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How Do You Know When You Understand?
Using Explanation to Monitor and Construct Mathematical

Understanding

Merrilyn Goos

The University of Queensland

Abstract. Knowing-when-you-understand is an important element of metacognitive knowledge, vital for

keeping track of progress while studying a new concept or working on a mathematical task. This paper

deals with the evidence that secondary school students use to infer that they understand something in

mathematics. As part of a larger study, an open ended questionnaire, probing several aspects of
metacognitive self-knowledge, was administered to 72 students in four schools. Two previously defined

types of understanding (Skemp, 1987) were identified in the students' responses: instrumental (knowing

how to do a piece of mathematics) and relational (knowing why it works). One response category
consistent with relational understanding, and indicating high quality metacognitive knowledge, described

evidence of understanding as being able to explain ideas to another person. Closer analysis of this and

other data revealed that students who associated understanding with explaining also reported engaging in

frequent mathematical discussion with other students. The latter result is of particular interest, as it
suggests a connection between metacognitive functioning and social interaction consistent with
Vygotsky's (1978) views on learning. Observations of students in one of the classrooms participating in

the study are used to add depth to the questionnaire data, and suggest implications for teaching.

Metacognition, or knowledge about and control over one's own cognitive processes, is

often considered to be critical to effective mathematical thinking and problem solving

(Garofalo & Lester, 1985; Schoenfeld, 1992; Silver & Marshall, 1990), and the ability to

monitor one's learning and problem solving behaviour distinguishes novices from

experts in the domain (e.g. Schoenfeld, 1987; Venezky & Bregar, 1988). Knowledge

about one's state of understanding can influence metacognitive control decisions either

during initial learning of a concept or procedure, or while working on mathematical tasks

that apply the learned procedure. For example, detecting a lack of understanding could

signal the need for further study of the material to be learned, or trigger a decision to

review one's working on a problem. Thus the role of understanding in driving

metacognitive activity makes it important for mathematics students to be able to recognise

when they do, and do not, understand.
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Some of the more successful approaches to improving students' metacognitive

capabilities have been based on Vygotsky's (1978) sociocultural theory of learning,

which claims that higher mental processes have their origins in social interactions with

either expert adults or peers. Students' individual self-knowledge and self-regulatory

capacities may be extended if they initially operate within a zone of proximal

development, where interaction with others elicits their emerging intellectual skills. The

role of the teacher in providing adult guidance has been exemplified in Schoenfeld's

(1985) work with college level mathematics students. The teacher provides expert

scaffolding by structuring the task so as to support the learner's efforts, while pressing

for increasingly complex strategic behaviour to prepare the learner for independent

performance. As the learner begins to direct his or her own thinking, the teacher is able to

relinquish the "expert" role.

Students may also be able to scaffold each other's thinking during collaborative problem

solving; however, less is known about the processes of peer collaboration that might

contribute to metacognitive development. It is possible that collaborative interaction,

during which students propose and defend their own ideas and explore their partners'

reasoning and viewpoints, may create a bi-directional zone of proximal development

(Forman, 1989; Forman & McPhail, 1993) that enriches and extends the thinking of all

participants.

The general aim of the research on which this paper is based is to identify the features of

adult guidance and peer collaboration that help secondary school mathematics students to

develop metacognitive knowledge and control. The paper focuses specifically on the role

of mathematical understanding in guiding metacognitive activity, and uses data from the

study to examine two questions:

1. What evidence do students use to decide whether or not they understand something

in mathematics?



2. What classroom practices help students to monitor their understanding so that they

can effectively regulate their mathematical thinking?

The first part of the paper addresses the above questions by reporting on students'

responses to questionnaires that investigated the nature of their self-knowledge and their

perceptions of school mathematics practices. As the results suggest a connection between

viewing understanding as the ability to explain ideas to another person, and learning

activities that involve mathematical discussion between peers, the last part of the paper

draws on classroom observational data to illustrate how the students explained their

thinking to each other in order to achieve understanding. Before describing the conduct

and results of the study, however, it is necessary to consider the nature of mathematical

understanding itself.

