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Abstract

Factorial analyses differ from non-factorial analyses in that in the former all possible

hypotheses (all possible main effects and interaction effects) are tested regardless of their

substantive interest to the researcher and/or their interpretability, while in the latter only

substantive and interpretable hypotheses are tested. In the present paper it is shown how

in some cases non-factorial analyses are more appropriate than factorial ones.

Hypothetical experiments are utilized to make the discussion more concrete. It is argued

that only substantive and interpretable hypotheses in the design should be tested.
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Since Cohen's (1968) seminal article in which he argued that ANOVA and

ANCOVA are especial cases of multiple regression analysis, criticisms against the

application of ANOVA-type methods (ANOVA, ANCOVA, MANOVA, MANCOVA--

hereafter labeled OVA methods) have grown stronger. Major criticisms have centered

around the categorization of intervally-scaled independent variables in OVA analyses.

As Pedhazur (1982, pp. 453-454) noted,

Categorization leads to a loss of information, and consequently to a

less sensitive analysis ... all subjects within a category are treated

alike even though they may have been originally quite different

in the continuous variable ... It is this loss of information about the

differences between subjects, or the reduction in the variability of

the continuous variable, that leads to a reduction in the sensitivity

of the analysis, not to mention the meaningfulness of the results.

Pedhazur and Pedhazur-Schmelkin (1991, p. 539) argued that categorization of

continuous variables has even more harmful effects. First, the nature of the variable

changes, as it is generally treated as if it were a categorical variable, not as a continuous

variable that has been categorized ... As a result of the change in the nature of variable,

the very idea of trends (e.g., linear, quadratic) in the data is precluded. Second,

categorization of continuous variable in nonexperimental research and casting the design

in an ANOVA format tends to create the false impression that a nonexperimental design

has thereby been transformed into an experimental design, or at the very least, into

something close approximating it.
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Discarding variance is not generally regarded as good research practice

(Thompson, 1988). As kerlinger (1986, p. 558) pointed out, "variance is the 'stuff on

which all analysis is based." Of course, as Haase and Thompson (1992, p. 4) stated,

"Anova does remain a useful tool when the independent variables are inherently nominal

(e.g., dichotomies or trichotomies such as assignment to experimental condition and

gender)."

Despite the criticisms against OVA methods, empirical studies of behavioral

research practice (Edgington, 1974; Elmore & Woehlke, 1988; Goodwin & Goodwin,

1985; Willson, 1980) indicate that these methods are still very popular among social

scientists. Oftentimes, in their attempts to identify the variables contributing to a given

phenomenon, behavioral researchers design experiments in which the focus of attention is

on the effect of one independent variable or factor on some dependent variable (a single-

factor design). However, in some instances researchers become more interested in

assessing the effects of two or more independent variables on a single dependent variable.

This is typically accomplished through a factorial design. In both cases, those researchers

resort to the classical ANOVA--one-way ANOVA for the first kind of design and

factorial multi-way ANOVA (also called factorial analysis) for the second. Factorial

analyses differ from non-factorial analyses in that in the former all hypotheses (all

possible main effects and interaction effects) are tested regardless of their meaningfulness

and/or interpretability, while in the latter, only those hypotheses of interest to the

researcher are tested.
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The purpose of the present paper is to show how in some cases non-factorial

analyses are more appropriate than factorial ones. It is argued that only substantive and

interpretable hypotheses in the design should be tested. Hypothetical experiments are

utilized to make the discussion more concrete. A brief description of factorial designs is

provided to establish a context for the discussion.

Factorial Designs

Factorial designs permit the manipulation of more than one independent variable

in the same experiment. The arrangement of the treatment conditions is such that

information can be obtained about the influence of the independent variables considered

separately and about how the variables combined to influence behavior (Keppel, 1991, p.

19).

As Keppel and Zedeck (1989) noted, factorial designs are usually described in

regard to the number of levels associated with the independent variables. Thus, a 2 x 3

factorial design clearly specifies that two independent variables have been manipulated

factorially, one with two levels and the other with three levels, and that the total number

of treatment conditions or cells is six.

