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Abstract

The Welch-James (WJ) and Improved General Approximation (IGA) tests for the within-subjects

main and interaction effects in a split-plot repeated measurement design were investigated when

least squares estimates and robust estimates based on trimmed means were used. Variables

manipulated in the study included the degree of multivariate nonnormality, degree of departure

from the assumption of multisample sphericity, total sample size, degree of sample size

imbalance and number of levels of the within-subjects factor. Consistent with previous research,

the WJ and IGA procedures based on least squares estimates were not always robust to violations

of the multisample sphericity assumption when the data were obtained from multivariate

nonnormal distributions. Adoption of trimmed mean estimators resulted in dramatic

improvements in the Type I error performance of the WJ procedure. These results suggest that

it is possible to obtain tests of within-subjects effects in split-plot designs which are robust to

the combined effects of assumption violations.
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Trimmed Means in Split-Plot Repeated Measurement Designs

The repeated measurement (RM) design is one of the most common research paradigms

adopted by educational and psychological researchers. Moreover, Lix, Kowalchuk, and

Keselman (1996) found, in their methodological content analysis of education articles published

in 1994; that split-plot designs, which contain both between-subjects (groups) and within-subjects

(trials) factors, are overwhelming favoured by researchers. In fact, split-plot designs were

represented in 84% of all articles in which RM designs were used. Furthermore, the authors

determined that unbalanced designs, in which there are unequal numbers of observations in each

group (or cell) of the design, were more popular than balanced designs.

It is strongly recommended that the traditional analysis of variance (ANOVA) F-test be

avoided for testing within-subjects main and interaction effects in split-plot RM designs,

particularly when the design is unbalanced, because of the extreme sensitivity of this approach

to departures from the assumption of multisample sphericity (see e.g., Keselman, Lix, &

Keselman, 1996). Moreover, although either a degrees of freedom (df) adjusted univariate

approach or a conventional multivariate approach may sometimes offer robust tests of the within-

subjects main effect in such designs, these tests are rarely appropriate for tests of the interaction

effect due to their sensitivity to heterogeneity of the group (or cell) covariance matrices.

For these reasons, extensive research has been conducted on two alternative solutions

which are not dependent on the assumption of multisample sphericity. These solutions are the

approximate df multivariate Welch-James solution (WJ; see Johansen, 1980; Keselman, Carriere,

& Lix, 1993) and the Improved General Approximation (IGA; see Algina, 1994; Huynh, 1978)

procedure. Either approach can provide satisfactory results, assuming that the data are normally
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distributed and provided that minimum sample size requirements are adhered to (Algina &

Oshima, 1994, 1995; Algina & Keselman, 1996b). While the minimum sample size requirements

for the IGA procedure tend to be much smaller than for the WJ solution, the latter approach can,

under certain conditions, afford researchers substantially greater power than the former. Thus

research conducted to date indicates that one approach is not consistently superior to the other.

While the WJ and IGA procedures are robust to the effects of multisample sphericity

when the data are normally distributed, neither approach can effectively control the Type I error

rate when the data are obtained from nonnormal distributions. The underlying problem is that

the usual (i.e., least squares) mean and variance (covariance), which are the basis for both of

these procedures, are greatly influenced by the presence of extreme observations in a distribution

of scores. In particular, the standard error of the usual mean can become seriously inflated when

the underlying distribution has heavy tails. While a wide range of estimators have been proposed

in the literature as replacements for the usual mean and variance (see GrOss, 1976), the trimmed

mean and Winsorized variance are the most intuitively appealing robust estimators because of

their computational simplicity and good theoretical properties (Wilcox, 1995a). The standard

error of the trimmed mean is less affected by departures from normality than the usual mean

because extreme observations, that is, observations in the tails of a distribution, are censored or

removed. Furthermore, as Gross (1976) notes, "the Winsorized variance is a consistent estimator

of the variance of the corresponding trimmed mean" (p. 410). In computing the Winsorized

variance, the most extreme observations are replaced with less extreme values in the distribution

of scores.
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Studies conducted within the context of other research paradigms, namely univariate one-

way and factorial independent groups designs suggests that it is possible to obtain test procedures

which are robust to the combined effects of variance heterogeneity and nonnormality by the

adoption of trimmed means and Winsorized variances instead of the usual least squares estimates

