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The Probability Inquiry Environment

Phil Vahey
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University of California, Berkeley

Berkeley, CA 94720-1670
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The Probability Inquiry Environment (PIE) is
being designed as a computer-mediated
collaborative inquiry environment to aid middle
school students in learning elementary probability.
This paper will report on a study in which seventh
grade students engaged in probabilistic reasoning
while interacting with a preliminary version of PIE.
By analyzing the reasoning used by students, it
was found that the findings from the standard
"misconceptions" literature do not do justice to the
wide range of viewpoints voiced by the students.
In particular, the students did not consistently
invoke such well documented misconceptions as
representativeness and the law of small numbers.
Instead, the students invoked a great variety of
intuitions, some of which approach normative
reasoning in probability, and others of which
interfere with normative reasoning. This paper will
then discuss how probability instruction can be
improved by introducing students to a progression
of inquiry activities that build from the students'
existing intuitions (Vahey, 1996; Vahey, Enyedy,
and Gifford, in press; White 1993a, 1993b).

Prior Findings in Probabilistic Reasoning
There is a rich literature based on the many

misconceptions people display when asked to
reason probabilistically'. By far the most
influential work has been by Tversky and
Kahneman (1982), who showed that much of
people's probabilistic reasoning could be described
by the heuristics of representativeness and
availability. The .representativeness heuristic is
characterized by making judgments based on the
degree to which A is representative of, or
resembles, B (Tversky and Kahneman, 1982).

Although many terms have been used to denote student
ideas in formal domains, such as naive conceptions,
preconceptions, and alternative frameworks, to name a few,
much of the literature cited here is consistent with a view of
misconceptions in which student ideas are determined to be
in conflict with accepted meanings in formal domains (cf.
Confrey, 1990; Smith et al., 1993).

This representativeness heuristic has been used to
explain insensitivity to sample size, the gambler's
fallacy, the base-rate fallacy, incorrect judgments
about the output of random processes, and other
non-normative judgments. The availability heuristic
is characterized by making judgments based on the
ease with which instances of a certain event can be
brought to mind. This heuristic has been used to
explain biases due to the retrievability of instances
(such as thinking that car accidents are more likely
in a town because you had a car accident in that
town), biases due to the effectiveness of a search
set (for instance, claiming that there are more
words that end in "ing" than have an "n" as the
second to last letter), and biases of imaginability
(things that are hard to construct a mental image of
are determined to be not likely).

In addition to those found by Kahneman and
Tversky, many other misconceptions have been
identified (for an overview, see Shaughnessy,
1992). For example, people may believe that there
is a lack of variability in the world, people have too
much confidence in small samples, people do not
see the importance of small differences in large
samples, and people seem unaware of regression to
the mean in their lives (Shaughnessy, 1992).

Although this misconceptions literature has been
fruitful in identifying some of the problems people
have in reasoning probabilistically, several
objections have been made to the misconceptions
literature. General attacks point out that much of
the misconceptions literature is based on the
paradigm of expecting students to "replace" their
current knowledge after being "confronted" with
counter-evidence to their "misconceptions". This
is an overly simplistic account of learning, and
misconceptions studies do not provide an account
of ways people can change their intuitions (which
are often plagued by misconceptions) into more
expert knowledge (Smith, et al., 1993), although
such an account would be perhaps the single most
important factor in designing learning
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environments. Specific attacks on much of the
literature in probabilistic reasoning point out that
much of the misconceptions literature is based on
questionnaire and survey data, providing no
account of the actual thought processes people use
(cf. Konold et al., 1993; Shaughnessy, 1992),
leaving researchers to infer people's reasoning.
Additionally, there is no explanation for the
variability of subjects' responsesfor instance,
there is no explanation as to why some subjects use
representativeness, but others do not (Tversky and
Kahneman, 1982). Finally, documenting such
misconceptions in counterintuitive situations does
not provide insight into correct reasoning people
may employ when reasoning probabilistically
(Hawkins and Kapadia, 1988; Lajoie, 1995).

Consistent with many of these objections, this
study found that students did not consistently fall
prey to misconceptions such as representativeness
or the law of small numbers, although there was
evidence that, for some students in some
situations, such misconceptions did describe their
behavior. Instead there was great variability as to
the justifications and explanations provided, and
this variability was found both across groups of
students and within individual students. In short,
if we are to design learning environments that are
informed by our understanding of student
conceptions of probability, we need to achieve a
better understanding of student conceptions.

The goals of this paper are to advance our
understanding of middle school students'
probabilistic knowledge by analyzing seventh
grade students' reasoning as they used the
Probability Inquiry Environment; determine the
ways in which such reasoning can be mapped to
normative reasoning in probability; and begin to
investigate how we can use this mapping to create
authentic and collaborative learning environments
that exploit students' existing conceptions as
resources for cognitive growth.

Theoretical Framework
This study is situated in a constructivist view of

learning that is based upon three areas of research:
(i) existing student conceptions play a

productive role in the development of
expertise, and we should not view
misconceptions as deficiencies that must be
replaced, but instead we should work to build
from these conceptions (for a thorough
treatment of this perspective, see Smith, et al.,

1993; see also diSessa, 1988; Minstrell, 1989;
Lampert, 1986; White, 1993a, 1993b)

(ii) students construct meaning and
understanding while participating in a social
context (Brown and Campione, 1996; Collins
et al. 1989; Scardemalia and Bereiter, 1993)
and student learning is facilitated by making
their existing ideas explicit in order to evaluate
these ideas with respect to findings in the
domain and the ideas of others

(iii) learning environments should situate
students in activities they consider to be
legitimate and authentic. A productive learning
environment will support activities that
maintain fidelity with the relevant aspects of
authentic practice, and not ignore the
contribution of social practices and
representational resources. That is, we should
design intermediate tools and models that
maintain fidelity with the relevant aspects of
expert analysis while students participate in
authentic tasks (Gordin et al. 1994; White,
1993a, 1993b)

The Environment
The Probability Inquiry Environment (PIE) is

being created as a collaborative, guided-inquiry
learning environment in which seventh grade
students are asked to evaluate the fairness of games
of chance. PIE was orignially based on a
provisional set of conjectures that was informed by
the existing literature on students' conceptions in
probability. These conjectures led to PIE
consisting of a set of inquiry activities designed to
address specific "misconceptions" in probability,
such as representativeness and the law of small
numbers. Because of the prototype nature of this
version of PIE, and because of the short time the
students interacted with PIE in this study, we did
not expect to make a significant gain in terms of
students' understanding of probability during this
study. Instead, because PIE was designed as an
open-ended collaborative inquiry environment, the
purpose of this study was to discover the specific
probabilistic intuitions that students included in
their explanations and discussions2.

