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A Comparison of Linking and Concurrent
Calibration Under the Graded Response
- Model

Abstract

Applications of item response theory to practical testing problems including
‘equating, differential item functioning, and computerized adaptive testing,
require item parameter estimates be placed onto a common metric. In this
study, we compared two methods for developing a common metric for the
graded response model under item response theory: (1) linking separate
calibration runs using equating coefficients from the characteristic curve
method and (2) concurrent calibration using the combined data of the base
and target groups. Concurrent calibration yielded consistently albeit only
slightly smaller root mean square differences for both item discrimination and
location parameters. Similar results were observed for Euclidean distances

between estimates and parameters.

Key words: concurrent calibration, equating, graded response model, item

response theory, linking, MULTILOG.



Introduction

Studies of horizontal and vertical equating and studies of differential item
functioning under item response theory (IRT) require that item parameters
from two or more data sets be expressed on a common metric. In this paper,
we refer to linking as developing a common metric in IRT by' transforming a
set of item parameter estimates from one rhetric onto another, base metric.
It is also possible, under IRT, to develop a comfnon metric by simultaneously
calibrating a combined data set. In spite of the importance of the metric of
the 6 scale under IRT, however, very little work has directly addressed the
issues of linking versus concurrent calibration or the issue of the identification
problem for the graded response model. Previous research on these issues, in
faét, (Kim & Cohen, in press; Peterson, Cook, & Stoéking, 1983; Wingersky,
Cook, & Eignor, 1986) has focused solely on dichotomous IRT models. ,

This is unfortunate, as the use of IRT models for polytomously-
scored items is increasing in popularity, due largely to the widespread
use of constructed-response format items particularly in the context of
performance assessment. As is the case for dichotomous IRT models, '
successful applications of IRT with polytomous models depends upon the
metric of item and ability parameters. In this study, we compare linking and
concurrent calibration methods used for developing a common ability metric
under Samejima’s (1969, 1972) graded response model.

Under Samejima’s (1969, 1972) graded response model, the category
response function Pjg(f) is the probability of response k to item j as a
function of 6. This function is defined as

1— P4(0) when & = 1 -
ij(a) = ]:(K—l) (0) , when k= K (1)
Py y(0) — P;(0)  otherwise,
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where PJ,(f)is the boundary response function in the form of the logistic
model given by

| 7(6) = {1+ exp[-a;(6 ~ B}, 2
where «; is the discrimination parameter for item j, Bj; is the location
parameter, and 6 is the trait level parameter. With P (6) = 1 and P, =0,

the category response function can be succinctly written as
Pjx(0) = Pjk-1)(0) — Py (6), (3)

where & = 1(1)K and K is the total number of categories. Figures 1
and 2 illustrate the category response functions and the boundary response
functions, respectively, for a typical graded response model item with five
ordered response categories: o; = 1.46, B, = —.35, B2 = .67, B3 = .97,
Bjs =1.94. |

Insert Figures 1 and 2 about here

The purpose of equating is to convert test scores obtained from the metric
of one test to the metric of a second test. In horizontal equating, the tests
to be equated are at the same level of difficulty and }the ability distributions
of examinees are comparable. Horizontal equating is required when multiple
forms of a test are needed. In vertical equating, the tests to be equated are
at different levels of difficulty and the ability distributions of examinees are
not comparable. Vertical equating is required so that a single scale can be
used to make comparisons of abilities of examinees at different levels (e.g.,
different grade levels or different age groups). Under IRT, equating may not -
be necessary, if item parameters from the two tests are on the same metric.
Hence, in IRT the task of equating is reduced to that of developing a common

metric.



Both equating of test scores from various tests and linking of item
parameters can be carried out under several different designs (Vale, 1986). In
this paper, we consider the anchor test design in. which two tests contain a set
of common items and the tests are administered to two groups of examinees
either with comparable or different ability levelé.

