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Abstract
In this paper we discuss a Bayesian approach for finding latent classes

in the data. In our approach we use finite mixture models to describe
the underlying structure in the data, and demonstrate that the possibil-
ity to use full joint probability models raises interesting new prospects
for exploratory data analysis. The concepts and methods discussed are
illustrated with a case study using a data set from a recent educational
study. The Bayesian classification approach described has been imple-
mented, and presents an appealing addition to the standard toolbox for
exploratory data analysis of educational data.

1 Introduction
Quantitative research methods in education have traditionally been based on
a standard "toolbox" of methods for analyzing the data collected: e.g., lin-
ear regression, discriminant analysis, exploratory and confirmatory factor ana-
lysis (Klecka, 1981; Basilevsky, 1994). In spite of the popularity of multivariate

*URL: http://www.cs.Helsinki.FI/research/cosco/
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factor analysis among the practitioners, utilization of the power of general latent
variable models for data analysis has been low, and based almost exclusively on
linear model families. This is partly due to the controversial nature of the latent
variable approaches as practiced in the applied end of the spectrum, explor-
atory factor analysis being a prime example of the continuing debates on the
validity and arbitrariness of the method (see e.g., the discussion in (Chatfield,
1980)).

On the other hand recent years have seen an impressive growth of interest
in building complex latent variable models of natural phenomena and man-
made systems. Although in computer science, and related fields, nonlinear
modeling has been studied for more than three decades, it is only recently that
the availability of increased computing power has made the approaches more
appealing, and made their application more feasible. In particular, the devel-
opments in building latent variable models expressed with graphical structures
such as Bayesian networks (Heckerman, 1996; Lauritzen, 1996) and in Bayesian
analysis using Markov Chain Monte Carlo methods (Gilks et al., 1996) have
completely changed the level of complexity that can be addressed in modeling
of data.

There is no reason to doubt that Bayesian latent variable approaches with
nonlinear models will have a profound impact on modeling of social phenomena
also. Unfortunately the techniques that have already proved their applicability
for modeling in the context of industrial, economical or biological processes,
are almost unknown to the practitioners in the educational sciences. At the
same time the accelerated embedding of computer technology into all sectors of
society by computerized services has made increasing volumes of data available
to the analyst, thus motivating the search for better methods in model building
and testing.

In this paper our purpose is to gradually introduce into the reader's mind
a, perhaps less familiar, Bayesian approach to modeling. In particular, we will
be here interested in the problem of unsupervised classification, i.e., of finding
latent classes in the data. One should observe that the word "classification" is
ambiguous. In discriminant analysis it means the procedure of assigning a new
case to one of an existing set of possible classes. As used in this paper, however,
it means finding the class structure from a given set of "unclassified" cases.
This view of classification is also sometimes known as "conceptual clustering".
Obviously, once such a set of classes has been found, they can be the basis for
classifying new cases in the first sense.
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Classification aims at discovering natural classes in the data. Consequently,
as we will argue, these classes reflect basic regularities in the processes that
generate the data, which make some cases look more like each other than the rest
of the cases. Therefore classification is a powerful tool for exploratory analysis.
For example, in our teacher education case study we can find "prototypical"
teacher profiles reflecting different general views on teacher education. This
type of discovery of previously unknown structure occurs most frequently when
there are many relevant variables describing each case, because humans are
poor at seeing structure in large dimensional spaces. Such situation is naturally
quite prevalent in the educational data analysis, where typical questionnaires
can easily have more than 100 associated assertions. A practitioner can view
this Bayesian classification as a new interesting "tool" for the data analysis
toolbox, but we would like to point out that underlying notions of modeling
discussed in Section 3 are quite fundamental, and widely applicable outside the
particular problem at hand.

To make the underlying ideas as accessible as possible, we keep the technical
level of the discussion very moderate, and try to frequently refer to sources,
where the technically oriented reader can find more formal treatment of the
issues discussed in this paper. In some sections, such as Section 4, technical
details are unavoidable, but they are not necessary for understanding the main
points of the paper.

