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SECTION I. INTRODUCTION

How long do faculty stay at a college, and do male and female faculty have different

"survival times"? Questions such as these involve data with special characteristic, and

special statistical methods, known variously as "survival analysis" or "duration analysis" or

"analysis of failure time data" are required. This is an informal introduction to survival

analysis, applied to faculty retention data.

The use of survival analysis is gradually becoming more widespread in the social

sciences. See, for example, a review of the econometric literature by Kiefer (1988),

econometric work by Heckman and Borjas (1980), and introductory articles in the

psychology literature by Morita et al (1989) and Singer and Willet (1991). Institutional

researchers are starting to use survival analysis; a prominent example is the recent article for

the AIR Professional File by Ronco (1996) describing the "competing risks" model. Also,

at the 1995 California Association for Institutional Research Conference, Garcia (1995) used

life table methodology to track student retention and graduation rates. Statistical packages

such as SPSS are gradually being given more and more powerful survival analysis

capabilities, enabling researchers to more easily carry out such analyses.

Survival analysis is useful for answering questions involving some sort of duration; the

question could be the survival time of cancer patients, the duration of unemployment spells,

the age at which people first get married, the retention of faculty -- in short, any question

involving the length of time that passes until a certain event occurs (death, employment,

marriage, termination or exit from the school, and so on).
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But most undergraduate and even graduate statistics courses in most disciplines do not

cover survival analysis. This paper will introduce a few of the concepts of survival analysis,

starting with the basic definitions and moving up to regression analysis of survival data.

These techniques will be applied to faculty retention data, in particular to test the null

hypothesis that male and female faculty at a private liberal arts college have equal survival

times.

PRIOR RESEARCH ON FACULTY RETENTION

Although many studies of gender differences among faculty exist (see Dwyer et al

(1991) for a survey), longitudinal studies of faculty retention are much rarer. Most earlier

studies seem to have found higher mobility rates (i.e. lower retention rates) for female faculty

than for male faculty. However, these either were comparative rather than longitudinal, or

dealt with only a specific subset of faculty, such as psychology faculty (Rosenfeld and Jones

1986) or part-time faculty (Tuckman and Tuckman 1981). This study, though covering only

one school, covers all tenure-track faculty in all fields and follows them longitudinally. By

covering the faculty at one school only this study does lose generality, but at the same time

avoids the complications involved in comparing faculty at research institutions with those

at teaching institutions, and comparing faculty of widely divergent backgrounds and quality

levels. Moreover, this study illustrates how a wider ranging study could be performed, if

longitudinal data on a variety of institutions were gathered.

Ashenfelter and Card (1996) are working with TIAA/CREF and the Princeton

Retirement Survey to create a database with which they can study faculty retirement using
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survival analysis techniques. However this database's usefulness in studying the retention

of junior faculty will be somewhat limited because it will not include professors who left

their schools prior to 1986.

In Section II we will introduce some of the fundamental concepts used in survival

analysis: survivor functions, hazard functions, and censoring. In Section III we will

describe the issue being researched, namely faculty retention by gender, and describe the

data set. In section IV we will describe simple techniques for analyzing the data, such as

using life tables to look at the survivor functions and performing log-rank tests for

differences between the genders. In section V we will discuss more complex techniques,

such as Cox's proportional hazards regression model.

SECTION II. FUNDAMENTAL CONCEPTS

LIFE TABLES AND SURVIVOR FUNCTIONS

Some of the most fundamental concepts of survival analysis can be illustrated with a

life table, similar to the ones used by actuaries and demographers. Suppose that in the year

1900, 100 children were born in Costa Mesa, California. By 1901, let us suppose that 90 of

them were still alive; by 1902, 80 of them were still alive; and by 1903, 70 survived. We

could begin constructing a life table that would look like the one in Exhibit 1.

The first five columns are fairly self-explanatory. The "observed survivor function"

simply tells us, for any given year, what percent of the population is still surviving. This



function will always be non-increasing, as long as we are dealing with standard single-event

survival models.