(e.g., Keselman, Lix, & Kowalchuk, 1996; Keselman, Kowalchuk, & Lix, 1996; Lix,

Keselman, & Carriere 1997). In particular, the WJ solution has shown encouraging results in

such situations. Moreover, Wilcox (1993) investigated the use of trimmed means and Winsorized

variances (covariances) within the context of a single-group RM design when df-adjusted

univariate procedures were used to test the within-subjects effect and also found substantial

improvement in Type I error control in the presence of nonnormality.

In the present paper, we were primarily concerned with extending procedures for testing

within-subjects main and interaction effects in split-plot RM designs to data-analytic conditions

in which neither the assumptions of multivariate normality nor multisample sphericity hold.

Therefore, the purpose of this investigation was to determine whether the use of trimmed means

and Winsorized variances (covariances) with the WJ and IGA procedures can result in improved

tests for mean equality under departures from multivariate normality.

Definition of Test Procedures

Consider the simplest split-plot RM design with a single between-subjects factor with

j = 1 ,..., J levels and ; observations at each j (E1.1; = N) and a single within-subjects factor

with k = 1 K levels. Thus Yii = [Yo Yip ... Yod for i = 1 ,..., Ili, denotes the vector of

scores associated with the ith observation in the jth group. It is assumed at the outset that the
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Yiis are obtained from a multivariate normal distribution with mean vector pi and variance-

covariance matrix E.

It is important to note, that when trimmed means are adopted instead of the usual least-

squares means, the null hypotheses which are being tested relate to equality of the population

trimmed means (i.e., ptjks), not the usual means (i.e., Aiks). Therefore, under trimming and in

the context of split-plot RM designs, the null hypothesis associated with the within-subjects main

effect is

HK: gLi = th.2 = = /ILK,

while for the within-subjects interaction effect, the null hypothesis under investigation is
(;)

Hnc ihjk + for all j, k.

The computational formulas for the WJ and IGA procedures based on usual least

squares estimates have been defined elsewhere, and thus will not be repeated here. In

particular, the reader may consult Lix and Keselman (1995) and Algina and Oshima (1995)

respectively for information concerning these procedures. As well, a copy of the SAS/IML

program (SAS Institute, 1989) which may be used to compute the WJ solution for a split-plot

design can be obtained from the paper by Lix and Keselman.

The trimmed means solution adopted in this paper is based on symmetric trimming.

Hence, let gi = [ysni], where 78 represents the proportion of observations that are to be

trimmed in each tail of a distribution. The effective sample size for the jth group is

hi = nj - 2gi. The procedure used to compute the K-dimensional vector of trimmed means for

the jth group was the same as that defined by Wilcox (1993) within the context of a single-

group RM design (see pp. 67-68). Furthermore, Wilcox's computational formula for the
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Winsorized variance-covariance matrix for the jth group was also adopted. Finally, it should

be noted that the use of trimmed means and Winsorized variances (covariances) was based on

the removal of 20 percent of the observations from each tail of the distribution of scores in

each cell of the J x K data matrix for the split-plot RM design. This 20 percent rule is well-

established (see Rosenberger & Gasko, 1983; Wilcox, 1994b) and is based in part on

optimizing power for nonnormal as well as normal distributions (see Wilcox, 1994a).

Methodology

A Monte Carlo simulation study was undertaken to empirically evaluate the Type I

error performance of the WJ solution to that of the IGA procedure for testing RM main and

interaction effect hypotheses when either the usual mean and variance (covariance) or the

trimmed mean and Winsorized variance (covariance) were employed as measures of central

tendency and scale, respectively. These tests were investigated for a RM design containing a

single between-subjects factor and a single within-subjects factor.

