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Abstract

The purpose of this paper is to answer the following questions: (a) What is the

relationship between the method of paired comparisons and Rasch measurement theory?

(b) What is the relationship between the method of paired comparisons and graph theory?

(c) What can graph theory contribute to our understanding of Rasch measurement theory?

Specifically, it is shown how the method of paired comparisons can lead to the Rasch

model, just as consideration of the Rasch model can lead to a pairwise algorithm for

estimating the parameters of the Rasch model. Furthermore, both graph theory and

previously unexplored aspects of the method of paired comparisons are used to increase

understanding and utility of a pairwise algorithm for estimating parameters of the Rasch

model as presented by Choppin (1985). Bringing together these three lines of inquiry

enhances our understanding of the Rasch model, as well as provides more effective means

of analyzing the Rasch model.
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Rasch Measurement Theory,
The Method of Paired Comparisons,

and Graph Theory

The traditional approach to measurement in education is to administer a test and

count the number of items a person gets correct. This is surely the simplest approach, but

one that is lacking in at least two regards: (a) scores on different tests cannot be

compared meaningfully, and (b) the score that supposedly reflects a person's ability can

change from one test to the other or even on different administrations of the same test. A

norm referencing system could be used to compare scores on different tests, but in that

situation, scores can be interpreted only within a certain population.

In the 1950's and 1960's, the Danish mathematician Georg Rasch proposed a new

approach to educational measurement (Rasch, 1980). Rasch measurement theory

provides a simple method for measuring person ability that does not depend on a

particular set of items or a particular reference population, and that includes the possibility

of variation in performance. One of the results of a Rasch analysis is the creation of a

linear scale along which items are located according to difficulty. This scale is a ruler that

can be used to measure person abilities.

Rasch (1961, 1966, 1977, 1980) repeatedly pointed out that a key characteristic of

his measurement model is that the relative difficulty of any two items does not depend on

the characteristics of a particular population. In other words, a comparison between any

two items is independent of a particular population; likewise, a comparison between any

two persons is independent of a particular set of items. Rasch placed great importance on

such comparisons; indeed, he developed a theory regarding the generality and validity of
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scientific statements based on the idea that "comparisons form an essential part of our

recognition of our surroundings . . . both in everyday life and in scientific studies."

(Rasch, 1977, p. 68-69). He stated that any good measurement model, like any good

scientific model, is based on objective comparisons.

It is my opinion that only through systematic comparisons --
experimental or observational -- is it possible to formulate
empirical laws of sufficient generability to be -- speaking
frankly -- of real value, whether for furthering theoretical
knowledge or for practical purposes.

I see systematic comparisons as a central tool in our
investigation of the outer world. (Rasch, 1977, p. 74).

The method of paired comparisons and graph theory are both based on comparisons

between pairs of objects. Therefore, it seems very appropriate to bring these two areas

together with Rasch measurement theory.

The method of paired comparisons is a widely used technique for describing

preference behavior, based on the principles described by Thurstone (1927a,1927b,1927c)

in his Law of Comparative Judgment. The method reduces preference behavior to its

most basic and most easily grasped element: a person's choice between two objects. The

result is a linear scale along which the objects are ordered. Building from Rasch's work

(1960), Choppin (1985) described several methods of estimating the item difficulties of the

Rasch model by comparing performance on pairs of items. Andrich (1978) linked

Thurstone's Law of Comparative Judgment to Rasch Measurement Theory, and

Engelhard (1984) described the parallels between Thurstone's and Rasch's approaches to
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measurement. Through the method of paired comparisons, Rasch measurement theory

can also be linked with other scaling methods and with graph theory.

Graph theory is a branch of mathematics that provides a language, a set of

procedures, and a way of visualizing a system that is built on the relationships between

pairs of objects. It has been useful for this reason in assessing the outcome of paired

comparisons experiments, and it holds promise as an analytic framework for examining

aspects of Rasch measurement theory.

Purpose

The purposes of this paper are to extract from the literature the parallels between the

method of paired comparisons and Rasch measurement theory, to describe their

intersection in pairwise (PW) algorithms for estimating the parameters of the Rasch

model, and to bring forward the graph theoretical concepts that can be used in analyzing

links between items which would enhance the use of the PW algorithms as well as other

methods of parameter estimation. Specifically, the questions addressed are the following:

(a) What is the relationship between the method of paired comparisons and Rasch

measurement theory? (b) What is the relationship between the method of paired

comparisons and graph theory? (c) What can graph theory contribute to our

understanding of Rasch measurement theory?

The paper is divided into five sections. In the first section, the connections between

Rasch measurement theory and the method of paired comparisons are presented, along

with the pairwise algorithms for estimating parameters of the Rasch model as described by

Choppin (1985). The second section includes an introduction to the language of graph
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theory and a description of what role graph theory has played in applications of the

method of paired comparisons. In the third section, initial steps are taken to explore the

relationship between Rasch measurement theory and graph theory. In the fourth section,

the techniques presented in the previous three sections are applied to a small data set. The

last section consists of summary, conclusions, and suggestions for additional research.

Rasch Measurement Theory and
The Method of Paired Comparisons

This section provides an introduction to the Rasch model and to the method of

paired comparisons. These two areas are then brought together in pairwise algorithms for

estimating parameters of the Rasch model as presented by Choppin (1985).

Rasch Measurement Theory

Rasch measurement theory is based on a mathematical model that describes the

probability of a student achieving a certain score on a test as a function of the difference

between the student's ability and the difficulty of the items on the test. Specifically, the

probability that a person v will score correctly on particular item i (av, = 1) is expressed in

terms of the person's ability by and the difficulty of the item d, as follows:

e(be,-
di)

Pr(av, = 1)
1+ e d') (1)

This model is remarkable for at least two reasons. First of all, it is a stochastic

rather than deterministic model; in other words, a student of a certain ability is not

predicted to obtain a certain score but may obtain a range of scores with varying

probabilities. A second characteristic of the model is what Rasch termed specific
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objectivity; that is, the mathematical structure of the model allows one to eliminate person

abilities and be left with a model describing the relationship among item difficulties

regardless of the persons involved; conversely, item difficulties can be eliminated to leave

a model describing the relationship among person abilities regardless of the items used.

Rasch (1966) described specific objectivity as follows:

... the comparison of any two subjects can be carried out in
such a way that no other parameters are involved than

those of the two subjects - neither the parameter of any

other subject nor any of the stimulus parameters. Similarly,

any two stimuli can be compared independently of all other
parameters than those of the two stimuli, the parameters of
all other stimuli as well as the parameters of the subjects
having been replaced with observable numbers. It is

suggested that comparisons carried out under such
circumstances be designated as "specifically objective." (p.

104-105)

It is interesting that Rasch chose to define specific objectivity in terms of paired

comparisons.

How does one obtain the item difficulties and person abilities? The most frequently

used methods for estimating these parameters are maximum likelihood methods,

particularly Conditional Maximum Likelihood (CML), Joint Maximum Likelihood (JML),

and Marginal Maximum Likelihood (MML) estimation algorithms. These methods

involve setting up equations that describe the likelihood of the observed scores in terms of

the unknown item difficulties and/or person abilities. Values for the item difficulties and

person abilities are then sought that maximize the likelihood of the observed scores.

Three important properties of estimators are consistency, sufficiency, and

unbiasedness (Neter, Kutner, Nachtsheim, and Wasserman, 1996). An estimator is
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consistent if the estimate approaches the true value of the parameter as sample size

-increases. It is unbiased if its average value over repeated - trials is the true value of the

parameter. A statistic is sufficient if it contains all the information needed about the

parameter being estimated; that is, parameter estimation cannot be improved by

considering any aspect of the data other than our estimator. Under any of the maximum

likelihood procedures, it can be shown that total score for any particular item is a

sufficient statistic for item difficulty; and likewise, the raw score for any person is a

sufficient statistic for person ability. The JML procedure is perhaps the simplest

computationally, but has been shown to lack consistency (Wright & Masters, 1982; Baker,

1992). The MML technique requires assumptions regarding the distribution of abilities in

the population (Baker, 1992). The CML technique is the only one of the maximum

likelihood procedures that capitalizes on the specific objectivity of the model, and

proceeds by first eliminating person abilities from the model, then estimating item

difficulties, and finally estimating person abilities. However, although the CML algorithm

is consistent and efficient, it involves computation of complicated functions that are

sensitive to round-off errors. Baker (1992) points out that the computational difficulties

have been lessened with the creation of more efficient algorithms, but the programs

incorporating these algorithms are not readily available in the United States. Adams and

Wilson (1996) point out that the complexity of CML estimation remains a disadvantage.

