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A Comparison of Linking and Concurrent
Calibration Under the Graded Response

Model

Abstract

Applications of item response theory to practical testing problems including

equating, differential item functioning, and computerized adaptive testing,

require item parameter estimates be placed onto a common metric. In this

study, we compared two methods for developing a common metric for the

graded response model under item response theory: (1) linking separate

calibration runs using equating coefficients from the characteristic curve

method and (2) concurrent calibration using the combined data of the base

and target groups. Concurrent calibration yielded consistently albeit only

slightly smaller root mean square differences for both item discrimination and

location parameters. Similar results were observed for Euclidean distances

between estimates and parameters.

Key words: concurrent calibration, equating, graded response model, item

response theory, linking, MULTILOG.
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Introduction

Studies of horizontal and vertical equating and studies of differential item

functioning under item response theory (IRT) require that item parameters

from two or more data sets be expressed on a common metric. In this paper,

we refer to linking as developing a common metric in IRT by transforming a

set of item parameter estimates from one metric onto another, base metric.

It is also possible, under IRT, to develop a common metric by simultaneously

calibrating a combined data set. In spite of the importance of the metric of

the 0 scale under IRT, however, very little work has directly addressed the

issues of linking versus concurrent calibration or the issue of the identification

problem for the graded response model. Previous research on these issues, in

fact, (Kim & Cohen, in press; Peterson, Cook, & Stocking, 1983; Wingersky,

Cook, & Eignor, 1986) has focused solely on dichotomous IRT models.

This is unfortunate, as the use of IRT models for polytomously-
scored items is increasing in popularity, due largely to the widespread

use of constructed-response format items particularly in the context of

performance assessment. As is the case for dichotomous IRT models,

successful applications of IRT with polytomous models depends upon the

metric of item and ability parameters. In this study, we compare linking and

concurrent calibration methods used for developing a common ability metric

under Samejima's (1969, 1972) graded response model.

Under Samejima's (1969, 1972) graded response model, the category

response function P3k(0) is the probability of response k to item j as a

function of 0. This function is defined as

Pik(0) =
1 .133;(0)

1:7(K-1)(0)

133(k-i)(9) PAO)

when k = 1
when k = K
otherwise,

(1)
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where Pi*k(0)is the boundary response function in the form of the logistic

model given by

PA(0) = {1 + exp[ a3(9 03k)]}-1, (2)

where a, is the discrimination parameter for item j, 03k is the location

parameter, and 0 is the trait level parameter. With P313(0) = 1 and P3*K = 0,

the category response function can be succinctly written as

Pik(0) = k -1) ( ) P3'k ( ) (3)

where k = 1(1)K and K is the, total number of categories. Figures 1

and 2 illustrate the category response functions and the boundary response

functions, respectively, for a typical graded response model item with five

ordered response categories: a, = 1.46, /3 = .35, 032 = .67, 0j3 = .97,
/j4 = 1.94.

Insert Figures 1 and 2 about here

The purpose of equating is to convert test scores obtained from the metric

of one test to the metric of a second test. In horizontal equating, the tests

to be equated are at the same level of difficulty and the ability distributions

of examinees are comparable. Horizontal equating is required when multiple

forms of a test are needed. In vertical equating, the tests to be equated are

at different levels of difficulty and the ability distributions of examinees are

not comparable. Vertical equating is required so that a single scale can be

used to make comparisons of abilities of examinees at different levels (e.g.,

different grade levels or different age groups). Under IRT, equating may not

be necessary, if item parameters from the two tests are on the same metric.

Hence, in IRT the task of equating is reduced to that of developing a common

metric.
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Both equating of test scores from various tests and linking of item

parameters can be carried out under several different designs (Vale, 1986). In

this paper, we consider the anchor test design in which two tests contain a set

of common items and the tests are administered to two groups of examinees

either with comparable or different ability levels.

When separate calibration runs are used for dichotomously scored IRT

models, three classes of linking methods are available for obtaining the linking

or equating coefficients, A and B: characteristic curve methods (Divgi, 1980;

Haebara, 1980; Stocking & Lord, 1983), the minimum chi-square method

(Divgi, 1985), and mean and sigma methods (Linn, Levine, Hasting, &

Wardrop, 1981; Loyd & Hoover, 1980; Marco, 1977; Stocking & Lord, 1983).