When separate calibration runs are used for dichotomously scored IRT
models, three classes of linking methods are available for obtaining the linking
or equating coefficients, A and B: characteristic curve methods (Divgi, 1980;
Haebara, 1980; Stocking & Lord, 1983), the minimum chi-square method
(Divgi, 1985), and mean and sigma methods (Linn, Levine, Hasting, &
Wardrop, 1981; Loyd & Hoover, 1980; Marco, 1977; Stocking & Lord, 1983).
Each method has been extended to the graded response modei by Baker
(1992), Kim and Cohen (1995), and Cohen and Kim (1993), respectively. The -
transformation coeflicients are obtained from the item parameter estimates
of the common items on the two tests. In general, if there are two sets of item
parameter estimates, one from the base group and the other from the target
group, the task is to place item and ability estimates of the target group
onto the metric of the base group. Item parameter estimates from the target
group, including those for the common items, are placed onto the metric of
the base group via the coefficients A and B. After the metric transformation
and in order to achieve symmetry of transformation, the item parameter
estimatés from the base group and the transformed item parameter estimates
from the target group for the common items can be averaged to obtain the
final estimates (Hambleton & Swaminathan, 1985).

Concurrent calibration involves estimating item and ability parameters _
simultaneously, typically on a single computer run. This is done by combining

data from both (or several) groups and treating items not taken by a
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particular group as not reached or missing (Lord, 1980). A variation of
this is also possible in which the parameter estimates of the common items
from the base group are set to be fixed and the remaining item parameters
are estimated using data from the target group. Note, in either case with
concurrent calibration, there will be only one set of parameter estimates for
the common items. _

Concurrent calibration of the graded response model is presently possible
using marginal maximum likelihood estimation (MMLE) as implemented, for
example, in the computer'program MULTILOG (Thissen, 1991). In MMLE
(e.g., Bock & Aitkin, 1981), the joint likelihood is marginalized under the
assumption that a population distribution exists. When there are two groups
of examinees, MULTILOG default options calibrate items by constructing a
unit normal metric for ability parameters of the base group. The mean
ability of the target group is then obtained empirically along with the item
parameters while fixing the standard deviation at unity. MULTILOG default
options can also be overridden so that the mean and the standard deviation of
the target group can be specified differently. If the target group population
distribution of ability is truly different from that of the base group, then
marginalization of the likelihood function should be performed using two
different ability distributions.

One unresolved issue in the context of concurrent calibration under
MMLE for the graded response model, is the effect of the form of the
population ability distribution. In addition, there is a possible concern
regarding the specification of the ‘target group population parameters. In
a horizontal equating situation, this specification may not cause serious
problem, as the two distributions of abilities are generally comparable and

the difficulty level of a well-designed test is typically matched to the ability



of the examinee groups. In a vertical equating situation, however, the
specification becomes somewhat more complicated, particulafly if the two
ability distributions differ not only in location but also in variability.

In part, concurrent calibratioﬁ can potentially remove some equating
errors, which might arise in the case of linking, due to using results from
the two separate calibration runs. It could possibly also remove some of
the arbitrariness of the decisions made in linking. Concurrent calibration,
however, may not always be either possible or economical. For example, item
parameter estimates obtained on earlier forms of a test will generally differ
to some extent from current estimates. Subsequent combination of existing
data with new data just to achieve concurrent calibration results may also
incur different equating errors.

Comparative studies of differences in the metrics obtained from linking
and concurrent calibration have not been reported with respect to the graded
response model. In the present study, therefore, we focus on this issue in the

context of a recovery study.

Method
Data Generation

Data for the simulation study were generated for a 30-item test under the
graded response model using the computer program GENIRV (Baker, 1988).
The item parameters used to generate the data (see Table 1) were based
on calibration results of the mathematics tests developed as a part of the
Wisconsin Student Assessment System (Webb, 1994). All items had five
ordered categories. Note that the mean of the location parameters 3;; was

.962 and the standard deviation was .893.



Insert Table 1 about here

In a typical linking or concurrent calibration situation, there are. two
groups of examinees, the base and the target groups. In this study the
following three different sample size combinations of a base group with a
target group were used: (1) a base group with 300 examinees and a target
group with 300 examinees (we denote this Base 300/ Target 300, respectively),
(2) Base 1,000/ Target 1,000, and (3) Base 1,000/ Target 300. The sample size
of 300 was used to simulate a small sample. Previous research on the graded
response model (Reise & Yu, 1990) indicated that at least 500 examinees
were needed to achieve an adequate calibration.