HAZARD FUNCTIONS

However, researchers will often choose not to focus on the survivor function, but

instead will focus on the "hazard function" -- the percent of REMAINING SURVIVORS (not

the percent of the total) who die in a given year. Notice that in Exhibit 1, even though a

constant number of ten people are dying each year, and thus a constant 10% of the

population is dying each year, the hazard rate is INCREASING. In the second year, the ten

deaths represent one-NINTH of the survivors, and in the third year one-eighth (1).

When dealing with human mortality, the "mortality rate" is simply another name for

the "hazard rate," i.e. the value of the hazard function.

Mathematically, the hazard function can be derived from the survivor function and

vice-versa (2). But in practical terms for researchers, hazard functions are often more

convenient to study. One reason is that survivor functions, when graphed, all look pretty

much alike -- they are all downward-sloping. It is often difficult to distinguish between

different survivor functions graphically, and to deduce what the graph is telling us.

Hazard functions in contrast will typically have very different appearances from

population to population, or from model to model. The researcher can more easily interpret

and tell a story about a given hazard function. For example, if I asked you what the hazard

function for human beings looked like (realistically, not using the fake data in Exhibit 1),

after a little thought you would probably realize that it is U-shaped: the mortality rate for



infants is relatively high, then it falls for children and young adults, then it rises continually

for older people.

In contrast to the hazard function, it would be difficult for you to tell me much about

human beings' survivor function, except that it is downward-sloping.

Radioactive decay provides another example of a hazard function. How many

Cesium 137 atoms are left after a period of time? Radioactive decay is usually assumed to

be constant, and since Cesium 137 has a half-life of 30.0 years, about 2.3% of the atoms will

decay per year. This is a CONSTANT hazard rate, with 2.3% decay per year.

Hazard functions often exhibit "negative time dependence," that is, the hazard rate

decreases over time. Unemployment spells often are an example: quite a few unemployment

spells end after two or three months, but by the time an unemployment spell has lasted, say

sixty months, the job-seeker's probability of finding a job in the next month is quite small

-- i.e. his or her hazard rate is low. We will see that the hazard function for faculty typically

exhibits positive time dependence initially, but after a few years the exhibits negative time

dependence. After a professor has been around for 15 years, the probability that she will

leave in the 16th year is low.

CENSORING

Survival data frequently are "censored," meaning that the true value of an subject's

survival time is unknown, except that it exceeds a certain value. Here is an example of

censoring: as of 1996, any professor who arrived in 1994 would have completed two years

and the value of their duration variable would be 2. But these faculty are very different from
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faculty who arrived in, say, 1968 and left in 1970. Both have durations of 2 years, but the

1994 cohort of faculty will ultimately have durations GREATER than 2 -- but we do not

know what their final, true, duration will be. Thus returning faculty are all censored (3). We

only know the true durations of faculty who have arrived AND left the school.

How do we deal with censoring? Clearly, it is undesirable to take the duration

variables at face value and to consider the 1994 faculty to have durations of 2 years. One

possibility is to drop the censored subjects from the data set. This usually creates two major

problems however. First, the data set may as a result shrink to an unacceptably small number

of subjects. Second, the sample will probably be biased -- because professors with long

durations are especially likely to be censored, and these long-lived faculty are thus getting

dropped from the sample. The sample will be biased towards short-lived faculty.

A better way of dealing with censoring is to use the survival analysis techniques which

have been developed over the years to deal with the problem of censoring. These will be

explained after we describe the data set.

SECTION III. EXAMINING FACULTY RETENTION

THE ISSUES

This study covers faculty at a selective private liberal arts college. During the late

1980s and early 1990s there seemed to be an unusually large number of junior female

faculty who left the school, for various reasons. Also, in the early 1990s the school

appointed a professor to be its Title IX coordinator. Thus questions of faculty retention,
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especially female faculty retention, arose. Although the school has had a good record of

hiring female faculty, and although the proportion of women in the faculty has been rising,

there was still the question of whether these newly-hired women faculty were actually

staying at the school.

