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Abstract
Factorial analyses differ from non-factorial analyses in that in the former all possible
hypotheses (all possible main effects and interaction effects) are tested regardless of their
substantive interest to the researcher and/or their interpretability, while in the latter only
substantive and interpretable hypotheses are tested. In the present paper it is shown how
in some cases non-factorial analyses are more appropriate than factorial ones.
Hypothetical experiments are utilized to make the discussion more concrete. It is argued

that only substantive and interpretable hypotheses in the design should be tested.



Since Cohen's (1968) seminal article in which he argued that ANOVA and
ANCOVA are especial cases of multiple regression analysis, criticisms against the
application of ANOVA-type methods (ANOVA, ANCOVA, MANOVA, MANCOVA--
hereafter labeled OVA methods) have grown stronger. Major criticisms have centered
around the categorization of intervally-scaled independent variables in OVA analyses.

As Pedhazur (1982, pp. 453-454) noted,

l Categorization leads to a loss of information, and consequently to a

less sensitive analysis ... all subjects within a category are treated

alike even though they may have been originally quite different

in the continuous variable ... It is this loss of information about the

differences between subjects, or the reduction in the variability of

the continuous variable, that leads to a reduction in the sensitivity

of the analysis, not to mention the meaningfulness of the results.

Pedhazur and Pedhazur-Schmelkin (1991, p. 539) argued that categorization of
continuous variables has even more harmful effects. First, the nature of the variable
changes, as it is generally treated as if it were a categorical variable, not as a continuou§
variable that has been categorized ... As a result of the change in the nature of variable,
the very idea of trends (e.g., linear, quadratic) in the data is precluded. Second,
categorization of continuous variable in nonexperimental research and casting the design
in an ANOVA format tends to create the false impression that a nonexperimental design
has thereby been transformed into an experimental design, or at the very least, into

something close approximating it.



Discarding variance is not generally regarded as good research practice
(Thompson, 1988). As kerlinger (1986, p. 558) pointed out, "variance is the 'stuff' on
which all analysis is based." Of course, as Haase and Thompson (1992, p. 4) stated,
"Anova does remain a useful tool when the independent variables are inherently nominal
(e.g., dichotomies or trichotomies such as assignment to experimental condition and
gender)."

Despite the criticisms against OV A methods, empirical studies of behavioral
research practice (Edgington, 1974; Elmore & Woehlke, 1988; Goodwin & Goodwin,
1985; Willson, 1980) indicate that these methods are still very popular among social
scientists. Oftentimes, in their attempts to identify the variables contributing to a given
phenomenon, behavioral researchers design experiments in which the focus of attention is
on the effect of one independent variable or factor on some dependent variable (a single-
factor design). However, in some instances researchers become more interested in
assessing the effects of two or more independent variables on a single dependent variable.
This is typically accomplished through a factorial design. In both cases, those researchers
resort to the classical ANOVA--one-way ANOVA for the first kind of design and
factorial multi-way ANOVA (also called factorial analysis) for the second. Factorial
analyses differ from non-factorial analyses in that in the former all hypotheses (all
possible main effects and interaction effects) are tested regardless of their meaningfulness
and/or interpretability, while in the latter, only those hypotheses of interest to the

researcher are tested.



The purpose of the present paper is to show how in some cases non-factorial
analyses are more appropriate than factorial ones. It is argued that only substantive and
interpretable hypotheses in the design should be tested. Hypothetical experiments are
utilized to make the discussion more concrete. A brief description of factorial designs is
provided to establish a context for the discussion.

Factorial Designs

Factorial designs permit the manipulation of more than one independent ‘variable
in the same experiment. The arrangement of the treatment conditions is such that
information can be obtained about the influence of the independent variables considered
separately and about how the variables combined to influence behavior (Keppel, 1991, p.
19).