Using these guidelines, a samplé of 300 would be considered a small
sample.

The ability of the base group was generaﬁed normal with a mean of 1
and a sfandard deviation of 1 [i.e., N(1,1)]. This set of generating ability
parameters were used so that the base group’s ability essentially matched
the difficulty of the test. There were two different target group ability
 distributions generated: N(0,1) and N(1,1). The N(0,1) target group was
generated to have a group lower in ability than the base group and also so the
test would be hard for this group. This base group-target group combination
simulated a vertical equating situation. To simulate a horizontal equating
situation, both the base and target groups were generated to have the same
N(1,1) ability distribution, one that was also matched to the difficulty of the
test.

Data were first generated for the Base 300/ Target 300 and Base 1,000/ Tar-

get 1,000 combinations for both horizontal and vertical simulations. To sim-
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ulate a large group—smaﬂ group equating situation, a Base 1,000 sample was
randomly paired with a Target 300 sample. This was done for both the ver-
tical and horizontal equating situations. 100 replications were generated for

each of the three sample size by two ability group conditions.

Numb-er of Common Items and Item Parameter Estimation

For each combination of a target group and base group, three different lengths
of common items sets were used: 5, 10, and 30 items. For the 5-common
item condition, items 1-5 in Table 1 were used. For the 10-common item
. condition, items 1-10 were used. The 30-common item condition simulated
a typical differential item functioning detection situation in which all of the
items need to be placed onto the same metric before comparisons could be
made.

The computer program MULTILOG was used to estimate the item
parameters for the separate calibration runs followed by linking. Default
MULTILOG options under the graded response model were used for these
calibrations. First, base group and target group item parameters were
estimated separately. Next, the test characteristic curve method for
linking under the graded response model (Baker, 1992), as implemented
in the computer program EQUATE (Baker, 1993), was used to obtain the
transformation coefficients A and B. These coefficients were used to link the

target metric to the base group metric. The transformation equations are
ajr = ajT/A | (4)

and

;’kT = A X bjkT + B, (5)
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where * indicates the values on the base group metric and the subscript T
designates the estimate is from the target group.

Since we had three different linking situations corresponding to the three
lengths of common item sets, for each combination of the base group and a
target group, three EQUATE runs were performed. In case of the 5-common
item condition, for example, the EQUATE run produced linking coefficients
A and B based on these 5 items. Then, using A and B, item parameter
estimates from the target group were placed onto the metric of the base
group. Finally, the item parameter estimates from the common items were
averaged to obtain the linked item parameter elstimates,. as recommended
by Hambleton and Swaminathan (1985). For the 5-common item condition,
this resulted in estimates of item parameters for 55 items after the linking.
Similarly, for the 10-common item condition, there were estimates of item
param‘eters for 50 items after linking, and for the 30-common item condition,
there were 30 estimates for items after linking. A total of 1,800 EQUATE
runs were performed, that is, 100 replications for the three EQUATE runs
of the base group and the N(0,1) target group as well as the N(1,1) target
group in each of the three combinations of sample sizes. '

For the concurrent calibrations, the combined data for the base and target
groups were used. A single combined data set was analyzed three times using
MULTILOG, once for each of the three common item conditions. Altogether,
1,800 MULTILOG calibration runs were performed. For the MULTILOG
concurrent calibration runs, all program default options were used resulting

in MMLE of item parameters under the graded response model.
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Equating and Evaluation Criteria

The final estimates for item parameters from linking were all expressed on the
metric of the base group. The parameter estimates are in fact not based on
an empirical ability metric but rather on a posterior metric obtained from the
marginalization process. These final estimates from linking and concurrent
calibrations, therefore, may not be directly comparable.

In order to make comparisons of the estimates, additional EQUATE runs
were performed to place all item parameter estimates onto the metric of
generating item parameters. In the case of the 5-common item condition,
55 items were equated to the metric of generated item parameters. For the
10-common item condition, 50 items were equated back to the metric of the
generated item parameters. All together, 3,600 additional EQUATE runs
were required to place the final estimates from the concurrent calibration
runs onto a common metric of the generating parameters.