MATHEMATICAL UNDERSTANDING

Hiebert and Carpenter (1992) have presented a framework that describes mathematical

understanding in terms of the structure of an individual's internal knowledge

representations. They define understanding as "making connections between ideas, facts,

or procedures" (p. 67), where the extent of understanding is directly related to the

characteristics of the connections. In considering these connections, it is helpful to

distinguish between two kinds of mathematical understanding: instrumental and relational

(Skemp, 1987). Instrumental understanding is knowing what to do in order to complete a

mathematical task, while relational understanding is knowing both what to do and why

the particular piece of mathematics works. The actions of students with instrumental

understanding are driven by the goal of getting the correct answer. Because these

students learn mathematics as a set of fixed, minimally connected rules whose

applicability is limited to a specific range of tasks, they cannot adapt their mental

structures to solve novel or non-routine problems. On the other hand, students who have

relational understanding construct richly connected conceptual networks that enable them

to apply general mathematical concepts to unfamiliar problem situations.
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Because "understanding" cannot be observed directly it is difficult to determine the kind

of understanding that a student possesses. Skemp (1987) addresses the issue of evidence

by describing abilities that correspond to the different kinds of understanding:

Instrumental understanding [is evidenced by] the ability to apply an appropriate remembered rule

to the solution of a problem without knowing why the rule works.

Relational understanding [is evidenced by] the ability to deduce specific rules or procedures from

more general mathematical relationships (p. 166).

However, the problem of inferring students' state of understanding is not solved by these

formulations, as performance on a mathematical task is not a reliable indicator of the kind

of understanding to which students have access. (As an illustration, consider the

possibility that a student who possesses relational understanding may still demonstrate

instrumental functioning on a routine task.)

Chi, Bassok, Lewis, Reimann and Glaser (1989) have proposed that additional evidence

of understanding can be found in the explanations that students generate while learning

from worked examples. As well as confirming that understanding exists, self-

explanations have the advantage of revealing the processes that create understanding. Chi

et al. obtained verbal protocols from eight undergraduate students while they studied

worked-out examples of mechanics problems. Differences between the protocols of

Good and Poor students (a post hoc classification based on performance on isomorphic

and far-transfer problems attempted after the example study) highlighted two mechanisms

through which understanding took shape: Good students produced more explanations

and more monitoring statements when studying examples than did Poor students. Good

students' self-generated explanations elaborated on and justified the actions contained in

the examples by specifying how, and under what conditions, principles were applied

information that is essential for relational understanding, but typically missing from

worked examples in mathematics. When monitoring their state of understanding Good

students were also more likely than Poor students to detect comprehension failure, and

used this signal to guide subsequent self-explanations.
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The various forms of evidence discussed above might allow teachers or researchers to

assess the extent of students' understanding, but how do students themselves decide

whether or not they understand? This question, together with several others probing

metacognitive knowledge, beliefs about mathematics, and perceptions of school

mathematics practices, was included in questionnaires administered to a group of

secondary school students. The next section reports on the evidence these students use to

infer that they understand, and examines links between metacognitive knowledge-of-

understanding and the learning activities in which the students participate.

THE QUESTIONNAIRE STUDY

Method

Subjects

One mathematics class from each of four secondary schools participated in the first year

of a two year study investigating metacognitive development in senior students. Three

schools were located in Brisbane (two Government schools and one independent school)

and one in a provincial city (independent). The sample consisted of 72 students: three

Year 11 classes (one Mathematics A, two Mathematics B) and one Year 12 class

(Mathematics C).

Procedure

Two questionnaires were administered by the researcher during regular mathematics

lessons. The Beliefs Questionnaire consisted of statements to which students were asked

to respond on a four or five point Likert scale. Most statements were based on those

found in similar instruments used by Clarke, Waywood and Stephens (1993), McDonagh

and Clarke (1994), and Schoenfeld (1989), while others were constructed for the

purpose of the present study. The questionnaire was divided into four sections: (1)

attributions for success and failure; (2) beliefs about mathematics; (3) perceptions of

classroom practice, and (4) mathematics achievement and perceptions of ability and
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effort. The Self-Knowledge Questionnaire contained open-ended questions probing

students' metacognitive knowledge; for example, What do you do when you are stuck on

a problem? What kinds of problems are you best at? Why? How do you know when you

understand something in maths? Some items were drawn from Schoenfeld's (1989)

questionnaire, while others were constructed from Garofalo's (1987) suggestions for

questions that teachers could put to their students to help develop their metacognitive

awareness.

Results

Of the questionnaire data, only that part concerning students' perceptions of

"understanding" and classroom learning activities is dealt with in this paper.