2 Example data
In order to illustrate the Bayesian classification approach, we use a typical
data sample from a recent educational research project. This educational data
was gathered for the research project "Effectiveness of Teacher Education in
Finland" in the spring 1996. The objective of the project was to evaluate
the effectiveness of Finnish teacher education at various levels from individual
to international teacher education policy. A more detailed description of the
framework and research conducted in the project is discussed in (Niemi and
Tirri, 1996). The data adopted to this study was gathered to investigate how
well the Finnish teacher education had been able to achieve the goals set to it.
The goals were selected from school-law, programs of teacher education and
other documents describing teachers' work at school. The teachers and their
educators from four different teacher education departments in Finland were
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asked to perform self-evaluation on the success of teacher education for helping
teachers to achieve these goals. The evaluation instrument consisted of 41
behavior statements (and information about the teacher education department),
and used a Likert scale from 1 to 5 for the assertions. The results of this
evaluation study are reported in the forthcoming study (Niemi and Tirri, 1997).

The data sample used for our comparison is derived from the teachers'
data in the study described above. This data consist of ratings of 204 Finnish
teachers. The subjects were teaching at two levels, one half being element-
ary school class teachers (N=110) and the other half secondary school subject
teachers (N=94). These teachers came from four different teacher education
departments in three different counties of Finland. The gender distribution was
representative to that of Finnish teacher populationabout 25% were males.

3 Bayesian modeling
Inductive modeling One of the most fundamental questions in statistical
inference is finding good models. In the Bayesian terminology we could reph-
rase this problem as the question: "Given some data and weak prior domain
knowledge, what is the most probable model of the domain?"

In this work we will focus on the problem of inductive model construction,
in which the basic issue is distinguishing the underlying structure from noise.
It is well-known that one can always find a sufficiently complex model to "ex-
plain" any data set. However, the fundamental problem here is to find a model
that reflects only the general structure of the domain, not the individual idio-
syncrasies of the cases (the "noise"). This overfitting problem is inherent to
any model construction process, and the so called "Ockhams razor" principle
(William of Ockham, c. 1285-1349) tells us not to overfit the data.

The solution to this overfitting problem is to find a tradeoff between the
fit to data, and the complexity of the model. A model as complex as the data
itself can fit the data exactly, but such a model has very little predictive value
for new, unseen data. Conversely, models with little structure do not predict
the given data or new data well. The real question is to find an appropriate
balance between these two aspects.

Bayesian theory (Bernardo and Smith, 1994) (together with its information
theoretic interpretation (Rissanen, 1989; Wallace and Freeman, 1987)) expli-
citly trades model complexity, as determined by prior probabilities, against the
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fit to the data. This trade-off is in fact a direct consequence of Bayes' theorem
discussed below.

Notation Let us first introduce some general notation, used subsequently
throughout the paper. The data D denotes a (random) sample of N independ-
ent and identically distributed (i.i.d.) data vectors 4,...,4. For our case
study we have a data vector for each teacher that has answered the query,
and the data vector contains background information and answers to the ques-
tionnaire questions. For simplicity, in all our discussion we assume that the
data is coded by using only discrete, i.e., finite-valued, variables Xi, , )(Tn.

More precisely, we regard each variable Xi as a random variable with possible
values from the set {xii, , xis,; . Consequently, each data vector d is rep-
resented as a value assignment of the form (X1 = , Xn, = sin), where
xi E Xinj.

It will be also useful to talk about a set of models, which we will call a
model family M. Examples of model families include the set of linear func-
tions (Basilevsky, 1994), or the set of graphical structures describing independ-
ence assumptions (Heckerman et al., 1995). For the classification problem, a
model 0 simply means a description of the classes in terms of the joint probab-
ility distribution of X1, , Xm. It is also often useful to partition the models
within a model family M to some finite number of subsets, model classes A,
where all the models within a model class share the same parametric form,
i.e., the same number of parameters. Consequently, the model classes usually
correspond to some specific model structure. Examples of such structure is the
degree of the polynomial in polynomial regression models, or in the present case
the number of classes, i.e., MK means models with K classes. Hence, finally
a model O can be defined as a parameter instantiation within some parametric
model class A, fully determining a probability distribution in the data vector
space.