As Keppel and Zedeck (1989) noted, factorial designs are usually described in
regard to the number of levels associated with the independent variables. Thus, a2 x 3
factorial design clearly specifies that two independent variables have been manipulated
factorially, one with two levels and the other with three levels, and that the total number
of treatment conditions or cells is six.

Factorial designs may consist of more than two factors, each comprised of any
number of levels. For example, a2 x 2 x 3 x 5 is a four-factor design: two factors with 2
levels, one with 3 levels, and one with 5 levels. Designs consisting of more than two
factors are referred to as higher-order designs.

To use a concrete example, suppose that a researcher designs a completely

randomized 3 x 2 factorial experiment (also called a between-subjects design). By




completely randomized we mean that each subject is randomly assigned to only one of
the six treatment conditions; in other types of designs subjects are either exposed to all
treafment conditions in a randomized order (a within-subject design) or they are exposed
to some, but not all, of the treatment conditions defined by the factorial design (a mixed-
factorial design). Let us assume that the factors manipulated concurrently in this
hypothetical experiment are: EFL vocabulary teaching methodology (the keyword
method, the semantic approach, the keyword-semantic approach), and time (immediate
and delay), while the dependent variable is cued recall. Let us also assume an equal
number of bsubjects per cell (a balanced or orthogonal design). Incidentally, only balanced
designs are discussed in this paper (for discussion of unbalanced designs, see Hays, 1991;
Keppel, 1991; Keppel & Zedeck, 1989; Pedhazur & Pedhazur-Schmelkin, 1991).

In this hypothetical experiment, the six treatment combinations: keyword-
immediate, keyword-delay, semantic-immediate, semantic-delay, keyword-semantic-

immediate, and keyword-semantic-delay, are specified in the following matrix:

TEACHING TIME

METHOD IMMEDIATE DELAY

KEYWORD

SEMANTIC

KEYWORD-SEMANTIC

As Keppel (1991, p. 188) explained, a factorial design consists of a set of single-

factor experiments. Thus, from our hypothetical experiment, the researcher may create



two single-factor experiments: one may consist of three groups of learners randomly
assigned to a different vocabulary teaching method, tested immediately after the
presentation of the language material. This single experiment assesses the effects of
vocabulary teaching method on cued recall under the condition of immediate recall, and if
the manipulation were successful, the researcher would attribute any differences among
the groups of learners to the differential effectiveness of the teaching methods. The other
experiment would be an exactly duplicate of the first except that learners would be tested
some time (e.g., 2 days, or a week, or 10 days) after the presentation of the input material.

This hypothetical factorial design can also be viewed as a set of component-single
factor experiments involving the other independent variable, time. In this case, the
researcher may create three single-factor experiments: one may consist of two groups of
learners randomly assigned to the two time conditions and instructed with the keyword
method. The two other experiments would be exact duplicates of the first, except that
learners would be taught with the semantic approach in one and with the keyword-
semantic in the other. Each component experiment provides information about the
effects of time, but for different vocabulary teaching methods.

The results of these component single-factor experiments are called the simple
effects of an independent variable. These effects reflect treatment effects associated with
one of the independent variable, with the other held constant. Besides simple effects,
factorial designs produce two other important pieces of information: main effects and
interaction effects. Main effects are referred to as the deviation of a category or level

mean from the grand mean, and essentially transform the factorial design into a set of



single-factor experiments, while the interaction effects reflect a comparison of the simple
effects.

In our hypothetical 3 x 2 experimental design, a main effect for vocabulary
teaching method would mean that there are differences in the effectiveness of these
methods regardless of whether cued recall is ascertained immediately after the
presentation of the language material versus some time later. On the other hand, a main
effect of time would mean that learners' performance on immediate and delayed recall is
different regardless of the teaching method used. Finally, an interaction effect would
mean that the effect of the teaching methods on learners' cued recall is not constant under
the two time conditions. The advantages of factorial designs over single-factor
experiments are widely recognized by most researchers, and are briefly discussed here.