Seven variables were manipulated in the simulation study. These were: (a) number of

levels of the within-subjects factor, (b) total sample size, (c) degree of group size

equality/inequality, (d) degree of equality/inequality of the group variance-covariance

matrices, (e) nature of the pairing of the group sizes and group covariance matrices, (f)

degree of departure from the sphericity assumption, and (g) multivariate

normality/nonnormality. All of these variables have been manipulated in previous

investigations and were therefore selected based on the knowledge that they may influence

the Type I error performance of both the WJ and IGA procedures. The one constant in the

study was the number of levels of the between-subjects factor (J), which was set at three.
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The number of levels of the within-subjects factor (K) was set at either four or eight.

Total sample size (N) was set at either 84 or 105; these values were selected based on

recommendations provided by Keselman et al. (1993) and Algina and Keselman (1996b)

concerning minimum sample size requirements for the WJ procedure and bearing in mind

that under the trimming rule adopted in this study, 20 percent of the observations will be

removed from each tail of a distribution.

With respect to the third variable, two degrees of group size imbalance were selected

such that a coefficient of variation of group size inequality (i.e., An) was approximately

equal to .16 and .32 for each value of total sample size. Thus, for N = 84, the individual

group sizes (i.e., nos) were 22, 28, and 34 for Anj = .16 and 17, 28, 39 for Anj = .32. For

N = 105, the nos were 28, 35, 42 and 21, 35, 49, respectively for the two values of Atli. It

is important to note that while it was of primary interest to examine Type I error

performance in unbalanced designs, we also investigated conditions in which group sizes

were equal (i.e., Anj = 0) for comparison purposes; thus for N = 84, each group contained

28 observations, while for N = 105, each group contained 35 observations.

The degree of heterogeneity of the group covariance matrices (i.e., Ejs) was

manipulated based on conditions investigated by Algina and Keselman (1996b), so that

elements of the matrices were either in a 1:3:5 or 1:5:9 ratio. Thus, for each degree of

heterogeneity of the group covariance matrices, the following conditions were evaluated: (a)

equal group sizes and unequal covariance matrices, (b) unequal group sizes (On; = .16) and

unequal covariance matrices, (c) unequal group sizes (Ong = .32) and unequal covariance

matrices. As well, both positive and negative pairings of group sizes and group covariance

9
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matrices were considered for the latter two conditions. A positive pairing refers to a

condition in which the largest ni is associated with the covariance matrix containing the

largest element values, while a negative pairing refers to a condition in which the smallest ni

is associated with the covariance matrix containing the largest element values.

The degree of departure from the assumption of sphericity (6) was also manipulated in

this study, and E assumed values of 1.0, .75, and .57. Algina and Kesehnan (1996a, 1996b),

found that the performance of the WJ procedure varies slightly as a function of the value of

E. Readers will recall that when E = 1.0, sphericity is satisfied, and that for a split-plot

design, this parameter can assume a lower bound of E = 1/(K 1).

Finally, the WJ and IGA procedures were compared when the simulated data were

obtained from multivariate normal and multivariate nonnormal distributions. In particular,

under nonnormality, two skewed distributions were considered since it has been established

that both the IGA and WJ procedures are sensitive to the presence of skewed data. The first

was the multivariate lognormal distribution with marginal distributions based on

Yijk = eXp(Xij) = 1 ,..., j = 1 ,..., J; k = 1 K), where Nil, N(0, .25); this

distribution has skewness and kurtosis values of 1.75 and 5.90, respectively. Algina and

Oshima (1995) provide details of the method for simulating multivariate data having the

properties of a lognormal distribution. Data for the second multivariate nonnormal

distribution were generated using the algorithm provided by Vale and Maurelli (1983) which

is based on the method of Fleishman (1978). The data were generated such that skewness and

kurtosis values were 1.75 and 3.75, respectively. Each observation vector Irk; = [Yul Yipc]

with mean vector 0 and covariance matrix ; was obtained by first generating a vector of

10
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variates having a univariate standard normal distribution (i.e., Zij) using the SAS (SAS