Each method has been extended to the graded response model by Baker

(1992), Kim and Cohen (1995), and Cohen and Kim (1993), respectively. The

transformation coefficients are obtained from the item parameter estimates

of the common items on the two tests. In general, if there are two sets of item

parameter estimates, one from the base group and the other from the target

group, the task is to place item and ability estimates of the target group

onto the metric of the base group. Item parameter estimates from the target

group, including those for the common items, are placed onto the metric of

the base group via the coefficients A and B. After the metric transformation

and in order to achieve symmetry of transformation, the item parameter

estimates from the base group and the transformed item parameter estimates

from the target group for the common items can be averaged to obtain the

final estimates (Hambleton & Swaminathan, 1985).

Concurrent calibration involves estimating item and ability parameters

simultaneously, typically on a single computer run. This is done by combining

data from both (or several) groups and treating items not taken by a
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particular group as not reached or missing (Lord, 1980). A variation of

this is also possible in which the parameter estimates of the common items

from the base group are set to be fixed and the remaining item parameters

are estimated using data from the target group. Note, in either case with

concurrent calibration, there will be only one set of parameter estimates for

the common items.

Concurrent calibration of the graded response model is presently possible

using marginal maximum likelihood estimation (MMLE) as implemented, for

example, in the computer program MULTILOG (Thissen, 1991). In MMLE

(e.g., Bock & Aitkin, 1981), the joint likelihood is marginalized under the

assumption that a population distribution exists. When there are two groups

of examinees, MULTILOG default options calibrate items by constructing a

unit normal metric for ability parameters of the base group. The mean

ability of the target group is then obtained empirically along with the item

parameters while fixing the standard deviation at unity. MULTILOG default

options can also be overridden so that the mean and the standard deviation of

the target group can be specified differently. If the target group population

distribution of ability is truly different from that of the base group, then

marginalization of the likelihood function should be performed using two

different ability distributions.

One unresolved issue in the context of concurrent calibration under

MMLE for the graded response model, is the effect of the form of the

population ability distribution. In addition, there is a possible concern

regarding the specification of the target group population parameters. In

a horizontal equating situation, this specification may not cause serious

problem, as the two distributions of abilities are generally comparable and

the difficulty level of a well-designed test is typically matched to the ability
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of the examinee groups. In a vertical equating situation, however, the

specification becomes somewhat more complicated, particularly if the two

ability distributions differ not only in location but also in variability.

In part, concurrent calibration can potentially remove some equating

errors, which might arise in the case of linking, due to using results from

the two separate calibration runs. It could possibly also remove some of

the arbitrariness of the decisions made in linking. Concurrent calibration,

however, may not always be either possible or economical. For example, item

parameter estimates obtained on earlier forms of a test will generally differ

to some extent from current estimates. Subsequent combination of existing

data with new data just to achieve concurrent calibration results may also

incur different equating errors.

Comparative studies of differences in the metrics obtained from linking

and concurrent calibration have not been reported with respect to the graded

response model. In the present study, therefore, we focus on this issue in the

context of a recovery study.

Method

Data Generation

Data for the simulation study were generated for a 30-item test under the

graded response model using the computer program GENIRV (Baker, 1988).

The item parameters used to generate the data (see Table 1) were based

on calibration results of the mathematics tests developed as a part of the

Wisconsin Student Assessment System (Webb, 1994). All items had five

ordered categories. Note that the mean of the location parameters Oik was

.962 and the standard deviation was .893.
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Insert Table 1 about here

In a typical linking or concurrent calibration situation, there are two

groups of examinees, the base and the target groups. In this study the

following three different sample size combinations of a base group with a

target group were used: (1) a base group with 300 examinees and a target

group with 300 examinees (we denote this Base 300/Target 300, respectively),

(2) Base 1,000/Target 1,000, and (3) Base 1,000/Target 300. The sample size

of 300 was used to simulate a small sample. Previous research on the graded

response model (Reise & Yu, 1990) indicated that at least 500 examinees

were needed to achieve an adequate calibration.