Advantages of Factorial Designs

Pedhazur (1982, p. 135) discussed four major advantages of factorial designs:

1) Factorial designs make it possible to determine whether the independent
variables interact in their effect on the dependent variable. An independent variable can
explain a relatively small proportion of variance of a dependent variable, whereas its
interaction with other independent variables may explain a relatively large proportion of
the variance. Studying the effects of the independent variables in isolation cannot reveal
the interaction between them.

2) Factorial designs afford the researcher greater control, and, consequently more
sensitive (i.e., statistically powerful) statistical tests than the statistical tests used in

analysis with single variables.



3) Factorial designs are efficient. One can test the separate and combined effects
of several variables using the same number of subjects one would have used for separate
experiments.

4) In factorial designs the effect of a treatment is studied across different
conditions of other treatments. Consequently, generalizations from factorial experiments
are broader than generalizations from single-variable experiments.. Factorial designs are
examples of efficiency, power, and elegance.

Interpretation of Factorial Analysis

Keppel (1991) argued that the test of interaction is usually the logical first step in
the analysis of factorial designs. The results of this test influence the analysis of the main
effects. For example, if the interaction is statistically significant, l‘ess attention is
generally paid to the interpretation of the main effects. After all, as Pedhazur and
Pedhazur-Schmelkin (1991, p. 514) noted,

The motivation for studying interactions is to ascertain whether the

effects of a given factor vary depending on the levels of the other

factor with which they are combined. Having found this to be the

case (i.e., that the interaction is statistically significant), itr makes

little sense to act as if it is not so, which is what the interpretation

of main effects amounts to. Instead, differential effects of the

various treatment conditions should be studied ... this is

accomplished by doing what are referred to as tests of simple main

effects.

10



On the other hand, if the interacti(;n is not statistically significant, or if it is
statistically significant but trivial (according to the researcher's judgment), the attention
focuses on the detailed analysis of the main effects. If the main effects are statistically
significant, post hoc comparisons Should then be tested. However, a statistically
significant interaction does not mean that absolutely no attention should be paid to main
effects. A large main effect, relative to an interaction, indicates that we should consider
both the main effect and the interaction when we describe or interpret our data (Keppel,
1991, p. 232).

The Use of Factorial and Non-Factorial Analysis

As said previously, factorial analyses differ from non-factorial ones in that in the
former all possible hypotheses are tested regardless of their substantive interest to the
researcher and/or their interpretability, while in the latter only substantive and
interpretable hypotheses are tested. Although substantive considerations as the guiding
principle for hypothesis testing have been strongly recommended by several scholars
(Hays, 1981; Keppel, 1991; Keppel & Zedeck, 1989; Pedhazur & Pedhazur-Schmelkin,
1991; Thompson, 1994), many researchers invariably conduct factorial analyses, and
frequently end up testing irrelevant omnibus hypotheses or hypotheses they are unable to
interpret, as perhaps in a five-way interaction test. As Thompson (1994, p. 10) explained,

Some researchers always test even omnibus effects that are not of

interest because they naively believe that such analyses always

increase the probability of detecting statistically significant effects

on the omnibus hypotheses that are of interest.

11



These researchers do not realize that this is not always the case, and that in fact, it
is also possible that testing irrelevant omnibus hypotheses can make substantive effects
become statistically nonsignificant. We will use our hypothetical 3 x 2 experiment to
illustrate both possibilities. Suppose for example, that the researcher is really only
interested in testing the interaction omnibus hypothesis.

Table 1. An Example of How Factorial Analysis Can Help Yield Significance for

Effects of Interest by Analyzing Even Effects Not of Interest

Source SOS df MS Fcal Fcrit Dec

Nonfactorial analysis

Method x Time 25.00 2 12.50 3.125 329 NS
Residual 132.00 33 4.00
Total 157.00 35
Factorial Analysis

Main

Method 14.00 2 7.00 1.912 3.32 NS

Time 8.00 1 8.00 2.213 4.17 NS
Method x Time 25.00 2 12.50 3.415 332 Rej
Residual 110.00 30 3.66
Total 157.00 35

Note. Entries in bold remain constant.