Factorial designs may consist of more than two factors, each comprised of any

number of levels. For example, a 2 x 2 x 3 x 5 is a four-factor design: two factors with 2

levels, one with 3 levels, and one with 5 levels. Designs consisting of more than two

factors are referred to as higher-order designs.

To use a concrete example, suppose that a researcher designs a completely

randomized 3 x 2 factorial experiment (also called a between-subjects design). By
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completely randomized we mean that each subject is randomly assigned to only one of

the six treatment conditions; in other types of designs subjects are either exposed to all

treatment conditions in a randomized order (a within-subject design) or they are exposed

to some, but not all, of the treatment conditions defined by the factorial design (a mixed-

factorial design). Let us assume that the factors manipulated concurrently in this

hypothetical experiment are: EFL vocabulary teaching methodology (the keyword

method, the semantic approach, the keyword-semantic approach), and time (immediate

and delay), while the dependent variable is cued recall. Let us also assume an equal

number of subjects per cell (a balanced or orthogonal design). Incidentally, only balanced

designs are discussed in this paper (for discussion of unbalanced designs, see Hays, 1991;

Keppel, 1991; Keppel & Zedeck, 1989; Pedhazur & Pedhazur-Schmelkin, 1991).

In this hypothetical experiment, the six treatment combinations: keyword-

immediate, keyword-delay, semantic-immediate, semantic-delay, keyword-semantic-

immediate, and keyword-semantic-delay, are specified in the following matrix:

TEACHING

METHOD

TIME

IMMEDIATE DELAY

KEYWORD

SEMANTIC

KEYWORD-SEMANTIC

As Keppel (1991, p. 188) explained, a factorial design consists of a set of single-

factor experiments. Thus, from our hypothetical experiment, the researcher may create

7
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two single-factor experiments: one may consist of three groups of learners randomly

assigned to a different vocabulary teaching method, tested immediately after the

presentation of the language material. This single experiment assesses the effects of

vocabulary teaching method on cued recall under the condition of immediate recall, and if

the manipulation were successful, the researcher would attribute any differences among

the groups of learners to the differential effectiveness of the teaching methods. The other

experiment would be an exactly duplicate of the first except that learners would be tested

some time (e.g., 2 days, or a week, or 10 days) after the presentation of the input material.

This hypothetical factorial design can also be viewed as a set of component-single

factor experiments involving the other independent variable, time. In this case, the

researcher may create three single-factor experiments: one may consist of two groups of

learners randomly assigned to the two time conditions and instructed with the keyword

method. The two other experiments would be exact duplicates of the first, except that

learners would be taught with the semantic approach in one and with the keyword-

semantic in the other. Each component experiment provides information about the

effects of time, but for different vocabulary teaching methods.

The results of these component single-factor experiments are called the simple

effects of an independent variable. These effects reflect treatment effects associated with

one of the independent variable, with the other held constant. Besides simple effects,

factorial designs produce two other important pieces of information: main effects and

interaction effects. Main effects are referred to as the deviation of a category or level

mean from the grand mean, and essentially transform the factorial design into a set of

8
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single-factor experiments, while the interaction effects reflect a comparison of the simple

effects.

In our hypothetical 3 x 2 experimental design, a main effect for vocabulary

teaching method would mean that there are differences in the effectiveness of these

methods regardless of whether cued recall is ascertained immediately after the

presentation of the language material versus some time later. On the other hand, a main

effect of time would mean that learners' performance on immediate and delayed recall is

different regardless of the teaching method used. Finally, an interaction effect would

mean that the effect of the teaching methods on learners' cued recall is not constant under

the two time conditions. The advantages of factorial designs over single-factor

experiments are widely recognized by most researchers, and are briefly discussed here.

Advantages of Factorial Designs

Pedhazur (1982, p. 135) discussed four major advantages of factorial designs:

1) Factorial designs make it possible to determine whether the independent

variables interact in their effect on the dependent variable. An independent variable can

explain a relatively small proportion of variance of a dependent variable, whereas its

interaction with other independent variables may explain a relatively large proportion of

the variance. Studying the effects of the independent variables in isolation cannot reveal

the interaction between them.