In all parameter estimation algorithms, a persistent problem is how to handle missing

data. Baker (1992) suggests that missing values might be filled in at random. An

algorithm specifically designed to deal with incomplete data, the EM algorithm, has been

9
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successfully paired with the MML algorithm for estimating the paramters of the Rasch

model (Adams & Wilson, 1996; Baker, 1992). On the other hand, Linacre (1989) points

out that JML estimation can also tolerate some missing values. However, it is unclear

how the structure of the missing data and the extent of the missing data affect parameter

estimates.

The Method of Paired Comparisons

The method of paired comparisons was first suggested by Fechner in 1860. In 1927,

Thurstone (1927a, 1927b, 1927c, 1959) popularized the method by providing a rigorous

formulation of the method through his Law of Comparative Judgment. Since that time, it

has been applied in a variety of fields including dentistry, economics, epidemiology, optics,

preference and choice behavior, sensory testing, ecology, acoustics, food science,

psychology, medicine, and sociology (David, 1988). In all cases, the method of paired

comparisons is used to construct a scale for the measurement of the relative magnitude of

some perceived stimulus or non-physical trait, and assign scale values to the observed

phenomena. In 1927, for example, Thurstone (1927b) constructed a scale for the

measurement of the perceived seriousness of criminal offenses; the scale value for rape

was the highest of all offenses at 3.275, while the value for vagrancy was 0.

In a paired comparisons experiment, a subject is presented with pairs of objects and

is asked to indicate a preference for one of the objects according to some characteristic. A

balanced paired comparison experiment is one in which every judge compares every

possible pair of objects. In an unbalanced experiment, there are unequal numbers of

10
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comparisons between pairs. In the simplest case, ties are not allowed; however, the

method of paired comparisons has been extended to include ties.

Based on the preferences between pairs of objects, a scale is constructed. Noether

(1960) presented a simple and very general approach for describing how to obtain scale

values from the paired comparison experiment. Noether (1960) considered the problem of

estimating the true values V, (i = 1, 2, ... t) of some set of objects, ordered along a linear

scale, when judged pairwise on some characteristic. One restriction must be placed on the

set to permit unique estimation of the V, and the usual restriction is that the V, sum to

zero. The probability of preferring i to j, P, is given by

Py = H(V,- (ij= 1,2, ... t;j#i), (2)

where H is the cumulative distribution function (cdf) of the differences, according to the

model chosen. David (1988) derived the formula for the V, regardless of the form of the

cdf and assuming that the sum of the values is zero as

,= -E (v,-17,)

To see that this is true, note the following:

1

J

1 1
= QV) - Vit

+ Vi- VJ

(3)

= V, (because the sum of the Vj is zero).

To estimate the Vi one can estimate the Po with po, the observed proportion of

preferences for object i over object j, find approximations d = - d; to V, - V, by

11
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da = H (P0) (4)

and then find the estimates di by using the relationship already described in (3) as

1
=

t
(5)

David also showed that the d, obtained in this way are the (unweighted) least squares

estimates of the V, regardless of the cdf used. More specifically, the solution minimizes

the expression

E (dy + Vi) 2

What is IT'? According to Case V of Thurstone's Law of Comparative Judgment,

the cdf is the normal curve and the dais the unit normal deviate. According to the

Bradley-Terry-Luce model, the cdf takes the form (Bradley, 1953; David, 1988)

1
Pa = H(d, )= 2[1 + tanh(21. )11

J
(6)

which is shown in Appendix A to lead to the following relationship between d and the

probabilities p;; and pr.

dy = H.' (pd = In (Al /pi;). (7)

As in Case V of the Law of Comparative Judgment, there are two assumptions

implicit in this approach: (a) each distribution of the d,'s has the same standard deviation,

called discriminal dispersion by Thurstone, with mean V and (b) the d,'s are equally

correlated. Mosteller (1951b) explored the consequences when the assumption of equal

discriminal dispersions is violated, and Davison, McGuire, Chen, and Anderson (1995)

described a means of testing for equality of discriminal dispersions.

12
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Noether's approach provides a least squares estimate of the scale values. By using

equation (2), however, the scale values can also be obtained by maximizing the probability

of the observed differences. David (1988) called the least squares approach used with the

normal cdf, the Thurstone-Mosteller approach, and he called the maximum likelihood

approach used with the logistic cdf, the BTL approach; however, it is clear from

Noether's treatment that either estimation technique is appropriate for either cdf. Both

approaches are also associated with goodness of fit measures.

The results of a paired comparisons experiment are summarized in a preference

matrix such as the one shown below:

Objects: A

A 0 12

B 2 0
C 1 8

D 8 7

5

1

0
4

2
2
6
0

(8)

The four rows and four columns correspond to the four objects in the experiment. The

entry in the ith row and jth column corresponds to the number of times i was preferred to

j. Each off-diagonal entry in the matrix is converted to a proportion py as follows:

Objects:

A
B
C

D

A

0
2/14
1/6
8/10

12/14
0
8/9
7/9

5/6
1/9
0
4/10

2/10
2/9
6/10
0

(9)

Since this is not a balanced experiment, each off-diagonal entry is divided by the total

number of comparisons for that pair of objects. Each entry pi; is then divided by pfi:

13
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Objects:

A
B
C
D

A

0
2/12
1/5
8/2

12/2
0
8/1
7/2

5/1
1/8
0
4/6

2/8
2/7
6/4
0

(10)

Note that we could have gone directly from (8) to (10). Applying the BTL model, we can

then apply equation (5) to the d, estimates described by equation (7). The scale values of

the objects are then the row means of the natural logarithm of the matrix in (10).

Objects: A

A 0 1.79 1.61 -1.39 (11)

B -1.79 0 -2.08 -1.25
C -1.61 2.08 0 .41

D 1.39 1.25 - .41 0

Scale Values: A B C D

.50 -1.28 .22 .56

A different approach, but one that is still based on least squares estimation, is

described by Bock and Jones (1968), Beaver (1977), and McGuire and Davison (1991).

Their approach is based on the set of equations defined in (4). For example, a system of

paired comparisons involving three objects would take on the following form:

H-V12)1 r1 1 0 Tdi 1
11-1-1 (p.) 1= 1 0 -1 d2
LH-1 (P23) 0 1 11d3i

14

(12)



RMT. MPC. and GT 14

After applying a constraint such as requiring the d, to sum to zero, standard regression

software could be applied to obtain regression coefficients d, and associated statistics.

McGuire and Davison (1991) used this approach to test group differences.

A preference matrix such as (8) is also called a tournament matrix. This tournament

matrix might reflect the outcome of varying numbers of games (no ties allowed) between

every pair of players. Ranking of players in such a tournament is traditionally

accomplished by summing the rows of the original matrix (8), rather than the matrix (11)

as in the least squares approach described above. Kendall (1955), among others (Cowden,

1974; Daniels, 1960; David, 1987), described a simple way of accommodating ties and

compensating for missing data. Rather than summing the rows of the original tournament

matrix, each player can also be given the score of every player that he has beaten. For

example, the row sums of the above matrix are

0 + 12 + 5 + 2 = 19

2 + 0 + 1 + 2= 5

1 + 8 + 0 + 6 = 15

8 +7 + 4 + 0 = 19

If we assign to the winner of each game all the wins of his opponent, the scores would

change as follows:

0 + 8(5) + 9(15) + 2(19) = 213
2(19) + 0 + 2(15) + 3(19) = 125
1(19) + 8(5) + 0 + 6(19) = 173
8(19) + 7(5) + 4(15) + 0 = 247

Thus, player 4 and player 1 are no longer tied. Kendall (1955) showed that such

reallocation of wins was equivalent to summing the rows of the square of the original

preference matrix. He also demonstrated that such a reallocation could take place a

15
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second or third time, corresponding to the third or fourth powers of the matrix. Kendall

(1955) observed that if this process continues, as larger and larger powers of the matrix

are taken, the vector of scores settles down to the eigenvector associated with the largest

eigenvalue of the preference matrix.