12
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Table 1 presents the results of two analyses, and shows how the test for the
substantive hypothesis yields a statistical nonsignificant result when it is the only
hypothesis tested, and how it becomes statistically significant when the omnibus main
effect hypotheses are tested. As can be seen from Table 1, the sum of squares (SOS) for
the interaction effect remained constant (25) in both analyses. However, the factorial
analysis reduced the sum square error by 22 (132-110), and the degrees of freedom error
by 3 (33-30), which made the mean square (MS) error smaller (3.66 versus 4.00). A
smaller MS error resulted in a larger F calculated value (3.415), slightly greater than the F
critical value (3.32).

Table 2 below presents results from the same design hypothetically implemented
with different subjects. This Table illustrates how a statistically significant omnibus test
may become statistically nonsignificant because a factorial analysis--the default in many
statistical packages--was conducted. In this case, testing only the omnibus interaction
hypothesis yields a statistically significant result. Nonetheless, no null hypotheses got
rejected when the factorial analysis was performed with the same data. As in the previous
example, the SOS for the interaction effect was held constant in both analysis. In the
factorial analysis the degrees of freedom error were again reduced by 3 (33-30).

However, this time the reduction of the SOS error was very small (115.5-112 = 2.5)
which in turn made the MS error larger (3.73 versus 3.50). A larger MS error resulted in
a smaller F calculated value (3.217 versus 3.429). This F calculated value is smaller than

the F critical value (3.32). Incidentally, it is interesting to point out that due to the

13
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reduction of the degrees of freedom error in a factorial analysis, the F critical values for
the omnibus tests become larger.
Table 2. An Example of How Factorial Analysis Can Hurt by Yielding Nonsignificance

for the Effects of Primary Interest

Source SOS df MS Fcal Fcrit Dec

Nonfactorial Analysis

Method x Time 24.00 2 12.00 3.429 3.29 Rej
Residual 115.50 33 3.50
Total 139.50 35
Factorial Analysis

Main

Method - 250 2 1.25 335 3.32 NS

Time 1.00 1 1.00 268 4.17 NS
Method x Time 24.00 2 12.00 3.217 3.32 NS
Residual 112.00 30 3.73
Total 139.50 35

Note. Entries in bold remain constant
Another issue to be considered by users of factorial analyses deals with Type I
error. Two Type I error rates have been identified: testwise (TW) error rate, and

experimentwise (EW) error rate. TW error rate refers to the probability of making a Type

14
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I error when testing a given hypothesis. EW error rate refers to the probability of making
one or more Type I error anywhere in the whole set of hypotheses tested in the study.

In the case of a study in which only one hypothesis is tested, the TW error rate
equals the EW error rate. However, when several hypotheses are tested within a single
study, the EW error rate will get inflated unless all the hypotheses are perfectly correlated
(Thompson, 1994, p. 6). Most researchers are completely unaware that the use of
factorial analyses of balanced designs maximally inflate experimentwise (EW) error since
(a) the maximum number of tests are conducted, and (b) the omnibus tests are perfectly
uncorrelated in balanced designs (Benton, 1991, p. 125).

The formula for computing EW errorrate =[ 1 - (1 - TW)k ], where k is the
number of hypotheses tested. Thus, in our hypothetical 3 x 2 factorial design in which
both main effect omnibus hypotheses and the two-way omnibus interaction are tested at
the .05 level, the EW error rate would be about .14. That is .14 equals
1-(1-.05°%=
1-(95)%=
1-.8574 =.14.

As can be seen from our hypothetical example, by conducting a factorial analysis
rather than testing only the hypothesis of interest, the researcher increased by almost three
times the probability of making a Type I error in testing the omnibus hypotheses. The
potential EW error rates in complex multi-way factorial analyses can be extremely high.