One means of evaluating results from the different methods of obtaining a
common rﬁetric is to compare equating coefficients to expected values. In >the
separate calibration case, the equating coefficients were compared with the
theoretically expected values; For concurrent calibration, linking coefficients
are not available.

Instead, we compared the ability parameter estimates of the target group
with the expected values. |

A more definitive description is possible, however, in a recovery study.
Since it is possible fhat a method of obtaining a common metric may
function better at recovery of one type of item parameter than another, root
mean square differences (RMSDs) between the estimates and the generating

parameters can be used to provide an indication of the quality of the recovery
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and, thereby, of the quality of linking versus concurrent calibration. The
smaller the RMSDs, the better the method is in recovering the underlying -
metric. RMSDs were calculated separately for each parameter, once for
the item discrimination parameter and once for the set of item location

parameters. The RMSD for item discrimination is defined as

n

le@ ), ©)

n i

where 7 is the total number of items. Recall that the'total number of items
were 55, 50, and 30 for each common item condition of 5, 10, and 30 items,

respectively. For item location parameters, the RMSD is defined as

' R .

JREZ by~ B0 (7
Note that the item parameter estimates for both linking and concurrent
calibration were equated back to the metric of the generating item parameters
before calculating the RMSDs. '

It is also useful to consider a single index which can simultaneously
describe the quality of the recovery for all item parameters. The mean
Euclidean distance (MED) provides such an index. The MED is the average
of the square roots of the sum of the squared differences between the

discrimination and difficulty parameter estimates and their generating values.
The MED is defined as

Zf & - &) - &), (8)

where éj - (CL]', bjla caey b]'4)l and fj = (Ol]', ,3]'1, . ,,3]'4)1. MEDs were

calculated between the underlying parameters and their estimates. One
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caveat in using the MED, of course, is that item discrimination and location

parameters are not expressed in comparable and interchangeable metrics.

‘Even so, the MED does provide a potentially useful descriptive index.

Results

| Linking Coeflicients and Population Parameter Estimates

For separate calibration/linking results, the theoretically expected values of
A and B for placing the N(0,1) target group metric onto the base group
metric, which was generated as N(1,1), are 1 and —1, respecfively. For
placing the N(1,1) target group onto the N(1,1) base group metric, the
expected values of A and B are 1 and 0, respectively. Summary statistics of
the equating coefficients for the two different sample sizes from the separate
calibration runs for the two different térget group ability distributions by

three numbers of common items are reported in Table 2.

Insert Table 2 about here

For the N(1,1) target group, differences in equating coefficients from
expected values were quite small for all simulated conditions. The A and B
were essentially 1 and 0 for all common item conditions. For the N(1,0) target
group, however, the A and B were not close to the theoretically expected
values. The A and B were approximately 1 and —.57, respectively. It is
interesting to observe that, based on the sizes of the standard deviations, the
values of A and B were very consistent across all r.eplications. There were
no clear effects on the values of A and B due to sample sizes or numbers of

the common items. But, what happened for the N(0,1) target group is that
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MULTILOG yielded location parameter estimates that were shifted toward
the ability distribution used in the marginalization. |

For concurrent calibration, MULTILOG set the base group’s ability
metric to N(0,1). The mean ability of the 'target group (i.e., the.population
parametér also called the hyperparameter) was jointly éstimated along with
the item parameters. Standar_d deviations of ability for the base group and
the target group were both fixed at 1.” Since we used the base group of N(1,1),
the expected population mean was —1 for the N(0,1) target group and 0 for
the N(1,1) target group.

Insert Table 3 about here

Table 3 contains means and standard deviations of the population
parameter estimates from éoncurrent calibrations over 100 replications for
different sample sizes, target group ability conditions, and three common
item conditions. As can be seen in Table 3, the posterior population means of
the target group N(0,1) were very close to the expected value. All values were
negligibly smaller than the expected value of —1. The mean hyperparameters
for the N(1,1) target group were also very close to the expected value 0. These
resulfs suggest that the underlying population parameters were recovered

very well in both ability group conditions.

Root Mean Square Differences

Recovery of the underlying parameters can be more precisely evaluated with
RMSDs between the transformed estimates and the generating parameters.
The results for item discrimination, summarized in Tables 4 and 5, indicate

that concurrent calibration consistently yielded smaller RMSDs for item
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discrimination across all conditions, although these differences all appear

primarily in the third decimal place.