Bayesian inferencean information theoretic view In Bayesian infer-
ence one searches for the most probable model O in a given model family M.
This search for probable models can be described alternatively in an intuitively
appealing form using information-theoretic concept. Since this complementary
view of Bayesian inference is not widely known, we will use it here as a tool
for intuitive explanation of the method. Obviously we could have formulated
this discussion also directly in terms of distributions.
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It can be argued that the most probable model 0 is the one that has the
shortest encoding of the model and the data combined. If a new data vector is
described using the existing abstraction (model), a shorter total encoding will
result. An example from our case study illustrates this issue. Let us assume
that a set of teachers have answered the questionnaire in a very similar manner,
and call this set of teachers as "Class A" teachers. Similarly another set of
teachers have answers that are quite alike, let us call them "Class B" teachers.
Now if we need to transmit information for specific teacher responses, the
trivial way is to send the questionnaire information for each teacher. However,
typically it is more efficient to first send the description of the responses for
Class A teachers and Class B teachers, and then for each teacher the information
about his/her "type" (Class A or B) and the differences from the standard
answers in the class in question. If the answers of a particular teacher differs
very much from Class A and Class B answers the approach does not essentially
save anything, i.e., the encoding is not shorter than sending the answers directly.

This is how Bayesian model building method finds structure in the dataif
a new data vector (teacher's answers) cannot be compactly described in terms
of abstract structure of the sample data, it means that the sample data has very
little predictive value for that particular data vector. Now why do we call this
encoding approach a Bayesian approach?

In standard Bayesian inference text book approach one assumes that the re-
searcher has selected a set of discrete mutually exclusive and exhaustive models
{01, 02, , On}, and has assigned some prior probabilities p(0 I /), where I is
the general context of the modeling problem. Using such models we can cal-
culate the likelihood p(DIBi), i.e., the probability of the sample given a model
0i. Searching for the most probable model means finding the model 0 that
maximizes the probability p(eilD), which is called the posterior probability.
The prior, likelihood and posterior are connected via the Bayes' theorem (see
e.g., (Bernardo and Smith, 1994):

p(0 I D) =P(D
)

0)P(0) (1)
p(D

Taking the negative logarithm of this expression turns the products into sums,
and gives us

log p(0 ID) = log p(D10) log p(0) + constant. (2)

Since we are only interested in the relative probability of the different models
0, the last term in equation (1) can be ignored. Now the connection between
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Bayesian probability theory and the coding approach becomes clear: from in-
formation theory we know that log p(di) is the theoretically optimal minimum
message length to encode a particular data vector di (Cover and Thomas, 1991).

The minimum message length in (2) is the sum of two terms. The first term
is the information to describe the model 0, which is greater for more complex,
and thus less probable, models. The second term is the information required to
encode the data, given the model 0, and decreases for suitably selected more
complex models. The trade-off between these two terms is another way of
expressing the inherent "Ockham's razor" in Bayesianism.

We can summarize the discussion above as follows. In the Bayesian ap-
proach for finding structure in the sample we look for regularities that allow us
to predict the data in the sample well. If we predict well, we can also use short
encodings for the data. The tradeoff between too complex models and short
encodings of the data (equation 2) with the model prevents us from finding
models that are too closely reflecting the properties of the sample rather than
the full population.

Bayesian classification We can now explain the intuition underlying the
Bayesian classification with the above information theoretic argumentation.
The data in the sample can be modeled by first describing a set of classes,
then describing the data vectors using the prototypical class descriptions. Each
description gives the probabilities of the observables, assuming that the data
vector belongs to the class. The class descriptions need to be chosen in such
a way that the information required to describe data vectors in the class is
reduced, because they resemble the class prototype. The information reduction
results from the fact that only the differences between the observed and expec-
ted values need to be described. More classes makes it possible to describe
individual data vectors with less difference information, and thus the data set
encoding is shorter. However, it takes a certain amount of information to de-
scribe a set of classes as probabilities of the variable values (given that the data
vector belongs to the class). Thus the Bayesian classification approach involves
finding the set of classes that minimizes the total information