Very few researchers and even fewer textbook authors consciously recognize that

15
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inflation of EW error rates occurs in classical OVA methods testing omnibus effects prior
to the use of unplanned comparisons (Thompson, 1994, p. 9).‘

Unplanned (also called a posteriori or post hoc or unfocused) multiple comparison
test (e.g., Duncan, Scheffe, Tuckey) are among the choices that can be used to isolate
means that are significantly different within OVA ways having more than two levels
(Thompson, 1994, p. 4). Post hoc or multiple comparisons is a somewhat derogatory
term that generally refers to the indiscriminate examination of all possible comparisons to
locate significant effects (Keppel & Zedeck, 1989, p. 149). These comparisons are
conducted only if omnibus test results are statistically significant. Thus, simple effects
are examined only when the interaction is statistically significant; simple comparisons
only when a simple effect is statistically significant; and main comparisons only when a
main effect is statistically significant.

Keppel (1991, pp. 247-248) argued that in order to deal with the increase of EW
error (what he calls "familywise" error), methodologists have introduced a wide variety of
adjustment techniques, but that none of these has captured the attention of researchers
except, perhaps, a Bonferroni adjustment for simple effects. This correction usually
consists of controlling EW error for the entire set of simple effects, which is
accomplished by using alpha = .05/b as the significance level for evaluating the simple
effects of factor A and alpha = .05/a for the simple effects of factor B, where a and b refer
to the number of levels in the factors. He stated however, that current practice in
psychological research favors analyses without correction for EW error rate. It should be

pointed out that post hoc tests contain their "built-in" correction factors.

16
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We have to keep in mind that adjustments for EW error rate reduce the sensitivity
(or power) of the test. In other words, guarding against Type I error increases the
probability of making a Type II error (that is, no rejection of a false null hypothesis).
That is why planned (also called a priori or focused) comparisons are a better alternative.
Since fewer hypotheses are tested, planned comparisons either orthogonal or
nonorthogonal have more statistical power than unplanned comparisons.

A final remark regarding factorial analyses deals with the interpretability of the
hypotheses tested. As mentioned earlier, interpretability of the hypotheses tested is not a
requirement in factorial analyses. In planning an experiment, it is a temptation to throw
in many experimental treatments, especially if the data are inexpensive and the
experimenter is adventuresome (Hays, 1981, p- 3685.

Although higher-order designs may be advantageous to researchers in some
respects, the inclusion of a large number independent variables in a study may be also be
problematic as these designs carry with them the possibility of statistically significant
higher-order interactions, some of which are simply uninterpretable. The description of
higher-order interactions typically requires an extremely complicated statement. As
Keppel (1991, p. 482) observed,

With two-way factorial, an interaction indicates that any

description of the influence of one of the factors demands

consideration of the specific levels represented by the other factor.

With a three-way factorial, a significant higher-order interaction

implies that any description of one of the two-way interactions

17
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must be made with reference to the specific levels selected for a

third factor. Interactions involving four variables require even

more complicated descriptions. Now, if it is difficult to merely

summarize the pattern of a particular interaction, imagine the

problem we will have in explainihg these results.

To illustrate the problems associated with the interpretability of higher-order
interactions we will expand our hypothetical 3 x 2 factorial design. Suppose, for
example, that the researcher decides to make it a lot more complex by including three
other independent variables: time of instruction delivery (morning, afternoon), sex and
age of the subjects. Let us assume that age is categorized into 3 levels: younger children
(6-12 years old); older children (13-19); and adults (20 on ). For the sake of illustration,
we will disregard the problems generated by categorizing age, a continuous variable. As
a result, our original 3 x 2 factorial design became a 3 x 3 x 2 x 2 x 2 factorial design.
This five-way factorial produces a total of 26 interactions.