Knowing when you understand

Students expressed overwhelming agreement with the Beliefs Questionnaire statement

The best way to learn maths is to make sure you understand why things work (Strongly

Agree 63%, Agree, 35%), but only lukewarm support for the contrasting proposal that

The best way to learn maths is to memorise all the formulae (Strongly Agree 17%, Agree

43%). Thus the majority of students seemed to believe that understanding is important in

mathematics. However, what they mean by "understanding" only becomes clear when

their responses to the Self-Knowledge Questionnaire are examined. Because this

instrument invited open ended responses, categories were created to allow similar

responses to be identified and grouped. The following categories (arranged in increasing

order of metacognitive quality) emerged from students' responses to the question How

do you know when you understand something in maths?

Category Examples

I Correct answer When I get it right.

You can do heaps of them without mistakes.

You are able to go and do questions that are the same.
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II Affective response I get interested.

I feel confident when doing it.

I have a good feeling.

DI Makes sense It fits in with my previous knowledge.

When it makes sense, and I'm not asking myself why it is so.

You realise why you use the formula, what reasons.

TV Application/transfer When I can apply it to something else outside school.

When I can understand a complex problem and do all the related problems.

You can do complicated problems doing the basic things you've learned.

V Explain to others When I can explain it to other people without confusing myself.

I can explain the theory to other students.

I can explain ideas to other people and know they understand what I'm

talking about.

Students whose responses fell into Category I (correct answer) offered the kind of

evidence consistent with instrumental understanding. Category II responses (affective)

may also point to instrumental understanding if confidence and enjoyment are the

immediate rewards for obtaining the right answer. While responses in Category III

(makes sense) clearly imply relational understanding, the evidence here is not as specific

as that mentioned in Categories IV (application/transfer) and V (explain to others), both

of which refer to an observable product or process from which relational understanding

can be inferred.

Response frequencies and proportions for each of the five categories relating to evidence

of understanding are shown in Table 1. Three-quarters of the sample claimed that they

knew they understood something in mathematics if they could do the associated problems

and get the correct answer (Category I), a result which suggests these students had quite

poor metacognitive knowledge, as it is possible to apply a learned rule to solve a problem

without understanding why the rule works or how to use it in unfamiliar situations. The

most sophisticated form of self-knowledge was displayed by the seven students who

knew they understood a mathematical idea when they could explain it to another person

(Category V). This response category is especially interesting because explaining,

although described here as a product of understanding, was previously identified as a
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learning process, guided by metacognitive self-monitoring, that can generate relational

understanding in the first instance (Chi et al., 1989). The question of learning processes

is taken up in the next section, which considers students' reported participation in

classroom activities, and how those activities may be related to the perception of

understanding as the ability to explain.

Table 1. Evidence of Understanding Reported by Students

Category Frequency Proportion

I Correct answer 55 .76

II Affective response 7 .10

III Makes sense 12 .17

IV Application/transfer 7 .10

V Explain to others 7 .10

Notes. 1. Frequencies represent the numbers of responses in each category. Proportions were

calculated as frequency + sample size (n=72).

2. The sum of frequencies exceeds 72, and the sum of proportions 1.00, because students'

open-ended responses could contain evidence belonging to more than one category.

Learning activities associated with understanding-as-explaining

In Section (3) of the Beliefs Questionnaire students were asked to indicate how often they

were likely to be engaged in the following activities when they were doing maths at

school:

1. talking about maths to the teacher

2. talking about maths to other students

3. copying notes from the blackboard

4. working on my own

5. doing problems from the textbook

6. listening to the teacher

7. listening to other students.



Table 2. Classroom Learning Activities

Learning Activity

Frequency (Proportion)

Always Often Sometimes Seldom Never

Talking about maths to the teacher 2 (.03) 13 (.18) 28 (.39) 26 (.36) 3 (.04)

Talking about maths to other students 12 (.17) 24 (.33) 30 (.42) 6 (.08) 0 (.00)

Copying notes from the blackboard 13 (.18) 19 (.26) 26 (.36) 13 (.18) 1 (.01)

Working on my own 2 (.03) 25 (.35) 36 (.50) 8 (.11) 1 (.01)

Doing problems from the textbook 6 (.08) 38 (.53) 25 (.35) 2 (.03) 1 (.01)

Listening to the teacher 9 (.13) 38 (.53) 23 (.32) 1 (.01) 1 (.01)

Listening to other students 8 (.11) 21 (.29) 35 (.49) 6 (.08) 2 (.03)

Note. Frequencies represent the numbers of students who responded. Proportions were calculated as

frequency sample size (n=72).