Cowden (1974) and Andrews and David (1991) later recommended that Kendall's

method should be modified to accommodate unbalanced paired comparison experiments,

i.e. those experiments in which each pair played a different number of games, and

experiments in which comparisons are missing, by using the proportions of games won

rather than the count of games won. With this adjustment to Kendall's method, it is

possible to see the relationship between Kendall's row-sum approach and Noether's

scheme. The key is in the choice of the cdf in equation (4). The cdf in Kendall's method

is simply the identity function, so that d, = and therefore d, = E

Connections Between Rasch Measurement Theory
and The Method of Paired Comparisons:

The method of paired comparisons and the Rasch measurement model have the

same goal: to construct a scale for the measurement of some latent trait, a scale that is

independent of the particular items used or the particular group being measured (Rasch,

1980). Rasch (1966, 1980) suggested a pairwise algorithm for obtaining parameters of

the Rasch model. A pairwise procedure would take advantage of the specific objectivity

that is unique to the Rasch model; indeed, as already noted, Rasch (1966) described

specific objectivity in terms of paired comparisons.

1.6
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Choppin (1985) developed Rasch's suggestion into two techniques for using paired

comparisons to estimate item difficulties: a maximum likelihood approach and a least

squares approach. In the maximum likelihood approach, the model parameters are chosen

so that the probability of the observed test scores is maximized, whereas in the least

squares approach, the model parameters are chosen such that the sum of the squared

differences between the observed values and the estimated parameters is minimized.

The maximum likelihood approach has received much attention in the Rasch literature

(Andrich, 1988; Fischer & Tanzer, 1994; Linacre, 1989; van der Linden & Eggen, 1986;

Zwinderman, 1995), perhaps because of the original emphasis on maximum likelihood

estimation of parameters of the Bradley-Terry-Luce (BTL) model for paired comparisons,

a model that is strongly related to the Rasch model (Andrich, 1978). On the other hand,

the least squares approach is appealingly simple, has been explored extensively outside the

Rasch literature, and can be linked to graph theoretical analysis of tournaments (Cowden,

1974, Kendall, 1955), and to Saaty and Vargas' (1991) method involving eigenvectors of

preference matrices.

Least Squares Pairwise Algorithm for Estimating Parameters of the Rasch Model.

Assuming that performance on each item is independent of the performance on any other

items, a standard assumption in Rasch measurement, Choppin showed that the person

ability parameter can be eliminated entirely from equation (1). This can be done by using

equation (1) for item i and another for item j, to derive the conditional probability of a

person giving a correct response to item i, given that the sum of the scores on item i and

item j is 1 (aw + = 1). The result is that
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(13)

This probability can be empirically estimated by observing the number of people who

respond correctly to item i and incorrectly to item j, by, among those that respond

correctly either to item i or item j. Then we can write:

Thus,

too

pr(avi = + a,, = 1) b b

ed

e + edl

This relationship can be rewritten as

bu bb; e
(di- do

by / bi, + e(d-r- de) + 1

and thus,

b;/b;; estimates e(di-
di)

or

b bp = ed I e"

which is equivalent to

(14)

(15)

(16)

In (b,/ k,) = di - d, (17)

So the difference in item difficulties can be estimated by In (b,/bp), which involves

observed values. If we add the constraint that the item difficulties must sum to zero,

equation (17) defines a system of equations with a unique solution.
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Thus, Rasch's goal of achieving measurement that does not depend on the abilities of

the people measured is demonstrated mathematically. Furthermore, this method of

pairwise comparisons for obtaining item difficulties arises naturally from a consideration of

the properties of the model.

In order to solve the system of equations described in (17), Choppin (1985)

recommended setting up a matrix B, with entries by representing the number of people

who got item i right and item/ wrong. The matrix is shown in Figure 1 and is contrasted

with the usual approach to measurement that begins with a persons by items matrix. The

result is an asymmetric matrix of entries, with zeros on the diagonal. The matrix B is then

converted to a matrix D with entries du equal to b;; /b;;. D is then converted to In D with

entries In (bp /by ). These entries in In D represent the log odds of getting item i correct

given that either item i or item j is correct but not both. Choppin (1985) then showed that

the item difficulties can be calculated from the matrix In D using the following formula:

cl, =
1 E ln(bJ J/ bi.). (18)

where t is the number of items. Equation (18) amounts to obtaining the means of the rows

of the natural logarithm of the matrix D. Once the item difficulties have been calculated,

the original model (1) can be used to set up another set of equations to solve for the ability

parameters.

The approach described above is exactly the same as the approach described by

Noether for obtaining scale values from paired comparisons experiments using the BTL

model. Equation (17) is the same as equation (7) and equation (18) is the same as
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equation (5), except for a factor of -1, which can be attributed to the fact that the scales

are reversed; that is, choosing an item more often means it is easier, and therefore lower,

on the difficulty scale, whereas the usual case in a paired comparison experiment is that an

item that gets chosen more often would have a higher value on the scale. Thus, Choppin's

method is equivalent to a least squares estimate of item difficulties using the BTL model

for an unbalanced paired comparisons experiment. Furthermore, the matrix B is a

tournament matrix or a preference matrix from a paired comparisons experiment like the

one shown in (8), matrix (10) is the D matrix described in Choppin's method, and matrix

(11) is In D.

The only difficulty in using this approach for estimating Rasch item difficulties arises

when any of the B matrix entries are zero, which must be expected when the same person

does not take two items or when both items are always right or both are always wrong.

Noether suggested that 0 be replaced by 1/(2N) where N is the number of items.

Choppin, on the other hand, showed algebraically that the entries of B2 rather than B may

be used in equation (18). This technique is equivalent to Kendall's (1955) approach of

reallocating wins in a tournament. Choppin (1985) implied that this technique essentially

replaces the results of the direct comparisons between i and j with the sum of the indirect

comparisons of i and j through an intermediate k. If the items are adequately linked, all

off-diagonal entries of the squared matrix will be non-zero. Rasch provided support for

this approach in the following "rule of transitivity":

The rule of transitivity seems to generalize one of the most
fundamental properties of measurement. If, for instance, we
wish to measure the distance between two points A and C
on a straight line we may do it directly or we may interpose

20
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a third point B, measure the distance AB, and on top of that
measure the distance BC to obtain the total AC. (Rasch,
1961, p. 332).

Extensions of Choppin's Least Squares Algorithm and Connection To the Analytic

Hierarchy Method. Choppin's use of the square of the B matrix is equivalent to Kendall's

(1955) technique of reallocating wins in a tournament. As Kendall pointed out, this

reallocation could be repeated by using higher powers of the matrix. As higher powers of

the matrix are used, the solution converges to the eigenvector associated with the largest

eigenvalue; in fact, this approach is equivalent to using the powermethod for obtaining the

dominant eigenvalue and associated eigenvector (Watkins, 1991). Cowden (1974) points

out that this convergence will result if in every possible partition of the players into two

non-empty sets, some player in each set has won at least once from some player in the

other set. In a later section, this requirement will be seen to be equivalent to a

requirement for the convergence of the maximum likelihood algorithm for paired

comparisons, and will also be shown to be equivalent to a simple graph theoretical

concept.

There is thus a connection between the item difficulties of the Rasch model and the

eigenvectors of the paired comparisons matrix B. This approach is further justified by

consideration of Saaty and Vargas' (1991) analytic hierarchy process, which also makes

use of eigenvectors. In Saaty and Vargas' analytic hierarchy process, subjects are asked

to indicate not just a preference for two objects, but they are asked to estimate the

strength of the preference in terms of pairwise ratios. The resulting comparisons matrix,

called a reciprocal matrix, looks like the one shown below:
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where w, is the scale value of the ith object. The following equation must be true:
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By definition of eigenvectors and eigenvalues, the solution vector of wi's is the

eigenvector associated with the eigenvalue N.

To connect the above system with the pairwise algorithm, recall that each entry in

the D matrix, b1;/b;;, as shown in equation (13), estimates ed-Ve4. Thus, D is a reciprocal

matrix as described by Saaty and Vargas and the item difficulties we seek are the natural

logarithm of the eigenvector association with the largest eigenvalue of the D matrix as

shown below.
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Saaty and Vargas also show that a necessary and sufficient condition for matrix W

to be consistent is that the maximum eigenvalue A be equal to N. As a measure of

deviation from consistency, the authors use consistency index:

C.I. = N)/(N - 1) (19)

This application of Saaty and Vargas' analytic hierarchy process to the scaling of

choice preferences can only be accomplished through the BTL or Rasch models, because

only those models transform a difference in scale values to a ratio.