Unlike the situation with students, whose "survival" can be measured with indicators

such as graduation and retention rates, there are no widely used overall measures of faculty

retention, with the exception of tenure and promotions. However, faculty in general have

to stay about 6 years before they can get tenure -- and thus information on tenure will not

cover faculty in the first three or four years at the school. Many professors were simply too

new to be eligible for tenure, others left before they became eligible. Also, tenure doesn't

tell us how long the professor actually stayed at the school; it merely tells us that they stayed

long enough to get tenure.

A better measure of retention is to literally count how many years each professor stayed

at the school.

DATA

We used the college's catalogs to identify 339 full-time tenure-track faculty who had

started working in 1960 up to 1994, and to determine their final year at the college. Many

of them of course are still at the college.

The catalog also supplied us with the following variables: PhD/ABD status when

hired, year of Phd, department, entry rank, year of full-time tenure-track status (some

professors started as adjunct or visiting faculty), and tenure status upon entry (a few

1,0
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professors enter with tenure in hand). We also collected data on years to tenure and to full

professorship, but those variables are not used in this study.

The catalog did not directly supply us with gender information, but by looking at the

names and consulting with veteran employees we were able to determine the gender of all

but two faculty. We do not have ethnicity information, especially for faculty from the 1960s.

We do not have information on the REASON for exit; the professor may have left due

to a better offer elsewhere, or may have been turned down for tenure or contract renewal.

Thus this study only measures overall retention; it does not measure retention of "desirable"

faculty, or the rate at which "undesirable" faculty were gotten rid of.

Descriptive statistics for the data set are in Exhibit 2.

If there were no censoring problems, we could simply find the mean duration of male

and female professors, do a t-test and be done. We could also do linear regressions to see

if other variables affect duration.

However, our data our heavily censored -- about 140 of the 339 professors in our

sample are still at the school and thus we do not know their ultimate duration. Thus we

utilized survival analysis.

SECTION IV. SIMPLE COMPARISONS

SURVIVOR FUNCTIONS

Initial analyses of our data quickly revealed that faculty who arrived in the earlier years

-- the 1960s and 1970s -- had much lower durations that faculty who arrived later. (We later
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performed a log-rank test showing a large and highly significant difference.) Thus we

decided to split the data set, since it seemed apparent that the faculty who arrived in 1980-94

had survival and hazard rates which were different from the 1960-79 faculty. Also, since

most of the earlier faculty were men, a simple comparison of men vs. women would tend to

show men having a low retention rate simply due to the fact that so many of them arrived

during the years when retention rates were low.

Exhibit 3 shows life tables for the faculty who arrived from 1960 to 1979, and the

faculty who arrived from 1980 to 1994. The estimated survivor functions are calculated

using Kaplan-Meier (also known as product limit) estimates. Notice that the censored

observations are utilized "for as long as they can" -- that is, if a professor has been at the

school for three years and is still there light now, we do not know her ultimate duration. But

we do know that she did not "attrit" (that is, leave the school) after her first or second years,

and so she does contribute to the calculation of the one- and two -year retention rates. Most

full-featured statistical packages, such as SPSS, will calculate life tables and survivor and

hazard functions.

Exhibit 4 graphs the observed survivor rates and Exhibit 5 the observed hazard rates

for the 1960-79 and 1980-94 faculty.

We do not know the explanation for the very high attrition rates of the 1960-79 faculty.

A non-trivial proportion (one out of nine) only lasted one year. One potential factor is that

the school offered only 1-year contracts to new faculty for much of that period. However,

it seems unlikely that this is a complete explanation: the vast majority of faculty hired in

recent years would probably stay longer than a year even if they were limited to 1-year
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contracts. Possibly faculty quality became higher in the 1980s and 1990s, and new faculty

are more likely to qualify for contract renewal, tenure, etc.

The hazard functions in Exhibit 5 of course show the very high hazard rates that the

early professors experienced, especially in their first few years. Post-1979 professors in

contrast have a very low hazard rate their first two years -- 94% of stayed for at least their

third year -- and even when their hazard rate increases it still lower than that of the pre-1979

professors.

In addition it is interesting to note that the hazard rates for the pre-1979 professors

peaked in their 4th and 7th years -- not too surprising given the timing of tenure decisions

and contract renewals. The hazard for the post-1979 professors peaks in their 5th and 8th

years, which is somewhat surprising. Possibly more tenure decisions are getting deferred or

delayed in recent years. For all professors, the 8th year seems to be the cutoff point -- if a

professor has stayed for 8 years, the chances are quite good that he or she will be back for

the 9th and subsequent years. This same phenomenon can be observed in the survival graphs

in Exhibit 4 -- after the 8th year the survival curves flatten out.

Exhibits 6 and 7 show the life tables for male and female faculty who entered after

1979. Exhibit 8 shows a graph of their observed survivor rates. It appears that men have a

slightly higher survivor or retention rate than women, but it partly depends on how where

one measures the survivor rate -- for example, women only have an 84% four-year retention

rate whereas men have a 91% retention rate. But women have a 58% thirteen-year retention

rate, close to the 59% men's rate. On the whole the differences do not seem terribly large --

but how can we tell what "large" is? To some degree this is a decision for policy-makers to
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decide. But we can also make an overall comparison of the two survival functions, and

measure the statistical significance of the difference. A simple way of testing for the

difference between two survival functions is to perform a log-rank test.

LOG RANK TESTS

Log-rank tests are relatively simple to perform (statistical packages such as SPSS will

perform these tests). They can be interpreted as a generalization of rank tests such as the

Wilcoxon test; essentially the number of attritions in a given period is compared to the

number of attritions expected under the null hypotheses. See, for example, Kalbfleisch and

Prentice (1980) for a discussion and derivation.

The log-rank test yields a statistic which is distributed as-chi-squared, with r-1 degrees

of freedom, where r is the number of samples being compared. In our case, we have two

post-1979 samples, men and women. The log-rank test was significant at the p=36% level,

nowhere close to the standard significance levels and suggesting that the differences between

men's and women's survival times could have been caused by random variation.

For the 1960-79 samples, men actually seemed to have lower survival rates than

women. However a log-rank test performed on these samples again showed no significant

differences.

A log-rank test comparing all post-1979 faculty to all_ 1960-79 faculty was highly

significant however, with p well below 1/10 of 1%.

The log-rank test has an important weakness in that it simply compares two (or more)

entire samples. It does not take into account the effects of other variables, such as PhD /ABD
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status, entering rank, entering tenure status, and time trends. To control for these other

variables, a multivariate approach is preferable.

SECTION V. MORE COMPLEX TESTS

THE COX PROPORTIONAL HAZARDS MODEL

There are several different regression models that can be applied to survival data.

Many of them are based on parametric hazard functions; that is, one has to assume that the

population has an underlying hazard function with a specific functional form. The simplest

such functional form would be the exponential model -- in the exponential model, the hazard

rate is constant (that is, a constant proportion, h, of the population exits each period, and the

surviving population thus declines exponentially) and a regression might estimate the value

of h, as well as the value of the slope parameters of the righthand side variables used in the

regression.

Few survival processes have such simple functional forms -- typically the hazard rate

will vary with the subject's duration. For such situations there are many more complex

parametric models which can be used. Some of them can flexibly fit data with positive time

dependence, negative time dependence, or both.

In our case however, we were unwilling to make prior assumptions about the shape of

the hazard function, and thus unwilling to choose one specific parametric model.

The "Cox proportional hazards regression model" is a regression model frequently

used in such situations. It does not make prior assumptions about the shape of the hazard

13
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function -- the "baseline" hazard function is estimated from the data. It does however

assume that all the right hand side variables affect the hazard function proportionately. For

example, a change in the value of one righthand side variable might double the entire hazard

function; a change in another variable might reduce the entire hazard function. The impact

of a righthand side variable is assumed to always be a proportional change in the entire

hazard function (4).

Some packages such as the Windows version of SPSS can perform Cox proportional

hazards regressions, as can many econometric packages. The coefficients cannot be

calculated directly; iterative maximum likelihood techniques are necessary, just as with logit

(also known as logistic) regressions.

We ran the regression with several different sets of variables; in all of them gender had

only a very small coefficient and was nowhere close to significance at the 5% or even 10%

level. We did find however that faculty who entered with a PhD had significantly higher

survival rates than faculty who entered ABD and faculty who entered with tenure also had

higher survival rates (not surprisingly). There was some evidence that faculty who started

as adjuncts also had higher survival rates (however remember that this sample is of tenure

track faculty only, and only a small proportion of adjuncts are able to switch into a tenure

track position). And of course the post-1979 faculty had much higher survival rates. The

professors' departments did not seem to affect survival rates. The results from an illustrative

regression are in Exhibit 9. Remember that the dependent variable is the hazard rate, so the

negative coefficient on post-1979 faculty means that they have LOWER hazard rates, and

thus HIGHER retention and survival rates.

L6
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SOME REGRESSION DIAGNOSTICS

There are alternative ways of running the regression, for example the sample can be

split into subsamples called strata. Each stratum has its own baseline hazard function, which

as before is completely flexible, without any parametric assumptions. However all strata

share the same righthand side variables and the same slope coefficient.

How should we decide whether we need to split the sample into strata? More

generally, what sorts of regression diagnostics are available, so that we can evaluate the

"goodness of fit" of the regression?

First, the bad news. There is no equivalent to the R2 or the mean squared error that can

be used to evaluate Ordinary Least Squared regressions. One can perform a log-likelihood

test (which is distributed as a chi-squared statistic) which compares the overall fitted

regression to the null regression -- but as with OLS regressions, almost any sort of reasonable

righthand side variables will give extremely significant results, and thus one doesn't get a

strong sense of how well the regression fit the data. Some pseudo -R2 formulas based on the

change in the log-likelihood have been suggested.

The good news: there are several graphical techniques for evaluating the results of

survival regressions. However they are very heuristic in nature; there do not seem to be any

fixed formulas for defining when a fit is "good" or "bad"; rather one simply looks at the

graph and tries to decide if the fit is good enough. Also, most statistical packages will not

produce these graphs for you; you have to download the parameters and data and produce

the graphs yourself.



Here is a brief description of a couple examples of these graphical regression diagnostic

techniques. One standard technique is the "log-minus-log" plot: a plot of the logarithm of

minus the logarithm of the estimated survival functions of the possible strata, plotted with

duration on the horizontal axis. In other words, plot ln(- ln(S(t)) against t, where S(t) is the

estimated survival rate at time t. (Remember that survival rates are always between 0 and

1; thus the logarithm of the survival function will always be negative. The log-minus-log

plot uses the logarithm of MINUS this logarithm.)

When the different strata are plotted on the log-minus-log plot, their plotted curves

should ideally stay roughly the same distance from each other. If they do not have this

constant separation, then the proportional hazards assumption may be violated, and the

regression should be stratified (rather than using the stratum variable as a righthand side

variable). Exhibit 10 shows an example of a log-minus-log plot, with the sample stratified

by pre-1979 (actually 1960-79) and post-1979 status.

The two curves show a certain amount of change in their distance from each other, and

they even cross at year 7. There may not be any exact guidelines for deciding when to

stratify, but this would seem to be a situation where stratification is called for. (The

stratified regressions gave results very similar to the ones in Exhibit 9.)

Another diagnostic device is the "generalized residual," a concept suggested by Cox

and Snell (1968). In the context of survival analysis, generalized residuals are generated by

calculating the "integrated hazard" -- the sum, across time, of the values of the hazard

function (or the integral with respect to time if continuous time is being used). As Kiefer

(1988) notes, "the integrated hazard does not have a particularly convenient interpretation,"
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but "it is the basic ingredient in a variety of specification checks." For the Cox proportional

hazards model, a generalized residual for a duration t can be calculated by taking the

integrated hazard at time t and multiplying it by the exponent of the product of righthand

side variables and their coefficients (i.e. e(t) = H(t)exp(xb) where e(t) is the generalized

residual for time t, H(t) is the integrated hazard at time t, xb is the vector product of the

righthand side variables and their coefficients, and exp() is the exponential function). These

residuals can be plotted with a residual of size r on the horizontal axis and the logarithm of

the proportion of residuals greater than r on the vertical axis. The resulting plot, if the

regression has a good fit, should ideally follow the 45-degree line from the origin. See also

Crowley and Hu (1977) for a discussion and example.

Exhibit 11 shows the plot of the generalized residuals from an unstratified regression.

Again there seem to be no hard-and-fast formulas for determining when the residuals are

sufficiently close to the ideal. However the graph in Exhibit 11 seems to exhibit a good fit.

Exhibit 12 shows the plot of the generalized residuals from the same regression,

stratified by pre-1979 and post-1979 status. If anything these residuals seem to have a worse

fit that those from the unstratified regression, which seems counterintuitive. Again it is not

clear if the generalized residuals in this graph could be considered to be "close enough" to

the 45-degree line.

Thus the results from the log-minus-log and generalized residual graphs are not

definitive, but do not seem to indicate a gross lack of goodness of fit in the regression.
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CONCLUSION

There are many other statistical techniques used in survival analysis, but this paper has

provided an introduction. It seems safe to conclude from the survival graphs, log rank tests,

and regression results that the survival rates of male and female faculty did not exhibit large

differences in a statistical sense. To decide whether the differences are large enough to

worry about in a non-statistical sense is a largely subjective judgement, but the life tables and

estimated survival functions at least provide numerical measures for comparing the retention

of men and women.

One crucial piece of information that our data set does not provide is the reason for

faculty attrition. The college may have deliberately made some professors leave, while it

may have wished to retain other professors who left the school. And of course the reasons

for attrition are typically complex and cannot be captured in a single variable -- some

professors may have wanted to stay on the whole but some aspect of the school made the job

unattractive; some professors may have been deemed desirable by some members of the

college community and undesirable by others. The dataset does not provide even a hint of

what the reasons for attrition were; it simply records who stayed and who left, and when.

Thus it is possible that a school could still have a problem with retaining female faculty

even if their retention rate equaled that of the male faculty. Possibly the males who left were

not deemed desirable by the school while the females were -- or vice-versa.
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WHERE TO GO FROM HERE

This paper has only discussed single-spell, single-outcome models. Some events such

as unemployment or marriage can happen repeatedly to the same person over time. Also

sometimes there are multiple possible events which we wish to measure: a student might

stay enrolled until he or she eventually graduates, transfers or drops out -- this is the subject

of Ronco's AIR Professional File article (1996), and in a life table context, Garcia's CAIR

conference presentation (1995).

For people who wish to perform survival analyses of their own, we have found Singer

and Willett's (1991 and 1993) articles to be clearly written and easy to understand. Morita

et al provide another good, slightly more technical introduction. For a more mathematical

approach, Kiefer's survey article (1988) and Heckman's work (1984, e.g.) represent the

econometric approach. For a general statistical approach, Kalbfleisch and Prentice's book

(1980) is cited extremely often and provides a good but mathematical introduction. It is

getting a little dated now, however.

We used an econometrics package called Limdep (ver 6.0) and SPSS for Windows (ver

6.1.2) to perform these calculations. Many lower cost statistical packages do not have the

capability of performing survival analysis. On the other hand, if you have discrete time data,

Willett and Singer (1993) describe how some survival analysis can be performed simply by

doing a series of logit regressions (also known as logistic regressions), which many statistical

packages can perform.

Survival analysis will not replace the t-test and the contingency table in terms of being

a "must know" statistical technique. But if you have a data situation where you are
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measuring time duration, especially in the presence of censoring, then survival analysis

comes in handy indeed.

ENDNOTES:

(1) In calculating the observed hazard function, there are some technicalities associated with

the question of whether time is being measured as a continuous or discrete variable. Most

statistical packages, including SPSS, will assume that time is continuous, and will make

adjustments to the calculated hazard function instead of using the simple calculations in

Exhibit 1. In this example, we are measuring time in years. But most people do not literally

live exactly 1.00 years or 2.00 years and then drop dead. In Stead they may die at any age,

such as 1.032 or 2.964. But life tables put people into age categories, such as 0 to 1 years,

and 1 to 2 years, and do not record the exact age at death. Still, knowing that , for example,

in the first year we started with 100 people and ended with 90 people, we might assume that

people died at an even rate throughout the year and assume that during that first year the

average size of the surviving population was 95. Thus one possible simple adjustment to the

hazard rate would be to calculate it as 10/95 instead of 10/100. With discrete time, such

adjustments are not necessary -- for example, faculty duration typically can be measured in

integer years.

(2) If we assume that survival time is a random variable, and denote the survivor function

as S(t), where S denotes the proportion of the population surviving at time t, then the



cumulative distribution function of survival time is F(t) = 1-S(t). If time is continuous

(rather than discrete), then the density function of survival time is f(t) = F'(t). And the hazard

function is h(t) = f(t)/S(t). Conversely, the survivor function can be derived from the hazard

function: S(t) = exp(-int(h(t))) where "int(h(t))" denotes the integral of h(t) from 0 to t.

(3) This is known as "right censoring," where the subject's date of EXIT is unknown. In

other types of research, subjects can be "left censored," with the date of ENTRY unknown.

For example, if one wishes to measure the life expectancy of AIDS patients from the date

of infection (as opposed to the date of diagnosis), many patients will not know their date of

infection and thus they will be left censored. If they are still alive, they are also right

censored.

Sometimes it is also useful to distinguish between Type I censoring and Type H

censoring. Type I censoring occurs when the experiment or 'observations must end at a

certain time, and certain subjects will not have experienced the exit event (death, departure

from school, etc.). Type II censoring occurs when the researcher stops collecting

observations after a certain NUMBER of exit events, for example after 30 faculty have left

the school.

(4) Mathematically, the Cox proportional hazards model assumes that the hazard rate (h),

is a function of time (t) and a vector of righthand side variables (x) multiplied by a vector of

slope coefficients (b). That is, h(t,x) = ho(t)exp(xb), where lb (t) is the baseline hazard

function (the underlying hazard function which applies to all members of the population),



and expO is the exponential function. Large positive values of x and b, for example would

cause the hazard rate h(t,x) to increase, raising the attrition rate. Large negative values of

x and b would cause the hazard rate to become smaller (but still positive -- hazard rates have

to always be nonnegative by definition).
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EXHIBIT 1. A SIMPLE LIFE TABLE

Percent of "Observed Hazard"
"Observed Total Who = Percent of

Number Survivor Died REMAINING
Who Died Function" = During the SURVIVORS Who

Number of During the Percent Year Died During the
Year Survivors Year Surviving Year
1900 100 -- 100% -- --
1901 90 10 90% 10% 10.0%
1902 80 10 80% 10% 11.1%
1903 70 10 70% 10% 12.5%
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EXHIBIT 2: DESCRIPTIVE STATISTICS

Number of observations = 339

Mean values of Dummy (Binary) Variables (0=no, 1=yes)

Female .31

Censored .35
Adjunct (when hired) .06
Have PhD .64

Mean values of Numerical Variables

Yrfulltm (the year
that the prof became
fulltime tenure track)

Duration (no correction
made for censored
observations)

1975.29

7.98
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EXHIBIT 3: The Survival and Hazard Rates of Faculty Arriving Between 1960-79

Years Number Terminal Propn Cumul Prop Hazard
Completed of Faculty Events Censored Surviving Sury at End Rate

1 222 0 0 1.000 1.000 0.000
2 222 26 0 0.883 0.883 0.117
3 196 33 0 0.832 0.734 0.168
4 . 163 31 0 0.810 0.595 0.190
5 132 21 0 0.841 0.500 0.159
6 111 15 0 0.865 0.432 0.135
7 96 16 0 0.833 0.360 0.167
8 80 11 0 0.863 0.311 0.138
9 69 4 0 0.942 0.293 0.058

10 65 3 0 0.954 0.279 0.046
11 62 2 0 0.968 0.270 0.032
12 60 0 0 1.000 0.270 0.000
13 60 3 0 0.950 0.257 0.050
14 57 0 0 1.000 0.257 0.000
15 57 0 0 1.000 0.257 0.000

EXHIBIT 3: The Survival and Hazard Rates of Faculty Arriving Between 1980-94

Years Number Terminal Propn Cumul Prop Hazard
Completed of Faculty Events Censored Surviving Sury at End Rate

1 117 0 0 1.000 1.000 0.000
2 117 2 0 0.983 0.983 0.017
3 115 5 7 0.957 0.940 0.043
4 103 7 8 0.932 0.876 0.068
5 88 8 6 0.909 0.797 0.091
6 74 5 8 0.932 0.743 0.068
7 61 2 5 0.967 0.718 0.033
8 54 5 7 0.907 0.652 0.093
9 42 1 5 0.976 0.636 0.024

10 36 2 2 0.944 0.601 0.056
11 32 1 6 0.969 0.582 0.031
12 25 0 3 1.000 0.582 0.000
13 22 0 5 1.000 0.582 0.000
14 17 1 3 0.941 0.548 0.059
15 13 0 5 1.000 0.548 0.000
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EXHIBIT 4: SURVIVAL RATES OF FACULTY
ARRIVING 1960-79 and 1980-94

1

0.8
a)

(c2 0.6

.; 0.4
(r)

0.2

0
1 2 3 4 6 6 7 8 6 16 1-th 113 14 16
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EXHIBIT 5: HAZARD RATES (% of
survivors leaving prior to year X)
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Exhibit 6: The Survival and Hazard Rates of Women Faculty Arriving 1980-94

Years Number Terminal Propn Cumul Propn HazardCompleted of Faculty Events Censored Surviving Sury at End Function
1 52 0 0 1.000 1.000 0.0002 52 1 0 0.981 0.981 0.0193 51 4 4 0.922 0.904 0.0784 43 3 7 0.930 0.841 0.0705 33 4 0 0.879 0.739 0.1216 29 2 4 0.931 0.688 0.0697 23 0 1 1.000 0.688 0.000
8 22 2 4 0.909 0.625 0.0919 16 0 2 1.000 0.625 0.00010 14 1 1 0.929 0.581 0.071

11 12 0 2 1.000 0.581 0.000
12 10 0 1 1.000 0.581 0.00013 9 0 2 1.000 0.581 0.00014 7 1 1 0.857 0.498 0.14315 5 0 2 1.000 0.498 0.000

Exhibit 7: The Survival and Hazard Rates of Men Faculty Arriving 1980-94

Years Number Terminal Propn Cumul Propn Hazard,
Rate

Completed of Faculty Events Censored Surviving Sury at End
1 65 0 0 1.000 1.000 0.000
2 65 1 0 0.985 0.985 0.0153 64 1 3 0.984 0.969 0.016
4 60 4 1 0.933 0.905 0.0675 55 4 6 0.927 0.839 0.0736 45 3 4 0.933 0.783 0.067
7 38 2 4 0.947 0.742 0.053
8 32 3 3 0.906 0.672 0.094
9 26 1 3 0.962 0.646 0.038

10 22 1 1 0.955 0.617 0.045
11 20 1 4 0.950 0.586 0.050
12 15 0 2 1.000 0.586 0.000
13 13 0 3 1.000 0.586 0.000
14 10 0 2 1.000 0.586 0.000
15 8 0 3 1.000 0.586 0.000
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EXHIBIT 8: Survival Rates of Male and
Female Faculty Arriving After 1979
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EXHIBIT 9. RESULTS FROM A COX PROPORTIONAL HAZARDS REGRESSION

Dependent Variable: Hazard Rate

Regression
Variable Coefficient t-statistic

Female .01 .04

Post1979*** -.72 -3.9

Tenured** -.63 -2.0

Have PhD** -.29 -2.0

Adjunct* -.90 -1.8

*significant at the 10% level

**significant at the 5% level

***significant at the .1% level

338 observations, 118 censored, 220 exited
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EXHIBIT 10: DO WE NEED TO STRATIFY?
Log-minus-log Plot of Sury Funs, t=1-8
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7:
ii Censored Observations Counted as Exits
A 0

EXHIBIT 11: GENERALIZED RESIDUALS
Unstratified Regression
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EXHIBIT 12: Generalized Residuals
From Stratified Regression
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