Let us suppose now that such five-way factorial analysis yielded a statistical
significant five-way interaction, and some four-way interactions. How will our researcher
interpret these results? The researcher will not be able to do it because these kinds of
interactions are typically uninterpretable. Thus, what then is the point of testing
uninterpretable hypotheses? Testing this kind of hypotheses not only increases the

probability of making Type I errors but reduces the power of the statistical analysis.
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Summary

In the present paper the use of factorial and non-factorial analysis was discussed.
Using hypothetical experimental data it was illustrated how in some situations, factorial
analyses may be advantageous to the researcher and how in some other situations, they
could be a detriment to the study's outcome. Power issues related to factorial and
nonfactorial analyses were also briefly examined. It was claimed that balanced factorial
analyses maximally inflate the EW error rate, and in doing so they increase the likelihood
of making Type I errors. Additionally, it was claimed that attempts to control for the EW
error rate reduces the power of the statistical analyses. Finally, it was argued that it is
nonsensical to test uninterpretable hypotheses for they do not convey any substantive
information. On the contrary, they increase the probability of making Type I error by

increasing the EW error rate.

13



17

References
Benton, R. (1991). Statistical power considerations in ANOVA. In B. Thompson
(Ed.), Advances in educational research: Substantive findings, methodological
developments (vol. 1, pp. 119-132). Greenwhich, CT: JAI Press.
Cohen, J. (1968). Multiple regression as a general data-analytic system.

Psychological Bulletin, 70, 426-443.

Edgington, E. (1974). A new tabulation of statistical procedures used in APA
journals. American Psychologists, 29, 25-26.
Elmore, P., & Woehlke, P. (1988). Statistical methods employed in American

Educational Research Journal, Educational Researcher, and Review of Educational

Research from 1978 to 1987. Educational Researcher, 17 (9), 19-20.

Goodwin, L., & Goodwin, W. (1985). Statistical techniques in AERJ articles,
1979-1983: The preparation of graduate students to read the educational research
literature. Educational Researcher, 14 (2), 5-11.

Haase, T., & Thompson, B. (1992, January). The homogeneity of variance
assumption in ANOVA: What it is and what it is required. Paper presented at the annual
meeting of the Southwest Educational Research Association.

Hays, W. (1981). Statistics (3rd ed.). New York: Holt, Rinchart and Winston.

Keppel, G. (1991). Design and analysis: A researcher's handbook (3rd ed.).
Englewood Cliffs, NJ.: Prentice Hall.

Keppel, G., & Zedeck, S. (1989). Data analysis for research designs. New York:

W.H. Freeman.

20



18

Kerlinger, F. (1986). Foundations of behavioral research (3rd ed.). New York:
Holt, Rinehart and Winston.

Pedhazur, E. (1982). Multiple regression in behavioral research: Explanation and
prediction. New York: Holt, Rinehart and Winston.

Pedhazur, E., & Pedhazur-Schmelkin, L. (1991). Measurement, design, and
analysis: An integrated approach. Hillsdale, NJ.: Lawrence Erlbaum Associates
Publishers.

Thompson, B. (1988). Discard variance: A cardinal sin in research. Measurement

and evaluation in counseling and development, 21, 3-4.
Tompson, B. (1994). Planned versus unplanned and orthogonal versus nonorthogonal
contrasts: The neoclassical perspective. In B. Thompson (Ed.), Advances in Social
Science Methodology (vol. 3, 3-27). Greenwhich, CT: JAI Press.

Willson, V. (1980). research techniques in AER]J articles: 1969 to 1978.

Educational Researcher, 9, 5-10.