Institute, 1989) generator RANNOR. A vector of constants, w = [a b c d]T was obtained

from Fleishman's Table 1 (pp. 524-525) to provide the desired degree of multivariate

skewness and kurtosis. An intermediate covariance matrix ( i.e., XJ) was computed so that Yki

would have the desired Elements of this intermediate matrix were computed using Vale

and Maurelli's Equation 11 (p. 467), which involves finding the roots of a third-degree

polynomial; these roots were computed using the SAS/IML POLYROOT function (SAS

Institute, 1989). Thus, the vector of univariate standard normal deviates was transformed to a

vector of multivariate normal deviates via the Cholesky decomposition

where Z(X)ii is the vector of transformed variates, 0 is the zero vector, and 1.4), is an upper

triangular matrix of dimension K satisfying the equality LIL), = N. Next, each element of Yij

was obtained by computing the zero through third powers of the corresponding element of

Z(X)ii, so that Z(X)iik = [1 Z(X)ijk Z(X)Z;, Z(X),ik] represents the vector of powers for the kth

component of Z(X)ii (k = 1 K). From this, Yijk = Z(X)iikW.

The simulation program was written in the SAS/EvIl (SAS Institute, 1989)

programming language. Five thousand replications were generated for each condition and

Type I error rates were collected using a .05 significance level.

Results

A quantitative measure of robustness suggested by Bradley (1978) was used to

evaluate the Type I error performance of the WJ and IGA procedures for least squares and
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trimmed means estimators. According to this criterion, in order for a test to be considered

robust, its empirical Type I error rate (a) must be contained in the interval

.5a S « S 1.5a. Therefore, for the five percent level of significance adopted in this study,

a test was considered to be robust in a particular condition if its empirical Type I error rate

was contained in the interval .025 s a s .075. Correspondingly, a test was considered to

be nonrobust if, for a particular condition, its Type I error rate was not contained in this

interval. In all subsequent tables, values not falling within the bounds of Bradley's criterion

are given in boldface.

Multivariate Normal Data

K = 4

The results associated with the least squares and trimmed methods of estimation for

the multivariate normal distribution when K = 4 are contained in Table 1. Only the results

associated with the minimum value of N (i.e., N = 84) are provided, as very similar results

were obtained for N = 105. As is apparent from this table, when the usual least squares

method of estimation was used in conjunction with the WJ and IGA procedures, Type I error

rates were maintained within the bounds of Bradley's (1978) liberal criterion under both

degrees of covariance heterogeneity (i.e., 1:3:5 and 1:5:9). Furthermore, E had little effect

on the magnitude of error rates, and thus error rates were well-controlled even under

departures from sphericity. Thus, as expected, the WJ and IGA procedures were robust to

departures from the assumption of multisample sphericity when the data were normally

distributed and least squares estimates were used.

12
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Insert Table 1 about here

When trimmed means and Winsorized variances (covariances) were used in

conjunction with the WJ and IGA procedures and the data were normally distributed, the

rates of Type I error were also well-controlled and were very similar, although in some cases

slightly lower, than those obtained when least squares estimates were used. Across all of the

conditions considered in Table 1, the average Type I error rates for the WJ main and

interaction effect tests were 4.99% and 5.21%, respectively for least squares estimates, and

for trimmed means estimates they were 4.33% and 4.29%, respectively. For the IGA

solution, the corresponding results for least squares estimates were 4.93% and 4.86%,

respectively, and for trimmed estimates were 4.84% and 4.79%, respectively. These results

also indicate that there were very minor differences in error rates between the WJ and IGA

procedures for tests of within-subjects main and interaction effects under a multivariate

normal distribution

K = 8

Table 2 contains the results associated with the least squares and trimmed mean

estimators for the multivariate normal distribution when the number of levels of the within-

subjects factor was increased to eight and N = 84. When least squares estimates were

employed, and covariance matrices were in a ratio of 1:3:5, only the WJ test of the

interaction effect produced Type I error rates which were not contained within the bounds of

Bradley's (1978) liberal criterion. In particular, liberal rates occurred for negative pairings of

group sizes and covariance matrices (i.e., conditions a and C). This same trend existed

13
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under the more extreme pattern of covariance heterogeneity (i.e., 1:5:9), although condition

A also resulted in a slightly liberal value (i.e., 7.60%) when E = 1.0 . As well, when

E = .75, the WJ test of the within-subjects main effect produced a single value which only

slightly exceeded the upper bound of Bradley's (1978) liberal criterion under condition C-

(7.56%).