Using these guidelines, a sample of 300 would be considered a small

sample.

The ability of the base group was generated normal with a mean of 1

and a standard deviation of 1 [i.e., N(1,1)]. This set of generating ability

parameters were used so that the base group's ability essentially matched

the difficulty of the test. There were two different target group ability

distributions generated: N(0,1) and N(1,1). The N(0,1) target group was

generated to have a group lower in ability than the base group and also so the

test would be hard for this group. This base grouptarget group combination

simulated a vertical equating situation. To simulate a horizontal equating

situation, both the base and target groups were generated to have the same

N(1,1) ability distribution, one that was also matched to the difficulty of the

test.

Data were first generated for the Base 300/Target 300 and Base 1,000/Tar-

get 1,000 combinations for both horizontal and vertical simulations. To sim-
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ulate a large groupsmall group equating situation, a Base 1,000 sample was

randomly paired with a Target 300 sample. This was done for both the ver-

tical and horizontal equating situations. 100 replications were generated for

each of the three sample size by two ability group conditions.

Number of Common Items and Item Parameter Estimation

For each combination of a target group and base group, three different lengths

of common items sets were used: 5, 10, and 30 items. For the 5-common

item condition, items 1-5 in Table 1 were used. For the 10-common item

condition, items 1-10 were used. The 30-common item condition simulated

a typical differential item functioning detection situation in which all of the

items need to be placed onto the same metric before comparisons could be

made.

The computer program MULTILOG was used to estimate the item

parameters for the separate calibration runs followed by linking. Default

MULTILOG options under the graded response model were used for these

calibrations. First, base group and target group item parameters were

estimated separately. Next, the test characteristic curve method for
linking under the graded response model (Baker, 1992), as implemented

in the computer program EQUATE (Baker, 1993), was used to obtain the

transformation coefficients A and B. These coefficients were used to link the

target metric to the base group metric. The transformation equations are

and

a'3'T = aiT/A

b;ler = A x bjki, + B,

8
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where * indicates the values on the base group metric and the subscript T

designates the estimate is from the target group.

Since we had three different linking situations corresponding to the three

lengths of common item sets, for each combination of the base group and a

target group, three EQUATE runs were performed. In case of the 5-common

item condition, for example, the EQUATE run produced linking coefficients

A and B based on these 5 items. Then, using A and B, item parameter

estimates from the target group were placed onto the metric of the base

group. Finally, the item parameter estimates from the common items were

averaged to obtain the linked item parameter estimates, as recommended

by Hambleton and Swaminathan (1985). For the 5-common item condition,

this resulted in estimates of item parameters for 55 items after the linking.

Similarly, for the 10-common item condition, there were estimates of item

parameters for 50 items after linking, and for the 30-common item condition,

there were 30 estimates for items after linking. A total of 1,800 EQUATE

runs were performed, that is, 100 replications for the three EQUATE runs

of the base group and the N(0,1) target group as well as the N(1,1) target

group in each of the three combinations of sample sizes.

For the concurrent calibrations, the combined data for the base and target

groups were used. A single combined data set was analyzed three times using

MULTILOG, once for each of the three common item conditions. Altogether,

1,800 MULTILOG calibration runs were performed. For the MULTILOG

concurrent calibration runs, all program default options were used resulting

in MMLE of item parameters under the graded response model.

9
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Equating and Evaluation Criteria

The final estimates for item parameters from linking were all expressed on the

metric of the base group. The parameter estimates are in fact not based on

an empirical ability metric but rather on a posterior metric obtained from the

marginalization process. These final estimates from linking and concurrent

calibrations, therefore, may not be directly comparable.

In order to make comparisons of the estimates, additional EQUATE runs

were performed to place all item parameter estimates onto the metric of

generating item parameters. In the case of the 5-common item condition,

55 items were equated to the metric of generated item parameters. For the

10-common item condition, 50 items were equated back to the metric of the

generated item parameters. All together, 3,600 additional EQUATE runs

were required to place the final estimates from the concurrent calibration

runs onto a common metric of the generating parameters.