2) Factorial designs afford the researcher greater control, and, consequently more

sensitive (i.e., statistically powerful) statistical tests than the statistical tests used in

analysis with single variables.
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3) Factorial designs are efficient. One can test the separate and combined effects

of several variables using the same number of subjects one would have used for separate

experiments.

4) In factorial designs the effect of a treatment is studied across different

conditions of other treatments. Consequently, generalizations from factorial experiments

are broader than generalizations from single-variable experiments. Factorial designs are

examples of efficiency, power, and elegance.

Interpretation of Factorial Analysis

Keppel (1991) argued that the test of interaction is usually the logical first step in

the analysis of factorial designs. The results of this test influence the analysis of the main

effects. For example, if the interaction is statistically significant, less attention is

generally paid to the interpretation of the main effects. After all, as Pedhazur and

Pedhazur-Schmelkin (1991, p. 514) noted,

The motivation for studying interactions is to ascertain whether the

effects of a given factor vary depending on the levels of the other

factor with which they are combined. Having found this to be the

case (i.e., that the interaction is statistically significant), it makes

little sense to act as if it is not so, which is what the interpretation

of main effects amounts to. Instead, differential effects of the

various treatment conditions should be studied ... this is

accomplished by doing what are referred to as tests of simple main

effects.

10
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On the other hand, if the interaction is not statistically significant, or if it is

statistically significant but trivial (according to the researcher's judgment), the attention

focuses on the detailed analysis of the main effects. If the main effects are statistically

significant, post hoc comparisons should then be tested. However, a statistically

significant interaction does not mean that absolutely no attention should be paid to main

effects. A large main effect, relative to an interaction, indicates that we should consider

both the main effect and the interaction when we describe or interpret our data (Keppel,

1991, p. 232).

The Use of Factorial and Non-Factorial Analysis

As said previously, factorial analyses differ from non-factorial ones in that in the

former all possible hypotheses are tested regardless of their substantive interest to the

researcher and/or their interpretability, while in the latter only substantive and

interpretable hypotheses are tested. Although substantive considerations as the guiding

principle for hypothesis testing have been strongly recommended by several scholars

(Hays, 1981; Keppel, 1991; Keppel & Zedeck, 1989; Pedhazur & Pedhazur-Schmelkin,

1991; Thompson, 1994), many researchers invariably conduct factorial analyses, and

frequently end up testing irrelevant omnibus hypotheses or hypotheses they are unable to

interpret, as perhaps in a five-way interaction test. As Thompson (1994, p. 10) explained,

Some researchers always test even omnibus effects that are not of

interest because they naively believe that such analyses always

increase the probability of detecting statistically significant effects

on the omnibus hypotheses that are of interest.
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These researchers do not realize that this is not always the case, and that in fact, it

is also possible that testing irrelevant omnibus hypotheses can make substantive effects

become statistically nonsignificant. We will use our hypothetical 3 x 2 experiment to

illustrate both possibilities. Suppose for example, that the researcher is really only

interested in testing the interaction omnibus hypothesis.

Table 1. An Example of How Factorial Analysis Can Help Yield Significance for

Effects of Interest by Analyzing Even Effects Not of Interest

Source SOS df MS Fcal Fcrit Dec

Nonfactorial analysis

Method x Time 25.00 2 12.50 3.125 3.29 NS

Residual 132.00 33 4.00

Total 157.00 35

Factorial Analysis

Main

Method 14.00 2 7.00 1.912 3.32 NS

Time 8.00 1 8.00 2.213 4.17 NS

Method x Time 25.00 2 12.50 3.415 3.32 Rej

Residual 110.00 30 3.66

Total 157.00 35

Note. Entries in bold remain constant.

12
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Table 1 presents the results of two analyses, and shows how the test for the

substantive hypothesis yields a statistical nonsignificant result when it is the only

hypothesis tested, and how it becomes statistically significant when the omnibus main

effect hypotheses are tested. As can be seen from Table 1, the sum of squares (SOS) for

the interaction effect remained constant (25) in both analyses. However, the factorial

analysis reduced the sum square error by 22 (132-110), and the degrees of freedom error

by 3 (33-30), which made the mean square (MS) error smaller (3.66 versus 4.00). A

smaller MS error resulted in a larger F calculated value (3.415), slightly greater than the F

critical value (3.32).