total description =

class descriptions + sample description

given the class descriptions
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If the sample is "random", i.e., exhibit no regularities, it is very unlikely that
one can find class descriptions for which the total information is less than what
needs to be used to describe each data vector in the sample individually. One
should notice that this discussion implies that one is able to have a rigorous
means to determine the proper number of latent classes indicated by the sample
dataa problem which is very difficult to solve rigorously by other approaches.
For more detailed discussion see e.g., (Cheeseman and Stutz, 1996; Kontkanen
et al., 1996a; Kontkanen et al., 1996b; Kontkanen et al., 1997).

An interested reader can find more formal treatment of the general ideas
discussed above in the seminal works by Rissanen (Rissanen, 1987; Rissanen,
1989) and Wallace et al. (Wallace and Boulton, 1968; Wallace and Freeman,
1987); the Bayesian classification is addressed in (Cheeseman and Stutz, 1996).

4 Model family: finite mixtures
Like any other Bayesian inference, Bayesian classification is always relative to
a model family M. For the classification problema very natural model family
is the set of discrete finite mixtures ((Everitt and Hand, 1981), (Titterington
et al., 1985)), where the joint domain probability distribution is approximated
as a weighted sum of mixture distributions.

Let X1, , Xm be a set of m (m > 1) discrete (random) variables, and
d E D is a sample from the joint distribution of the variables X1, , Xm.
Then the finite mixture distribution for d can be written as (K > 1)

p ( 5 1 ) = p(Xi = xi, , Xm = Xm)
K

= E (p(Y = yk)p(X1 = xi,
k=1

Xn, = xmlY = yk)) , (3)

where Y denotes a latent clustering random variable, the values of which are
not given in the data D, and K is the number of possible values of Y.

Thus in finite mixture models the problem domain probability distribution
is approximated by a weighted sum of mixture distributions, where each mix-
ture component p(Xi = X i , . . . , Xm = xmlY = yk) models one data producing
mechanism. If the variables Xi, , Xm are independent, given the value of the
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clustering variable Y, equation (3) becomes

K

P(d) = E (1)(17 = Yk)HP(Xi = yk))
k=1 z=1

(4)

For the Mixture Density Networks considered here this independence assump-
tion holds and consequently computation uses equation (4).

A finite mixture model partitions the data to K clusters. This partitioning
can be modeled by introducing for each data vector d3 an unobserved latent
variable 4, the value of which gives the the cluster index for the cluster vector di

belongs to. We can now think a vector Z = (z1,... , zN), consisting of the values
of the latent variables Z1, . Z N , as a random sample from the distribution
of Y like D is a random sample from the joint distribution of Xi, , Xm.
However, for technical reasons it is more convenient to consider each value z3
as a vector of cluster indicator variable values, zi = (z31, , z3K), where

zik =
0, otherwise.

{1, if di is sampled from P(IY = yk),

Finite mixtures as defined in equation (4) is a generic model family, as we
still have to fix the cluster distribution p(Y) and the intra-class conditional
distributions p(X,IY = yk)1. Most commonly used component functions in the
literature are the univariate normal distributions (see e.g., (Titterington et al.,
1985)). In educational domains the variables are usually discrete, thus we can
drop the assumption of the form of the distribution. For the univariate case a
binomial model could be used, but for the general case with m > 1 a natural
choice is the multivariate generalization of the binomial distribution called the
multinomial distribution

N' ni

H Oc.)
Ci . . Cni .

3=1

where e (c1, . , cn,) is the vector of counts of the number of observations
of each value of Xi. In addition the sum of probabilities >7=10 3 = 1 and
E731.L1 ci = N' (N' is the total number of observations). Since we are interested
in the data distribution, i.e., p(XilY = yk) the multinomial distribution form