21t should be noted that another purpose of this study was
to test the interface of PIE with seventh grade students, and
not all students understood all aspects of the interface.
Several of the students interpreted specific questions in ways
that were unexpected, and so there is no in-depth analysis of
responses to specific questions. Instead student justifications
are analyzed (for whatever question they thought they were
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We chose analyzing the fairness of games of
chance because we have found that students are
interested in the notion of fairness as it applies to
games of chance (Vahey, 1996). Additionally, the
literature on moral development shows that middle
school children are interested in notions of
fairness, and students of this age have developed
sophisticated notions of fairness (Damon, 1988;
Thorkildsen, 1995).

In this study students were asked to analyze two
games of chance to determine if they were fair.
The first game is called the Two-Penny game,
where Team A scored a point whenever both coins
come up the same (heads-heads or tails-tails), and
Team B scored a point whenever both coins come
up differently (heads-tails or tails-heads). This
game is fair, as all outcomes are equally likely, and
each team scores on two out of the four possible
outcomes. The second game is called the Three-
Coin game, where Team A scored a point on five
of the eight possible outcomes, and Team B scored
a point for three of the possible outcomes.
Because each outcome is equally likely and Team A
scores on more outcomes than Team B, this game
is unfair in favor of Team A. An event tree that
enumerated all the possible outcomes and that
visually presented the scoring combinations for
each team was on the screen at all times, as was a
dynamic histogram that showed scoring either by
each combination of coins, or by each team (see
figures la and lb).

rritTliE;;;?

Two Penny Game
Figure la: the PIE software interface

answering) and the probabilistic reasoning used in these
justifications is analyzed.

HO. towwW#W4
444-1f7dellso'

Three Coin Game
Figure lb: the PIE software interface

An inquiry approach was chosen because
cognitive science research in the field of
mathematics has demonstrated that the inquiry
approach to mathematics instruction can provide a
rich, engaging and meaningful context which
facilitates students' acquisition of mathematical
concepts (Balachef, 1987, cited in Schoenfeld,
1991; Lampert, 1995; Richards, 1991), and
investigating complex concepts in this manner
scaffolds the development of metacognitive
knowledge and skills (White & Frederiksen,
1995). In PIE students collaborate in the authentic
tasks of: creating conjectures to explain genuinely
puzzling situations; running a computer simulation
that generates data that can be used to test their
conjectures; analyzing this data to determine the
appropriateness of their conjectures; and creating
and negotiating an understanding that accounts for
their findings, which is then agreed upon and typed
into the computer environment. During this inquiry
cycle students use authentic representations and
tools such as event trees, simulations, and real-time
graphs and histograms.

The inquiry cycle used in this version of PIE
consisted of five steps: Rules, Try, Predict, Play,
and Conclude. Throughout each of these five steps
the right side of the screen remained relatively
constant, and always showed a probability tree that
denoted all the possible outcomes of the coins
flips, with each outcome labeled according to
which team, A or B, scored for that outcome. That
is, the partitioning of all outcomes remained on the
screen at all times. In Rules the students were
shown an animated introduction to the current
game. In this introduction the students were shown
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that the coins are flipped, and the outcomes that
score a point for each team were explicitly shown
to the students. In Try the students were
introduced to the coins, probability tree, histogram,
and controls by allowing them to manipulate these
items by clicking them with the mouse. This was
done to allow the students some amount of
familiarity with the environment before asking
them to make predictions. In Predict and
Conclude the students were asked to make
predictions and conclusions, respectively, and
these predictions will be discussed in more detail in
the following paragraphs. In Play the students
started and stopped the game by clicking on a
button that toggled between "Go" and "Stop", were
able to control the speed of the coin flips with the
fastest speed flipping the coins at a rate of about
100 points a minute, could switch the 'histogram
between viewing by combination or viewing by
teams, and had a set of hints that changed based on
the status of the game (recommending, for
instance, that students play at the fastest speed if
after many points they had not already done so).
As the coins flipped in Play the probability tree
highlighted the current state of the coins.

The Prediction and Conclusion questions were
similar across both activities (the two coin game
and the three coin game). There were three sets of
prediction questions (figure 2). The first set of
questions asked students about fairness: was this
game fair, what do they mean by fair, and why is
this game fair or unfair. The second set of
questions had students manipulate histograms to
make predictions about what they might expect
after 10 points and after 200 points. The third set
of prediction questions asked students to predict
the relative frequency of each combination. The
first three conclusion questions paralleled the
prediction questionsstudents were shown their
predictions and were allowed to keep their
predictions as conclusions, or enter new
conclusions. One additional set of conclusion
questions was asked in which students specified
the most important thing in deciding the fairness of
this particular game, and were explicitly asked if
the number of combinations that scored for teach
team were important.

BEST COPY AVAILABLE

Do you think that this is a fair game?

I think the game is fair.

I think the game is not fair.

I don't know.

Bow many points do you predict that Teen A and Team B

will have scored after playing for 10 turns? After
200 turns? Show how Many points you think each team

will score kyrulling up and down the bars above.

no you think any canbinaticn of coins is going to happen

more often than any other? Pull each Yellow bar to
determine how often you think that coMbination of
coins will occur.

