
DOCUMENT RESUME

ED 405 813 IR 018 253

AUTHOR Connolly, Mary V.
TITLE Starting Computer Science Using C++ with Objects: A

Workable Approach.
PUB DATE 96
NOTE 5p.; In: Association of Small Computer Users in

Education (ASCUE) Summer Conference Proceedings
(29th, North Myrtle Beach, SC, June 9-13, 1996); see
IR 018 247.

PUB TYPE Reports Descriptive (141) Speeches/Conference
Papers (150)

EDRS PRICE MFO1 /PCO1 Plus Postage.
DESCRIPTORS *Computer Science Education; Computer Software

Selection; *Curriculum Development; Educational
Change; Higher Education; *Introductory Courses;
Programming; *Programming Languages; Student
Attitudes; Textbook Selection

IDENTIFIERS *C Programming Language; Object Oriented Programming;
*Saint Marys College IN

ABSTRACT
Saint Mary's College (Indiana) offers a minor program

in computer science. The program's introductory computer science
class traditionally taught Pascal. The decision to change the
introductory programming language to C++ with an object oriented
approach was made when it became clear that there were good texts
available for beginning students. Many students do not begin their
study of computer science with a strong ability to handle symbolic
languages and abstraction. Students moving to the data structures
course, which is taught using an object oriented paradigm, have found
the paradigm shift difficult even without a change of programming
language. Accomplishments and problems were experienced during the
first two offerings of the revised class. The students enjoyed using
C++ and appreciated the experience of a real world programming
environment. From the student point of view, object oriented
programming is just as "natural" as function oriented programming,
and it was not difficult to implement the basic themes of the
introductory computer science course using C++. Using C++ with
objects in the introductory computer science course is effective,
provides an experience needed in the market place, and has positive
benefits for the rest of the computer science curriculum. The paper
also describes the selection of an introductory textbook and compiler
program. (Contains 13 references.) (Author/SWC)

Reproductions supplied by EDRS are the best that can be made
from the original document.

c0
to

00

1996 ASCUE Proceedings

Starting Computer Science Using C++ with Objects:
A Workable Approach

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Mary V. Connolly
Mathematics/Computer Science Department

Saint Mary's College
Notre Dame, Indiana

connolly@ saintmarys.edu

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

C.P. Singer

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

The curriculum for Computer Science I was well defined in Computing Curricula 1991 [1],
but the language (and paradigm) issue continues to be debated extensively. Pascal, a favorite
language with many instructors, was designed to help students learn to program in a structured,
disciplined way, but has never found wide use outside of academia. Still, during a panel discussion
on first languages at the SIGCSE Technical Symposium in 1993, an informal survey showed the vast
majority of the approximately 200 people in the room used Pascal. Speakers presented eloquent
reasons for change, but instructors continued to use Pascal. In contrast, a post symposium workshop
at SIGCSE in 1995 entitled "Learning and Teaching C++ for the Pascal Generation" drew 106
participants[2]. Dick Reid of Michigan State University maintains a list of languages used in the
first course taken by the majority of computer science students at participating colleges and
universities. In results reported in January, 1996, out of 442 schools reporting, 35.5% use Pascal,
16.5% use Ada, 11.3% use Scheme, 8.8% use C, 7.9% use Modula, 7.7% use C++ and 2.9% use
Modula-2. Sixteen other languages were included, each with a percentage less than two. It is
important to realize that schools chose to participate in this survey which was done via the Internet.

At Saint Mary's College, any decision on the first language has to take into account the kind
of student who enrolls in CS I. Computer Science at Saint Mary's is offered as a minor program;
students in the program major in a variety of fields from mathematics and business to history,
communications and philosophy. Many of these students ultimately are employed in the computer
field, but do not begin their study of computer science with a strong ability to handle symbolic
languages and abstraction. Also, since the college offers a minor program, there is not enough time
to teach a variety of languages. Students moving to the data structures course, a course which is
taught using an object oriented paradigm, have found the paradigm shift difficult even without a
change of language. CS I at Saint Mary's is taught with a two hour closed lab, supported by two fifty
minute lectures. Students learn by actively writing and testing programs; hence a good supportive
text is essential.