Insert Tables 4 and 5 about here

RMSDs for item discrimination for the N(1,1) target group were smaller
than for the N(0,1) target group. -As can be seen in Table 6, there was a clear
tendency for the RMSDs for item discrimination to decrease as the number of
common items increased. This was particularly the case fdr the 30-comm6n
item simulations. |

RMSDs for item location parameters are also reported in Tables 4 and
5 for separate calibration and concurrent calibration, respectively. There
did not appear to be any systematic relationship between the distributioln of
the target group’s ability and the size of RMSDs for item difficulty. As the
number of common items increased, however, the size of the RMSDs for item

location parameters decreased.

Mean Euclidean Distanées

Trends for MEDs between item parameter estimates and underlying parame-
ters were similar to those reported for RMSDs. Table 6 presents the MED re-
sults. Concurrent calibration consistently yielded very slightly smaller MEDs
for all conditions than did separate calibration/linking. As was noted for
RMSDs, however, such differences were primarily in the third decimal place.
The size of the average MEDs was found to decrease, however, as the number
of common items increased. Also, for both separate calibration and concur-
rent calibration, the N(1,1) target ability condition yielded slightly smaller
MEDs than did the N(0,1) target ability condition.

14
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Insert Table 6 about here

Summary and Discussion

The comparability of IRT item parameter estimates across different tests
measuring the same underlying ability is an important concern for test
developers and researchers since all decisions about examinees are derived
from these estimates. Very few studies on this topic have focused on the
graded response model. This is indeed unfortunate given the recent upsurge
in interest in performance assessment. A number of different methods are
available for developing common metrics for the graded response model,
but they do not all yield the same ability estimates. Which method to
choose is often a matter of uncertainty and concern. In this paper, we have
presented simulation results using two methods for obtaining a common
metric under the graded response model. The two methods were linking
of separately calibrated metrics using linear equating coefficients A and B
obtained from the test characteristic curve method and concurrent calibration
of the combined data. Both methods were simulated using MMLE.

The recovéry study approach permitted comparisons to be made of the
similarities between generating parameters and item parameter estimates
obtained after transformation of the results to the underlying metric.
The simulation results indicated that recovery via concurrent calibration
was consistently, albeit only slightly better than recovery from separate
calibration and linking. Note that this result was not fully consistent with
' the result from a previous study under the dichotomous IRT model (cf., Kim
& Cohen, in press). In that study, separate calibration followed by linking

?
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yielded better results for the small number of common items.

Differences between the methods compared in this study were primarily
ones inherent to the indeterminacy of the IRT ability metric. As is well-
known, the ability metric in IRT is unique up to a linear transformation.
Both linking and concurrent calibration are closely related to the' problem
of the metric indeterminacy. Computer programs for estimating item and
ability parameters under IRT resolve this problem in different ways. For
the MULTILOG runs in this study, ability. parameters were not estimated.
Instead, the underlying metric provided by MULTILOG was the normalized
posterior of the base group’s latent ability distribution. One of the factors
playing a role in determining the metric, therefore, is the form of the prior
ability distribution used in marginalization.

The scales resulting from the two different methods were also not the
same. Therefore, before RMSDs and MEDs could be obtained, it was
necessary to perform an additional linking for both the linked item parameter
estimates from separate calibration/linking and the parameter estimates from
the concurrent calibration results in order to place these results on the
underlying metric. A linear transformation, such as the one used in this
study due to Stocking and Lord (1983), can be used to put item parameter
estimates onto the metric of underlying parameters. Remaining differences
between estimates and parameters are generally due to estimation errors.