Figure 2: Prediction Questions

These games and questions were designed to
elicit specific misconceptions. For example, we
expected that the first game would address some
aspects of the representativeness misconception.
Because Team B scored a point whenever the coins
where "mixed", we expected most students to
answer that this game was unfair, in favor of Team
B. We expected that the three different prediction
questions would allow the students to look at the
same situation from three different perspectives,
providing a way for them to integrate their
understanding of different aspects of probability.
This expectation was too simplistic: asking what
we considered to be similar questions from several
perspectives did not provide an opportunity for
students to integrate their knowledge, but instead
provided students with an opportunity to invoke
different reasoning strategies.

The Study
The research team recruited eight single-sex pairs

of students from a local urban middle school. All
of the sessions took place in the summer, between
the students' sixth grade and seventh grade school
years. Four of the pairs were boys, and four of the
pairs were girls. The students represented a wide
range of ethnicities. The students were paid $5 and
hour, and spent about an hour and a half interacting
with the computer during one two hour session.
During this session they were videotaped, and PIE
recorded their actions on the computer.

The data used in this study consists of student
discussions as they participated in the activities,
and their responses to the predict and conclude
questions. The videotape data of the students
using PIE were transcribed, and these transcripts
were combined with the data recorded by PIE to
create a record of all student discussions and
student interactions with PIE during the session.
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These transcripts were then analyzed, and all
instances of students' reasoning about the games
was found. Although, by the end of the study,
seven of the eight pairs of students were able to
reason normatively about the games, this paper will
not concentrate on the events that led to this
normative reasoning. Instead, the students'
reasoning throughout the entire session will be
compared to the way in which normative
probabilistic reasoning could have been employed
in those situations. The characteristics of
normative probabilistic reasoning discussed in this
paper corresponds to four interrelated conceptual
areas in probability. These areas are randomness
(understanding that the game is based on a non-
deterministic mechanism), the outcome space (the
possible outcomes for each point played), the
probability distribution (the probability of each
outcome), and the validity of evidence (the law of
small/large numbers). A justification for this
characterization will be presented after the next
section. First, to acquaint ourselves with an
example of student reasoning in PIE, a brief case
study will be presented.

A Case Study of Q and T Using PIE
When Q and T were assured that they understood

the two-penny game (Figure 3), they made their
predictions. When predicting that the Two-Penny
game is fair, they explicitly assigned a 50% chance
to the combinations of coins that score a point for
each team, resulting in a final answer that is
perfectly aligned with normative reasoning (Figure
4). Note however, that the students never explicitly
justified this 50% chance, and we will not attempt
to make claims about the students' probabilistic
reasoning in this instance.
T: I get it, if they're both heads team A gets a point,

if they're both tails team A gets a point, and if

they're one heads and one tails Team B gets a point.

Figure 3: Understanding the two-penny game.

Q: we think the game is fair because you have a 50%

chance of getting both heads and both tails.

Typed: We think that the game is fair tvcaltsi= you have

a 50% chance of getting both heads and both tails.

You also have a 50% chance of getting one tails and

one heads.

Figure 4: Fair, based on a 50% chance for each team.

Q and T next answered what they meant by fair.
Q and T decided that a game is fair if all teams have
an equal chance of winning, a normative view of

BEST COPY AVAiLgaif

fairness. Student ideas of fairness will be further
discussed in the next section.

In the next question, Q and T were asked to
manipulate histograms to make predictions about
what would happen after 10 points, and after 200
points. T stated that heads would occur more, so
she would expect Team A to win more. Q
countered this by saying that coins usually come up
differently (note that this is consistent with
representativeness), so she would expect Team B
to win more. They then decided that the game will
most probably be tied (Figure 5). After further
discussion, the students decided that luck would be
an important factor in the game (Figure 6), and this
meant that Team A might win sometimes, and
Team B might win other times. Again, the
students provided answers that were close to
normative, but looking solely at their final answer
misses their reasoning process, which was quite
rich and invoked more intuitions than are found in
the final answer.

T: OK, what about this, I think Team A will win.
Because imagine all of the heads we are gonna get

Q: I think that Team B would win it, because when you

dimwit it's like real luck uken you get both of than
the same. that you throw it, most of the time they
land differently. [pause] I think they'd probably be

tied, but if I had to choose ane, see, this looks
right to me [pointing to evelhistognankems]

T: that's what I think too

Figure 5: Who will win more?

T: I think that this is just a game of luck...this is

like a game of guessing

Q: it's really like scneone has to win, because it's
like you win same you lose same, it's not like a
permanent game.

[T novel histograms so A is winning after 10, and B is

winning after 200]

Q: now he can purple [Teen PO be winning an this one
and green [Team B] be winning an that?

T: well, once you win you don't always win

Figure 6: A game of luck

For the final prediction question in the two-penny
game, the students were asked if any of the
combinations (outcomes) would happen more than
any other. The students were again asked to
manipulate a series of histograms, and type in a
justification. Although Q and T started to reason
about the different combinations, they then
switched to talking about the probability of heads
or tails. They decided that because this is not a
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game of skill, but a game of luck, they would
expect heads and tails to come up the same amount
(Figure 7).

Q: we don't think that any carbinatian should happen

more than any other, because it's luck

T: it's how you throw it

Q: plus, it's a game of luck

T: we don't think that, it's rot a game of skill

that ane penny will came up, more than the other

T: it's all equal...weit a minute, we don't think that

heads or tails is more likely to came up than the
other. We don't think that heads or tails will come
up more

typed: We don't think that heads would acme up more than

tails. We think that this game is a game of luck.

Figure 7: Will any combination happen more?

Q and T then started the game simulation. After
only four points they noted that tail-head was
happening more than the other combinations. The
game then stopped after ten points, and told the
students that they could either look at the results or
continue playing. At this point Q wanted to go
back into predictions to see if the predictions
agreed with the results (note that this behavior is
consistent with the well-documented law of small
numbers). The researcher asked them to continue
playing, telling them that they would be able to
modify their predictions later, so Q and T
continued in Play.

After playing for several more points, Q and T
then decided to run the simulation at the fastest
speed. At this speed the game runs ten points at a
time, and individual coin flips can not be
perceived. After about 20 seconds the game
reached 200 points, and gave the students the
option to continue playing or stop and analyze the
results. Q and T chose to stop playing and go
immediately into Conclude.

The first three conclusion screens asked the
students to evaluate their predictions. For each of
these conclusions, the students stated that,
although their predictions did not exactly match the
actual data, the results were close enough for them
to still agree with their predictions (Figure 8).
Additionally, in Figure 9, Q came back to their
earlier statement that being a game of luck is an
important aspect of the game. This becomes the
single most important factor for these students for
the remainder of the session.

BEST COPY AVA6LABLE

T: even, look, almost even

Q: yeah, so it's pretty fair because no one is like waxy,

way more than the other

Figure 8: Conclusionis the game fair?

Q: Na, CK, why? We keep saying the same thing over.

Like this evidence-no because this is just a game of

luck. And they're all equal anyway.

Figure 9: Conclusionare any combinations more likely?

For the last set of conclusions the students were
asked if the number of combinations that score a
point for each team is an important factor in
determining fairness. However, Q and T
understood this question to be asking about the
data already collected. Although they first stated
that this data is important, they then decided that
luck is more important, and one doesn't need to
analyze the data (Figure 10). Then, when asked to
state the most important thing in determining if the
game is fair, they again stated the importance of
luck (Figure 11).
Q: very important, don't you think...why is it very

important?

T: it's data

Q: it's important data, and um

T: you need the data to play the game

Q: you need to know the number of cartinatians...But

it's not that important though, as a matter of fact,
it's not important at all, cause it's a game of luck.

Yeah, it's rot important

T: it's a little important...

Q: ....but the game is just a game of luck anyway. So if

you didn't have the data, it wouldn't matter anyway.

Typed: It is important because it's data, but an the

other hand it is not that important because it's just
a game of luck.

Figure 10: It's just a game of luck

Q: The most irrportant thing is that you understand that

the game is just luck

Figure 11: The most important thing in determining
fairness

Q and T were then introduced to the Three-Coin
game, and Q once more decided that the game was
fair because it was a game of luck, although T was
hesitant to agree. However, T could not state why
she thought the game was unfair, and finally
determined that, since all the outcomes were
possible, the game must be fair. Note that,
although the partitioning of the outcomes into
points for A and points for B were on the screen at
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all times, the students never considered counting
the outcomes to determine if each team had an
equal number of outcomes. Although it is
dangerous to make inferences based on the absence
of an action, the fact that it never occurred to these
(or most) students to simply count up the number
of outcomes, especially when something about the
game seemed troubling, may point to a lack of an
understanding of the importance of the outcome
space in determining probabilities.

Then, consistent with their predictions for the
Two-Penny game, and consistent with their idea
that luck means that a game is fair, for the
remainder of the predictions Q and T stated that the
teams will score an approximately equal number of
points, and each of the combinations should occur
equally. They then put the game on the fastest
speed, and quickly played up to two hundred
points. When the game reached two hundred
points, they went into conclude and simply agreed
with all their predictions, without comparing their
predictions to the actual results, even stating that
the data is not important (Figure 12). Such
reasoning is based, presumably, on the statements
made at the end of the Two-Penny game, that a
game of luck must be fair, and data is not an
important factor.

Typed: THE ODDS IS JUST WM AND THE EPCD4 IN THIS GAME

Is Nur THAT IMPCRIAllt.

Figure 12: Conclusionare the combinations in the
Three-Coin game important?

At this point the researcher asked them to play
some more, reminding them of the Reset button
that sets the points back to zero. After playing
several more rounds up to two hundred points, T
decided that, because Team B kept losing, the
game must be unfair. Q, however, kept stating that
the game is just luck, and so must be fair (Figure
13) (note the contrast between this behavior and
her earlier desire to check their predictions after
only ten points). T did not accept this answer,
however, and kept looking for an explanation. T
finally noticed the difference in the number of
outcomes that scored a point for each team, and
then resorted to a strategy of making the game fair,
contrasting a partitioning of points that would make
the game fair with the actual partitioning (Figure
14). Q then understood how this partitioning was
relevant and agreed that the game was unfair.

BEST COPY AVAILABLE

T: See, Team B is losing by a lot. Tbld you it was
unfair

Q: this game is just luck, it's just a penny game, it's

just luck

Figure 13: Unfair versus luck

T: Why is it fair, Q?

Q. because it's a game of luck, it's jut throwing

Pennies

T: I'm not talking about utose got the penny, I'm

talking about right here [pointing to the tree]. They

keep losing, and I'm trying to figure out uhy...ueit a

minute! See how this is AA right here? and this is AB

AB AB

R: mmmrhmmm

T: but shouldn't it he BB?

R: what do you mean, shouldn't it he?

T: right here it says Al'. AB AB AB

Figure 14: Making the game fair

Summary: Q and T's analysis of the Two-
Penny game began with them stating several
different, often competing or conflicting, intuitions
about probability, few of which seemed to carry
any deep commitment. And, although
representativeness could be used to describe some
of their reasoning, it is a far from adequate
account, as much of their reasoning is inconsistent
with representativeness. Q and T then began to
consider luck the single most important aspect of
the game, even stating that they did not need data to
determine the fairness of the games. Their
commitment to this position was shown in the
Three-Coin game, when Q explicitly denied the
importance of data that showed that this game was
unfair. Note that she did not fall prey to the law of
small numbers, nor did she dismiss the game as
"cheating", nor did she suffer from confirmation
bias and misinterpret the data as showing that the
games were tied. Instead, she acknowledged the
results of the simulation and simply said that these
results were not relevant. It was not until T was
able to determine that the partitioning of the
outcome space was unequal that they were able to
confirm that the game was unfair, and it took a
notably long time until this counting strategy was
employed by the students, lending credence to the
supposition that the outcome space was not a
salient feature of this situation. Note that most of
this behavior is not consistent with the heuristics
and biases view of probabilistic reasoning. It
seems as though we need another view of students'
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conceptions of probability that is different from that
offered by the traditional literature.

Results: a framework for understanding
probabilistic reasoning

As mentioned earlier, PIE was specifically
designed to elicit students' ideas about
representativeness and the law of small numbers.
However, as the case study of Q and T shows,
such a simple explanation does not account for
much of the reasoning employed by the students.
In the spirit of the constructivist approach outlined
earlier, we must analyze this reasoning to
determine the ways in which student intuitions can
be expanded to include the concepts in the domain
of probability if we are to design instruction that
helps students bridge from their existing
knowledge to the formal domain knowledge of
probability. This section begins to do this by
analyzing the probabilistic statements of all the
students in this study.

The primary activity the students were engaged in
was determining if the two games of chance were
fair. This activity, situated in PIE, provided the
students with an environment where they could
investigate an activity that was, to them, authentic
and meaningful, and all pairs of students invoked
reasoning that is easily recognized as probabilistic.
In order to understand how this intuitive reasoning
compares to normative reasoning, we must first
have an understanding of what we mean by
normative reasoning in this activity. The version
of "normative" reasoning presented here is that of
the idealized reasoning process used by someone
with an understanding of elementary probability
who is faced with a novel situation. The novel
situation in this case is determining if the games of
chance described previously are fair.

This normative reasoning will first determine
what is meant by "fair". After this any of the
several different reasoning processes considered
"normative" will have the characteristics that they
will (i) determine that the game is based on a non-
deterministic mechanism (i.e. understand some
aspects of randomness); (ii) determine the
outcomes that score points for each team (i.e.
understand the outcome space); (iii) determine the
probabilities of the outcomes that score a point for
each team (i.e. understand the probability
distribution); and (iv) compare the expected
fairness of the games to the actual fairness after
playing for some large number of points to

determine if the theoretical expectations are
accurate3.

The main finding is that students displayed a
wide variety of ideas, some of which approach
normative reasoning in probability, and others of
which interfere with normative reasoning, and
there is great difficulty in attempting to characterize
students as exhibiting specific misconceptions.
Many of the students' statements were situation
specific, and students were willing to make
contradictory claims when discussing the same
basic circumstance, such as the expected results
after many flips of a coin. Instead of attempting to
characterize each student as believing some specific
misconception, it is perhaps more instructive to
consider ways in which we can elicit their different
ideas, and attempt to build from those ideas that
seem most productive.

Fairness
Several studies have determined that fairness is a

productive study of inquiry for students
investigating probability (Hirst, 1977; Scheinok,
1988), and PIE is based on this premise. The
findings from this study will show that, although
fairness is a highly motivating and productive area
of investigation for middle school students, we
should be aware of different versions of fairness
that students consider relevant in different
situations.

3Note that this description of normative reasoning can
remain agnostic with respect to specific beliefs about the
probability of the elementary events involved. For instance,
one reasoning strategy that fits this description of normative
is as follows. The students believe that heads occurs
systematically more than tails. The students then notice all
the outcomes that score a point for the different teams, and
then determine how the increased probability of heads
compared to tails changes the probability of each outcome,
and hence, the probability of scoring for each team (as an
aside, the increased probability of heads-heads more than
offsets the increased probability of one head and one tail,
making this game unfair in favor of Team A in this
scenario). The students then run a few simulations of the
game and notice that, at a few hundred points, the teams are
only a few points apart, and no team systematically wins
more than the other team. At this point the students should
either not believe the computer simulation, or revisit the
assumptions of their theory. There are obviously many
other reasoning strategies that could be considered in this
discussion, but the point here is that any such reasoning
strategy will take into account characteristics (i) through (iv)
mentioned previously.
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Each pair of students discussed the normative
conception of fairness at least once during the
session (see figure 15), stating that for a game to
be fair all teams should be equally likely to win.
Although Metz (1995) has found that younger
students may understand fair to mean that the teams
must score in lock-step fashion, students in this
study exhibited no such ideas, and some explicitly
stated that fairness means that there may be
variation in outcomes, but that variation should not
systematically favor one team (figure 16).

UV: (typed) : FAIR IS IF THE TEAMS ALL HAVE A EVEN
CHANCE OF WINNINS.

0: Its not easier for core player to win than the
others.

T: or you could say it would be fair if both tease got

the same Chance.

Figure 15: normative ideas of fairness

S: yeah, so it's pretty fair because no one is like way,

way more than the other

K: I think it might be fair, because sometimes one is

losing and one is winning

Figure 16: fair means that there will be variation

These were not the only notion of fairness
invoked by the students. Two pairs of students
stated that a game was fair if no one cheated (figure
17). Other students stated that a game was fair if it
was possible to win (figure 18). Although such
reasoning could be used to pronounce the Three-
Coin game (an unfair game) as a fair game, none of
the students in this study did so. However, some
students who predicted that the Three-Coin game
would be fair, after running the simulation and
seeing that Team A won almost all of the games,
did use different versions of fairness to justify why
their predictions may still be correct. Two students
stated that a game could be fair for one team, but
not fair for the other. That is, if a team is winning,
they could perceive the game as fair, whereas a
losing team could perceive the game as unfair
(figure 19). Although some of these ideas allowed
students to maintain that the Three-Coin game was
fair, even in the face of contrary evidence, students
tended to hold more strongly to the normative
notion of fairness, which states that the expected
outcome should be equal for both teams. That is,
students were typically willing to give up on non-
normative notions of fairness after they saw that

EST COPY AVAiLABLE

the Three-Coin game was unfair because Team A
had more outcomes than Team B.

EN (typed) : "RISE TIS NUT A CHEATINC GAME.'

S: yeah, equal, no Cheating, no one has a better ability

of winning, it's up to you to win.

T: no one can Cheat.

Figure 17: why is this game fair (part 1: no cheating)

L: yeah, it's not like impossible to win

V: [it is fair if] if every team has a Chance

0: I think it's fair because everybody has a Chance.

Figure 18: why is this game fair (part 2: everyone has a
chance)

M: [the game is fair] because it lets me win.

C: I think it's fair beri;ligim rmwinning

Figure 19: Game is fair for one team

Given this variability in notions of fairness, it is
important that we ask how can we use fairness to
help students learn probability. The answer
offered here is that the context of fairness of these
games was engaging and motivating to these
students, and was a productive method of getting
them to talk about probability theories in a context
they considered authentic. There is caveat in that,
although most students may offer normative
versions of fairness in some contexts, this does not
mean that students will continue to use those ideas
of fairness in other contexts. Fairness is an issue
that should be discussed and revisited throughout
any unit of probability that depends upon fairness,
with the different definitions of fairness compared
and contrasted. Because most students do embrace
the normative definition of fairness, it seems as
though we can be optimistic in terms of expecting
students to expand this definition of fairness to
apply to most situations involving probabilistic
reasoning.

Randomness:
During the course of the study, every pair of

students made reference to the fact that non-
determinism was an important factor in analyzing
the outcomes of coin flips. This reference typically
came through students talking about the game
being based on "luck" or "chance", and also by
contrasting these games with games of skill.
Additionally, students stated that the random
process of coin flips would result in variation
between trials (figure 20). Expecting variation
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from a random process is consistent with the
normative view of randomness.

K: It won't be totally even

S: it's really like someone has to win, because it's

like you win sane you lose sane, it's not really like

a permanent game.

Q: the tides can change

Figure 20: Randomness has variability

However, as seen in the case study of Q and T,
some students also stated a conception about
randomness that led to their believing that the
Three-Coin game was a fair game. Three of the
eight pairs of students stated that "luck" or
randomness meant that nothing could be predicted
about the games. When these studentst discussed
the game being based on luck, they were stating
that no predictions could be made about how the
flips would turn out, and since anything could
happen, the games must be fair (see figure 21).
This result may be consistent with the "outcome
approach" as described by Konold (1991, Konold
et al. 1993), as the students were replying to a
question about a series of events as if the answer
depended upon being able to predict any given
event. As mentioned in the previous section on
fairness, and as will be discussed in the later
section on data validity, these pairs of students did
not accept that the Three-Coin game was unfair
until they noticed the difference in the number of
paths, and then were able to create a new
understanding that could explain the data.

KG (typed) : I THINK THIS GAME IS FAIR BECAUSE IT'S JUST

LUCK CR FATE WHAT rr LANES ON',',",

K: because it's luck is the answer for the whole thing

U: the most important thing is that you understand that

the game is just luck

0: anything can happen, so that's why I think it's fair

Figure 21: Luck means you can't make any
predictions

In attempting to apply these findings on
randomness to the creation of learning
environments, we can see that students do have
productive and normative ideas about randomness.
Specifically, flipping coins is understood to be a
non-deterministic event, and many of the students
explicitly stated that for such an event variation is

to be expected from trial to trial. However, some
students also believe that such a non-deterministic
event means that nothing at all can be predicted
about future events, even to the point of excluding
data (as will be discussed in the next section on
data validity). It is important to note, though, that
this can be viewed as a normative understanding of
randomness that has been over-extended. That is,
a frequentist understanding of probability does
maintain that it is meaningless to apply probabilities
to predict the outcome of specific events, so these
students are in many ways "correct" when the
apply this intuition to short-run data. It is only
when extending this idea to long-run data that this
reasoning becomes non-normative.

The Outcome Space and Probability Distribution:
In formal probability theory, when determining

the probability of an event, one first determines the
relevant outcomes (in the games discussed in this
study, these are all the possible combinations of
two or three coins). Then, creating or using a
probability distribution, which assigns probabilities
to each outcome in the outcome space, one
determines the likelihood of each of the outcomes,
and then combines probabilities to determine the
probability of specific events (such as Team A
scoring a point). Using such a theoretical model,
one can clearly differentiate between the outcome
space and the probability distribution, and indeed,
these two entities are often introduced at different
times in probability and statistics textbooks (e.g.
Pitman, 1993).

Although the students in this study did invoke
ideas similar to the outcome space and the
probability distribution in this study, they often
reasoned in a way that made it difficult to
distinguish between the two, especially when
discussing the three-coin game. A working
hypothesis is that it was easy for students to
understand and verbalize the outcome space for the
Two-Penny game, whereas the outcome space of
the Three-Coin game was more complex, making it
harder to discuss. As a result, even though the
outcome space was always on the screen for the
both games, students who referred to the outcome
space when making predictions about the fairness
of the Two-Penny game did not refer to the
outcome space making predictions about the
fairness of the Three-Coin Game (figure 22).

BEST COPY AVAiLABLE
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TWo Rangy-Game:

0: because it's heads and tails.

F: and it's two heads and two tails

Three Coin e:

F: You will get i because you start out first

Figure 22: Outcome space referenced in Two-Penny Game

A further problem students had when discussing
the outcome space of Three-Coin game was in
differentiating the individual outcomes (such as
head-tail-head) from the combination of all
outcomes that could score a point for a team. So,
for instance, when asked the probability of the
specific outcomes occurring, many of the students
would state that those outcomes that score a point
for Team A were more probable, because they
expected Team A to win. Although such
statements can be interpreted as students simply not
understanding the environment, it is more
consistent with their other statements to posit that
the outcome space is not a well-formed concept
with these students, and they have a difficult time
understanding how to relate the outcome space to a
complex event such as the probability of a team
scoring a point.

When students did discuss the outcome space,
some of the students explicitly stated that order did
not matter when differentiating between outcomes
(figure 23), resulting in a behavior that could easily
be seen as representativeness. However, this
version of representativeness is based on not fully
understanding how to properly enumerate and
partition the outcome space. This can be contrasted
with students who don't expect "patterns" in data
(figure 24). The latter seems closer to the
traditional definition of representativeness, and is
based upon applying a non-normative probability
distribution to a normative enumeration of the
outcome space.