Connection Between Choppin's Least Squares Algorithm and Multidimensional

Scaling. It has already been observed by Chen and Davison (1996) that item difficulties

may be obtained through nonmetric MDS; this method also provides an opportunity to

verify the unidimensionality of the scale. Nonmetric MDS (Krusdal & Wish, 1976) as

applied by Chen and Davison to a paired comparisons matrix seeks to minimize the

squared deviations of the differences between estimates and the empirical observations.

Both MDS and Noether's technique are based on a least squares approach. It is beyond

the scope of this paper to make the relationship between the two approaches more

explicit.

Maximum Likelihood Pairwise Algorithm for Estimating Parameters of the Rasch

Model. Assuming that pairs of items are independent, the likelihood of the paired

comparison matrix B can be expressed as
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(bu+ b31)! e(bud
b fid,)

Pr[BINJ = 1 1.[ &lb. Iv (20)
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Zwinderman (1995) described the same function in terms of the traditional persons by

items matrix. The derivative of the log of this likelihood function is

Y P

dcl,
bii (ell; edj)

(21)

Setting this derivative to 0, and adding the constraint that the sum of the item difficulties

must be zero, we have a set of N equations in N unknowns which Choppin recommended

solving iteratively in two stages. He recommended that an initial approximation to the

solution be obtained by using the iteration:

(n+1)di=
vn

lni bii. I

LiviA1

(bi + b11) 1

+ e"dj)i
(22)

which is a fixed-point iteration method (Conte and de Boor, 1980) for solving the

equations in (21). After setting the initial value of the item difficulties to 0, equation (22)

is used three or four times to provide the initial item difficulties for the following iteration:

(n+1)d,= nd,

(bti + b,;)

j4*.l j j,ixj (ed' + ed.')

e(d1+di) (by + bfi)
-E (ed., ed., )2

(23)

which constitutes the Newton-Raphson method (Conte and De Boor, 1980). The

iterations defined by equation (22) are recommended because the Newton-Raphson

technique might not converge if the initial estimates are not close enough to the solution.
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Equations (22) and (23) differ slightly from the equations given in Choppin's article in that

several typographical errors were corrected.

This approach has been used by Andrich (1978, 1988), Fischer and Tanzer (1994),

van der Linden and Eggen (1986), Wright and Masters (1982) and Zwinderman (1995) to

estimate the item parameters of the Rasch model. David (1988) pointed out that through

this maximum likelihood approach, in the context of the BTL model for the method of

paired comparisons, the row sums of the paired comparisons matrix, which can be

considered item raw scores, are sufficient statistics for the item difficulties. In fact,

Buhlmann and Huber (1963) showed that these scores are sufficient statistics only under

the BTL model. Zwinderman (1995) showed that the method provides a consistent

estimate of item difficulties that is comparable to conditional and marginal maximum

likelihood methods. Fischer and Tanzer(1994; David, 1988) cited the Zermelo-Ford

condition for uniqueness of the maximum likelihood solution: the solution is unique if and

only if, for any partition of the items into two subsets, at least one item in the first set has

been preferred to at least one item in the second set.

The Issue of Dependencies Between Pairs. The use of maximum likelihood

estimation as described above hinges on the assumption that the pairs of items are

independent. Zwinderman (1995) called the pairwise maximum likelihood algorithm a

pseudo-likelihood method for this reason. Van der Linden and Eggen (1986) suggested

the possibility of removing those dependencies.

Another perspective on this issue is provided by Wasserman and Faust (1994) in

their comprehensive text on social network analysis. Starting with the description of
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social interactions as random directed graphs (defined in a later section), the authors

present a family of models "which use the (natural) log of probabilities as their basic

modeling unit. The models posit a structural form for the (natural) logarithm of the

probability that actor i chooses actor j at one strength while actor j chooses actor i at a

possibly different strength" (p. 606). One model that they present assigns scale values

associated with friendliness to each actor. The model does accommodate ties unlike

Choppin's model, but otherwise the BTL and Rasch approaches are hiding here in a

different form. Maximum likelihood estimation is used, and the authors discuss the issue

of dependencies between pairs. They review studies of a maximum pseudo-likelihood

(MPL) estimation procedure that does not assume independence between pairs, and

conclude that the effect of dependencies is inconsequential. MPL and ML parameter

estimates were the same "even under conditions where the assumption of dyadic

independence is known to be violated." They conclude that the simpler ML methods are

justified.

In deriving the least squares algorithm, the requirement of independence between

pairs does not arise. The only assumption is local independence, which is the standard

assumption in Rasch measurement theory; in other words, performance on any one item is

independent of the performance on any other item. Choppin (1985) suggested that a

comparison of the item difficulties obtained using the B matrix with the item difficulties

obtained using the square of the B matrix, assuming that both matrices have no zero

entries, would show violations of the assumption of local independence. He suggested
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that the comparison could be used to test local independence even when other maximum

likelihood parameter estimation is used.

The Method of Paired Comparisons
and Graph Theory

Graph Theory

Graph theory is a branch of mathematics that traces its origins to a paper by Leonard

Euler written in 1736 (Gould, 1988). In the paper, Euler analyzed the oldest known

problem in graph theory, the bridges of Konigsberg problem. Konigsberg was situated on

the river Pregel. There were two islands in the middle of the river, connected to the banks

of Konigsberg and to each other by a system of bridges. The inhabitants of Konigsberg

amused themselves by trying to determine a path that would start and end at the same

point in the system and that would cross each bridge only once.

The tools of graph theory are graphs, which are composed of a finite nonempty set of

elements called vertices, and a set of edges connecting those vertices. A graph with five

vertices and seven edges is shown in Figure 2. The vertices may represent cities on an

airline route, or phones in a telephone network, or tasks in a production line, or items in

an item bank. Given a set of vertices and edges, graph theory provides answers to

questions such as: Are every pair of vertices connected through some sequence of edges?

What's the shortest route between two vertices? Could the graph be disconnected by

eliminating just one edge? Graph theorists have built a set of computer algorithms that

may be used to answer such questions. The user has to only supply substantive meaning

to the vertices and the connections between them.
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Graphs and multigraphs often appear under other names:

sociograms (psychology), simplexes (topology), electrical
networks, organizational charts, communication networks,

family trees, etc. It is often surprising to learn that these
diverse disciplines use the same theorems. The primary
purpose of graph theory was to provide a mathematical tool
that can be used in all these disciplines. (Berge, 1985, p. 3)

One way of representing a graph is through an adjacency matrix. An adjacency

matrix is a square matrix A with n rows and 11 columns, where n corresponds to the

number of vertices in the graph. For each entry au = 1, there is an edge from vertex i to

vertex j. Hay = 0 or if i=j, there is no edge. The adjacency matrix associated with the

graph in Figure 2 is as follows:

Vertex: 1 2 3 4 5

1 0 1 1 1 1

2 1 0 0 1 0

3 1 0 0 0 1

4 1 1 0 0 1

5 1 0 1 1 0

Another way of representing a graph is through an incidence matrix, in which the rows

represent vertices and the columns represent edges. The incidence matrix for the graph in

Figure 2 would appear as follows.

Edges: 1 2 3 4 5 6 7

Vertex: 1 1 0 1 1 0 0 1

2 0 0 0 0 0 1 1

3 0 0 0 1 1 0 0

4 0 1 1 0 0 1 0

5 1 1 0 0 1 0 0
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There are several useful variations on the basic graph described above. A

multigraph is a graph that may have more than one edge between vertices. A digraph is a

graph whose edges have a specific direction; in this case the edges are called arcs (Berge,

1973). Such digraphs lead to nonsymmetric adjacency matrices and incidence matrices in

which the entry is 1 if the arc initiates at the vertex and -1 if the arc terminates at the

vertex. A digraph is shown in Figure 3. Its associated adjacency matrix is:

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

The associated incidence matrix is:

1 -1 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 -1 1 1 -1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 -1 0 0 -1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 -1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 -1 1 0 0 0 -1-1 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

A well established property of adjacency matrices is that the entries a; of the powers

of the original matrix Aln provide the number of distinct walks of length m between the

vertices i and j. A walk is an alternating sequence of vertices and edges that begins with

the vertex i and ends with the vertex j and "in which each edge in the sequence joins the
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vertices that precedes it in the sequence to the vertex that follows it in the sequence"

(Gould, 1988, p. 8). The walk may repeat edges and/or vertices. A path between vertices

is a walk in which edges and vertices are visited only once. A cycle in a graph or circuit in

a directed graph is a path that begins and ends with the same vertex.