Table 2 below presents results from the same design hypothetically implemented

with different subjects. This Table illustrates how a statistically significant omnibus test

may become statistically nonsignificant because a factorial analysis--the default in many

statistical packages--was conducted. In this case, testing only the omnibus interaction

hypothesis yields a statistically significant result. Nonetheless, no null hypotheses got

rejected when the factorial analysis was performed with the same data. As in the previous

example, the SOS for the interaction effect was held constant in both analysis. In the

factorial analysis the degrees of freedom error were again reduced by 3 (33-30).

However, this time the reduction of the SOS error was very small (115.5-112 = 2.5)

which in turn made the MS error larger (3.73 versus 3.50). A larger MS error resulted in

a smaller F calculated value (3.217 versus 3.429). This F calculated value is smaller than

the F critical value (3.32). Incidentally, it is interesting to point out that due to the

13
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reduction of the degrees of freedom error in a factorial analysis, the F critical values for

the omnibus tests become larger.

Table 2. An Example of How Factorial Analysis Can Hurt by Yielding Nonsignificance

for the Effects of Primary Interest

Source SOS df MS Fcal Fcrit Dec

Nonfactorial Analysis

Method x Time 24.00 2 12.00 3.429 3.29 Rej

Residual 115.50 33 3.50

Total 139.50 35

Factorial Analysis

Main

Method 2.50 2 1.25 .335 3.32 NS

Time 1.00 1 1.00 .268 4.17 NS

Method x Time 24.00 2 12.00 3.217 3.32 NS

Residual 112.00 30 3.73

Total 139.50 35

Note. Entries in bold remain constant

Another issue to be considered by users of factorial analyses deals with Type I

error. Two Type I error rates have been identified: testwise (TW) error rate, and

experimentwise (EW) error rate. TW error rate refers to the probability of making a Type

14
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I error when testing a given hypothesis. EW error rate refers to the probability of making

one or more Type I error anywhere in the whole set of hypotheses tested in the study.

In the case of a study in which only one hypothesis is tested, the TW error rate

equals the EW error rate. However, when several hypotheses are tested within a single

study, the EW error rate will get inflated unless all the hypotheses are perfectly correlated

(Thompson, 1994, p. 6). Most researchers are completely unaware that the use of

factorial analyses of balanced designs maximally inflate experimentwise (EW) error since

(a) the maximum number of tests are conducted, and (b) the omnibus tests are perfectly

uncorrelated in balanced designs (Benton, 1991, p. 125).

The formula for computing EW error rate = [ 1 - (1 - TW)k ], where k is the

number of hypotheses tested. Thus, in our hypothetical 3 x 2 factorial design in which

both main effect omnibus hypotheses and the two-way omnibus interaction are tested at

the .05 level, the EW error rate would be about .14. That is .14 equals

1 - (1 - .05)3 =

1 (.95)3 =

1 .8574 =.14.

As can be seen from our hypothetical example, by conducting a factorial analysis

rather than testing only the hypothesis of interest, the researcher increased by almost three

times the probability of making a Type I error in testing the omnibus hypotheses. The

potential EW error rates in complex multi-way factorial analyses can be extremely high.

Very few researchers and even fewer textbook authors consciously recognize that

15
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inflation of EW error rates occurs in classical OVA methods testing omnibus effects prior

to the use of unplanned comparisons (Thompson, 1994, p. 9).

Unplanned (also called a posteriori or post hoc or unfocused) multiple comparison

test (e.g., Duncan, Scheffe, Tuckey) are among the choices that can be used to isolate

means that are significantly different within OVA ways having more than two levels

(Thompson, 1994, p. 4). Post hoc or multiple comparisons is a somewhat derogatory

term that generally refers to the indiscriminate examination of all possible comparisons to

locate significant effects (Keppel & Zedeck, 1989, p. 149). These comparisons are

conducted only if omnibus test results are statistically significant. Thus, simple effects

are examined only when the interaction is statistically significant; simple comparisons

only when a simple effect is statistically significant; and main comparisons only when a

main effect is statistically significant.