At Saint Mary's the decision to change to C++ with an object oriented approach was made
when it became clear that good texts were available, texts which were written for beginning students,
which followed the Computing Curricula 1991 guidelines, and which used an object oriented
approach. Although there are many books available which introduce an experienced programmer
to C++, this course demands one in which design principles, programming syntax, program
efficiency and the other major ideas of CS I are introduced at a level appropriate for the beginning
computer science student.

2

Pg(Zir PAM/ MIMI Ail E

41

1996 ASCUE Proceedings

There is now a real choice of textbooks using C++ which are appropriate for a beginning
course. The differences are usually apparent when one considers whether objects are introduced
early in the book or later. A good example of the early approach is the book written by Decker and
Hirshfield [3]. Classes are emphasized from the beginning. In contrast, the book by Adams,
Leestma and Nyhoff introduces objects much later, almost requiring students to make a paradigm
shift[4]. Since one of the goals at Saint Mary's was to avoid forcing students to make a paradigm
shift in a later course, the text chosen, Computing Fundamentals with C++ by Rick Mercer, was
one in which object language is used from the beginning[5]. Students use the correct words from
the start, even though it is a few weeks into the course before the design implications are clear. After
all the debate on the language itself, it came as a very pleasant surprise that C++ was no more
difficult for students than Pascal. Beginning students do not know one language from another;
nothing seems "natural" at the beginning. Perhaps all the language anxiety, if it exists, rests with
instructors who are comfortable with a particular language. There are now several additional texts
available, giving an individual instructor a good deal of choice [6,7,8,9,10,11,12, 13].

Another big decision involved the choice of a compiler. Saint Mary's opted to use Turbo
C++ 3.1 for Windows. The campus network was already set up to handle Windows applications at
the time, and many students came to the course comfortable with the Windows environment. Also,
this choice does introduce students to a fairly realistic real world environment. One unexpected
problem was that realistic real world environment. When programs did not run due to the usual
variety of student errors, correcting and recompiling the code did not always result in a running
program. The Windows environment did not always reset memory to allow the newly corrected
program to run. This was frustrating, but it did prepare students for the less than friendly
programming environment they might encounter on the job.

The course at Saint Mary's begins using built in classes (much as the old Pascal course used
built in types) to develop elementary programs using selection and repetitive statements. Students
are introduced to function prototypes by the second week; the old Pascal course had used an early
introduction to procedures. One difference is that the object terminology is used from the start, even
though students do not understand the concept of a class at this stage. After an introduction to a
simple array, students see the need to develop classes and they begin to develop their own classes.
For at least the last half of the course class time is spent designing classes and lab time is spent
implementing and using them. For example, one lab has students explore the efficiency of the linear
search versus the binary search by implementing a class for an array of integers which has both
searches and a selection sort as methods. Gradually students begin to understand what a class really
is; they realize that the design phase of a programming assignment requires an early identification
of the needed classes. By the time two dimensional arrays are introduced, students automatically
think about an appropriate class. It should be noted that none of the projects in the course makes use
of inheritance; that is left to the data structures course.

One of the more difficult problems in the course involved how to handle character strings.
Even in the old Pascal course, this was handled relatively late in the course since the string
implementation is non standard in Pascal, usually quite dependent on the editing/compiling software
being used. However, it is annoying to assign programs which involve bank records, inventory
control or sales processing and never name people or things. Most texts get around the problem by
author supplied string classes, again non standard. Although this is fine for simple programs, it is

42

3

1996 ASCUE Proceedings

more problematic when students are developing their own classes. Author supplied files do not
always attach to student developed classes correctly. The first time the course was taught at Saint
Mary's, the students were well into class development when the problems surfaced; the decision
was made to wait until pointers were introduced so that students could handle character strings in
their own classes using char * objects and the functions available in string.h. During the second
offering of the course, all consideration of character strings was delayed until pointers were
introduced. In retrospect this seems better than handing students code which works but is non
standard and hides an understanding of how the machine handles character strings.