To see that the powers of the adjacency matrix, Am, provide the number of distinct

walks of length m between the vertices i and j, consider the entries a,2 of A2 for example.

Each entry ay2 of A2 is formed by summing the products a,k x aiy over all k; but this

product is 0 if either term is 0 (that is, if there is no arc from vertex i to vertex k or no arc

from k to j), and the product is 1 if both terms are 1 (that is, if there is an arc from i to k

and one from k to j). Thus, ay2 represents the number of times there is an arc from i to k

and one from k to j, where k is any other vertex besides i or j. In other words, au-7 is the

number of walks of length 2 from vertex i to vertex j.

Each edge in a graph may have a number associated with it. This number may

represent a weight, cost, or distance associated with crossing that edge, or some allowed

flow through the edge. The entries in the adjacency matrix or the incidence matrix could

then contain the numbers associated with each edge. A random digraph is a graph in

which the edge weight represents the probability associated with the existence of that

edge.

The following characteristics of graphs are important in answering questions

regarding the connectivity of a set of vertices:

1. A graph is connected if there is a path between every pair of vertices. In a

digraph, if you can find a path between any two vertices by following the direction of the



RMT. MPC. and GT 30

arcs, then the digraph is strongly connected. If you can find a path only by disregarding

the direction of the arcs, then the graph is weakly connected. The graph in Figure 3 is

weakly but not strongly connected. The graph in Figure 4 is disconnected; in this case, the

associated adjacency matrix clearly has a block structure that shows the disconnection:

0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0'1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 0

2. A component of a graph is a maximal connected subgraph; that is, the subgraph

is maximal in the sense that it is as large as possible without being disconnected. A

digraph may have strongly connected components or weakly connected components.

3. A connected graph is k-connected if a minimum of k vertices must be deleted to

disconnect the graph. If a graph is k-connected, then any two vertices can be joined by k

independent paths (Bollobas, 1979).

4. A connected graph is k-edge-connected if a minimum of k edges is required to

disconnect the graph.

5. A cut vertex (or articulation vertex) is a vertex whose deletion disconnects the

graph, while a bridge (or isthmus) is an edge whose deletion disconnects the graph.

6. The degree sequence of a graph is a listing of the degree of each of its vertices,

where degree of a vertex refers to the number of edges that are incident to the vertex. In a
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digraph, the indegree of a vertex is the number of arcs that terminate in a vertex, and the

outdegree is the number of arcs that begin at the vertex. Note that the column sums of the

adjacency matrix are the indegrees of the vertices and the row sums are the outdegrees.

7. A clique is a subset of the vertices in which an edge exists between every pair

of vertices in the subset. A maximum clique is the largest possible clique.

8. A graph may be divided into independent sets of vertices; these are sets of

vertices that are not directly connected to each other; that is, these are sets in which no

edges exist betwen any pair of vertices.

It should be noted that most graph theorists (Gould, 1988) define a graph as

described above, and then define a directed graph or digraph as a variation on the original

definition of graph. However, Berge (1985) and Carre (1979) take a different approach.

They both define graphs as a collection of vertices and arcs; their definition of graph is our

definition of digraph. They describe undirected graphs as graphs whose edges have no

specific direction; in other words, undirected graphs can be considered a variation of

directed graphs in which each undirected edge actually consists of two oppositely directed

arcs. According to Berge (1985):

It would be convenient to say that there are two theories
and two kinds of graphs: directed and undirected. This is
not true. All graphs are directed, but sometimes the
direction need not be specified. (p. 3)

Despite Berge's assertion, results are usually described in terms of either directed or

undirected graphs. This issue in graph theory is brought up to emphasize that the
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connectivity issues that are usually defined in terms of undirected graphs in general, can be

applied to digraphs with some modification.

Connections Between the Method of Paired Comparisons
and Graph Theory

Kendall (Kendall, 1955; Kendall & Smith, 1940) used digraphs to visualize the

results of a paired comparisons experiment. Only one arc existed between any two edges,

and that arc pointed to the loser in the comparison. The paired comparisons matrix is the

adjacency matrix for this graph, with edges weighted according to how many times the

vertex at the initial end of the arc won against the vertex at the terminal end. The vertices

can be ordered according to indegree or outdegreee, and this ordering goes from least able

player (highest indegree, lowest outdegree, most losses) to most able player (lowest

indegree, highest outdegree, fewest losses). The reallocation of wins that takes place by

squaring the adjacency matrix can be visualized as utilizing all the walks of length two

between every pair of vertices in the digraph.

In a balanced paired comparison experiment with a single judge, Kendall showed

how graph theory could be used to analyze the consistency of the judgments. An

inconsistency in the set of preferences would reveal itself as a circuit in the digraph, a

situation in which i is preferred to j, j is preferred to k, and k is preferred to i. Kendall and

Smith (1940) used the number of such triads as a measure of the inconsistency of a

preference system. For example, Riechard (1990; 1991) used the number of circular triads

to examine inconsistencies in paired comparisons experiments related to age, gender, and

socioeconomic setting.
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Masuda (1988) presented a method of analyzing all cycles, not just triads, in a

digraph that arises from a paired comparison experiment. In this method, the fundamental

cycles of the graph are identified and relations among these cycles are made clear. Any

cycles indicate inconsistences in the preference structure, and Masuda's technique would

be useful for a system with a large number of inconsistencies.

Graph theoretic interpretations have also played a role in several other approaches

to scaling in paired comparisons experiments. Shamus (1994) provided a graph theoretic

interpretation of Chebotarev's (1994) generalized row sum method, a method in which

direct comparisons between items carry the most weight, whereas indirect comparisons

through other items decrease in weight with increasing distance from the item in question.

Lattin (1990) used a network flow algorithm to obtain scale values from a paired

comparisons experiment by minimizing absolute residuals. This method appeared to be

more stable in the presence of aberrant proportions. The algorithm involved a digraph

created from a linear programming problem that involved minimizing absolute residuals,

and used a software program designed to analyze flow in networks.

Rasch Measurement Theory
and Graph Theory

Connections Between Rasch Measurement Theory
and Graph Theory

Table 1 presents generally how graph theoretical principles can be linked to the

description and analysis of measurement principles. Vertices represent test items; edges

represent comparisons between those items. Vertices could also represent raters, with

edges between raters representing a basis for some comparison between raters. Vertices



RMT. MPC. and GT 34

that are not connected directly by an edge may be connected through a path of

intermediate vertices and edges; in measurement terms, items that are not directly

comparable because no one has taken both items, may be compared through a series of

other items. Modeling an assessment network in this manner makes explicit the ways in

which two items or raters might be compared.

A connection between Rasch measurement theory and graph theory has been made

on two occasions, through a discussion of the PW algorithm for estimating parameters of

the Rasch model. Fischer and Tanzer (1994) and van der Linden and Eggen (1986) used

digraphs to provide an interpretation of the Zermelo-Ford condition for uniqueness of the

maximum likelihood solution. The digraph is defined by the original paired comparison

matrix B, with a directed edge from item i to item j if there is a nonzero entry in the matrix

for N. The B matrix can thus be considered an adjacency matrix for a digraph. If the

digraph is strongly connected, the maximum likelihood estimates are unique. The digraph

must also be strongly connected for the matrix powers to converge to the eigenvector

associated with the largest eigenvalue, as indicated by Cowden (1974). This is equivalent

to requiring that the operation of raising the B matrix to successive powerseventually

supplies a matrix with no zero entries.

If the digraph is not strongly connected, there is at least one item (or set of items)

that has incident arcs in only one direction; in other words, there is at least one item that is

always the correct one out of every pair or always the incorrect one out of every pair.

Such a situation has always been recognized as unacceptable in Rasch measurement.