M: ... see, like, there's three of BHT, and 3 of TTH,

but only one of HHH and one of TIT, so it's hard to

get HHH, it's easier to get HHT

Figure 23: not differentiating outcomes based on order

D: umm, I dose those I guess range it's like too much

of a pattern, like Tails tails tail uh...yeah, seems

like less of a chance for it to go an that same ane

all three times, and like tails heads tails, like, in

a pattern like that, and like heads tails heads

Figure 24: representativeness based on a non-normative
probability distribution

At other times students did not make a clear
distinction between the outcome space and the
probability distribution. These students made
statements that were not only ambiguous as to
whether they were talking about the number of
outcomes or the probability of certain outcomes,
but they would often switch between talking about
numbers of outcomes and probabilities of
outcomes (figure 25). In fact, these students
sometimes seemed to be reasoning normatively,
discussing the different outcomes that score a point
for each team (although without explicitly counting
the number of paths), but were then surprised
when they later discovered that the outcomes were
not equally divided between Team A and Team B.

N: I think the game isn't fair, because there is no way

for team b to get their own, it's like an advantage

for team a h=ranse all they have to do is just get 2

heads or 1 head with the nickel.

E: and it's easy to just get two heads

N: I know, it's easy to just get a head with the nickel,

so I dan't think it's fair

Just look at that and think about it. Look at how
Teen A scores: }tHH, HHT, HTH

C: that's most of than right there

D: it's easier to get all that

Figure 25: ambiguous statements

As discussed in the sections on randomness and
data validity, one set of students who ignored the
outcome space when determining the fairness of
the games did so for very principled reasons: they
believed that, because the games were luck,
nothing could be predicted about the outcomes, and
so the games had to be fair. These students rarely
made reference to the outcome space or to the
probability distribution, as they explicitly stated
that these were irrelevant to the fairness of the
games.

Due to the short time scale of this study (each
student used PIE for less than 2 hours), as well as
the prototype quality of PIE, this study was not
concerned with any gains made by the students in
terms of probability concepts. However, student
use of the outcome space is one area in which we
observed a marked difference between students
predictions for the Three-Coin game and
conclusions for the Three-Coin game. In the
predictions for the Three-Coin game only two pairs
of students determined that the game was unfair,
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and only one of these pairs explicitly used the
number of outcomes in their reasoning. In
contrast, after playing the simulation and creating
their conclusions, seven of the eight pairs of
students realized that the game was unfair, and all
seven pairs determined that the number of
outcomes was the deciding factor in the game being
unfair.

In summary, students exhibited many different
ideas when discussing the outcome space and the
probability distribution, making any generalizations
difficult. We can say, however, that many
students have difficulty in distinguishing between
similar outcomes, and many students have
difficulty in distinguishing between the outcome
space and the probability distribution.

The Validity of Evidence:
It is in documenting people's beliefs about the

validity of data that the misconceptions literature in
probability is least controversial: it is well known
that people, including trained statisticians, often fall
prey to the law of small numbers (Tversky and
Kahneman, 1982). However, the data from this
study presents a picture that is not as clear-cut as
the existing literature would lead one to believe.
Although many of the students did exhibit behavior
consistent with the law of small numbers at some
times, students also expected variability between
different trials of a random process (as discussed
previously in randomness), and the students who
have previously been described as believing that
nothing can be, predicted about a random process
did not fall prey to the law of small numbers: in
fact, they explicitly denied the relevance of data that
was in contradiction to their theories, not accepting
the data as relevant until they had created a scenario
that could fit the data, a behavior that is consistent
with findings from the science education literature
(Chinn and Brewer, 1993).

These different behaviors can be roughly
characterized as being either data-driven or theory-
driven4. Data-driven behaviors were characterized
either by students' unwillingness to create a theory

4Note that different students may be considered data- or
theory-driven at different times, as three pairs of students
were characterized as data-driven and three as theory-driven,
two were neither completely data- nor theory-driven; and
students may switch between being data-driven and theory-
driven, depending on such factors as if they have yet
formulated a theory.

in the absence of data, or by their willingness to
give up their theory after only a small number of
points had been played (typically 10 points or less)
(see figure 26). Theory-driven behaviors were
characterized by the students' unwillingness to
believe the data when it was in conflict with their
theory. When students behaving in a theory-driven
manner first saw that the data was inconsistent with
their theory, they explicitly denied the relevance of
the data (figure 27), decided that the computer is
cheating, or just ignored the data and claimed the
truth of the original predictions. Two pairs of
these students finally abandoned their contention
that the Three-Coin game was fair, but only after
running many simulations, noting the unfair score,
and finally realizing the importance of the number
of outcomes that scored for each team.

Reamminguhenpredictipg for Virpe-Chin Game

U: Because we tried it.

ReasotUNTuten concludin' for Ihee-Coin Game

U: this is not right. We are kind of right an this one,

but we did this point higher

UV typed: BECAUSE WERE NECNG.

Figure 26: data-driven discussions of evidence

K: I think it might be unfair, because A is winning

L: although in real life it would be fair

K: you reset it 5 times, and every time A is always
winninj

L: it is fair, but the =loiter is cheating

Figure 27: theory-driven discussions of evidence (K is in
the process of abandoning his theory, and L is maintaining

his theory in the face of counter evidence)

The research literature shows that many people
fall prey to the law of small numbers, and this
study was not an exception. However, this study
did illustrate that the story may not be as simple as
people always believing data that is based on a
small sample. In particular, some of the subjects in
this study did not believe the data when the data
was in conflict with a theory that they had
proposed. This suggests that perhaps there is an
interaction between people's expectations and the
validity that they are willing to attribute to data.
We posit that this has not been appreciated in the
past due to the artificial nature of the tasks that
subjects were given, whereas in our tasks students
were engaged and felt ownership of their
predictions and conclusions.
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Summary
As the results from this study show, students

invoked many intuitions about probability when
reasoning about the activities in PIE. And these
intuitions do not seem to be easily characterized by
standard misconceptions in probability. Instead,
these intuitions may better be described by noting
their similarities and dissimilarities to specific
concepts in probability, notably randomness, the
outcome space, the probability distribution, and the
role of data in determining probabilities.

