cont.)

TABLE 3
Distribution of Science Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Worl. Sample .
Description-

'Distribution by
Score Level

(TO

Mean
otit of °6)

S.D.
.

Number

Laboratory Experiment 1 = 25.7% 2.03 0.80 1086
30.5% 1.89 0.76 502

2 = 50.0%
51.4%

3 = 19.9%
15.7%

4 = 4.1%
2.2%

5 = 0.3%
0.2%

6= 0%
0%

Laboratory Observation 1 = 32.7% 1.87 0.73 1005
NA* NA* NA* NA*

2 = 49.3%

3 = 16.7%

4= 1.3%

5= 0%
6= 0%

Literature Review and 1 = 9.2% 2.63 0.87 790
Evaluation 13.2% 2.64 1.01 311

2 = 34.4%
31.8%

3 = 42.5%
35.7%

4 = 12.2%
16.1%

EST COPY AVAILABLE 5 = 6%
3.%

6 = 0%
, . 0% 130
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TABLE 3
Distribution of Science Scores

(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Work SaMple Distribution by - Mean S.D. ,' '' 'Number
Description >, Scpre-,J.,evet, :(Opt of 6) ,

Societal Context of Science 1 = 16.5% 2.30 0.83 939
51.8% 1.65 0.82 112

2 = 44.2%
32.1% .

3 = 32.4%
13.4%

4= 6.5%
2.7%

5 = 0.4%
0%

6= 0%
0%

Overall POrtfolio Score 15istribution by
, .

, Mean Sii, Nunibq
Score : ,

LeS1-(%)
,... . _ _,.....

Overall Science Portfolio 1 = 54.5% 1.52 0.61 1826
1.65 0.58 553

2 = 39.3%

3 = 6.1%

4 = 0.1%

* In 1994-95, there was no Work Sample Desciiption by this name.

** In 1994-95, there were so few entries corresponding to this Work Sample Description that
meaningful indices could not be obtained.
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TABU 4

Interrater Agreement and Correlations for Language Arts

Work SattPle. '

-Pesc7iptioW

N
(2.7 of
,,,,total)

,.. -

Percent .of Agreement
PerfecyAdjacent/Res,olviid-,

,'(1995-96re:sults,arpin plOn--teit
^:1994-05 results are in- italics)

iiiterrater
COriel=
Ovation

Analysis/Evaluation 358 65.6 33.2 1.1 0.81
158 43.0 46.8 10.2 0.60

Business and 59 69.5 30.5 0.0 0.86
Technical Writing NA* NA* NA* NA* NA*

Evaluation of Print or 46 73.9 23.9 2.2 0.69
Electronic Media 26 38.5 46.2 15.4 0.50

Explanatory Writing 206 65.0 32.5 2.4 0.77
NA* NA* NA* NA* NA*

Imaginative Writing 520 61.7 34.2 4.0 0.78
107 40.2 43.9 15.9 0.47

Persuasive Writing 297 60.6 36.0 3.4 0.71
70 34.3 55.7 10.0 0.47

Proposing a Solution 59 49.2 50.8 0.0 0.75
40 55.0 35.0 10.0 0.75

Relating a Personal 526 60.3 37.8 1.9 0.73
Experience 89 47.8 45.6 6.7 0.79

Research/Investigative 288 64.2 33.7 2.1 0.84
Writing 60 46.3 34.4 19.4 0.66

Responding to a 610 61.5 36.2 2.3 0.80
Literary Text 73 39.7 46.6 13.7 0.55

Writing about an Out- 151 66.9 31.8 1.3 0.86
of-Class Reading NA* NA* NA* NA* NA*

Writing about Uses of 25 64.0 32.0 4.0 0.68
Language NA* NA* NA* NA* NA*

Writing about 219 63.9 35.6 0.5 0.78
Values/Issues/Beliefs 47 60.7 28.6 10.7 0.72

Writing a Review of 85 58.8 40.0 1.2 0.80
the Visual or NA* NA* NA* NA* NA*
Performing Arts

Overall 734 74.3 25.6 0.1 0.77
160 0.74

* In 1994-95, there were so few entries corresponding to this Work Sample Description that
meaningful indices could not be obtained.

BEST COPY AVAILABLE
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TABLE 4 (cont.)

For Individual WSDs in 1995-96:

Median Interrater Correlation:
Minimum Interrater Correlation:
Maximum Interrater Correlation:

For Individual WSDs in 1994-95:

Median Interrater Correlation:
Minimum Interrater Correlation:
Maximum Interrater Correlation:

0.78
0.68 (Writing about Uses of Language)
0.86 (Writing about Out-of-Class Reading)

0.60
0.47 (Imaginative Writing, Persuasive Writing)
0.79 (Analysis/Evaluation)
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TABLE 5

Interrater Agreement and Correlations for Mathematics

Work Sample Description
''''N

(25% Of
Percent ,of Agr!ement

, , .Perfec4AdjacentqkeSnlved. ' , ,,

,

Interrater.
Correlation

, total) (1995,:96- results are- in plain text;
: ,194:95:rgsuits! are in italics)