Keppel (1991, pp. 247-248) argued that in order to deal with the increase of EW

error (what he calls "familywise" error), methodologists have introduced a wide variety of

adjustment techniques, but that none of these has captured the attention of researchers

except, perhaps, a Bonferroni adjustment for simple effects. This correction usually

consists of controlling EW error for the entire set of simple effects, which is

accomplished by using alpha = .05/b as the significance level for evaluating the simple

effects of factor A and alpha = .05/a for the simple effects of factor B, where a and b refer

to the number of levels in the factors. He stated however, that current practice in

psychological research favors analyses without correction for EW error rate. It should be

pointed out that post hoc tests contain their "built-in" correction factors.

18
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We have to keep in mind that adjustments for EW error rate reduce the sensitivity

(or power) of the test. In other words, guarding against Type I error increases the

probability of making a Type II error (that is, no rejection of a false null hypothesis).

That is why planned (also called a priori or focused) comparisons are a better alternative.

Since fewer hypotheses are tested, planned comparisons either orthogonal or

nonorthogonal have more statistical power than unplanned comparisons.

A final remark regarding factorial analyses deals with the interpretability of the

hypotheses tested. As mentioned earlier, interpretability of the hypotheses tested is not a

requirement in factorial analyses. In planning an experiment, it is a temptation to throw

in many experimental treatments, especially if the data are inexpensive and the

experimenter is adventuresome (Hays, 1981, p. 368).

Although higher-order designs may be advantageous to researchers in some

respects, the inclusion of a large number independent variables in a study may be also be

problematic as these designs carry with them the possibility of statistically significant

higher-order interactions, some of which are simply uninterpretable. The description of

higher-order interactions typically requires an extremely complicated statement. As

Keppel (1991, p. 482) observed,

With two-way factorial, an interaction indicates that any

description of the influence of one of the factors demands

consideration of the specific levels represented by the other factor.

With a three-way factorial, a significant higher-order interaction

implies that any description of one of the two-way interactions

17
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must be made with reference to the specific levels selected for a

third factor. Interactions involving four variables require even

more complicated descriptions. Now, if it is difficult to merely

summarize the pattern of a particular interaction, imagine the

problem we will have in explaining these results.

To illustrate the problems associated with the interpretability of higher-order

interactions we will expand our hypothetical 3 x 2 factorial design. Suppose, for

example, that the researcher decides to make it a lot more complex by including three

other independent variables: time of instruction delivery (morning, afternoon), sex and

age of the subjects. Let us assume that age is categorized into 3 levels: younger children

(6-12 years old); older children (13-19); and adults (20 on ). For the sake of illustration,

we will disregard the problems generated by categorizing age, a continuous variable. As

a result, our original 3 x 2 factorial design became a 3 x 3 x 2 x 2 x 2 factorial design.

This five-way factorial produces a total of 26 interactions.

Let us suppose now that such five-way factorial analysis yielded a statistical

significant five-way interaction, and some four-way interactions. How will our researcher

interpret these results? The researcher will not be able to do it because these kinds of

interactions are typically uninterpretable. Thus, what then is the point of testing

uninterpretable hypotheses? Testing this kind of hypotheses not only increases the

probability of making Type I errors but reduces the power of the statistical analysis.
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Summary

In the present paper the use of factorial and non-factorial analysis was discussed.

Using hypothetical experimental data it was illustrated how in some situations, factorial

analyses may be advantageous to the researcher and how in some other situations, they

could be a detriment to the study's outcome. Power issues related to factorial and

nonfactorial analyses were also briefly examined. It was claimed that balanced factorial

analyses maximally inflate the EW error rate, and in doing so they increase the likelihood

of making Type I errors. Additionally, it was claimed that attempts to control for the EW

error rate reduces the power of the statistical analyses. Finally, it was argued that it is

nonsensical to test uninterpretable hypotheses for they do not convey any substantive

information. On the contrary, they increase the probability of making Type I error by

increasing the EW error rate.
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