Items on which all persons have succeeded or on which all persons have failed should be
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eliminated from consideration since their position on the item difficulty scale is

indeterminable except to say that these items are beyond the item difficulty range

measured by the other items. It would seem that any item that always matches

performance on some other paired item adds nothing to the scale.

If a digraph associated with a paired comparison matrix is not strongly connected,

the strongly connected components of the graph may be easily identified. There is,

however, more that graph theory can provide, especially in the case of data sets with

missing data. The connectivity of the digraph can be determined and used to indicate how

well connected the system is. For example, if a digraph is 2-connected or biconnected,

then it would imply that the graph remains strongly connected even when any one item is

removed from the system; this is also equivalent to the condition that there are two unique

paths comparing any pair of items. For a graph that is 1-connected, identification of the

cut vertices, the vertices that could break the graph into a weakly connected system with

strongly connected components, would allow examination of the quality of those items

that are crucial for the connectivity of the whole system. A parallel analysis could be built

from the determination of edge connectivity and identification of bridges. Furthermore,

two items might be compared via different paths to assess the consistency of the system,

or what Rasch might have described as adherence to the rule of transitivity.

Choppin (1968), Wright & Stone (1979), Engelhard and Osberg (1983), Masters

(1984), Wright and Bell (1984), and Engelhard (1997) resorted quite naturally to

graphical illustrations of the principles of item banks and test networks. An item bank is a

large collection of items that have been calibrated according to difficulty and can be used
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to measure person ability as a ruler is used to measure height. Similarly, test networks are

groups of tests whose relative difficulties are known. Both tests networks and item banks

can be described as graphs with vertices being tests or items, and edges between vertices

representing some result of a comparison between two tests or two items. Figure 5 shows

some of the graphs that have appeared in the publications cited above. The links between

items or tests could be identified and characterized precisely through graph theory.

Recognizing that the paired comparisons matrix B is an adjacency matrix for a

digraph is not the only way to link Rasch measurement theory and graph theory. The

system of equations described by Engelhard and Osberg (1983) for determining the linking

constants for networks of tests is the same approach described in equation (12) and used

by Bock and Jones (1968), Beaver (1977) and McGuire and Davison (1991) for obtaining

least squares estimates of scale values from paired comparisons. The matrix shown in (12)

is the transpose of a typical incidence matrix of a three-vertex, three-edge digraph. Such

matrices are commonly used to represent electrical networks.

Data Analysis

Data from a study by Monsaas and Engelhard (1996) are used to illustrate the

techniques described in this paper.

Instrument

An eleven-item subtest of the Home Observation for Measurement of Environment

(HOME) instrument was used. The subtest is designed to describe the type of learning

stimulation available in a child's home. Each item is scored dichotomously. Two-thirds of

the items were scored by a teacher who was trained in the use of the test and who visited
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the child's family and observed the environment. About one-third of the items were

scored on the basis of parental reports.

Participants

The data shown in Table 2 reflect the results of the HOME subtest for forty

preschool children who had been defined as being at risk for school failure, as described in

Monsaas and Engelhard (1996). There were 23 males and 17 females. Twenty-seven

were African-American, and 13 were white.

Procedures

SAS routines shown in Appendix B were designed to estimate item difficulties

according to the following methods: (a) Choppin's PW algorithm using maximum

likelihood (PW Maximum Likelihood) described in equations (20) through (23); (b)

Choppin's PW least squares algorithm using the B matrix of paired comparisons, with

zero entries replaced with 1/(2N) (PW Least Squares - B) described by equation (18); (c)

Choppin's least squares algorithm using the nth power of the B matrix (PW Least Squares

- Ein). The FACETS computer program was used to obtain estimates of the item

difficulties and standard errors using JML estimation.

Using the B matrix obtained from the HOME data as an adjacency matrix, the

connectivity of the system of items was explored using Mathematica (Wolfram, 1993).

Specifically, the following were obtained: (a) strongly connected components, (b)

biconnected components, (c) cut vertices, (d) bridges, (e) vertex connectivity, and (f) edge

connectivity. This analysis was also performed on an incomplete version of the HOME

data set, in order to illustrate the results of the very simple PW algorithm on incomplete
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data and to illustrate the application of graph theory to analyzing the connectivity of the

system of items. Table 3 shows the incomplete data set. Only the first 10 students were

rated on items 1 through 5; the next 10 were rated on items 7 through 11; the next 10, on

items 1, 2, 3, 10, and 11. The last ten students were rated on all items, but one item was

deleted randomly from each student.

Results

Table 4 shows the B matrix for the HOME data. Table 5 shows the item difficulty

estimates obtained through JML estimation, PW Maximum Likelihood, PW Least Squares

using the matrix B, and PW Least Squares using the matrix B2. The estimates using PW

maximum likelihood and those using the least squares algorithm on B2 are usually well

within one standard error of the estimates obtained using JML. The estimates using the

least squares algorithm on the B matrix, however, are often more than one standard error

from the JML estimates. It appears that the method of handling the missing data in matrix

B is inadequate. Table 6 shows the item difficulty estimates obtained through applying the

least squares method to successive powers of the B matrix. As Kendall observed, the item

difficulties appear to settle down with successive powers of the B matrix. The only

dramatic difference in values occurred in using B2 rather than B; perhaps the dramatic

change can be attributed to the fact that B2 had no zero entries. Consistent with Saaty and

Vargas' analytic hierarchy method, the solution converges to the natural logarithm of the

eigenvector associated with the maximum eigenvalue of the D matrix derived from B2.

Figure 6 shows the digraph associated with the B matrix. This digraph was strongly

connected and was characterized by 4-vertex-connectivity and 5-edge-connectivity,
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indicating that it would take the deletion of at least 4 items or 5-comparisons to disconnect

the digraph. In other words, comparisons between items can be made through at least

four independent paths through the digraph. For example, there is a direct comparison

between items 1 and 9, but these items can also be compared through item 2, through item

11, or through items 3 and 8.

The paired comparisons matrix of the incomplete HOME data set corresponds to the

digraph shown in Figure 8 and the item difficulties obtained using the least squares

algorithm are shown in Table 7. The system was so poorly connected that the fourth

power of the B matrix was the first matrix to contain no zero entries. It appears that not

until this fourth power did the estimates of the item difficulties settle down. The system

illustrated by the digraph in Figure 8 is strongly connected, but only 1-connected. There

are two cut vertices, items 1 and 3; in other words, deletion ofeither of these items would

change the strongly connected graph to a weakly connected graph and prevent proper

parameter estimation. Items 1 and 3 would have to be examined to determine whether the

connectivity of the system should rest with either of these items. If item 1 is deleted, for

example, the system breaks into two strongly connected components: one including items

2, 3, 5, 7, 8, 9, and 10, and the other including items 4, 6, and 11. Figure 9 shows

subgraphs of the graph shown in Figure 8, illustrating the opportunity to examine

connections among subsets of the items. Clearly, the component involving items 4, 6, and

11 is minimally connected. Interestingly, item 6 is the only item that differs by more than

one standard error from the JML estimates. All comparisons between items 4, 6, and 11

and other items, must be mediated by item 1 because of the connectivity.
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Summary and Conclusions

This study was motivated by three questions. The first question was: What is the

relationship between the method of paired comparisons and Rasch measurement theory?

The method of paired comparisons and Rasch measurement theory have the same goal: to

construct a linear scale along which a set of objects or items can be located. RMT has the

additional goal of placing persons on that scale after the calibration of objects or items.

Through Choppin's work it was shown that item difficulties in the Rasch model could be

estimated by methods that are equivalent to least squares or maximum likelihood

estimation of item difficulties using the BTL model for an unbalanced paired comparisons

experiment. Applying the least squares algorithm to powers of the paired comparison

matrix appeared to be more effective than arbitrarily filling in values for missing data in the

comparison matrix as shown in Table 5. This power method was tied to Saaty and

Vargas' analytic hierarchy method in which the scale values are components of the

eigenvector associated with the maximum eigenvalue of the appropriate matrix. The item

difficulties obtained are similar to JML estimates. The connectivity required in the system

of paired comparisons is parallel to the situation in RMT in which items that are always

correct or always incorrect cannot be properly placed on the scale with the other items in

the system.

The second question was: What is the relationship between the method of paired

comparisons and graph theory? It was shown that the paired comparisons matrix is an

adjacency matrix for a digraph with edges weighted according to how many times the

vertex at the initial end of the arc won against the vertex at the terminal end. Using graph
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theory, the connectivity of a system built from pairs of objects or items may be made

explicit.

An alternate least squares method used by Bock and Jones (1968) and shown in

equation (12) involves a system of equations that can be described in part by an incidence

matrix for a digraph with unweighted edges. This latter method can be further explored

and compared to results obtained through Choppin's PW algorithm. Standard regression

software can be used, providing a great deal of valuable information regarding the fit of

the data to the model.

The third question was: What can graph theory contribute to our understanding of

Rasch measurement theory? Table 1 summarizes how some of the language and methods

of graph theory might be used in measurement. It was shown that graph theory is

essential in analyzing the connectivity of the system produced by the paired comparisons

algorithm. Graph theory provides a well-established language and framework for

discussing any systems based on pairwise comparisons. The influence of different degrees

of connectivity must be explored. Network flow algorithms may provide new graph

theoretical means of analyzing and estimating parameters of the Rasch model. Other

applications of graph theory might be in determining goodness of fit measures for the item

difficulties produced by the PW algorithm. The well-developed application of graph

theory in social network analysis might suggest other ways to use graph theory in

measurement.

The PW methods of estimating item difficulties are important in that they provide a

way of utilizing the specific objectivity of the Rasch model without the computational
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disadvantage associated with CML estimation. By separating estimation of item

difficulties from person abilities, it becomes possible to establish a measuring instrument

that can be used consistently across different populations. Choppin (1968) was

particularly interested in PW estimation for this reason. It is an ideal procedure for setting

up item banks.

The idea (of an item bank) is that a large collection of test
items, the characteristics of which are known, be made
available at some central place so that individuals who wish
to construct achievement tests, but who lack the resources
to carry out detailed standardization and validation
procedures, can select items from the bank to form a test of
known characteristics. (p. 870 )

The usefulness of a PW algorithm was expressed as follows:

The advantages of these procedures over classical item
analysis techniques are several. First, because the model
allows the separation of person and item parameters, we can
make the estimation for any pair of items, without much
regard for which set of individuals provides the data.
People who score one on the item pair contribute to the
estimation. People who score two or zero contribute
nothing but do not spoil it. (p. 872)

Choppin also pointed out how simple the least squares algorithm is. In Appendix B is

shown the few lines of code that are necessary to generate item difficulties, even in the

presence of missing data. Choppin lamented that the technique was so easy that it allows

one to produce item difficulties even when the data are not sufficiently interconnected.

However, by extending his technique to powers of the comparison matrix, exploiting the

link to Saaty and Vargas' technique using eigenvectors, and applying graph theoretical

analysis of the paired comparison matrix, the simple technique might be successfully
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applied and thoroughly analyzed. Standard errors might be generated using a bootstrap

technique or a technique recommended by Thurstone (1927b), and standard MDS

techniques might be applied to test the unidimensionality of the data.

This paper sets the foundation necessary for a comprehensive treatment of a very

simple procedure for calibrating achievement items according to the Rasch model. The

statistical properties of the method must be explored further and the method must be

extended to situations in which items are not dichotomously scored, but graded on a scale,

and to situations involving raters. In addition, the applications of graph theory must be

explored further and can certainly be extended to other graph theoretical constructs.
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Appendix A

Shown here is the conversion of the cumulative distribution function

to the form

pi; = H(d,i)=
lr

1+ tanh(1 dit )

(where di; = -

(6)

du= III (pti)= In /pfi) (7)

By definition of tanh:

[ (di d;)1
p,, =

1
1

1 1
1+ tanh(i(d, di)] = 1+

2L [ cosh-2 (d, di)

which is equal by definition of sinh and cosh to:

1

So, pii -(d.- d ) -

= 1+
21 - (di- di) (4--

e2 + e 2

-1(4- rii)
2

(4_ d.di
e2 e

di) _I

IF

1-
-21_1+ 1+

ir 2

211 + e-(4- dj)

e
(4- d.,)

1+ e ' 1+ e (4- di)

e(4-
di)

To obtain IfI note that pi; e(4-
di)

1+ e(d,-
di) 1
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p
Thus, c = lnl I0 )
which implies that cl,

p..)
= litti if we assume that pp = 1 -po. which would be

true as long as ties are not allowed.
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Appendix B: SAS Routines

Routine #1: Input: X matrix shown in Figure 1.
Output: B matrix shown in Figure 1.

NITEM=NCOL(X); * NITEM IS THE NUMBER OF ITEMS;
B=J(NITEM,NITEM,0.0); * INITIALIZE THE COMPARISON MATRIX;

* CREATE THE B MATRIX OF PAIRED COMPARISONS ;
DO K=1 TO N;
DO I=1 TO NITEM;
DO J=1 TO NITEM;

IF X[K,I] A= 9 & X[K,J] A= 9 THEN DO; *9 indicates missing value;
IF X[K,I] > X[K,J] THEN B[I,J] = B[I,J] + 1.0 ;

END; END; END; END;

Routine #2: Input: B matrix or power of B matrix with no zero entries.
Output: Item difficulties according to least squares routine.

D = Bs / B;
LOGIT = LOG());
G = LOGIT[,:];

*See Figure 2 for description of D matrix.
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Routine #3: Input: B matrix.
Output: Item difficulties according to maximum likelihood routine.

* Initial approximation for input to the Newton-Raphson procedure;

G = J(NITEM,1,0.0); * Item difficulties initialized to zero;
DOS = 1 TO 4;
DO I=1 TO NITEM;

SUMONE = 0.0;
SUMTWO = 0.0;
DO J = 1 TO NITEM;

IF J ^= I THEN DO;
SUMONE = SUMONE + Cl[J,I];
TEMP = (Cl[I,J]+Cl[J,I]) /(EXP(G[I,1])+EXP(G[J,1]));
SUMTWO = SUMTWO + TEMP;

END;
END;

G[I,1] = LOG(SUMONE) - LOG(SUMTWO);
END;
END;

* The Newton-Raphson procedure ;
DO I = 1 TO NITEM;
NEWG=G[I,1];
OLDG=50.0;
COUNT = 0;
DO WHILE(ABS(OLDG-NEWG) > .001 & count < 100);

COUNT = COUNT + 1;
SUMONE = 0.0;
SUMTWO = 0.0;
SUMTHREE = 0.0;
DO J = 1 TO NITEM;

IF I A= J THEN DO;
SUMONE = SUMONE + Cl[J,I];
TEMP = EXP(G[I,1])+EXP(G[J,1]);
SUMTWO = SUMTWO + (Cl[I,J] +CI[J,I]) *EXP(G[I,1])/TEMP;
SUMTHREE = SUMTHREE+(Cl[I,J]+Cl[J,I]) *EXP(G[I,1]+G[J,1])/TEMP * *2;

END;
END;

OLDG = G[I,1];
NEWG = OLDG + (SUMONE - SUMTWO)/SUMTHREE;
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G[I,1] = NEWG;
END;
END;

ONETEMP = 0.0;
DO I = 1 TO NITEM;

ONETEMP = ONETEMP + G[I,1];
END;
MN = ONETEMP/NITEM;
DO I = 1 TO NITEM;

G[I,1] = G[I,1] - MN;
END;
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Table 1.

Measurement Interpretations of Graph Theoretical Constructs.

Graph Theory Measurement

Basic Structure of Graphs/Basic Structure of Assessment Networks

A graph

Vertices of a graph

Edges of a graph

Directed edges or arcs

An assessment network

Items (or raters or tests) in an assessment network

Direct comparisons between items: for example
the same examinee takes two different items

A representation of the result of a direct comparison
between two tasks; specifically, showing
that task i is easier than task j

A directed graph or digraph An assessment network in which the results of all
direct comparisons are shown

Properties of Vertices & Edges in a Graph/Comparisons in an Assessment Network

Degree of a vertex The number of other items with which a certain item
has been directly compared

Indegree of a vertex in a digraph The number of items that have be found to be easier
than a certain item after direct comparison

Outdegree of a vertex in a digraph The number of items that have been found to be
harder than a certain item after direct comparison

Length (or weight or value) of an edge Number of times i was preferred to j or found easier than j

Associated Matrices

Adjacency matrix

Incidence matrix

Powers of the adjacency matrix

A paired comparison or preference matrix in which
rows are items and columns are items

The transpose of the incidence matrix is equivalent
to the matrix used in equation (12)

The number of unique ways of indirectly
comparing two items
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Graph Theory Measurement

Paths in a Graph/Direct and Indirect Comparisons in an Assessment Network

Path between two vertices

Path in a digraph

An indirect comparison between two items: for example.
item i is compared with k., k is compared with I. and I is
compared with j, so there is a basis for comparison between
i and j

Item i is easier than k, k is easier than 1, and 1 is easier than
j, so i must be easier than j

Connectivity

Connected graph

Disconnected graph

A k-connected graph

A cut vertex

A k-edge connected graph

A bridge

An assessment system in which there is a basis for either
direct or indirect comparison between any two items

An assessment system in which there are two or more sets of
items that have no basis for comparison between them

There are k independent ways of comparing any two items in
the assessment network (either directly or indirectly). In
other words, a minimum of k items must be deleted
to disconnect the system.