One unanticipated problem the first time the course was taught was the length of the labs.
Although lab exercises were designed to be completed in the two hour period, students frequently
needed three or more hours. Part of this was surely due to the instructor's inexperience with student
errors in C++, since this was the first use of the language. Another part of the problem was the
Windows environment discussed above. Both the instructor and a lab assistant (a student literally
getting trained on the job) were present to assist students. As a group the students understood the
difficulties involved in such a major change in a course and were quite patient. Although the
situation improved during the second offering, labs still tended to be on the long side.

One delightful surprise was how much the students liked what they were doing. Many were
positively energized by their work. They appreciated the fact that this was a real world programming
environment and were willing to put up with the long labs. At first, it was not clear how the CS I
model curriculum would work with the C++ with objects approach, but in fact it is not at all difficult
to implement the basic themes using C++. From the student point of view, object oriented
programming is just as "natural" as function oriented programming. It is important to observe that
no single course will ever introduce a student to all the capabilities of the C++ language. Individual
instructors must make decisions about what belongs in a "sane" subset of C++, a subset which gives
the students enough of the language so they are able to complete reasonable projects without being
overwhelmed by language details.

A shift to C++ with objects in the first course clearly has implications for the rest of the
curriculum. Since the object oriented paradigm is not used in all Saint Mary's computer courses,
students may have some adjustments to make in later courses. The Assembly Language course at
Saint Mary's incorporates C; obviously students entering this course will already know some
rudiments of the language whereas before they had to begin with an intense introduction to the
language. The data structures course has used an object oriented approach for several years, but it
has been implemented in Pascal with units. It will be changed so that the language used is C++,
making a much better transition, particularly since a paradigm shift in design will no longer be
necessary. In general, the curriculum should be more unified than before.

It clearly was time to change, and the new course is even more exciting than the first Pascal
course was years ago. C++ with objects in the first course works, it provides an experience which
is needed in the market place and has positive benefits for the rest of the curriculum.

43

4

1996 ASCUE Proceedings

Bibliography:

[1] ACM/IEEE-CS Joint Curriculum Task Force, Tucker, Allen B. (editor). Computing Curricula
1991. Association for Computing Machinery, 1991.

[2] Decker, Rick and Hirshfield, Stuart H. Learning and Teaching C++ for the Pascal Generation.
SIGCSE Technical Symposium, March, 1995.

[3] Decker, R. and Hirshfield, S. The Object Concept. PWS Publishing, Boston, Massachusetts,
1995.

[4] Adams, J., Leestma, S. and Nyhoff, L. Turbo C++: An Introduction to Computing. Prentice-
Hall, Upper Saddle River, New Jersey, 1996.

[5] Mercer, R. Computing Fundamentals with C++: Using, Modifying and Implementing Object
Classes. Franklin, Beedle & Associates, Inc., Wilsonville, Oregon, 1995.

[6] Astrachan, 0. L. A Computer Science Tapestry: Exploring Programming and Computer Science
with C++. McGraw-Hill, 1996.

[7] Dale, N., Weems, C. and Headington, M. Programming and Problem Solving with C++. D. C.
Heath & Company, Lexington, Massachusetts, 1996.

[8] Deitel, H. M. and Deitel, P. J. C++ How to Program. Prentice-Hall, Upper Saddle River, New
Jersey, 1994.

[9] Friedman, F. L. and Koffman, E. B. Problem Solving, Abstraction, and Design using C++.
Addison-Wesley, 1994.

[10] Lambert, K. A., Nance, D. W. and Naps, T. L. Introduction to Computer Science with C++.
West Publishing Company, St. Paul, Minnesota, 1996.

[11] Levin, H. D. and Perry, J. E. An Introduction to Object-Oriented Design in C++. Addison-
Wesley, 1996.

[12] Staugaard, A. C. Jr. Structuring Techniques: An Introduction using Turbo C++. Prentice-Hall,
Upper Saddle River, New Jersey, 1995.

[13] Tucker, Allen B., et al. Fundamentals of Computing I: C++ Ed. McGraw-Hill, 1995.

44

(9/92)

U.S. DEPARTMENT OF EDUCATION
Office of EdUcational Research and Improvement (OEM)

Educational Resources information Center (ERIC)

NOTICE

REPRODUCTION BASIS

I ERIC'

This document is covered by a signed "Reproduction Release
(Blanket)" form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release
form (either "Specific Document" or "Blanket").