The averaging procedure recommended by Hambleton and Swaminathan
(1985) is only one of many possible ways to achieve symmetry in transfor-
"mation of parameter estimates to a common scale. In general, such methods
have not been widely studied and, in fact, may not be appropriate in .all cases
(e.g., linking new items into an existing bank or detection of differential item

functioning).
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Results from the present study suggest that, in general, concurrent cal-
ibration results differed slightly from those from separate calibration/linking.
When the ability distributions of the base and target groups were well matched
to the distribution of item location pararheters,' however, small errors were
found for both methods. Increasing the number of common items also served
to decrease the size of errors. Further studies of methods for obtaining a com-
mon metric under the graded response model would be useful. In particular,
it would be interesting to investigate the impact of the form of prior popu-

lation distribution used under concurrent calibration in MMLE.
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Table 1
Generating Item Parameters

Parameters
Item o  Bin B Bz B
1 1.46 —.35 67 97 1.94
2 1.73 18 90 129 1.94
3 1.81 -.37 03 91 2.29
4 1.63 —-56 -—-.13 .80 2.22
5 1.57 —.38 49 1.04 2.33
6 1.89 -.61 63 137 2.34
7 - 1.89 .01 67 133 2.18
8 1.84 -.23 31 .98 2.46

9 193 —31 60 1.27 244
10 253 -36 53 1.20 2.34
11 179 —-52 .39 154 2.00
12. 186 —53 —.12 127 2.25
13 235 .06 .99 1.50 2.20
14 179 —20 .49 1.00 2.40
15 212 .20 .56 1.40 2.00
16 207 —44 18 1.34 215
17 219 —-01 .39 1.36 2.01
18 240 .10 1.06 1.61 2.01
19 179 —10 .35 1.01 2.22
20 212 .19 110 145 2.01
21 175 —-57 .93 131 2.01
22 216 .59 .91 1.32 201
23 186 —02 .63 128 201
24 222 52 85 143 201
25 218 —.27 58 124 225
26 201 —66 41 163 224
27 214 .05 .71 1.03 2.09
28 213 43 115 147 2.06
29 212 .08 .70 1.12 2.09
30 205 19 61 .94 238
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Table 2
Mean and Standard Deviation of Equating Coefficients over 100 Replications

Sample Size  Target Coefficient A Coefficient B .
Base Target Ability? NC° Mean  SD Mean SD
300 300 N(0,1) ) 1.040 .008 —.580 .010
10 1.040 .005 —-.573 .007
30 1.041 .004 —.570  .003
N(,1) 5 993 .009 —.013 .008
10 997  .006 —.009 .006
30 1.001  .005 —.006 .002
1000 1000 N(0,1) ) 1.050 .004 —.576  .003
: 10 1.047 002 ~ -.576 .002
30 1.044 .001 —.572  .002
N(1,1) 5  1.003 .004  —.004 .001
10 1.002 .002 —.002 .001
. 30 1.001 .001 .001 .001
1000 300 N(0,1) ) 1.045 .003 -.5977 .005
10 1.044 .002 -.571 .003
30 1.040 .001 —.568  .002
N(1,1) 5  .998 .005 —.008 .005
10 1.001 .003 —.005 .004

30 1.000 .002 —.004 .002

®Base ability is N(1,1).
*Number of Common Items
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Table 3
Mean and Standard Deviation of Population i over 100 Replications

- Sample Size  Target Population [
Base Target Ability? NC° Mean SD
300 300 N(0,1) 5 —1.046 .039

' 10 —1.035 .030

30 ~-1.029 .024

N(1,1) 5 005 025

10 005 .022

30 .004 .018

1000 1000  N(0,1) 5 —1.046 .017
10 —1.039 .014

30 —1.032 .012

N(1,1) 5 .004 .013

10 .004 .012

30 .005 .009

1000 300 N(0,1) 5 —1.037 .030
10 —1.023  .023

30 —1.017 .017

N(1,1) 5 005 .022

10 .005 .018

30 - .004 .013

“Base ability is N(1,1).
. "Number of Common Items
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Table 4

Mean and Standard Deviation of Root Mean Square Differences over 100 Replications from Separate Calibration

Sample Size Target a; Bi1 Bj2 Bjs Bja
Base Target Ability® NCP Mean SD Mean SD Mean SD Mean SD Mean SD .
300 300 N(0,1) 5 184  .020 .091 .010 .081 .008 ..094 .010 147 022