'Here we consider only mixtures in which all the component distributions come from the
same parametric class.
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simply reduces to a product of probabilities O. Analogously we assume that
the cluster distribution p(Y) is multinomial. Thus in order to get a model,
we need to fix the number of the mixing distributions (K), and determine the
values of the model parameters. For technical reasons it will be convenient to
make a notational distinction between the mixture weight parameters and the
parameters of the intra-class conditional distributions, i.e., O = (a, 0), 0 E
where a = , aK) and 0 = , 'Dim, , with the
denotations ak = P(Y = yk), Oki = (Oki]. (kin, )) where thwhere ki/ = P(Xi =
xillY = Yk)

Since our estimation of the network parameters will be Bayesian (Bernardo
and Smith, 1994) we need to fix the prior distributions for the parameters. The
family of Dirichlet (multivariate Beta) densities is conjugate to the family of
multinomials, therefore we assume that prior distributions of the parameters
are (ai, , aK) Di (p1, , itK) and (Okii , , (kin, ) " Di (aka , , akin, ),
(1 < k < K,1 < i < m), where

{Pk, akil I 1 < k < K;1 <i < m;1 <l < nil

are called the hyper parameters of the corresponding distributions. Assuming
that the parameter vectors a and Oki are independent, the joint prior distribu-
tion of all the parameters can be expressed as

K m
Di (Pi, , PK) H rj Di (aka, , akin, )

k=1 i=1

The finite mixture model family is universal in the sense that it can ap-
proximate any distribution arbitrarily close as long as a sufficient number of
components is used. Unfortunately such generality typically implies also that
parameter estimation can become computationally inefficient.

5 On Bayesian explorative analysis
In traditional educational research the data, such as in our case study, would
typically be analyzed by factor analysis. Factor analysis is usually motivated
by the fact that observed variables can be correlated in such a way that one
is able to reconstruct their correlation by a smaller set of parameters, which
could represent the underlying structure in a concise and interpretable form.
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Figure 1: A snapshot of the interface of the NONE software tool.

In the Bayesian finite mixture based classification we have an interesting differ-
ent approach for finding interpretable structures from the data. As discussed
earlier, a class can be viewed as a "prototype", i.e., an abstract description
which reflects dependencies between the values of the observables. Such proto-
types can be understood as "conceptual sufficient statistics"they summarize
the general tendencies existing in the data.

In factor analysis one is often interested in factor loadings, i.e., in the
measure how much a variable X, is representative of, or agrees to, the factor
in question. In our Bayesian finite mixture approach the corresponding notion
would be the Kullback-Leibler distance of the unconditional and conditional
marginal likelihood of Xi, i.e.,

DKL(P(XilY = k,0),P(Xii0)),
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where DKL(p, q) is the relative entropy between p and q (Cover and Thomas,
1991). Similarly we can also study how different the multivariate class distribu-
tion is from the unconditioned joint distribution (a "Bayesian Wilk's lambda"),
defined as the relative entropy between the unconditional and conditional joint
distributions, i.e.,

DKL(P(. IY = k, 0), P(X 10)).

However, as finite mixtures model the joint probability distribution of all
the variables X1, , Xn we can in fact explore the predictive (marginal) dis-
tribution of any variable X, given the values of other variables. Modeling the
full joint distribution gives us an extremely powerful exploratory tool. Ex-
plorations can be done in the setting, where we study the variable predictive
distributions (Bernardo and Smith, 1994) of a new (actual or imaginary) data
vector. Here we only want to briefly address some interesting question types
that can be answered by such a tool:

Variable distributions for a given explaining variable assign-
ment. In the extreme case we can fix in the new data vector only the
value of a background variable, e.g., the sex, after which we can calcu-
late all the marginal predictive distributions. This means that one can
study the distribution of any variable conditioned by the fact that the
data vector d satisfies the assignment. For example in our case study we
can fix one teacher education department, and then explore what is the
predicted attitude towards readiness for multimedia teaching for teachers
that graduated from that particular department.

Variable distribution of an explaining variable given some com-
bination of other variable values. We can reverse the situation in
the previous item, and explore the effect of some value combination of
variables XXj,... for predicting a background variable. Again, to give
an example, we could explore which of the teacher education departments
seems to have given the least readiness to teachers for using computers
and multimedia in their teaching.