Insert Table 2 about here

When trimmed means and Winsorized variances (covariances) were used with the WJ

procedure, error rates were generally lower than when least squares estimates were

employed. However, four liberal values were obtained for the WJ trimmed mean approach

represented in Table 2. These were obtained for the test of the interaction effect when E <

1.0 and negative pairings were investigated under the more extreme degree of group size

imbalance (i.e., Condition C).

The Type I error rates associated with the IGA procedure were well-controlled across

all of the conditions reported in Table 2. Furthermore, there was very little difference

between those values obtained for least squares and trimmed means estimates for either the

main or interaction effects.

The rates of Type I error associated with the normal distribution for N = 105 and

K = 8 have not been tabled, as they were largely consistent with those reported in Table 2.

Specifically, while the WJ test of the interaction effect tended to result in liberal values for

negative pairings of group sizes and covariance matrices when least squares estimates were

adopted. These values were, however, lower than those reported in Table 2. Hence, the

maximum value obtained for the WJ test of the interaction was 8.56%. All of the Type I

14
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error rates associated with the IGA procedure under least squares estimation were contained

within the bounds of Bradley's (1978) liberal criterion Moreover, the results obtained for

trimmed means when N = 105 revealed that all of the rates associated with the WJ and IGA

procedures were within the bounds of Bradley's criterion.

Multivariate Nonnormal Data

K = 4

Table 3 contains the results associated with the lognormal distribution for K = 4 and

N = 84. When the least squares method of estimation was adopted, liberal rates occurred

under only the most extreme degree of departure from the sphericity assumption (i.e., E =

.57). When covariance matrices were in a ratio of 1:3:5, the WJ test of the within-subjects

main effect was liberal under condition C-, while the WJ test of the interaction effect was

liberal under conditions A (7.84%), B- (8.28 %), and C- (9.34%). When the degree of

covariance heterogeneity increased, the WJ test of the interaction produced liberal results

across all five of the investigated conditions when E = .57.

Insert Table 3 about here

Error rates for the IGA procedure were always contained within the bounds of

Bradley's (1978) criterion when the data followed a lognormal distribution and least squares

estimates were employed. However, values tended to be slightly more extreme than those

obtained for the multivariate normal distribution; the minimum and maximum Type I error

rates reported in Table 3 for the IGA procedure are 3.26% and 6.66%, respectively while in

15



Trimmed Means in RM Designs 14

comparison, the respective values obtained for normally distributed data are 4.32% and

5.74% (see Table 1).

Finally, as Table 3 reveals, when trimmed mean estimates were employed for

lognormal data, Type I error rates were well controlled for both the WJ and IGA procedures.

The results obtained for the multivariate nonnormal distribution generated via the Vale

and Maurelli (1983) approach, with skewness of 1.75 and kurtosis of 3.75, have not been

tabled due to the similarities in results for N = 84. Specifically, no liberal values were

obtained for values of e > .57 for the WJ or IGA solutions when either least squares or

trimmed means estimators were adopted. Under the most extreme departure from sphericity,

however, the WJ test of the interaction effect did produce a number of liberal values when

least squares estimates were employed; the maximum value was 11.38%. The WJ test of the

main effect was liberal for both degrees of covariance heterogeneity under condition C for

E = .57, while the IGA test of the within-subjects main effect was also slightly liberal

(7.52%) for this condition when covariance matrices were in a 1:5:9 ratio. The results

obtained for trimmed means revealed that error rates were always contained within the

bounds of Bradley's criterion. This same finding holds for N = 105 when the data were

generated from either of the investigated nonnormal distributions.

K = 8

For K = 8, the empirical percentages of Type I error for the multivariate lognormal

data which were obtained when N = 84 can be found in Table 4. While the WJ procedure

produced numerous liberal values when least squares estimates were employed, the majority

of these were obtained for values of E < 1.0. In fact, for e = .57, the WJ tests of the

16
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within-subjects main and interaction effect were always liberal, with error rates as high as

21.68 % for the test of the interaction effect. While the IGA test provided generally good

Type I error control, a single conservative value of 2.38% was obtained for least squares

estimates (E = 1.0; condition C-; 1:5:9).