10 176 .019 .085 .009 077 .008 .090 .009 136 .017
30 128 .015 065 .009 .058 .008 .067 .009 105 .015
N(1,1) 5 177 .020 .103  .010 .079 .009 .074 .008 106 .012
10 169 .019 .097 .010 076  .008 071 .007 .099 .010
30 124 .015 .074 .011 057 .008 .054 .007 075 .011
1000 1000 N(0,1) 5 100 .012 .050 .006 .044  .005 052 .007 .081 011
10 095 .012 .047  .005 .041 .004 .049 .006 074  .009
30 .068 .009 035 .004 .031 .004 .036 .005 055 .008
N(1,1) 5 095 .010 .058  .006 .042 .005 042  .004 .058 .008
. 10 .091 .010 .054 .006 .040 .005 039 .004 .053  .006
30 064 .008 .041 .006 .030 .004 .029  .003 .040 .005
1000 300 N(0,1) 5 152 .019 068 .008 .066 .008 .084 .011 134 022
10 145 .019 . .064 .007 062 ..008 .080 .010 123 .018
30 104 .017 .048 .007 .046  .006 .058 .008 094 .015
N(1,1) 5 144 018 .084 .009 .063 .007 .060 .007 .086 .011
10 137 017 .080 .009 .061 .007 .057 .006 .080 .009
30 .098 .014 060 .008 .046 .006 .043  .005 .062 .009
%Base ability is N(1,1).
bNumber of Common Items
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Table 5

Mean and Standard Deviation of Root Mean Square Differences over 100 Replications from Concurrent Calibration

Sample Size Target aj B;1 Bj2 B3 Bja
Base Target Ability? NCb Mean SD Mean SD Mean SD Mean SD Mean SD
300 300 N(0,1) 5 .181 .019 .08 .012 .079  .009 .092 .010 143 .022
10 174 019 .084 .009 .076  .008 .088 .009 132 .017
30 118 .013 .062 .009 .055 .007 .061 .008 .090 .012
N(1,1) 5 173 .018 101 .010 .077 - .008 .073  .007 104 011
10 .168  .019 .096 .010 075  .008 071 .007 098 .010
30 122 .015 073 .011 057 .008 .053  .007 074 .011
1000 1000 N(0,1) 5 .098 .011 .050 .006 .044 .004 .050 .005 .078 .008
10 094 .012 .047 .005 .041 .004 .048 .005 .072  .008
30 .064 .008 .033 .004 029 .004 .033 .004 .047  .006
N(1,1) 5 .093 .010 .056  .006 .041 .005 .040 .004 .056  .006
10 .090 .010 .054 .006 .040 .005 .039 .004 .053  .006
30 .064 .008 .041  .006 .030 .004 .029 .003 .040 .005
1000 300 N(0,1) 5 147 .020 .068 .009 .064 .008 .081 .010 128 .022
10 141 .019 .064 .007 060 .007 .077 .010 116 .018
30 .078 .011 .046  .006 .037 .005 .038 .005 .054 .007
N(1,1) 5 .140 .018 .081 .009 .062 .007 .058 .006 .083 .010
10 134 017 077  .009 .059 .007 .056 .006 077  .009
‘ 30 079 .011 .050 .007 037 .006 036 .004 .051  .007
2Base ability is N(1,1).
bNumber of Common Items
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Table 6
Mean and Standard Deviation of Mean Euclidean Distances over 100 Replications

Sample Size =~ Target Separate Calibration Concurrent Calibration
Base Target Ability> NC° Mean SD Mean SD
300 300 N(0,1) 5 .255 018 .249 .019
: 10 241 .016 .236 015

30 .184 .013 .167 .011

N(1,1) 5 233 .016 228 .014

10 221 .014 219 .014

- 30 .166 .013 .164 .012

1000 1000 N(0,1) 5 .140 012 137 .009
10 - .131 .010 129 .009

30 .097 .008 090 .007

N(1,1) 5 127 009 124 008

10 120 .008 119 .008

. 30 .088 - .007 .088 .007

1000 300 N(0,1) 5 .206 .016 : .197 .015
10 195 .014 .185 014

30 152 .013 .109 .009

N(1,1) 5 183 .013 .176 012

10 173 .012 .166 .012
30 133 010 110 .008 -

“Base ability is N(1,1).
"Number of Common Items
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Figure Captions

Figure 1. Category Response Functions for a Five-Category Item

Figure 2. Boundary Response Functions for a Five-Category Item
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