Table 2 shows the frequencies and sample proportions for the range of responses from

which students could choose (Always, Often, Sometimes, Seldom, Never). As it was

expected that all these activities would play some part in students' classroom experience,

it was not surprising that responses from the whole sample tended to cluster around the

Sometimes and Often anchors (see Table 2).

However, a different perspective could emerge if one asked whether any of the learning

activities (Beliefs Questionnaire) were differentially associated with the various

perceptions of understanding (Self-Knowledge Questionnaire), particularly

understanding-as-explaining. Response patterns of the seven students who judged their

state of understanding by the ability to explain (hereafter labelled "explainers") were

therefore analysed separately and compared with the distributions that occurred within the

whole sample. It was not appropriate to carry out chi-square tests to measure the degree

of association, as expected frequencies fell below permissible levels (Minium, 1978).

Nevertheless, an inspection of the proportionate distributions suggested an association

that merits closer attention.



Table 3. Association Between Learning Activities and Understanding-as-Explaining

("Always" Responses)

Learning Activity

Expected Proportion

(Whole Sample)

Obtained Proportion

(Explainers)

Talking about maths to the teacher .03 .00

Talking about maths to other students .17 .57

Copying notes from the blackboard .18 .00

Working on my own .03 .00

Doing problems from the textbook .08 .00

Listening to the teacher .13 .00

Listening to other students .11 .43

Table 3 shows expected and obtained proportions (i.e. for the whole sample and

explainers respectively) for "Always" responses to the range of nominated learning

activities, as it was within the latter response category that the most striking differences

emerged. Each expected proportion was calculated by dividing the "Always" response

frequency for the whole sample by the sample size (n=72). Obtained proportions were

calculated by dividing the "Always" response frequency for the explainers by number of

explainers (7).

From Table 3, it is clear that explainers were much more likely than other students to state

that they always spent time talking about maths to other students (four out of seven

students, or 57%, compared with 17% within the whole sample) and listening to other

students (three out of seven students, or 43%, compared with 11% in the whole sample).

Additional analysis of "Always" response patterns for the other categories of

understanding (Categories I to IV) found no comparable differences between the

observed and expected distributions of responses for these, or any other, learning

activities. The possibility of a connection between mathematical discussion and testing

one's understanding via explanation is explored more fully in the next part of the paper.
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Summary

Students' written responses to the question How do you know when you understand

something in maths? were grouped into five categories, corresponding to different levels

of metacognitive knowledge. The category of most interest referred to the ability to

explain to others, a process that not only assesses one's understanding, but may also play

a part in creating understanding. Those students who were labelled as explainers were

more likely than other students to report that they always spend time in class discussing

mathematics with their peers. Although it is unwise to draw firm conclusions from the

testimony of such a small number of students, these responses are consistent with the

view, derived from sociocultural models of learning, that metacognitive functioning can

be developed through social interaction, particularly that which occurs between peers.

The next part of the paper draws on extensive observation of one of the classrooms

participating in the research study to show how students explained their ideas to each

other as they monitored and tested their understanding.

CLASSROOM OBSERVATION

Two of the students referred to as explainers were members of a Year 12 Mathematics C

class that was observed and videotaped for 90 minutes per week over a period of thirteen

weeks. Although they were the only students in the class who claimed they tested their

understanding through explanation, it was apparent that explanation and justification of

ideas featured strongly in classroom social interactions.

The teacher regularly asked students to work together on problems that were designed to

develop understanding of new concepts. However, students frequently initiated

discussion between themselves without the teacher's prompting, and it is these

spontaneous interactions that will be illustrated here. They occurred in three settings: the

study and interrogation of worked examples, whole class discussion led by the teacher,

and individual practice on problems. Although many examples of interactions in these
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settings were observed, those that follow are taken from two lessons on simple harmonic

motion. (The speakers include the two explainers, "Rob" and "Belinda")

Studying worked examples

The teacher believes in the importance of allowing time in class for students to study

worked examples so that they learn to find their way independently through mathematical

text. The examples, which also introduce students to the formal reasoning involved in

applying new concepts, then become the subject of whole class discussion. Although

students initially read in silence, after a short time they invariably turn to their neighbours

either to seek clarification or to confirm their individual interpretations of the example.