Insert Table 4 about here

The use of trimmed means resulted in a dramatic improvement in the Type I error

performance of the WJ procedure. As Table 4 reveals, only three of the 60 error rates

associated with this approach were not contained within the bounds of Bradley's (1978)

liberal criterion. All three of these values were obtained for the test of the interaction effect

under the C- condition when E < 1.0. Consistent with previously tabled findings for the IGA

procedure, none of the rates associated with trimmed mean estimators fell outside of

Bradley's bounds.

Finally, for comparison purposes, the results associated with the lognormal

distribution for K = 8 and N = 105 are reported in Table 5. As anticipated and consistent

with previous research (e.g., Keselman et al. 1993), increasing total sample size does result

in somewhat lower error rates for the WJ procedure, particularly for tests of the interaction

effect. However, many liberal values still remain for E < 1.0 for both the within-subjects

main and interaction effects. At the same time, none of the WJ values associated with

trimmed mean estimators were liberal.

Insert Table 5 about here

17
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The findings reported in Tables 4 and 5 are consistent with the results obtained for

the Vale and Maurelli (1983) distribution with skewness of 1.75 and kurtosis of 3.75

(untabled). That is, while the WJ solution based on least squares estimators resulted in a

number of liberal values, particularly when E < 1.0, the IGA procedure did not. The IGA

solution with least squares means did, however, become conservative for the test of the

within-subjects interaction effect under the C condition when e = 1.0 and covariance

matrices were in a 1:5:9 ratio for N = 84. The WJ and IGA solutions based on trimmed

means always produced error rates which were contained within the bounds of Bradley's

(1978) criterion.

Discussion and Conclusions

This investigation compared four procedures which can be used to test within-subjects

effects in split-plot repeated measurement designs when the assumption of multisample

sphericity is not satisfied and data are obtained from multivariate nonnormal distributions.

Specifically, we compared the WJ approximate df multivariate solution as given by Johansen

(1980) to the IGA method based on the work of Huynh (1978) and Algina (1994). When

utilizing the usual mean and variance (covariance), these two procedures test equality of the

population means, while the use of trimmed means and Winsorized variances (covariances)

results in tests of equality of population trimmed means.

Based on the findings of this simulation study, it is apparent that it is possible to

obtain solutions which are robust to the combined violations of the multisample sphericity

and multivariate normality assumptions for testing within-subjects main and interaction

effects in split-plot repeated measurement designs. Specifically, the adoption of trimmed

8
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means resulted in substantial improvements in the operating characteristics of the WJ

multivariate solution for the investigated conditions. While the IGA procedure was largely

robust to the assumption violations considered in this study, in those few instances where

either liberal or conservative Type I error rates were obtained under least squares estimates,

the performance of this procedure could be improved through the use of robust estimates.

The reader should also bear in mind that the total sample size conditions investigated in this

study were based on recommendations provided in previous studies concerning the minimum

sample size requirements for the WJ solution. Hence, with smaller sample sizes, the

performance of the IGA procedure might be less than optimal, and thus the adoption of

trimmed means might prove to be significantly more advantageous. Moreover, the results

indicate that robust test solutions may be obtained in both balanced designs and unbalanced

designs.

While the results of this study are highly encouraging, they also lead to questions

regarding performance with respect to statistical power. In particular, neither the WJ nor

IGA tests based on trimmed means can be recommended in practice unless their

performance, as compared with procedures based on least squares means, is similar when the

normality assumption is satisfied. Furthermore, comparisons of the two procedures under

trimmed means estimation is necessary to make recommendations concerning the adoption of

one approach over the other under conditions of nonnormality. While Algina and Keselman

(1996a) have suggested that in comparisons of the power of the WJ and IGA procedures, the

WJ procedure almost always offers greater power advantages when least squares estimates

19
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are adopted. However, it is not known whether this findings can be generalized to the use of

trimmed mean estimators.