From Theory into Action: Designing a
Learning' Environment

Although the original intent of PIE, to have
students confront their misconceptions, turned out
to be ill-conceived, we do feel that valuable lessons
were learned. For one, this study allowed us to
create a framework of probabilistic reasoning that
will inform future versions of PIE. Additionally,
we saw that a collaborative inquiry environment
can lead to students expressing many intuitions
about probability. This is important in at least two
ways. First, as researchers, we can use such
environments as a way to help us understand
student intuitions about probability. That is, as the
students collaborate, their reasoning can be
recorded and then later analyzed, giving us an
understanding of how students reason
probabilistically in situations that are perhaps more
authentic then can be replicated in either a survey or
in a one-on-one interview. Second, as educational
designers, it is important that we help students
build models from their existing ideas about
probability. To do this we must have students
make these ideas explicit, and realize the strength
and weaknesses of these ideas.

By developing a framework that looks at student
understandings with an eye to the probabilist's
understanding of randomness, the outcome space,
the probability distribution over the outcome space,
and the role of data in analyzing expectations, we
can create activities that bridge the gap between
what students know before probability instruction,
and what probability instruction aims to teach. The
creation of such activities differs radically from the
traditional approach to instruction in which one
starts by teaching Kolmogorov's axioms or the
multiplication rule. Instead, axioms and rules are
derived through the learning activities. To create
such learning activities, we should be guided by

theoretical frameworks that provide a coherent and
consistent approach to instruction.

As mentioned at the beginning of this paper, PIE
is based on the premises that learning environments
should situate students in activities they consider to
be legitimate and authentic, and not ignore the
contribution of social practices and representational
resources (Gordin et al. 1994; White, 1993a,
1993b). We cannot be so naive, however, to
believe that by simply exposing the students to
activities that highlight the importance the four
previously mentioned features of probabilistic
reasoning that they will learn to apply such
reasoning in all appropriate instances. Students
have formed many competing intuitions, and it is
not easy to coax students into developing a
systematic and coherent way of viewing
probability. Instead, a principled approach is
required in which activities are created that will lead
students to construct a systematic and coherent
view of probability. The principled approach
recommended here is to have the students
participate in a progression of activities, where
each activity is interesting and highlights an
important aspect of the domain to be studied, and
each activity extends the findings from the previous
activities (White, 1993a, 1993b). By incorporating
such a series of activities, students are engaged in
authentic activities from the beginning, they can
create simple models that are consistent with some
aspects of their intuitive reasoning, and, as they are
systematically exposed to more complex situations,
the models (and their intuitions) can be revised,
and need not be completely overhauled. By
internalizing these models students will expand the
intuitions that are most appropriate for the domain,
leading the students to a normative view of the
domain of probability.

This study can help to identify the progression of
activities that should be designed to help students
build from their ideas to normative probabilistic
reasoning. One such series of activities will be
touched on briefly here, and future research will be
required to determine if such a series of activities
can be useful in helping students to understand
normative probability.

Such a series of activities can start off with an
extensive discussion of fairness, and the different
ideas students may have about fairness. In such a
discussion it is expected that students will easily
converge on the normative definition of fair
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meaning that each team is equally likely to win.
Note that this idea should continue to be raised
throughout the activities, in a manner similar to that
proposed by a "spiral" curriculum. In the next
activity students can be given a simple scenario in
which they investigate the law of small and large
numbers. By seeing the relationship between the
random event of a coin flipping, the outcome of
this simple event, and the accumulation of many
instances of this event, students can collaboratively
come to see that there will be much variability after
a small number of flips, but regularity after many
hundreds of flips. It should also be noted that each
of these ideas, variability and regularity, are ideas
that have.been expressed by the students in this
study. This aspect of the model should be revisited
throughout the activities. The next set of activities
can highlight the role of the outcome space in
determining if games are fair. In this set of
activities the elementary events are linked to the
compound events, which are linked to the
cumulative effect of many hundreds of events.
The first model the students will investigate is that
of equally likely outcomes, allowing the students to
derive a model that is based on counting strategies.
The next model will be based on outcomes that are
not equiprobable (such as spinners with unequal
areas, which are not yet in this prototype version of
PIE), allowing students to derive a model that is
based on the multiplication rule. Although this is
the extent of the activities that we expect to
implement for a seventh grade probability unit, it
seems fairly obvious how we can extend this
model to introduce more complex concepts in
probability such as conditional probability, and
more complex probability distributions.

Conclusion and need for further study
Students have many ideas about probability, and

these ideas are not adequately described by simply
stating that students are using heuristics such as
representativeness. Instead, students invoke a large
number of intuitions about probability, and these
intuitions can be seen to roughly correspond to the
concepts of randomness, the outcome space,
probability distribution, and the role of data. By
viewing students' probabilistic intuitions in this
way we expect that, although many of the
misconceptions found in the literature are adequate
ways of describing the behavior of some students
some of the time, students will exhibit great
variation in behaviors, based on their
understanding of these four related areas. In fact,
this variation is exactly what is observed in this

study as well as in the research literature. We feel
that by viewing student ideas about probability as
consisting of four interrelated sets of intuitions, we
can come to a more thorough understanding of
probabilistic reasoning.

The question is then raised as how we can best
harness such student intuitions to improve
understanding of probability. It is posited that by
creating inquiry-based learning environments we
can help students to examine and expand their ideas
in creating an understanding of probability that is
consistent with normative probability theory, and
future research will be required to determine if this
is a productive method of teaching probability.
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