Variable predictive distribution of any variable given some com-
bination of other variable values. Similarly, based on the model 0,
one could also explore the predictive distribution of any variable X2 given

12
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Figure 2: The class "influence" distribution as shown by the NONE tool.

the values of some other variables Xj, Xk, etc. This allows us to see non-
linear dependencies between the variable values analogously to the linear
correlations in factor analysis.

6 Case study
The finite mixture based approach has been implemented, and runs on a Pen-
tium PC under Linux operating system. Figure 1 illustrates the experimental
software tool called NONE, which provides a flexible graphical interface for
studying Bayesian finite mixture models, and exploring the predictive distri-
butions. NONE is programmed in Java, and thus can be used with any Java-
compatible Internet browser. A running JavaTM demo of the software can be
accessed through our WWW homepage at URL "http: //www.cs.Helsinki.FI/
research/ cosco/". We will now proceed and illustrate the Bayesian approach
described with a case study using the Effectiveness data set. The standard
factor analysis results for this same data set are reported in (Niemi and Tirri,
1997).

General explorative analysis As described in Section 5 the methods es-
timating the domain joint probability distribution can be used in exploring
much more complex dependency patterns than simple covariances. This is due
to the fact that we are using a more general model family than multivariate nor-
mal. However, it is also beneficial to just explore problem domain structure by
mixing components, since they are amenable to (sometimes even deceptively)
easy interpretation. In order to compare the mixture model approach to the
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Figure 3: Comparing the marginal distributions of some attributes in the
Cluster 2 (above) to the corresponding marginal distibutions of the full dis-
tribution (below).

previously run factor analysis we studied a "four class solution" for the data.
In Figure 2 we can see the four classes, biggest of which ("Cluster 1" in the
Figure) seems to model an "average teacher". This average teacher answers
neutrally to most of the questions, and never deviates much from the mean of
the population.

On the other hand, 14% of the full domain distribution is influenced by a
class ("Cluster 2"), which seems to grasp the tendency that could best be char-
acterized by "Increased social awareness". The most distinctive single feature
of this class is the increased awareness of the teacher's role as a development
factor in the society. This tendency is accompanied by positive evaluations on
the development of teachers own educational philosophies, their awareness of
the ethical background of the teacher's profession, and the renovation of the
learning environment.

On the other hand one of the classes ("Cluster 0"), seems to model teachers
that in general evaluate the teaching received below the average, most notably
in issues dealing with internationality and multiculturality, quite unlike the
tendency present in Cluster 2.
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Exploration of more complex dependencies As an example of explor-
ative questions of more complex nature, we may characterize teachers as a
function of how they evaluate teaching concerning ethical awareness and read-
iness to guide students to use modern information technology. Here we can
notice that the teachers performing well in both areas can be seen as a bal-
anced mixture of two classes (Clusters 1 and 2). Due to the positive influence
of Cluster 2, these teachers also feel that they have received better readiness
to promote equality between sexes. Changing awareness to its maximum value
changes the situation so that Cluster 2 clearly dominates (85%), and the third
class (Cluster 3) also appears as an explaining factor. Here we can also see
that readiness to promote equality is even stronger.

To give another example, the teachers feeling that they received good pre-
paredness for their own educational philosophies also seem to be very satisfied
with their skills in managing student well-being. Practically no such depend-
ency exists among those who felt that the teacher education did not prepare
them to critically reflect their own profession.

It should be observed that due to the increased expressiveness of the model
there are exponentially many complex situations one can explore, some of which
are more natural and better motivated than others. However, interactive use of
NONE tool with joint probability distribution offers the researcher a principled
way to study these complex interactions among variables of his/her choice,
including situations that are not explicitly present in the sample.

7 Conclusion
In this paper we have discussed some of the methodological issues of using
a Bayesian approach with finite mixture models for finding latent classes in
the data. We demonstrated that the use of full joint probability models raises
interesting methodological questions, some of which were addressed in our
discussion. The concepts and methods discussed were illustrated with a case
study using an educational data set. The Bayesian classification approach as
described here has been implemented, and will be extended in near future.
This paper has discussed ongoing research, and more extensive theoretical and
experimental treatment as well as comparison to standard approaches is a topic
for future work.
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