One means of evaluating results from the different methods of obtaining a

common metric is to compare equating coefficients to expected values. In the

separate calibration case, the equating coefficients were compared with the

theoretically expected values. For concurrent calibration, linking coefficients

are not available.

Instead, we compared the ability parameter estimates of the target group

with the expected values.

A more definitive description is possible, however, in a recovery study.

Since it is possible that a method of obtaining a common metric may

function better at recovery of one type of item parameter than another, root

mean square differences (RMSDs) between the estimates and the generating

parameters can be used to provide an indication of the quality of the recovery
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and, thereby, of the quality of linking versus concurrent calibration. The

smaller the RMSDs, the better the method is in recovering the underlying

metric. RMSDs were calculated separately for each parameter, once for

the item discrimination parameter and once for the set of item location

parameters. The RMSD for item discrimination is defined as

Dai 2
31n =1

(6)

where n is the total number of items. Recall that the total number of items

were 55, 50, and 30 for each common item condition of 5, 10, and 30 items,

respectively. For item location parameters, the RMSD is defined as

n 4

E E(b"j=1 k=1
(7)

Note that the item parameter estimates for both linking and concurrent

calibration were equated back to the metric of the generating item parameters

before calculating the RMSDs.

It is also useful to consider a single index which can simultaneously

describe the quality of the recovery for all item parameters. The mean

Euclidean distance (MED) provides such an index. The MED is the average

of the square roots of the sum of the squared differences between the

discrimination and difficulty parameter estimates and their generating values.

The MED is defined as

/(6 6.i)/(6n
(8)

where 4-3 = (ai, bii, , b34)1 and ei = (a3, 01, 034)'. MEDs were

calculated between the underlying parameters and their estimates. One
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caveat in using the MED, of course, is that item discrimination and location

parameters are not expressed in comparable and interchangeable metrics.

Even so, the MED does provide a potentially useful descriptive index.

Results

Linking Coefficients and Population Parameter Estimates

For separate calibration/linking results, the theoretically expected values of

A and B for placing the N(0,1) target group metric onto the base group

metric, which was generated as N(1,1), are 1 and 1, respectively. For

placing the N(1,1) target group onto the N(1,1) base group metric, the

expected values of A and B are 1 and 0, respectively. Summary statistics of

the equating coefficients for the two different sample sizes from the separate

calibration runs for the two different target group ability distributions by

three numbers of common items are reported in Table 2.

Insert Table 2 about here

For the N(1,1) target group, differences in equating coefficients from

expected values were quite small for all simulated conditions. The A and B

were essentially 1 and 0 for all common item conditions. For the N(1,0) target

group, however, the A and B were not close to the theoretically expected

values. The A and B were approximately 1 and .57, respectively. It is

interesting to observe that, based on the sizes of the standard deviations, the

values of A and B were very consistent across all replications. There were

no clear effects on the values of A and B due to sample sizes or numbers of

the common items. But, what happened for the N(0,1) target group is that
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MULTILOG yielded location parameter estimates that were shifted toward

the ability distribution used in the marginalization.

For concurrent calibration, MULTILOG set the base group's ability

metric to N(0,1). The mean ability of the target group (i.e., the population

parameter also called the hyperparameter) was jointly estimated along with

the item parameters. Standard deviations of ability for the base group and

the target group were both fixed at L Since we used the base group of N(1,1),

the expected population mean was 1 for the N(0,1) target group and 0 for

the N(1,1) target group.

Insert Table 3 about here

Table 3 contains means and standard deviations of the population
parameter estimates from concurrent calibrations over 100 replications for

different sample sizes, target group ability conditions, and three common

item conditions. As can be seen in Table 3, the posterior population means of

the target group N(0,1) were very close to the expected value. All values were

negligibly smaller than the expected value of -1. The mean hyperparameters

for the N(1,1) target group were also very close to the expected value 0. These

results suggest that the underlying population parameters were recovered

very well in both ability group conditions.

Root Mean Square Differences

Recovery of the underlying parameters can be more precisely evaluated with

RMSDs between the transformed estimates and the generating parameters.

The results for item discrimination, summarized in Tables 4 and 5, indicate

that concurrent calibration consistently yielded smaller RMSDs for item

13
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discrimination across all conditions, although these differences all appear

primarily in the third decimal place.