An item that will disconnect the system if that item is
eliminated

A minimum of k comparisons between pairs of items must
be deleted to disconnect the assessment network

A link between two items upon which the connectivity of the
whole system depends

Connectivity of Subsets

Component

Biconnected component

A clique

A maximum clique

Independent sets of vertices

A subset of items in which there is a basis for comparison
between any two items

A subset of items in which there are at least two means of
comparison between any two items

A subset of items in which there is a direct comparison
between any two items

The largest subset of items for which there is a direct
comparison between any two items

Subsets of items in which no two items have been compared
directly
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Table 3.

HOME Data Set With Missing Values

Items

Persons 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1

2 1 0 0 1 0
3 1 1 0 1 1

4 1 0 1 1 1

5 1 0 1 1 1

6 1 1 0 1 1

7 I 1 0 1 0

8 1 1 1 1 1

9 1 1 1 1 1

10 1 0 0 1 1

11 1 1 0 0 1

12 1 1 0 0 1

13 0 1 0 0 1

14 0 1 0 0 1

15 1 1 0 0 1

16 0 0 1 0 1

17 1 0 0 0 1

18 1 0 1 0 1

19 0 0 0 0 1

20 0 1 0 0 1

21 1 0 0 0 1

22 0 0 1 0 1

23 1 0 1 1 1

24 0 0 1 0 1

25 1 1 0 1 1

26 0 0 0 0 1

27 1 1 1 1 1

28 1 1 1 1 1

29 1 1 1 0 1

30 1 1 0 0 1

31 1 1 0 1 1 1 1 1 0 1

32 1 1 0 1 1 1 1 0 0 1

33 0 0 1 0 0 0 0 0 0 1

34 1 1 0 1 1 1 1 1 1 1

35 1 0 0 0 1 0 1 0 1 1

36 1 0 0 0 0 1 0 0 0 0
37 1 1 1 1 I 0 0 0 0 1

38 1 0 0 1 1 1 1 0 0 1

39 1 1 1 1 1 1 1 1 0 1

40 1 1 0 1 0 1 1 1 0 1

60



Table 4.

Comparison Matrix B for HOME Data.

Items

Items 1 2 3 4 5 6 7 8 9 10 11

1 0 15 22 1 12 4 10 12 21 22 2

2 0 0 12 0 5 1 2 6 9 12 1

3 2 7 0 0 3 3 3 2 8 7 0

4 3 17 22 0 13 6 11 12 21 24 1

5 1 9 12 0 0 4 4 7 14 12 0

6 2 14 21 2 13 0 9 10 18 22 1

7 2 9 15 1 7 3 0 8 13 15 0

8 2 11 12 0 8 2 6 0 13 15 0

9 3 6 10 1 7 2 3 5 0 11 0

10 0 5 5 0 1 2 1 3 7 0 0

11 5 19 23 2 14 6 11 13 21 25 0
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Table 5.

Item Difficulty Estimates Based on Choppin's Pairwise Algorithm

Compared to Joint Maximum Likelihood Estimates for HOME Data

Item Number JML

Pairwise Estimates

Maximum
Likelihood

Least
Squares-B

Least
Squares - B2

10 2.34(.43) 2.18 3.05 2.20
3 1.99(.41) 1.75 2.23 1.70

9 1.66(.40) 1.36 1.59 1.47

2 1.35(.39) 1.25 1.89 1.49

5 .58(.40) .62 1.20 .60
8 .42(.40) .45 1.13 .52

7 .09(.42) .06 .34 .08

6 -1.15(.51) -.78 -.86 -.65
1 -1.73(.57) -1.37 -2.13 -1.25
4 -2.51(.68) -2.49 -3.91 -2.74
11 -3.05(.80) -3.02 -4.51 -3.41

Mean 0 0 0 0

SD 1.86 1.72 2.53 1.84



Table 6.

Item Difficulty Estimates for the HOME Data Based on Choppin's

Pairwise Least Squares Algorithm Using Powers of the B Matrix

Item No. B2 B3 B4 B5 B1°

10 2.20 2.25 2.23 2.24 2.23

3 1.70 1.76 1.73 1.74 1.74

9 1.47 1.42 1.43 1.43 1.43

2 1.49 1.28 1.30 1.29 1.30

5 .60 .63 .62 .62 .62

8 .52 .53 .53 .53 .53

7 .08 .08 .08 .08 .08

6 -.65 -.69 -.68 -.68 -.68

1 -1.25 -1.29 -1.28 -1.28 -1.28
4 -2.74 -2.74 -2.73 -2.73 -2.73

11 -3.41 -3.23 -3.23 -3.23 -3.23

Mean 0 0 0 0 0

SD 1.84 1.80 1.80 1.80 1.80

Note: The item difficulties constitute the natural logarithm of the eigenvector
associated with the maximum eigenvalue of the D matrix for the HOME
data.



Table 7.

Item Difficulty Estimates for the HOME Data with Missing Values,

Based on Choppin's PW Least Squares Algorithm Using Powers of the B Matrix

Item JML B B2 B3 B4 B5 B6 B1° B"

10 3.33(.57) 3.04 3.65 3.22 2.89 2.90 2.90 2.90 2.90

3 2.89(.53) 4.10 3.01 3.69 3.21 2.64 2.65 2.64 2.64

9 2.23(.62) 2.36 3.01 2.68 2.31 2.29 2.29 2.28 2.28

2 1.68(.51) 1.69 2.86 2.28 2.01 1.99 1.98 1.98 1.98

5 .74(.64) 1.15 1.75 1.38 .98 1.00 .99 .99 .99

8 .82(.56) 1.51 2.12 1.78 1.31 1.27 1.26 1.26 1.26

7 .74(.54) 1.08 1.81 1.33 .93 .90 .89 .89 .89

6 -3.32(1.34) -3.64 -5.67 -7.85 -5.78 -5.25 -5.17 -5.18 -5.18

1 -1.47(.77) -3.31 -.59 -.34 -.71 -.71 -.71 -.71 -.71

4 -3.44(1.28) -3.73 -5.65 -3.81 -3.28 -3.19 -3.21 -3.20 -3.20

11 -4.20(1.12) -4.25 -6.29 -4.36 -3.89 -3.85 -3.86 -3.86 -3.86

M 0 0 0 0 0 0 0 0 0

SD 2.68 3.09 3.93 3.72 3.02 2.85 2.84 2.83 2.83

Note: The items are ordered according to the difficulty of the items determined using the

complete HOME data set.
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ij

if person i got item j incorrect,

and x = 1 if person i got
1.1

item j correct.
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13

b
21
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correctly to item i and
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Figure 1. Data summary in matrix form required for JML estimation contrasted with data

summary required for the pairwise algorithm. (Adapted from Choppin, 1985).
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Figure 2. A graph with 5 vertices and 7 edges.
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Figure 3. A digraph.
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Figure 4. A disconnected graph with two components.

/6

68



Graph from Wright & Stone (1979, p.101)
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°kir/ow.° 0
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Graph from Engelhard (1983, p.287)

Multigraph from Masters (1984, p. 20)

Figure 5. Graphs from published articles on item banks and test networks.
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Figure 6. The digraph associated with the adjacency matrix shown in Table 4 and the HOME
data shown in Table 2.
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Figure 7. The digraph associated with the paired comparison matrix for the data shown in Table
3.
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Figure 8. The strongly connected subgraphs of the digraph shown in Figure 7 with item #1
deleted.
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