Table 6 provides preliminary empirical power results associated with tests of the

within-subjects main effect for the WJ and IGA procedures when K = 4. These results were

obtained for a single mean configuration (i.e., 0 -11 µ 0) identified by Algina and Keselman

(1996a) as highlighting the differences in power performance between the WJ and IGA

solutions. The results reported in Table 6 have been averaged across the two sample size

conditions (i.e., N = 84 and N = 105) and two effect sizes of a moderate magnitude.

Insert Table 6 about here

The data reported in Table 6 pertaining to the normal distribution allows for a

comparison of the WJ and IGA procedures when using least squares and trimmed mean

estimation procedures. Only the results associated with the more extreme degree of variance

heterogeneity are provided, however both solutions resulted in robust Type I error rates

under this degree of heterogeneity when the data were normally distributed. While

comparisons are difficult to make for E = .57 for the WJ test due to the fact that power tends

to reach an upper bound, the remaining results indicate that while power associated with least

squares estimates is always larger, the differences in power between least squares and

trimmed means estimators are, in general, not substantial. For example, the average value

obtained for the WJ test of the within-subjects main effect when E = 1.0 and the data are

normally distributed is 36.74% for least squares estimation and 29.41% for trimmed means
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estimation. Corresponding values for the IGA test when E = 1.0 are 38.33% and 33.14%,

respectively.

The data reported in Table 6 for the lognormal distribution allow for a comparison of

the WJ and IGA procedures when trimmed mean estimators are adopted. The results reported

here mirror those reported by Algina and Keselman (1996a) for least squares estimates. That,

is, while the IGA procedure is sometimes slightly more powerful than the WJ solution (i.e.,

E = 1.0), under departures from the assumption of sphericity the WJ solution can be

substantially more powerful than the IGA procedure. To illustrate, for condition A when E =

.75, the power for the WJ main effect test is 94.52%, while the IGA rate is approximately

20% lower, at 74.68%.

These preliminary power results and the previous Type I error results suggest that the

Welch-James procedure can provide a robust and powerful test of the within-subjects main

effect in split-plot designs when trimmed mean estimators are adopted. Further power results

will help to clarify any differences that might exist between the Welch-James and Improved

General Approximation procedures for tests of the within-subjects interaction effect.
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Table 6. Empirical Percentages of Power for Least Squares and Trimmed Means Estimation
(K = 4; Averaged Across N)

Condition

E = 1.0 E = .75 E = .57

WJM IGAM WJM IGAM WJM IGAM

Normal Data; Least Squares Estimation; 1:5:9
A 37.23 38.67 92.96 64.47 99.72 56.54
13+ 42.58 44.24 96.14 72.79 99.89 67.09
B- 30.78 32.52 86.89 53.01 98.51 45.03
C.+ 48.04 49.48 97.59 79.03 99.89 74.02
C- 25.05 26.75 75.20 40.52 95.33 34.29

Normal Data; Trimmed Means Estimation; 1:5:9
A 29.37 32.85 80.56 50.85 96.62 44.40
13+ 34.78 38.27 87.06 59.69 98.59 52.88
B- 24.37 28.28 69.99 40.81 91.72 35.66
C+ 40.06 42.82 91.24 65.03 99.32 58.74
C- 18.46 23.45 54.08 30.36 80.66 27.45

Lognormal Data; Trimmed Means Estimation; 1:3:5
A 43.91 47.40 94.52 74.68 99.63 67.47
B+ 51.45 54.53 96.90 82.04 99.91 75.93
B- 37.92 41.90 88.54 63.98 98.44 56.61
C+ 54.94 58.12 97.97 85.80 99.98 81.00
C- 28.14 33.42 77.23 50.81 94.19 44.54

Lognormal Data; Trimmed Means Estimation; 1:5:9
A 40.21 43.70 91.63 68.86 99.26 61.50
B+ 47.21 50.48 95.52 77.97 99.75 70.94
B- 33.25 36.86 83.79 57.96 97.25 50.66
C+ 53.43 56.11 97.05 82.94 99.92 76.79
C 27.66 30.05 70.37 44.22 90.95 39.47

Note: See the note for Table 1.
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