In a lesson introducing the principles of simple harmonic motion, the teacher asked the

class to read an example involving a disc of radius 0.6m that rotated, with its diameter

pointing directly at the sun, at a rate of one revolution per second. The example showed

how to calculate the position, velocity and acceleration of the shadow cast by a point on

the rim of the disc, using the equations x=rcoscot, X = rco sin cot, and

= rco2 cos cot respectively (r is the radius, co the angular velocity and t time). After a

few minutes of silent reading, students began to form pairs and small groups to ask each

other questions about parts of the example they did not understand; that is, to explain the

example to each other. The following snatch of conversation was overheard as a group of

three boys read through the part of the example shown in Figure 1:

Duncan: Why is omega [the angular velocity] 2rc?

Rob: Because one revolution per second is 2rc per second.

Ben: Where does 1.2n come from?

Duncan: It's 0.6 [the radius] times 27r.

(i) x = r cos cot

= 0.6 cos 2rt

= displacement

(ii) z = rco sin cot

= 1.2 rsin2rt
= velocity

Figure 1. A worked example of simple harmonic motion calculations
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In these brief explanatory exchanges the boys have elaborated on the solution steps in

much the same way that a student working alone might generate self-explanations to

overcome the incompleteness of an example. But instead of each silently asking himself

for an explanation when understanding failed, they asked each other.

Student-student talk during whole class discussion

During whole class discussion, the teacher expects students to clarify and justify the ideas

they contribute, as well as critique the contributions of other students. In contrast with

traditional classrooms where such public talk must be channelled through the teacher,

students in the classroom under study frequently direct their comments to each other

without the teacher's mediation, thus sparking the kind of spontaneous argumentation

that might otherwise be restricted to more private, small group interactions. The

following instance comes from a lesson introducing Hooke's Law.

The class had again interrogated a worked example demonstrating how to describe the

motion of a mass executing simple harmonic motion while suspended from a spring.

During the ensuing whole class discussion, some students questioned the change of

notation from x = r cos cot (as used in the lesson mentioned above) to x = a cos nt (a

more general form that applies to all kinds of simple harmonic motion, not just that

derived from a projection of uniform circular motion on a diameter of the circle). Rather

than providing a rationale, the teacher withdrew from the discussion to allow students to

resolve the issue for themselves:

Rob: Why did they suddenly skip to a?

Belinda: Because x is equal to a cos nt.

Ben: Why use a and n, when we have the exact same formula with r and w ? Does it refer

to w involving radians?

Rob: On this side [referring to the handout containing the examplealso used in the
lesson mentioned earlier] they said x = r cos wt, on the other side x = a cos ;it.

Belinda: Excuse me, I have a point to make here! You can't always use r because(to
teacher) Oh, sorry! (Teacher indicates she should continue.) I don't know if anyone
will agree with mebecause you're not always using a circle, it's not always going

to be the radius.

Rob: Radius, yeah.
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Belinda: So the amplitude's not always the radius.

By ceding control of the debate the teacher provided another opportunity for students to

ask for, and receive, explanations from each other until they were satisfied that they

understood.

Informal discussion while working on problems

In the observation classroom it is rare to find students working individually on textbook

problems, as most cluster into informal groups so that they can discuss their progress

with each other. Although such interactions often involve little more than periodic

checking of results and procedures, the discussion reaches a deeper level if a student is

unable to resolve a difficulty or if a disagreement occurs. One such instance occurred

towards the end of the Hooke's Law lesson mentioned above. Rob, Ben and Duncan had

been working together on the task shown in Figure 2.

A mass M is attached to the end of an elastic

of natural length a and reaches its equilibrium

position when the string is extended by 1. The

mass is then displaced downwards a further

distance d and released. Find the period and

amplitude of the motion for each set of data:

(a) M = 6 kg, l= 1 m, d = 0.5 m

(b) M = 1 kg, / = 0.4 m, d = 0.3 m

(c) M = 10 kg, / = 0.5 m, d = 0.1 m

(d) M = 10 kg, / = 0.5 m, d = 0.1 m

Figure 2. The Elastic Problem

After the trio had completed parts (a) to (c), Ben noticed the unusual conditions for part

(d), in which the initial displacement of the mass is negative rather than positive (d =

0.1):
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Ben: What do you do for the next one?

Rob: What's this?

Duncan: The next one?

Ben: It's negative.