Insert Tables 4 and 5 about here

RMSDs for item discrimination for the N(1,1) target group were smaller

than for the N(0,1) target group. As can be seen in Table 6, there was a clear

tendency for the RMSDs for item discrimination to decrease as the number of

common items increased. This was particularly the case for the 30-common

item simulations.

RMSDs for item location parameters are also reported in Tables 4 and

5 for separate calibration and concurrent calibration, respectively. There

did not appear to be any systematic relationship between the distribution of

the target group's ability and the size of RMSDs for item difficulty. As the

number of common items increased, however, the size of the RMSDs for item

location parameters decreased.

Mean Euclidean Distances

Trends for MEDs between item parameter estimates and underlying parame-

ters were similar to those reported for RMSDs. Table 6 presents the MED re-

sults. Concurrent calibration consistently yielded very slightly smaller MEDs

for all conditions than did separate calibration/linking. As was noted for

RMSDs, however, such differences were primarily in the third decimal place.

The size of the average MEDs was found to decrease, however, as the number

of common items increased. Also, for both separate calibration and concur-

rent calibration, the N(1,1) target ability condition yielded slightly smaller

MEDs than did the N(0,1) target ability condition.
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Insert Table 6 about here

Summary and Discussion

The comparability of IRT item parameter estimates across different tests

measuring the same underlying ability is an important concern for test

developers and researchers since all decisions about examinees are derived

from these estimates. Very few studies on this topic have focused on the

graded response model. This is indeed unfortunate given the recent upsurge

in interest in performance assessment. A number of different methods are

available for developing common metrics for the graded response model,

but they do not all yield the same ability estimates. Which method to

choose is often a matter of uncertainty and concern. In this paper, we have

presented simulation results using two methods for obtaining a common

metric under the graded response model. The two methods were linking

of separately calibrated metrics using linear equating coefficients A and B

obtained from the test characteristic curve method and concurrent calibration

of the combined data. Both methods were simulated using MMLE.

The recovery study approach permitted comparisons to be made of the

similarities between generating parameters and item parameter estimates

obtained after transformation of the results to the underlying metric.

The simulation results indicated that recovery via concurrent calibration

was consistently, albeit only slightly better than recovery from separate

calibration and. linking. Note that this result was not fully consistent with

the result from a previous study under the dichotomous IRT model (cf., Kim

Si Cohen, in press). In that study, separate calibration followed by linking
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yielded better results for the small number of common items.

Differences between the methods compared in this study were primarily

ones inherent to the indeterminacy of the IRT ability metric. As is well-

known, the ability metric in IRT is unique up to a linear transformation.

Both linking and concurrent calibration are closely related to the problem

of the metric indeterminacy. Computer programs for estimating item and

ability parameters under IRT resolve this problem in different ways. For

the MULTILOG runs in this study, ability parameters were not estimated.

Instead, the underlying metric provided by MULTILOG was the normalized

posterior of the base group's latent ability distribution. One of the factors

playing a role in determining the metric, therefore, is the form of the prior

ability distribution used in marginalization.

The scales resulting from the two different methods were also not the

same. Therefore, before RMSDs and MEDs could be obtained, it was

necessary to perform an additional linking for both the linked item parameter

estimates from separate calibration/linking and the parameter estimates from

the concurrent calibration results in order to place these results on the

underlying metric. A linear transformation, such as the one used in this

study due to Stocking and Lord (1983), can be used to put item parameter

estimates onto the metric of underlying parameters. Remaining differences

between estimates and parameters are generally due to estimation errors.

The averaging procedure recommended by Hambleton and Swaminathan

(1985) is only one of many possible ways to achieve symmetry in transfor-

mation of parameter estimates to a common scale. In general, such methods

have not been widely studied and, in fact, may not be appropriate in all cases

(e.g., linking new items into an existing bank or detection of differential item

functioning).
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Results from the present study suggest that, in general, concurrent cal-

ibration results differed slightly from those from separate calibration/linking.

When the ability distributions of the base and target groups were well matched

to the distribution of item location parameters, however, small errors were

found for both methods. Increasing the number of common items also served

to decrease the size of errors. Further studies of methods for obtaining a com-

mon metric under the graded response model would be useful. In particular,

it would be interesting to investigate the impact of the form of prior popu-

lation distribution used under concurrent calibration in MMLE.

17

19



References

Baker, F. B. (1988). GENIRV: A program to generate item response vectors

[Computer program]. Madison, University of Wisconsin, Department

of Educational Psychology, Laboratory of Experimental Design.

Baker, F. B. (1992). Equating tests under the graded response model.

Applied Psychological Measurement, 16, 87-96.

Baker, F. B. (1993). EQUATE 2.0: A computer program for the characteris-

tic curve method of IRT equating. Applied Psychological Measurement,

17, 20.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation

of item parameters: Application of an EM algorithm. Psychometrika,

46, 443-459.

Cohen, A. S., & Kim, S.-H. (1993, April). A comparison of equating

methods under the graded response model. Paper presented at the

annual meeting of the National Council on Measurement in Education,

Atlanta, GA.

Divgi, D. R. (1980, April). Evaluation of scales for multilevel test batteries.

Paper presented at the annual meeting of the American Educational

Research Association, Boston.

Divgi, D. R. (1985). A minimum chi-square method for developing

a common metric in item response theory. Applied Psychological

Measurement, 9, 413-415.

18

2.0



Haebara, T. (1980). Equating logistic ability scales by a weighted least

squares method. Japanese Psychological Research, 22, 144-149.

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory:

Principles and applications. Boston, MA: Kluwer-Nijhoff.

Kim, S.-H., & Cohen, A. S. (1995). A minimum x2 method for equating

tests under the graded response model. Applied Psychological Measure-

ment, 19, 167-176.

Kim, S.-H., & Cohen, A. S. (in press). A comparison of linking and con-

current calibration under item response theory. Applied Psychological

Measurement.

Linn, R. L., Levine, M. V., Hasting, C. N., & Wardrop, J. L. (1981). An

investigation of item bias in a test of reading comparison. Applied

Psychological Measurement, 5, 159-173.

Lord, F. M. (1980). Applications of item response theory to practical testing

problems. Hillsdale, NJ: Erlbaum.

Loyd, B. H., & Hoover, H. D. (1980). Vertical equating using the Rasch

model. Journal of Educational Measurement, 17, 169-194.

Marco, G. L. (1977). Item characteristic curve solutions to three intractable

testing problems. Journal of Educational Measurement, 14, 139-160.

Petersen, N. S., Cook, L. L., & Stocking, M. L. (1983). IRT versus

conventional equating methods: A comparative study of scale stability.

Journal of Educational Statistics, 8, 137-156.

19

21



Reise, S. P., & Yu, J. (1990). Parameter recovery in the graded response

model using MULTILOG. Journal of Educational Measurement, 27,

133-144.

Samejima, F. (1969). Estimation of latent ability using a response pattern

of graded scores. Psychometrika Monograph Supplement, .No. 17.

Samejima, F. (1972). A general model for free response data. Psychome-

trika Monograph Supplement, No. 18.

Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in

item response theory. Applied Psychological Measurement, 7, 201-210.

Thissen, D. (1991). MULTILOG user's guide: Multiple, categorical

item analysis and test scoring using item response theory [Computer

program]. Chicago: Scientific Software.

Vale, C. D. (1986). Linking item parameters onto a common scale. Applied

Psychological Measurement, 10, 333-344.

Webb, N. L. (1994). Wisconsin performance assessment development

project: Analysis and technical report for fiscal year 1993-94. Madison:

University of Wisconsin, Wisconsin Center for Educational Research.

Wingersky, M. S., Cook, L. L., & Eignor, D. R. (1986, April). Specifying

the characteristics of linking items used for item response theory item

calibration. Paper presented at the annual meeting of the American

Educational Research Association, San Francisco, CA.

20

22



Table 1
Generating Item Parameters

Item
Parameters

a3 1331 032 0j3 0j4
1 1.46 -.35 .67 .97 1.94
2 1.73 .18 .90 1.29 1.94
3 1.81 -.37 .03 .91 2.29
4 1.53 -.56 -.13 .80 2.22
5 1.57 -.38 .49 1.04 2.33
6 1.89 -.61 .63 1.37 2.34
7 1.89 .01 .67 1.33 2.18
8 1.84 -.23 .31 .98 2.46
9 1.93 -.31 .60 1.27 2.44

10 2.53 -.36 .53 1.20 2.34
11 1.79 -.52 .39 1.54 2.00
12 1.86 -.53 -.12 1.27 2.25
13 2.35 .06 .99 1.50 2.20
14 1.79 -.20 .49 1.00 2.40
15 2.12 .20 .56 1.40 2.00
16 2.07 -.44 .18 1.34 2.15
17 2.19 -.01 .39 1.36 2.01
18 2.40 .10 1.06 1.61 2.01
19 1.79 -.10 .35 1.01 2.22
20 2.12 .19 1.10 1.45 2.01
21 1.75 -.57 .93 1.31 2.01
22 2.16 .59 .91 1.32 2.01
23 1.86 -.02 .63 1.28 2.01
24 2.22 .52 .85 1.43 2.01
25 2.18 -.27 .58 1.24 2.25
26 2.01 -.66 .41 1.63 2.24
27 2.14 .05 .71 1.03 2.09
28 2.13 .43 1.15 1.47 2.06
29 2.12 .08 .70 1.12 2.09
30 2.05 .19 .61 .94 2.38
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Table 2
Mean and Standard Deviation of Equating Coefficients over 100 Replications

Sample Size Target
Ability' NCb

Coefficient A Coefficient B
Base Target Mean SD Mean SD

300 300 N(0,1) 5 1.040 .008 -.580 .010
10 1.040 .005 -.573 .007
30 1.041 .004 -.570 .003

N(1,1) 5 .993 .009 -.013 .008
10 .997 .006 -.009 .006
30 1.001 .005 -.006 .002

1000 1000 N(0,1) 5 1.050 .004 -.576 .003
10 1.047 .002 -.576 .002
30 1.044 .001 -.572 .002

N(1,1) 5 1.003 .004 -.004 .001
10 1.002 .002 -.002 .001
30 1.001 .001 .001 .001

1000 300 N(0,1) 5 1.045 .003 -.577 .005
10 1.044 .002 -.571 .003
30 1.040 .001 -.568 .002

N(1,1) 5 .998 .005 -.008 .005
10 1.001 .003 -.005 .004
30 1.000 .002 -.004 .002

'Base ability is N(1,1).
bNumber of Common Items
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Table 3
Mean and Standard Deviation of Population ft over 100 Replications

Sample Size Target
Ability' NC

Population
Base Target Mean SD

300 300 N(0,1) 5 -1.046 .039
10 -1.035 .030
30 -1.029 .024

N(1,1) 5 .005 .025
10 .005 .022
30 .004 .018

1000 1000 N(0,1) 5 -1.046 .017
10 -1.039 .014
30 -1.032 .012

N(1,1) 5 .004 .013
10 .004 .012
30 .005 .009

1000 300 N(0,1) 5 -1.037 .030
10 -1.023 .023
30 -1.017 .017

N(1,1) 5 .005 .022
10 .005 .018
30 .004 .013

'Base ability is N(1,1).
bNumber of Common Items
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Table 4
Mean and Standard Deviation of Root Mean Square Differences over 100 Replications from Separate Calibration

Sample Size Target
Abilitya NCb

a j 13j1 Q,2 /333 034
Base Target Mean SD Mean SD Mean SD Mean SD Mean SD

300 300 N(0,1) 5 .184 .020 .091 .010 .081 .008 .094 .010 .147 .022
10 .176 .019 .085 .009 .077 .008 .090 .009 .136 .017
30 .128 .015 .065 .009 .058 .008 .067 .009 .105 .015

N(1,1) 5 .177 .020 .103 .010 .079 .009 .074 .008 .106 .012
10 .169 .019 .097 .010 .076 .008 .071 .007 .099 .010
30 .124 .015 .074 .011 .057 .008 .054 .007 .075 .011

1000 1000 N(0,1) 5 .100 .012 .050 .006 .044 .005 .052 .007 .081 .011
10 .095 .012 .047 .005 .041 .004 .049 .006 .074 .009
30 .068 .009 .035 .004 .031 .004 .036 .005 .055 .008

N(1,1) 5 .095 .010 .058 .006 .042 .005 .042 .004 .058 .008
10 .091 .010 .054 .006 .040 .005 .039 .004 .053 .006
30 .064 .008 .041 .006 .030 .004 .029 .003 .040 .005

1000 300 N(0,1) 5 .152 .019 .068 .008 .066 .008 .084 .011 .134 .022
10 .145 .019 .064 .007 .062 .008 .080 .010 .123 .018
30 .104 .017 .048 .007 .046 .006 .058 .008 .094 .015

N(1,1) 5 .144 .018 .084 .009 .063 .007 .060 .007 .086 .011
10 .137 .017 .080 .009 .061 .007 .057 .006 .080 .009
30 .098 .014 .060 .008 .046 .006 .043 .005 .062 .009

aBase ability is N(1,1).
bNumber of Common Items
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Table 5
Mean and Standard Deviation of Root Mean Square Differences over 100 Replications from Concurrent Calibration

Sample Size Target
Abilitya NCb

ctj 13j1 13j2 13j3 1334

Base Target Mean SD Mean SD Mean SD Mean SD Mean SD
300 300 N(0,1) 5 .181 .019 .089 .012 .079 .009 .092 .010 .143 .022

10 .174 .019 .084 .009 .076 .008 .088 .009 .132 .017
30 .118 .013 .062 .009 .055 .007 .061 .008 .090 .012

N(1,1) 5 .173 .018 .101 .010 .077 .008 .073 .007 .104 .011
10 .168 .019 .096 .010 .075 .008 .071 .007 .098 .010
30 .122 .015 .073 .011 .057 .008 .053 .007 .074 .011

1000 1000 N(0,1) 5 .098 .011 .050 .006 .044 .004 .050 .005 .078 .008
10 .094 .012 .047 .005 .041 .004 .048 .005 .072 .008
30 .064 .008 .033 .004 .029 .004 .033 .004 .047 .006

N(1,1) 5 .093 .010 .056 .006 .041 .005 .040 .004 .056 .006
10 .090 .010 .054 .006 .040 .005 .039 .004 .053 .006
30 .064 .008 .041 .006 .030 .004 .029 .003 .040 .005

1000 300 N(0,1) 5 .147 .020 .068 .009 .064 .008 .081 .010 .128 .022
10 .141 .019 .064 .007 .060 .007 .077 .010 .116 .018
30 .078 .011 .046 .006 .037 .005 .038 .005 .054 .007

N(1,1) 5 .140 .018 .081 .009 .062 .007 .058 .006 .083 .010
10 .134 .017 .077 .009 .059 .007 .056 .006 .077 .009
30 .079 .011 .050 .007 .037 .006 .036 .004 .051 .007

aBase ability is N(1,1).
bNumber of Common Items
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Table 6
Mean and Standard Deviation of Mean Euclidean Distances over 100 Replications

Sample Size Target
Ability' NCb

Separate Calibration Concurrent Calibration
Base Target Mean SD Mean SD

300 300 N(0,1) 5 .255 .018 .249 .019
10 .241 .016 .236 .015
30 .184 .013 .167 .011

N(1,1) 5 .233 .016 .228 .014
10 .221 .014 .219 .014
30 .166 .013 .164 .012

1000 1000 N(0,1) 5 .140 .012 .137 .009
10 .131 .010 .129 .009
30 .097 .008 .090 .007

N(1,1) 5 .127 .009 .124 .008
10 .120 .008 .119 .008
30 .088 .007 .088 .007

1000 300 N(0,1) 5 .206 .016 .197 .015
10 .195 .014 .185 .014
30 .152 .013 .109 .009

N(1,1) 5 .183 .013 .176 .012
10 .173 .012 .166 .012
30 .133 .010 .110 .008

'Base ability is N(1,1).
bNumber of Common Items
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Figure Captions

Figure 1. Category Response Functions for a Five-Category Item

Figure 2. Boundary Response Functions for a Five-Category Item
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