Another Class 71 69.0 25.4 5.6 0.76
NA* NA* NA* NA* NA*

Analyzing Data 168 58.3 39.3 2.4 0.77
NA* NA* NA* NA* NA*

Connections 150 84.0 15.3 0.7 0.89
NA* NA* NA* NA* NA*

Collecting and Analyzing 140 68.6 28.6 2.8 0.70
Data 32 90.6 9.4 0.0 0.96

Consumer Beware 67 76.1 17.9 6.0 0.79
NA* NA* NA* NA* NA*

Comparing Notions 57 59.6 35.1 5.3 0.79
80 42.5 37.5 20.1 0.46

Challenging Problem 266 63.5. 30.8 5.7 0.79
193 77.7 10.9 11.4 0.58

From Your Own Experience 60 63.3 35.0 1.7 0.82
174 79.9 10.9 9.1 0.60

Logical Argument 100 51.0 31.0 18.0 0.58
117 47.9 35.0 17.1 0.61

Multiple Methods 203 68.5 29.1 2.5 0.85
160 69.4 22.5 8.1 0.74

Technology 126 61.9 34.9 3.2 0.86
121 75.2 17.4 7.5 0.73

Overall 388 85.80 14.2 0.0 0.84
120 0.84

* In 1994-95, there were so few entries corresponding to this Work Sample Description that
meaningful indices could not be obtained.

BEST COPY AVAILABLI
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TABLE 5 (cont.)

For Individual WSDs in 1995-96:

Median Interrater Correlation:
Minimum Interrater Correlation:
Maximum Interrater Correlation:

For Individual WSDs in 1994-95:

Median Interrater Correlation:
Minimum Interrater Correlation:
Maximum Interrater Correlation:

0.79
0.58 (Logical Argument)
0.89 (Connections)

0.61
0.46 (Logical Argument)
0.96 (Challenging Problem)
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TABLE 6

Interrater Agreement and Correlations for Science

,N Percent of Agreement Interrater
Work Sample Description ', (25% of l'erfectiAdjicentiResOlved- Correlation

total} :' 6095 496 results -nreini!plain- J ,",---`
' , text; 1994;95'results are in

italics}

Applications 184 80.4 19.6 0.0 0.86
46 58.7 32.6 8.7 0.51

Design a Study 121 77.7 21.5 0.8 0.72
43 53.5 44.2 2.3 0.54

Design and Perform a Study 75 82.7 17.3 0.0 0.82
33 36.4 54.5 9.1 0.35

Evaluating Scientific Claims 211 73.9 25.6 0.5 0.75
59 64.4 32.2 3.4 -0.04

Historical Perspective 144 77.1 22.9 0.0 0.78
25 40.0 48.0 12.0 0.00

Integrating Sciences 66 68.2 31.8 0.0 0.77
NA* NA* NA* NA* NA*

Laboratory Experiment 300 77.7 21.3 1.0 0.76
156 55.8 41.0 3.2 0.55

Laboratory Observation 204 81.4 18.1 0.5 0.76
NA* NA* NA* NA* NA*

Literature Review and 226 69.0 31.0 0.0 0.81
Evaluation 93 33.0 53.8 12.9 0.44

Societal Context of Science 317 71.3 28.4 0.3 0.74
NA** NA** NA** NA** NA**

Overall 481 84.8 15.2 0.0 0.80
139 0.38

* In 1994-95, there was no Work Sample Description by this name.

** In 1994-95, there were so few entries corresponding to this Work Sample Description that
meaningful indices could not be obtained.

BEST COPY AVAILABLE
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TABLE 6 (cont.)

For Individual WSDs in 1995-96:

Median Interrater Correlation:
Minimum Interrater Correlation:
Maximum Interrater Correlation:

For Individual WSDs in 1994-95:

Median Interrater Correlation:
Minimum Interrater Correlation:
Maximum Interrater Correlation:

0.77
0.72 (Design a Study)
0.86 (Applications)

0.44
-0.04 (Evaluating Scientific Claims)
0.55 (Laboratory Experiment)

TABLE 7

Generalizability Analyses
(Note: 1995-96 results are in plain text; 1994-95 results are in italics)

Language Arts :Mathematics.'
...

, Science

Source
Variance
Compo-
nents

Percent of
Total
Variance

Variance
Compo-
nents

Percent of
Total
Variance

Variance
Compo-
nents

Percent of
Total
Variance

Student

WSD

Reader

Student*
WSD

Student*
Reader

WSD*
Reader

0.3566

0.0098

0.0109

0.4419

0.0274

0.0528

34.24%

0.94%

1.05%

42.42%

2.63%

5.07%

0.5119

0.1848

0.0031

0.3504

0.1185

0.1109

39.03%

14.09%

0.24%

26.72%

9.04%

8.46%

0.1692

0.1099

0.0911

0.2805

0.0640

-0.0475

24.46%

15.89%

13.17%

40.55%

9.26%

0%

Error 0.1422 13.65% 0.0319 2.43% 0.0245 3.54%

G-
coefficient

0.75 (1995-96)
0.73 (1994-95)

0.79 (1995-96)
0.33 (1994-95)

0.65 (1995-96)
0.31 (1994-95)
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