Duncan: Does that meanthat it
Ben: The amplitude's still got to be
Duncan: They've pushed it up then (using his hand to indicate upward displacement).

In the discussion that followed the boys clarified their understanding of "amplitude" and

agreed that it would be unchanged from part (c). Then, instead of simply carrying out the

calculations for (d), they compared the problem conditions for (c) and (d) in order to

decide which aspects of the motion would be the same and which different in these two

situationsactions that suggest they were striving for relational understanding. A

mutually agreed representation of the problem was only established after vigorous debate

in which the boys used explanations to challenge each other while testing their own

understanding, as the following edited transcript shows:

Rob: Oh, the sameit's the same: k equals, let me guess ...

Ben: (pause) No ... no.

Duncan: The only thing that's going to change is the amplitude.

Ben: It doesn't change the amplitude.

Duncan: Yes it does!

Ben: (after a slight pause) How?

Rob: Because that's all that changesthe acceleration's the same, because it's the mass

that
Ben: The amplitude doesn't change
Duncan: Yes it does!

Ben: How?

Duncan: See, if you pull it down, it depends on how much you pull it down. You pull it

down a little bit
Rob: it'll be a small amplitude.
Ben: No no, but isn't the amplitude the amount away, either up or down, from the

stationary point? (uses hands to demonstrate)

Duncan: Yeah
Ben: If it goes up point one it's not going to go down point one.

Duncan: No, I know, but it should be. If it was a perfect system.

Ben: (expression of sudden understanding on his face) No, it's going to be exactly the

same, as the last!
Duncan: (pause, thinks) Oh, of course, that's just negative (pointing to d = 0.1).

Rob: Why are we doing it? But the, the other thing, the period's going to be the same.
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Ben: (confident now) The period's going to be the same. Everything's going to be the

same.

Perhaps the most crucial contributions to the discussion were made by Ben, whose

insistence on asking "How?" caused all three boys to critically examine their own and

each other's explanations.

CONCLUSION

The research reported in this paper drew on questionnaire and classroom observation data

to investigate secondary school students' metacognitive knowledge-of-understanding.

One of the aims of the research was to discover the sources of evidence that students use

to monitor their state of mathematical understanding. Students' questionnaire responses

indicated that the majority relied on fallible information concerning their ability to get the

correct answer to a problem. However, a small number of students applied a more

exacting criterion, judging their understanding by their ability to explain mathematical

ideas to another person. In fact, giving explanations may have dual benefits: as well as

establishing one's current level of understanding, the process of explaining can also

create understanding by connecting new ideas to existing networks of knowledge.

The second question addressed by the present research concerned classroom practices

that might develop metacognitive monitoring of understanding. Significantly, a high

proportion of the students dubbed "explainers" also reported that they usually spent time

in class talking to other students about mathematics. Thus the questionnaire results

suggested that encouraging students to articulate and explain their thinking to each other

could help them to become more aware of their state of understanding.

Observation of one of the classrooms participating in the study identified three contexts

that provide opportunities for peer discussion beyond those that arise during planned

small group work: studying worked examples, whole class discussion, and individual

practice on problems. One might expect to find little student talk occurring within these

settings, as they usually involve either teacher-student interaction or no interaction at all.
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However, the vignettes presented earlier showed this not to be the case. What made the

difference? Certainly, the teacher capitalised on his students' natural desire for social

interaction and steered their behaviour towards productive collaboration. But he also took

a more active role by establishing classroom social norms that emphasised sense making

and the communication and justification of mathematical ideas, so that students were

expected to convince each other, as well as the teacher, of the validity of their assertions.

Impromptu peer discussion flourished under such conditions.

The theoretical question as to how social interaction between peers develops

metacognitive habits of mind still needs to be considered; as noted earlier, it is not yet

clear how such interaction might create a student-student zone of proximal development

that nurtures developing intellectual skills. One possible mechanism that has emerged

from this study involves explanation. Earlier research showed that individual students

working alone regulate their mathematical thinking by monitoring the state of their own

understanding and generating self-explanations if comprehension fails (Chi et al., 1989).

In the present study it was found that students working together monitor and critique their

partners' thinking and ask each other for explanations if they do not understand. If

students are encouraged to engage with each other's reasoning by eliciting and offering

explanations until mutual understanding is achieved, then these social processes of

argumentation may be internalised as self-interrogation and self-explanation. Peer

discussion therefore makes visible the processes that individuals could use to monitor and

extend their own understanding.
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