21



U.S. DEPARTMENT OF EDUCATION v
Oftice of Educational Rasearch and improvement (OERD

Educational Resources intormation Center (ERIC) E;lc
REPRODUCTION RELEASE

(Specitic Document)

. DOCUMENT IDENTIFICATION:

Tille:

NON-FACTORIAL ANOVA: TEST ONLY SUBSTANTIVE AND INTERPRETABLE HYPOTHESES

Autnorts).
MAXIMO RODRIGUEZ
Corporate Source:

Pubhication Oate:

1/97

. REPRODUCTION RELEASE:

In orger 10 aisseminate as widely as pOsSibie timety and Significant matenais of interest 10 the 0ucational community, documems
announced In tne montnty apstract journat of the ERIC system, Resources n Education (RIE), are usualiy maoe availabie 10 users
i MICTOtiCh®, reprocucec pader CODy. and elecironicioplical meaia. and sold tnrougn tne ERIC Document Reoroguction Service

(EDRS) or otner ERIC vendors. Creait 1s given 10 the source Of eacn document. and. It feproguCtion reiease 1S granted. one of
the following notices 1S attixed to the gocument.

It perrussion is granted 10 reproduce the identified document, piease CHECK ONE of the following options ana Sign the relesse
below.

y - Sampie sticker to be eifixed t0o document

Sampie sticker to be stfixed to document .

Check here| - ceamission 1o REPRODUCE THIS PERMISSION TO REPRODUCE THIS or here
Permitting MATERIAL HAS BEEN GRANTED BY MATERIAL IN OTHER THAN PAPER

microficne LCOPY HAS BEEN GRANTED BY Permutiing
(4"x 6 tilmy, reproguction
paper cooy. MAXIMO RODRIGUEZ —_— «\Q\,ﬁ in Cther than
electronic. 30 paper copy.
ana opuical meaa| 7O THE EDUCATIONAL RESOURCES TO THE EDUCATIONAL RESOURCES

reproguction INFORMATION CENTER (ERIC) \NFORMATION CENTER (ERIC)"

Lovel 1 Level 2

Sign Here, Please

Documents will be processed as naicated providea reproguction quality perrmts. it permission to reproguce ts granted. but
nenher Dox is cneckea. gocuments will be processea at Levet 1.

1 nereoy grant 10 the Educanonal Resources tnformation Center (ERIC) nonexciusive permission 10 reproduce this gocument as
mnaicated above. Reproaduction from the ERIC microfiche or eiectronicioptical media by persons other than ERIC empioyees and its

sSystem coniractors requires perrmission from tne copyright hotaer. Exception 1S made 10f NON-protit Feproguction by libranes ana other
gervice agencies t0 satsty informauon neeas of egucators In response 1o aiscrete inouines.”

_ - Position;
\&?alure _@?° f}m,,, ""RESEARCH ASSOC

Printea Name:

Organization:
MAXIMO LRODRIGUE 2. TEXAS A&M UNIVERSITY
Adgress: Telepnone Numbefr:
TAMU DEPT EDUC PSYC (409 ) 845-1831
COLLEGE STATION, TX 77843-4225 Date:

1/29/97




. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

It permission to reproauce 1s not granted to ERIC . or. if you wish ERIC o cite the avaudablity of this gocument from anotner
source. please provide the tollowing tntormation regaraing the avaiabuity of the aocument. (ERIC will not announce a aocument
uniess 1t 1S puDIiClv avaiadle. ana a gepenaable source can be specilied. ContrbUIors should also be aware that ERIC selection
cntena are significantlv more stringens for aocuments which cannot be made avaiaole througn EDRS).

PubtisnenQistrioutor:

Address:

Pnce Per Copy:

- Quantty Price:

IV.  REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

It the rgnt to grant reproguction release 1S neia bv someone otner tnan tne aaaressee. piease proviae the appropriate
name ana aaaress:

Name ana adaress ot current copynignt/reproguction rngnts nhotaer:

Name:

Adaress:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Cleanngnouse:

It you are maxing an unsoucitea contribution 10 ERIC. you may return this {orm (anG the aocument dbeing contributed) to:

ERIC Facility
130% Piccard Drive. Sulte 300
Rockville. Marviand 20850-430S
Telephone: (301) 258-5500

O

ERIC (Rev. 891

Aruitoxt provided by Eic:



