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The Effect of Anchor Length and Equating Method on the Accuracy of Test Equating:
Comparisons of Linear and IRT-Based Equating

Using Anchor-Item Design

Abstract

Multiple test forms or editions have long been used to satisfy the demand of test security and to
measure growth or trend. As a result, different equating methods have been frequently used to
generate comparable scores from different test forms. One popular approach is to embed a set of
common items in different forms. A practical issue in such design is the effects of particular equating

methods and the characteristics of the anchor on the accuracy of the derived equivalent scores. This

paper reports on a study that examined the influence of anchor length on the accuracy of equating.
The differences between the equating results yielded by Tucker's linear method and two IRT-based

methods were studied. The investigation focused on whether equating accuracy improved with more

anchor items, whether the anchor effect depended on the particular equating method used, and the
adequacy of the inclusion of the guessing parameter for a test that had a negatively skewed
distribution of scores.

The data used was from the two forms of a minimum competency examination that contained 197 and

203 items, respectively. Equating was made possible by the 145 anchor items embedded in both of the

forms. Three pairs of shorter forms were created by simple random sampling of items, with a control on

the anchor length, and the pairs of the forms were equated separately. The total score on the 145 anchor

items was used as a criterion, the pseudo "true score", to evaluate the accuracy of equating results. The

use of such pseudo "true score" made sense because the performance of all the examinees on the
"anchor universe" was attainable and the anchors in the test forms were representative subsets of the

universe. However, such criterion was only appropriate when the examinee population, the test items,

and the testing occasion were considered fixed. Though it was still a close approximation to the true

score, the criterion was conceptually superior than the other criteria and would not be biased in favor of

the IRT equating. The lower bound of IRT equating accuracy, hence, was estimated.

In addition to the Tucker's linear equating, the three parameter logistic IRT model of equating was
applied. The IRT two-stage method and the IRT fixed-b's method, were used operationally to
investigate the effect of IRT calibration on test equating. Lord's true score formula was applied to obtain

true score estimates, which were correlated to the pseudo "true score" to estimate the equating accuracy.

The PC version of BILOG 3 was used to estimate IRT item parameters and person ability.



The results of the classical item analysis showed that the items had different item difficulties and
correlated moderately to the total test score. The equivalent ability scores yielded by the two IRT
methods were very similar. The correlation between the two sets of scores was almost perfect, showing

that the two IRT methods ordered individual examinees in an almost identical way. Regardless of the

differences in anchor length, the true score estimates based on the equating results of the two methods

also correlated in an expected manner, .999 over all the shortened tests. Overall, the results yielded by

all three equating methods were moderately accurate. For IRT equating, the correlation coefficient

between the pseudo "true scores" and the true score estimates ranged from .83 to .86 over pairs of forms.

For Tucker's equating, it ranged from .80 to .83. Although the correlation coefficients did not differ

much, the IRT equating always yielded more accurate scores than Tucker's linear equating.

For IRT two-stage equating, when the number of anchor items increased from 12 to 20 to 30, the
correlation coefficient increased from .832 to .847 to .856. For IRT fixed-b equating, the coefficient
increased from .832 to .847 to .854. And for Tucker's equating, it increased from .802 to .823 to .832.

This pattern suggested that, no matter which equating method was used, the equating tended to be
more accurate when there were more anchor items. However, the improvement might not be
practically significant. If sufficiency and efficiency were of equal concern, it was desirable to have a

minimum of 20 anchor items, or at least 1/5 of the total test should be anchor items. Since the length of

the anchor might have substantial impacts on the results of equating, regardless of equating method, it

was important to include a sufficient number of anchor items.

To correct for the overestimation of the equating accuracy due to auto-correlation, the pseudo "true

scores" were correlated to the IRT true score estimates that based on only the non-anchor items for a

partial control over the auto-correlation. Although the auto-correlation could not be completely ruled

out, it provided a better picture for the goodness of equating methods. Moreover, the pseudo "true
scores" were correlated with the IRT true score estimates based on the anchor items only to investigate

the reliability of the anchor. The patterns of the correlation coefficients remained unchanged. The

strong correlation between the criterion and the anchor provided validity and reliability evidence for

the anchor. Given the valid and reliable equivalent scores, it was concluded that both IRT two-stage

and fixed-b methods were satisfactory in equating the minimum competency test forms.

With the above findings, it was concluded that the three parameter IRT model fit the data used in this
study. The inclusion of the guessing parameter was justified theoretically and empirically. It seemed

appropriate to include the guessing parameter when equating tests that had negatively skewed score
distributions.
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The Effect of Anchor Length and Equating Method on the Accuracy of
Test Equating: Comparisons of Linear and IRT-Based Equating

Using Anchor-Item Design

Introduction

In testing situations, often not all examinees take the same

test at the same occasion. To ensure test security, there is a

need for alternative test forms. To measure growth or trend,

interchangeable parallel forms are also needed so that test scores

are comparable. The need for various test editions or forms is

especially urgent for licensure exams and any other tests of which

the testing results inform critical decisions. Theoretically,

it is possible to obtain parallel test forms by carefully

constructing a test such that the items of alternative forms have

similar average difficulty and difficulty distribution. However,

the result of test construction is often not satisfactory because

the test forms are hardly parallel. It is hence necessary to

establish equivalent scores for scores on different forms.

A variety of equating techniques have been developed to yield

comparable test scores. They are primarily based on the

possibility of making statistical adjustment to approach testing

equivalency. From the perspective of transforming test scores

across forms, equating can be linear or non-linear. Equating can

also be categorized into classical linear equating or item

response theory (IRT) application, of which the assumptions,

mathematical functions, and computational procedures are

substantially different.
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The selection of an equating model depends on the purpose of

equating, the underlying theory of equating, the feasibility and

accuracy of the model, as well as the characteristics of examinees

and test data. Classical linear equating methods have being

popular for years for their straightforward conceptual steps and

convenient computations. However, the equating results sometimes

do not meet all the needs. For example, the item calibration

varies across examinee groups and item samples. To overcome the

drawbacks of classical equating, equating models derived from item

response theory are increasingly applied to large-scale testing.

Nevertheless, there are still doubts about the accuracy of IRT

equating, its practical value, and the claimed superiority over

classical equating methods.

With respect to the need of better equating and the

controversies in practice, the current study sought to resolve

some important issues in both theoretical and empirical ways. A

comprehensive literature review of the underlying theories for

test equating and their applications was included. Pairs of test

forms, varying in anchor length, were calibrated and equated by

different methods using the anchor-item design. Comparisons among

the equating results yielded by two IRT methods and Tucker's

linear equating were presented. Discussions and suggestions were

made for future research and equating practice.
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Research Purposes

To better understand the function of IRT equating, and to

evaluate the adequacy and the effectiveness of the IRT models, IRT

results should be compared with the results of classical equating,

against some unbiased criteria. Also, the effects of the

characteristics of anchor items should not be overlooked. This

study, therefore, has the following purposes:

1. To compare the equating results by various IRT methods.

2. To estimate, evaluate, and compare the equating accuracy of

the traditional linear equating and the IRT-based equating.

3. To investigate the effect of the test and item characteristics

on both linear and IRT equating. Specifically, the effect of

anchor length on equating accuracy would be examined.

4. To inform testing practice about the selection of equating

methods, based on the findings of the empirical study and

the literature review; and to propose useful suggestions on

research designs for future studies.

Research Questions and Limitation

The research questions of this study were shaped by both

personal interest and the particular context of the test data

under study. Because the test scores had already been collected

from non-equivalent groups with the anchor-item design, equating

based on anchor items was the only choice. The availability,

cost, and capacity of computer packages for IRT calibration also

set limits on the design of this study.
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Taking into account the research purposes and limitation, the

following research questions were raised:

1. was there difference between the equating results of different

IRT methods, namely, the two-stage and the fixed-b equating?

2. To what extent that the IRT equating results agreed with the

linear equating results?

3. How adequate were the linear equating and the IRT equating, in

terms of the accuracy of equating?

4. What constituted a better criterion, for the particular test

data used in the study, for evaluating the equating accuracy?

5. Did the equating results depend on the length of the anchor?

Specifically, did the equating accuracy improve with the

increase in the number of anchor items? What was the most

efficient anchor, for the purpose of equating, that had minimum

but optimal number of item?

6. Was it appropriate to include the guessing parameter for a

minimum competence test, where the score distribution was

negatively skewed?

Literature Review

Underlying assumptions and necessary conditions of equating,

common equating designs and models, as well as applications of

equating in practice are reviewed in the following section.

Conditions of Equivalency

If test Y is to be equated to test X, no matter what equating

procedure is chosen, the following conditions must be satisfied to

conclude that the scores on test X and test Y are equivalent
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(Lord, 1980; Angoff, 1984; Petersen, Kolen, & Hoover, 1989;

Dorans, 1990):

1. Both tests measure the same construct.

2. The equating achieves equity. That is, for individuals of

identical proficiency, the conditional frequency distributions of

scores on the two tests are equal.

3. The equating transformation is symmetric. That is, the

equating of Y to X is the inverse of the equating of X' to Y.

4. The equating transformation is invariant across sub-

populations of the population on which it is derived.

In addition to the above conditions, unidimensionality is

also a necessary requirement for the applications of IRT equating.

The conditions of equivalency are further explained below.

Same Construct

The requirement of the same construct is a matter of test

construction. It can be achieved by carefully selecting items

that measure the same construct during the test construction

process. When it is desired to compare tests measuring different

constructs, equating is achievable but meaningless, because it is

simply a problem of regression or prediction. Since equating is a

matter of transforming scores for the purpose of comparison, it

makes no sense for the forms of a test to measure different

constructs.
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Equity

The condition of equity requires that individuals of the same

proficiency obtain the same scores, no matter what tests are

taken. That is, at every ability level, the conditional frequency

distribution on one form is the same as that of another form. For

equivalent scores, the corresponding percentile ranks in any given

group should be equal. The proficiency of individuals taking two

different tests are usually estimated via their performance on the

common items or an anchor test.

Symmetry

The score transformation should be invertible to achieve

symmetry. To say that the scores on test X and test Y are

equivalent, regardless of equating from X to Y or Y to X, the same

score on one test should correspond to a given score on another.

Population Invariance

It is desired that the equating results be independent of the

unique characteristics of the examinee samples used in equating

process. No matter which groups of examinees are used, the

equating results should not change with the characteristics of the

particular examinee groups, except for the underlying construct

that the test is measuring. For all the examinees with the same

ability, IRT equating is expected to assign them the same

estimated ability level. The condition of population invariance

is one of the ultimate goals of test equating.

The condition of invariance can be assessed by examining the

relationship of equivalence across sub-groups. If population

invariance is not obtained, the tests or test forms may not
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measure the same construct. As a result, the test construction

procedures and test items should be scrutinized.

Unidimensionality for IRT Equating

Although unidimensionality is not explicitly recognized as a

condition of equating, it is, however, an underlying assumption

for equating based on item response theory. As a result, IRT

equating is more restrictive by requiring unidimensional test

items.

Overall Equating Guidelines

There is no absolutely superior criterion for the selection

of the equating design or method. Judgments and decisions based

on equating expertise and experience are needed through out the

process. Factors such as feasibility, cost, and the unique

testing context should be considered. Because decisions and

judgments were arbitrary, Brennan and Kolen (1987) provided a set

of guidelines for satisfactory equating.

For test structure, they argued that the test content and

statistical specifications for tests being equated ought to be

defined precisely and be stable over time. Item statistics should

be obtained from pretest or previous use of the test, in the

process of test construction. The test should be reasonably long,

with at least 35 items, and the scoring keys should be consistent.

The stems for common items, alternatives, and stimulus materials

should be identical for the form to be equated from and to.

Brennan and Kolen further listed ideal situations for

equating as follows: (a) Two sets of common items embedded in the

full-length test were desired; (b) The anchors should be at least
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1/5 of the total test in length and mirror the total test in

content specification and statistical characteristics; (c) At

least one link form was administered no earlier than one year in

the past, and at least one link form was administered in the same

month as the form to be equated; and (d) Each common item was in

approximately the same position in the two forms.

They also indicated that the characteristics of examinee

groups should be stable over time. The sizes of the groups should

be relatively large, roughly speaking, larger than 400. The

curriculum, training materials, and field of study should be

stable. The test items should be administered and secured under

standardized conditions.

Criteria for Selecting Equating Methods

How shall we select or tailor an equating method to our

particular needs? For instance, if guessing is explicitly

encouraged for test takers and the effect cannot be neglected, a

fair equating should account for the factor of guessing. Suppose

the equivalent scores are expected to be highly accurate to

legitimate its use in certifying professionals, it is critical to

select an equating method that functions better for that

particular test.

There are three aspects, in general, to consider in the

selection of equating method. They are as follows: (1) Are the

underlying assumptions tenable? (2) Is the procedure practical?

and (3) How good is the equating result? (Crocker & Algina, 1986)
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Tenability of Model Assumptions

The premise of a model application is that all the underlying

assumptions hold. Linear equating assumes that the tests being

equated have identical shapes for the score distributions. It is

therefore appropriate to be used when score distributions differ

in the means and/or standard deviations only. The derived

equivalents will have same percentile ranks due to the assumption.

Equipercentile equating requires fewer assumptions and does

not assume the same shapes of score distributions. Thus it is

applicable even when the percentile ranks of the two examinee

groups are different. The equating procedure determines which

scores of different tests have the same percentile rank, instead

of assuming the similarity in the ranks. Compared to linear

equating, equipercentile method associates with larger errors and

the procedure is more complicated.

Both equipercentile equating and linear equating assume that

the tests being equated measure the same trait with equal

reliability. If the assumption does not hold, the two equating

methods may lead to erroneous results. Nevertheless, given two

tests of different difficulty, the assumption of equal reliability

usually does not hold. In addition, the results of the two

methods depend on the particular test items used and fail to meet

the condition of equity for equating equivalency. Hambleton and

Swaminathan (1990) further indicated that the methods did not meet

the requirement for group invariance. Unlike the other methods,

IRT equating does not have the above drawbacks and may be a better

alternative.
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Feasibility of Design and Method

Current equating designs differ in terms of the need of

randomly selected groups, the administration of tests, and the use

of anchors. If random assignment is employed to form equating

groups or the groups take both tests in randomly assigned orders,

classical equating will be adequate. Otherwise, IRT-based methods

are more appropriate.

Random assignment may save time or money for equating, but it

is not always practical or feasible because tests are usually

administered to convenient intact groups of examinees. One

solution is the use of anchor design, using either anchor items

embedded in both tests (the internal anchor) or administering a

third test to both examinee groups (the external anchor). Without

random assignment, the anchor score distributions for different

sub-populations may be markedly different. Thus the assumption of

equity is unlikely to hold (Crocker & Algina, 1986). If either

linear or equipercentile method is used, the result is unlikely to

be accurate. Methods based on latent trait theory are more costly

but tend to be more adequate when there is no random assignment.

Therefore, they are used most often in such design.

Equating Accuracy

A major concern for test equating is to what extent the

equated scores are equivalent. The accuracy of equating depends

on the conditions of equivalency (same construct, equity,

symmetry, and group invariance).

Since the true score cannot be known and can only be

estimated from the observed score, perfect equivalency can never
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be determined. Consequently, there is no absolute criterion for

equating accuracy, so the degree of accuracy is often studied by

comparing the equating result against arbitrarily sound criteria.

Equating accuracy is therefore an estimate that depends on the

nature of the arbitrary criteria used.

It is unreasonable to compare all equating results against

one single criterion because different equating vary in the

characteristics of the particular test forms, model assumptions,

and equating procedures. There are several ways for selecting

criterion for equating accuracy. The equivalent scores derived

from conventional equating methods that function well or have been

applied for some time can be used as the criterion. The test

itself may also form a criterion, particularly in the study of

scale drift where a test is equated to itself. Based on empirical

studies, IRT-based equating results seem to be more accurate.

However, whether the criteria of accuracy is unbiased should

remain under scrutiny. Commonly used criteria for equating

accuracy is discussed later with other issues on equating

accuracy.

Tucker's Linear Equating

Linear equating is appealing for its requirement of a simple

linear transformation of raw to scaled scores. Among many the

linear equating methods, the popular Tucker's linear equating is

employed in this study to compare to the results from IRT

equating.

Kolen and Brennan (1987) formulated Tucker's linear equating

by emphasizing the notion of a synthetic population, a combination

17
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of the proportionally weighted populations of examinees taking

'different test forms. Given the total score (X) on one test form,

the total score (Y) on another test form, and the total score (V)

on the set of anchor items, Tucker's equating makes strong

statistical assumptions as follows:

1. The linear regression function (slope and intercept) for the

regression of X on V is the same for the two populations. A

similar assumption is made for Y and V.

2. The variance of X given V is the same for the two populations.

Similarly, the variance of Y given V is the same for the two

populations.

With the assumptions on the variance and regression functions

in relation to the two populations, Tucker's linear equating is

more accurate when groups are similar. As a consequence, the

linearly transformed scores on one form have the same mean and

standard deviation as scores on another test form.

Though equally reliable test forms are often needed for Tucker's

equating, Kolen and Brennan (1987) argued that if the tests were

designed to be as similar as possible in content and statistical

characteristics and to be equal in length, small differences in

reliability between the test forms were not likely to have

negative influence on the equating results.

Advantages of IRT Equating

Traditional equating method can yield good

test forms are sufficiently parallel (Lord, 1980)

the tests to be equated differ in difficulties,

considered better than classical linear methods.

of IRT equating are summarized as follows:

results if the

. However, when

IRT methods are

Major advantages
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Curvilinear Equating

IRT methods are capable of modeling either a linear or

curvilinear relationship between raw scores on two editions of a

test. It makes no assumption of equal reliability or identical

observed score distributions (Cook & Eignor, 1983; Kolen, 1981).

The result of IRT equating often agrees with linear equating to a

surprising degree. One possible explanation is that the test

construction has already produced considerably similar tests

(Berk, 1982).

Item-Free & Person-Independent Measures

The most prominent advantage of the IRT method is the

possibility of getting "item-free" estimates for persons and

"person-free" item characteristics (Lord, 1977). Ideally,

examinees of same ability will get the same ability score, no

matter which items are taken. The IRT method can automatically

equate different tests or tests forms while calibrating the test

items on the same scale.

In addition, IRT models provide estimated error of

measurement for ability estimation at each ability level, while

classical equating methods only yield a single standard error of

measurement for all examinees. Green, Yen, and Burket (1989)

suggested that the IRT method would yield equivalent ability

estimates for item sets differing in difficulty and/or

discrimination, although the equivalent estimates might associate

with different standard errors of measurement.

12
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Practical Appeals

IRT equating also have the following practical advantages:

(1) It provides better equating at the upper end of the score

scale, where important decisions are often made.

(2) It improves the flexibility in choosing editions of a

test, once the editions are placed on the same scale.

(3) If re-equating is necessary, usually after adding or

dropping certain items, it is easier to obtain the true score

estimates.

(4) It enables pre-equating, which derives the relationship

between the test editions before they are administered

operationally, when pretest data are available (Cook & Eignor,

1983).

(5) For test forms across years that differ somewhat in

content and length, bias or scale drift in equating chains of

circular-equating paradigm may be reduced, and the stability of

the scales near the extreme values will increase. (Petersen, Cook,

& Stocking, 1983; Hills, Subhiyah, & Hirsch, 1988).

Based on the above arguments, IRT-based equating methods seem

to be superior than the classical methods. However, the relative

efficacy of IRT application remains uncertain for the lack of an

absolute criterion for equating adequacy. Many questions are

await to be answered. For example, how shall the efficacy of

equating be estimated? Is the equating result sensitive to

various item characteristic curves, given its arbitrary nature in

the origin and the scale? If different iterative procedures were

used, would the results agree?
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Green, Yen, and Burket (1989) noted that it was not safe to

say that the IRT method would yield equivalent ability estimates

if the item sets were different in content coverage. On the other

hand, it was shown that content variations had substantially

smaller effects on ability estimates than it had on item

parameters (Yen, 1980). The effects of content variations on

ability estimates is not clear when the content differs

substantially. Therefore, content equivalency should be achieved

before equating.

IRT Equating Methods

IRT equating depends heavily on the particular calibration

process. The following section provides an overview of IRT

equating methods and the role that calibration plays in equating.

Generally, IRT equating involves four steps (Hambleton and

Swaminathan, 1990):

(1) Choose appropriate equating design with respect to the

nature of the test and the group of examinees.

(2) Determine appropriate item response model and assessing

model-data fit by broadly gathering goodness-of-fit measures,

including statistical tests of significance and checks of model

assumptions.

(3) Establish a common metric for ability and item parameters

by determining the equating constants for relating either ability

parameters or item parameters.

(4) Make decisions on the scale to report the test scores;

either ability scores, estimated true scores, or observed scores

may be used.
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The commonly used IRT methods are introduced below.

Two-stage Method

The two-stage IRT method applies to the anchor test or anchor

item design. First, both test forms are calibrated separately.

Then the forms are equated using the information based on the

anchor items. The following steps are generally involved:

(1) Assume that all items, including the anchor items,

measure the same latent trait. Estimate the item difficulties

(b's) for the items on the two forms (Book-A and Book-B) of the

test separately, using all the items including the anchor items.

In the process of calibration, fix the average ability score to

zero to set the scale for the item estimates.

(2) Using the anchor items only, compute respectively the

average item difficulties for Book-A and Book-B.

(3) Compute the difference of the mean anchor item

difficulties by subtracting the mean anchor item difficulty of

Book-B from that of Book-A.

(4) For subjects taking Book-A and Book-B, estimate their

abilities separately. These estimated ability scores are

expressed on two different scales. Since the two scales are

expressions of the same latent trait, the scales must be related

by the equation el = 02 + m, where el is the scale for the group of

examinees taking Book-A, 02 is the group of examinees taking Book-

B, and m is the mean difference of item difficulty.

(5) Add the mean difference of item difficulty (m) to the

ability estimates of subjects taking Book-B. The rationale is

that since the numeric value of item difficulty is a value on the

22
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ability scale, if el = 02 + m, then b1 = b2 +m. By adding m to the

ability score on the scale for the group taking Book-B, the

ability scores of the examinees taking Book-B are transformed to

the scale of Book-A (Crocker & Algina, 1986; Hambleton &

Swaminathan, 1990).

Fixed-b Method

The fixed-b method sequentially calibrates the test items by

the following steps:

(1) Estimate b's and other item parameters for the Book-A items;

(2) Calibrate Book-B items by fixing b's of the anchor items at

the values obtained from the previous step;

(3) Book-B scale is then fixed on to the scale of Book-A

(Petersen, Cook, & Stocking, 1983; Hills, Subhiyah, & Hirsch,

1988).

True Score Equating

The values on the 0 scale may be transformed to their

corresponding true score values when reporting 0 is not preferred.

The true score of an examinee with ability e on a test is the sum

of the conditional probabilities of correct responses across the

item characteristic curves. It is defined as follows (Lord, 1980;

Crocker and Algina, 1986):

True score (t) = E Pi (0) ;

where 0 is the ability and n is the number of items.

Theoretically, it is possible to equate the true scores on

two tests. Suppose the ability level of an examinee on test X is

0 and tx is the corresponding true score, and the ability level of
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the same examinee on test Y is ey and the true score is E,. Then,

4, = Pi(ex), and
4y = I P; (O,,) I pj (a OX + i3 ) ;

where 0, = c(ex f depicts the linear relationship between ey and
ex.

Therefore, for a given value ex, the pair of true scores

(4,,4y) on the tests X and Y is determined (Hambleton &

Swaminathan, 1990).

To emphasize the IRT model and data fit, Hambleton,

Swaminathan, and Rogers (1991) substituted 4 with T and rewrote the
n

equation as follows: TIO = I Pi(0). The T is called test
1

characteristic curve (TCC) for it is the sum of the item

characteristic curves. Since each Pi(0) is an increasing function

of 0, T and 0 are monotonically related. The larger the 0, the

larger the corresponding T. The range of T is between 0 and n, and

it is on the same scale as the number-right scale. Lord (1980)

indicated that true score 4 and ability 0 are the same thing

expressed on different scales of measurement. The difference is

that the scale for 4 depends on the number of items on the test;

the scale for 0 is independent of the number of items on the test.

Therefore, 0 is more useful than 4 for comparison purposes.

Guessing occurs frequently for multiple choice tests. The

probability of guessing an item right depends on the number of the

alternative options for that item. Taking into account the number

of alternatives for each item, the true formula score can be

defined with the following equation and the test characteristic

curves for Book-A and Book-B can be formed:
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n

True score (4) = I ([(ki+1)/ki] Pi (0) 1/ki} ;

1

where n is the number of test items, and (ki+1) is the number of
choices for item i (Petersen, Cook, & Stocking, 1983).

Concurrent Calibration Method

Using LOGIST, an IRT calibration computer program on

mainframes, the item and ability parameters can be estimated

simultaneously in the following manner:

(1) Treat examinees taking Book-A and Book-B as one sample.

Treat data as if all the examinees have taken a test consisting

all the items from both Book-A and Book-B.

(2) Since the examinees taking Book-A do not respond to the

items on Book-B, code the scores for Book-B items as "not reached"

for the examinees taking Book-A. Treat the scores for Book-A

items for the examinees taking Book-B similarly.

(3) Calibrate in a single LOGIST run for the ability

parameters for all the examinees and the item parameters for all

the items. The ability estimates for the examinees taking either

Book-A or Book-B are automatically put on the same scale. No

further step is needed (Hambleton & Swaminathan, 1990).

Conceptually, the concurrent calibration method is expected

to yield more stable equating results because it does not make any

assumptions about the relationship between the item parameter

scales for separate calibration runs (Petersen, Cook, & Stocking,

1983; Hills, Subhiyah, & Hirsch, 1988).

Characteristic Curve Transformation (Formula Method)

The steps of the characteristic curve transformation method
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are as follows:

(1) Book-A and Book-B are analyzed separately to obtain two sets

of item parameters.

(2) For each form of the test, calculate the mean and standard

deviation of the b's for the anchor items.

(3) To put the parameters of Book-B on the scale of Book-A,

linearly transform the Book-B item parameters using the following

formulas (Stocking & Lord, 1984; Hambleton & Swaminathan, 1990,

p.205, 222):
by = abx + S,
ay = ax / a;

where a = Sy/Sx and 13 = y ax, y and x are means, and Sy and
Sx are standard deviation of b-values for the common items.

The basis for the linear transformation is that, in anchor

test design, the difficulty and discrimination parameters for the

common items are linearly related between the two tests, assuming

item and people invariance. (Petersen, Cook, & Stocking, 1983;

Hills, Subhiyah, & Hirsch, 1988).

IRT Pre-equating

Item pre-equating design establishes equating conversions

between a new test edition and a previous one prior to

administering the new edition. It depends on adequate pre-testing

of a pool of items where the new edition is assembled. The pre-

testing is conducted while the editions already equated are

operationally administered. Item statistics obtained are used to

equate scores on the new edition to desired scale (Cook & Eignor,

1983). To better pre-equate, items must behave similarly in
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pretest and operational contexts, especially for item position and

influential context effects. It was found that pre-equating

method associated with substantially larger bias and errors (Kolen

& Harris, 1990).

The Use of IRT Equating Coefficients

The IRT equating transforms the values of the item and

examinee parameters on one metric into those of the other or a

base metric. Therefore, the slope and intercept coefficients of

the appropriate linear transformation of the parameter estimates

must be obtained. For examinee parameters, the basic

transformation equation is as follows (Baker & Al-Karni, 1991):

e* Ae + K

where A is the slope, K is the intercept, 0 is the examinee's

ability parameter in the metric to be equated, and 0' is the
converted 0 on the target metric.

For the item parameters, the transformation can be done as
follows:

a = a/A
b* = Ab+K

Sampling Effects on Equating Results

Sample invariance is a desirable property of equating method.

Ideally, we would like to obtain equating independent of ability

level for any sub-population. Although it was argued that

equating results were consistent across sub-populations of

different ability in general, Lawrence and Dorans (1990) noted

that the results relied on the examinee samples of approximately

equal ability. They suggested that population independence should

be investigated under circumstances that the examinee samples
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differed in ability. The suggestion is relevant because, in

reality, examinee groups are more than likely to have different

ability.

Effect of Ability Difference

Ability difference between examinee samples may have serious

impacts on equating results (Cook, Eignor, & Schmitt, 1988).

Theoretically, the closer the groups in the ability being

measured, the more accurate the equating will be. That is, the

ability estimate will be closer to the true ability score, and

examinees with the same ability will get the same score.

To overcome the threat of ability discrepancy between sample

groups, particular sampling strategies are employed from time to

time to draw samples of similar ability. It is intriguing to

learn what combination of sampling procedure and equating method

works best, since sampling effect may vary with equating methods.

Literature generally recommended the use of representative sample

instead of matched sample.

Representative vs. Matched Sampling

Dorans, Livingston, Wright, and Lawrence (1990) found that

"matched sampling", stratifying samples on the anchor test, was

useful in abridging the disagreement among equating methods. When

populations differed in ability, however, matched sampling was not

only complicated but also yielded little improvement for equating.

Schmitt, Cook, Dorans, and Eignor (1990) also had a similar

finding after investigating the sensitivity of equating results to

different sampling strategies. Eignor, Stocking, and Cook (1990)

recommended that the "matched" samples should not be used with 3PL

28
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IRT equating procedures, because it introduced more errors in the

estimates of item difficulty than representative samples.

Equating Tests with Skewed Distributions

Practitioners or researchers are usually interested in

equating large scale achievement tests that have approximately

symmetrical and bell-shaped score distributions. However, we are

often required to equate tests that have highly skewed score

distributions such as minimum-competency tests or licensure exams

with high passing standards. In addition, especially for

licensure and certification programs, test forms are often equated

with special interest on a particular cut-off score or range of

scores to inform decision making. In this case, the equating

procedure itself is not relevant to the procedure of determining

the cut-off criterion. To maximize the precision of the decision,

it is reasonable to direct more attention to equating in the

cutting score region, even at the expense of poorer equating at

other scores (Brennan & Kolen, 1987).

Hills, Subhiyah, and Hirsch (1988) equated the scores of a

minimum-competency test, the Florida Statewide Student Assessment

test, to the scores of an early version that was administered two

years before. The test items were from the same content domain,

item difficulty were similar, and the examinees were essentially

from the same population. It was found that almost all the five

equating methods used in the study yielded similar results.

Hills, Subhiyah, and Hirsch concluded that IRT equating methods

could be used for minimum-competency tests of extremely skewed

distributions and yielded reasonable results.
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Assessing Equating Adequacy

Equating effect can be evaluated in terms of accuracy, sample

invariance, or scale stability. Sample invariance, a desirable

result for equating tests, can be assessed by examining the

similarity of the equating results obtained from diverse groups,

which can be different in ability, socio-economic status, race, or

other characteristics. As sample invariance has been discussed

previously, in this section, only equating accuracy and scale

stability will be reviewed.

Measures of Equating Accuracy

The purpose of equating is to obtain comparable scores that

well estimate the underling true score, therefore, a relevant

question is: How good are the true score estimates and to what

extent the equated scores are comparable? It was argued that IRT

methods was superior for its capacity to equate both parallel and

non-parallel tests or forms (Kolen, 1981). Green, Yen, and Burket

(1989) found that IRT-based procedures were effective for both

inter-level and inter-form equating. Unfortunately, the findings

are tentative because the accuracy measure can only be determined

with an arbitrary criterion.

This section focuses on how a criterion equating is selected

in practice and how the evaluation on equating accuracy can be

done. Brief description of the commonly used accuracy measures

for equating is included.

Selection of criterion equating.

If certain conventional equating methods are known to

function well or have been in existence for some time, the results
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of the conventional methods may be used as a criterion against

which the IRT equating is evaluated. For example, in a

comparative study, Livingston, Dorans, and Wright (1990) made an

assumption that the true equating relationship was the

equipercentile relationship in the target population because the

true scores could be precisely estimated. Yen (1985) also

suggested the use of the equipercentile equating as the target

equating for its equal accuracy to the IRT methods.

Equating to self.

In other situations, the test itself may form a criterion

accuracy. For example, a test is equated to itself in a typical

design for studying scale drift. Skaggs and Lissitz (1986)

concluded that the best situation for research purposes occurred

when a test could be equated with itself through intervening

forms. Yet one must be cautious when interpreting the results,

because time has elapsed between test administrations and equating

error could be confounded with other types of measurement errors.

Estimated RMSD and BIAS.

A common overall accuracy measure for equating is root-mean-

squared deviation (RMSD), also called root-mean-squared error of

equating (RMSE). It is based on the residual of the equated

scores from the criterion accuracy measure for the full sub-

population. The criterion accuracy measure is obtained from a

criterion equating or the corresponding raw score (Klein &

Jarjoura; Livingston, Dorans, and Wright 1990, 1985). Suppose

Form-B of a test is equated to Form-A, then
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1/2

where ny is the number of examinees with raw score y on Form-B;

xy is the corresponding exact scaled score on Form-A as
A

determined by the criterion equating; and xy is the corresponding

exact scaled score on Form-A as determined by the equating that is

to be evaluated. The summation is over the raw-score levels on

Form-B.
A

The formula can be rewritten as: RMSD. { [ I(xi-xi) 2 I / n } 1/2

Klein and Jarjoura (1985) estimated the mean equating error,

the bias that contributes to the RMSD, with the following formula:

BIAS = X X';

where X is the mean of the criterion scores and X' is
the mean of the equivalents.

Livingston, Dorans, and Wright (1990) computed a variation of

the bias statistic to diagnose for a large RMSD. The statistic is

a weighted mean difference for the new-form population as shown

below:
A

Bias = E [ny ( xy xy )] / Eny

It is noted that the bias measure is not good at evaluating an

equating unless all the equated scores were too high or too low.

However, it describes the tendency to produce equated scores that

were systematically too high or too low.

Marco, Petersen, and Stewart (1983) investigated the adequacy

of a variety of curvilinear score equating models on verbal

portion of the SAT. The criterion equating was the test score

itself, when a test was equated to itself. In the cases where
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tests were equated to a different test, two criteria were

established: a. equipercentile equating of observed scores (the

direct equipercentile criterion); and b. equipercentile equating

of estimated true scores derived from the 3PL model (the IRT

equipercentile criterion). Because the IRT equipercentile

criterion might be biased in favor of the IRT equating methods,

the direct equipercentile criterion was adopted.

Two discrepancy indices were used to evaluate the

effectiveness of the models in the study of Marco, Petersen, and

Stewart (1983): the standardized weighted mean square difference

(or the total error) that gave the greatest weight to those values

most likely to occur, and squared bias.

Marco, Petersen, and Stewart (1983) warned for the

tentativeness of equating results based on arbitrary criterion of

equating accuracy. However, they found that if the anchor test

mirrored the content and the difficulty level of the total test,

the sample differences had relatively small and unsystematic

effects on the quality of the equating results. They also found

that internal anchor, the common items embedded in the tests being

equated, resulted in less total error than external anchor, which

was a third test given to both of the examinee groups. They

attributed it to the possible difference between the external

anchor and the total test.

Scale Stability

Though stability is different from accuracy, it is sometimes

used to compare the adequacy of different equating methods. The

BEST COPY AVAILABLE 3
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research findings of scale stability are briefly summarized below,

since this study does not focus on scale stability.

Kolen (1981) investigated the stability of equating results

across stratified random samples via a cross-validation design

using nine equating methods, including classical method and IRT

models. The cross-validation criterion used was a mean-square-

difference index, of which a smaller value reflected greater

consistency. He also computed Friedman statistic to conduct an

overall significance test for differences among various equating

methods. Kolen concluded that the one parameter IRT models were

inadequate possibly because the prevalence of guessing by the

examinees. In addition, the 3PL IRT model seemed adequate, so was

the equipercentile method. However, Kolen noted that these

conclusions were tentative because the sampling distribution of

the cross-validation statistic was unknown and the consistency

among the methods was only a relative measure of stability. The

complex interaction between item content, difficulty level, and

the equating model may make the results of the cross-validation

statistic even harder to interpret (Skaggs and Lissitz, 1986).

If the result of directly equating the new edition of a test

to its old edition is not the same as the result of equating the

new edition to the old edition through intervening edition(s),

there is scale drift due to equating method (model fit problems)

and/or sampling errors. Scale drift often indicates the

inadequacy of equating methods. Brennan and Kolen (1987)

indicated that equating procedures estimating only one or two

moments tended to be more appealing than the procedures estimating

many moments. In addition, if arbitrary test forms were chosen to
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be equated to itself using the circular equating paradigm, the

equating results might be different. They attributed the

difference to the circular equating paradigm, but not the merits

of different equating methods.

The weighted mean square difference was used by Petersen,

Cook, and Stocking (1983) as a summary index for evaluating the

effectiveness of the various equating models. The measure gave

greater weights to those values that were most likely to occur and

represented larger discrepancies, as shown in the following

formula:

Ej fjdj2 / n = Ej fj (dj d)2 / n + d 2

(Total error ) (Variance of Difference) (Squared Bias)

where

(1) dj = t'j tj: t'j is the estimated scaled score for raw score
xj, and tj is the initial or criterion scaled score for xi:

(2) fj is the frequency of xj:
(3) n= Ejfj: and

(4) d= Ej fjdj/n.

The summation is over that range of x where extrapolation is
unnecessary (Petersen, Cook, and Stocking, 1983).

Overall, it was found that the IRT conversions had less

discrepancy from the initial scale than the other equating

methods. Methods based on the three-parameter logistic IRT model

resulted in greater stability of equating when tests differed

somewhat in content and length (Petersen, Cook, & Stocking,

1983).

Assumption of Dimensionality

The robustness of IRT models to violation of assumptions is a

major concern of the IRT test equating application. Among them,
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multidimensionality affects the fit of an IRT model most. It is

especially true for achievement tests where several different

types of content are tested.

Effect of Dimensionality

In practice, test scores are most meaningful when all the

items depend on a single trait. If the IRT assumption of

unidimensionality holds, local independence should be observed;

that is, for fixed e, the item characteristic functions for any

pair of items i and j are independent (Lord, 1982). If the

probability for a given response to the given items i and j are

not independent for fixed e, the responses to items i and j depend

on some trait other than the 0 shared by the two items. Then

there is a violation of unidimensionality.

Robustness of Unidimensionality Assumption

The study of Dorans and Kingston (1985) showed that violation

of unidimensionality might have an impact on equating, but the

effect might not be substantial. The influence may depend on how

the violation of unidimensionality is formulated. It was found

that dimensionality influenced the magnitude of item

discrimination parameter estimates, which caused an asymmetry of

equating. However, given the similar equating obtained from tests

with varying dimensionality, IRT equating might be sufficiently

robust to the dimensionality violation. Dorans and Kingston

suggested that it was reasonable to think that an overall ability,

the total verbal ability in their case, could be thought of as a

weighted composite of the separate component abilities (the verbal

and reading comprehension abilities).
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Reckase, Ackerman, and Carlson (1988) also advocated that the

unidimensionality assumption was robust by arguing that

unidimensionality only required items of a test to measure the

same composite of abilities, rather than a single ability. Yen's

suggestion is to hypothesize that the unidimensional model chooses

a combination of underlying traits as its unidimensional trait

(Yen, 1984). If a test involve independent traits that influence

only a few items, the traits can be ignored in the definition of

the unidimensional three-parameter trait.

Moreover, Dorans (1990) argued that the tests being equated

did not have to be composed of unidimensional items, although they

had to measure the same construct. The tests should contain the

same content mix of items, and sets of items could be selected to

meet the unidimensionality assumption for most IRT models, even

when more than one ability was required to give a correct

response. Reckase, Ackerman, and Carlson (1988) demonstrated

theoretically and empirically that sets of items measuring the

same weighted composite of abilities could be selected to meet the

unidimensionality assumption for most IRT models.

Characteristics of Anchor items

It is agreed that the characteristics of anchor items are

influential to equating results. Consequently, it is crucial to

adequately select anchor items. Both content representativeness

and anchor length are important characteristics of the test anchor

and deserve to be studied. However, because of the focus and page

limit of this paper, the issue of content representativeness would
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only be skimmed in the following paragraph, and only the issue of

anchor length would be reviewed extensively.

Content Representativeness

Whether the anchor items are representative to the overall

items of the tests being equated, in terms of content and

statistical properties (Cook & Petersen, 1987) is especially

important when groups vary in ability. Budescu (1985) pointed out

that the magnitude of the correlation between the anchor test and

the unique components of each test form was the single most

important determinant of the efficiency of the equating process.

Brennan and Kolen (1987) further indicated that any substantial

content changes entailed a re-scaling and re-norming of the test

with a new "origin" form to which subsequent forms were equated.

Length of Anchor

If efficiency is considered, it is natural to expect an

anchor to be shorter in length but yield better equating result.

The reason not to have too many anchor items is to preserve the

flexibility in selecting non-anchor test items to reflect the

content domain being tested.

Although there is no absolute standard for appropriate length

of an anchor, a rule of thumb is given by Angoff (1984) as

follows: At least 20 items or 20% of the total number of items in

a test, whichever is larger. Several studies suggested, however,

that as few as five or six carefully chosen items could perform as

satisfactory anchors in IRT equating when the item parameters of

both tests were estimated in a single analysis using IRT

concurrent method (Raju, Edwards, & Osberg, 1983; Wingersky &
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Lord, 1984; Raju, Bode, Larsen, & Steinhaus, 1988; Hills,

Subhiyah, & Hirsch, 1988).

It is impossible to offer universal guidelines for selecting

the length of the anchor. For its specific purposes, each testing

program needs to take into account the time, cost, and context

constraints as well as the particular index of efficiency when

determine the length of the anchor (Budescu, 1985).

Hills, Subhiyah, and Hirsch (1988) studied the effect of

anchor test length and found that five randomly chosen anchor

items of a mathematics test was not sufficient to produce

satisfactory equating result. However, an anchor of ten items

were found satisfactorily sufficient when IRT concurrent method

was used.

Precaution: Limits of Equating

Test equating cannot solve problems originated in rough and

improper test construction. It should be used, conversely, to

overcome the insufficiency of a fair test construction that fails

to yield parallel forms.

Both classical and IRT equating are primarily designed for

minor differences in difficulty between test forms. Cook and

Eignor (1991) indicated that no equating method could

satisfactorily equate tests that were markedly different in

difficulty, reliability or test content. From this perspective,

the practicality of vertical equating, which transforms scores

across levels of achievement (usually school grades) onto a single

scale, is in question. Theoretically and operationally, vertical

equating is much more difficult to accomplish than horizontal
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equating. Skaggs and Lissitz (1988) suggested that

multidimensionality might account for a lack of test equating

invariance of vertical equating.

Equal reliability is usually assumed for equating. Both

linear and equipercentile equating require equally reliable tests.

Due to floor and ceiling effects, however, tests differing in

difficulty are not likely to be equally reliable for all sub-

groups of examinees, and the relationship between the tests is

nonlinear (Skaggs & Lissitz, 1986). It is implied that observed

scores on tests of different difficulty cannot be equated.

Equating is, in fact, done in its loose sense. From a pragmatic

point of view, equating is to arrive at a conversion equation that

approximates an ideal equating. Despite its limitation by nature,

test equating is still of great use in comparing scores on test

forms of minor differences.

The focus of this study is horizontal equating, a permissible

and frequently used equating.. The test forms being equated were

constructed to be parallel.

Description of Data

The test data used in this study were the scores on the two

forms, Book-A and Book-B, of a 1993 in-training examination taken

by the candidates of a medical specialty. The candidates took the

test, while participating in various in-training programs located

at different sites (usually in hospitals), to prepare for the

board certification examination. No absolute score was used to

determine pass or fail. The passing standard was 75% of the total
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test items being correctly answered.

To become board-certified, the candidates were strongly

motivated to participate in the in-training programs for the

preparation of the certification exams. Since the in-training

test provided candidates valuable opportunities to get familiar

with the formal certification exams, it was assumed that the

candidates had taken the test as serious as when the formal exams

ware taken.

Test Content and Format

The test forms were comprised of five-alternative multiple-

choice items, and the content of all the items were emergency-

medicine-related. The item responses were all scored as right or

wrong (coded as 1 or 0). Book-A had 203 items, of which 58 items

were unique to Book-A. There were 52 unique items in Book-B, and

the total number of items was 197. There were totally 145 anchor

items, and the anchors were identically embedded in both forms in

terms of wording and location.

Examinee Groups

A total of 2,242 candidates took the in-training test. After

screening the data, a case that had apparently guessed throughout

the entire test was deleted from the analysis to secure the

validity of scoring. Among the 2,241 subjects, 1,092 took Book-A

and the rest of 1,149 took Book-B.

The examinee group taking Book-B scored higher in average on

the anchor items, therefore it was likely that this group of

examinees had higher ability. Nonetheless Lord (1981) mentioned,

the difference in ability level would not influence equating
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result, given anchor-test design was employed. In addition, the

group taking Book-B had a lower mean score on the unreduced full-

length test. This implied that the unique items in Book-B had

higher difficulty in average.

The test forms generally met the equating requirements that

were mentioned earlier in the review of equating guidelines.

Specifically, the test was reasonably long and all the items were

from one single item pool. The anchor items constituted the major

part of the total test. Some of the items were administered in

the previous year under the same standardized testing situations.

The size of the examinee groups, over 2,200 subjects, were

reasonably large. In addition, the scoring key was clear and the

test results appeared to be stable, given the preliminary analyses

based on the classical test equating.

Research Design

All the equating in this study were based on non-equivalent

populations, random sampling of items, and the internal anchor-

item design. The following variables, anchor length and equating

model, delineated the entire study. The equating results of IRT-

based models were compared against the results of linear equating,

with a raw-score-based criterion of equating accuracy. The number

of anchor items was systematically manipulated to reflect the

common suggestions for the anchor length. FIGURE 1 illustrated

the basic design of research in this study.
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Anchor Item Design of Equating

The two examinee groups taking different test forms were not

formed by random assignment. The test forms were constructed with

embedded common items so that the test scores could be made

comparable. The internal anchor items were representative to the

full-length test, and was embedded in both forms in the same

fashion (same wordings and same location).

Random Sampling of Items

The test items fell into 23 sub-areas of a single content

domain. Following the research design, subsets of items were

randomly drawn from the item pool controlling for the number of

anchor items.

The item sampling scheme rendered an opportunity for the

study of the anchor length effects. The total number of items

drawn for each of the reduced test forms also reflected the common

test length in testing practice. The random sampling of items

also extended the scope of the study on equating accuracy. As a

result, the examinee's performance on the complete set of 145

common items, from the original full-length test, formed a

legitimate criterion for equating accuracy.

Specifically, equating results were compared against the

total raw score on the complete anchor set. The total raw score

was the pseudo "true-score" in the sense that the anchor mirrored

the item population and the scores were available for all the

examinees. It was indeed the "true score" if the population and

the occasion were considered fixed. To evaluate the adequacy of

equating results, the estimated true scores of different
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procedures were correlated with the pseudo "true score". The

Pearson's product moment correlation coefficients were computed as

the index of equating accuracy.

The item sampling schemes, the sampling procedures, and the

resulted three pairs of reduced test forms were described in

APPENDIX 1. In summary, the three item samples that differed in

anchor length were drawn from the single item pool. The

underlying assumption was that all the items were written for a

single content domain. The numbers of common items for the three

reduced tests were fixed at 30, 20, and 12 respectively. These

figures reflected a considerably long anchor and two anchors of

minimal length. The minimum lengths were chosen based on the

recommendation that an anchor should have at least 20 items or 20%

of the total test items. By using such minimum numbers of anchor

items, fewer items from one test to another test were repeated,

thus test security could be enhanced (Hills, Subhiyah, & Hirsch,

1988).

It should be noted that, although, from the previous research

it was found that five or six carefully chosen anchor items would

yield good equating results. For the current research, the study

on the effects of a smaller anchor was not feasible. It was

because most of the 255 test items were common items and not

spread evenly across the 23 content areas.

Equating Methods

In addition to the Tucker's linear equating, the three

parameter logistic IRT model was also applied to account for the
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guessing factor. Since the test was comprised of multiple-choice

items, it was highly likely that the examinees had guessed on some

difficult items. Two IRT equating techniques, the two-stage

method and the fix-b's method, were used operationally to

investigate the effects of IRT calibration on test equating.

Although various item samples were created in this study, when

comparing equating results of different equating methods, the same

set of items was always used for the comparison.

Research Tool

The program used to obtain IRT estimates for item parameter

and person ability was the PC version BILOG 3. There were other

IRT-based programs, such as LOGIST and ASCAL, that could also be

used to calibrate the test items. A comparison between BILOG 3

and LOGIST illustrated why BILOG 3 was used in this study.

BILOG 3 yielded marginal maximum likelihood (MML) estimates,

whereas LOGIST simultaneously maximized the joint likelihood

function (JML) for the estimates of item and examinee parameters.

The JML estimates were likely to become inconsistent when the

numbers of examinees or items increased (Mislevy & Stocking, 1989;

Baker, 1990). The number of parameters estimated with MML did not

increase with the increase in the number of examinees.

Consequently, BILOG 3 would yield more consistent results. The

marginal maximum likelihood was the probability of making a

correct response by an examinee randomly selected from a

population with a certain ability distribution. Yen (1987) also

found that BILOG always yielded more precise estimates of

4'1
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individual item parameters. For shorter test with ten items,

BILOG excelled LOGIST in estimating item and test characteristic

functions. For longer tests with 20 to 40 items, however, the two

programs yielded similar estimates.

LOGIST constrained extreme item parameter estimates by

imposing specified upper and lower limits. The boundary values

affected 0 estimates, even though the effect may be 'minimal.

Based on a Bayesian framework, BILOG implemented prior

distributions on all item parameters in the 3PL model. The 0

estimates obtained depend on the characteristics of other items in

the test. If the prior information is not appropriate for the

data, item parameter estimates would be biased (Baker, 1990).

When the tests were longer, samples were larger, and some items

were omitted or not reached, LOGIST and BILOG would yield similar

item parameter estimates. In this case, BILOG was still more

appealing for its cost and statistical properties. If the tests

were shorter or the samples are smaller, BILOG had the advantage

of yielding more reasonable results (Mislevy & Stocking, 1989).

Unless linear transformation was applied, IRT parameter

estimates were not unique when specifying a 0 trait scale metric.

The PC-BILOG used the estimated posterior 0 distribution to

establish the location and metric for the 0 scale, as a solution

to the identification problem. Baker (1990) indicated that the PC

BILOG preserved the variability of true distributions that had

smaller variances, but it standardized the variability of the true

distributions when the variances were larger.

48
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Results and Discussion

The results of the classical item analysis showed that the

items had various item difficulty and correlated moderately to

the total test score. The results were summarized in APPENDIX 2.

Descriptive statistics and correlation coefficients for the common

and unique items, mainly for the application of Tucker's linear

equating, of each of the test forms were included in APPENDIX 3.

Descriptive statistics for IRT calibration for the three pairs of

reduced forms were presented in TABLE 2 for both the two-stage and

fixed-b methods. The correlation coefficients presented in TABLE

4 described the equating accuracy of different equating methods

over various item samples by using the scores on the complete set

of 145 anchor items as the accuracy criteria, the "true scores".

Test Homogeneity & Content Representativeness

For the complete test forms and the reduced forms, the anchor

and the unique items were significantly correlated. They also

correlated significantly with the whole test forms respectively,

regardless of the differences in anchor length (see APPENDIX 3).

It showed that the anchor reasonably mirrored the test form, in

relation to the content. Therefore, the use of the anchor in

equating the test forms seemed appropriate.

It should be noted that, however, the magnitude of the

correlation coefficient between the anchor and the whole test was

inflated by auto-correlation because the anchor was embedded in

the test. The artifact of the auto-correlation was evidenced by

the decreasing magnitude of the correlation coefficient when the

49
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size of the anchor decreased. The coefficient decreased from .861

to .797 to .729 for Book-A and from .863 to .787 to .696 for Book-

B when the number of anchor items decreased from 30 to 20 to 12.

Thus the content representativeness of an anchor could not be

solely determined by the magnitude of the correlation coefficient.

The number of anchor items also played a critical role.

The size of the anchor, therefore, might have substantial

impact on test equating. This was discussed later with the IRT

equating results.

Preliminary Study on the Raw Scores

Generally, the average raw scores of people taking different

test forms did not differ substantially. With the evidence of

item homogeneity and content representativeness, the test forms

seemed to be pretty parallel. Upon closer inspection, however, it

was found that the examinees taking Book-B scored slightly higher

on both anchor items and unique items across the three reduced

item samples. The average raw scores was divided by the number of

items in the form to yield comparable percentage values. The

percentages were summarized in TABLE 1.

The figures in TABLE 1 indicated higher ability of the

examinees taking Book-B over the three pairs of reduced test

forms, perhaps caused by the non-random selection of the

examinees. Despite the ability difference between examinee

groups; equating results should not be affected because of the

anchor-item design.
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Estimation of Item Parameters

The IRT equating in this study were done by incorporating the

two-stage and the fixed-b methods with the three parameter

logistic IRT model for item calibration. The summary statistics

for the estimated item and ability parameters were presented in

TABLE 2. The distributions of the item parameter estimates

generally showed the items from different test forms had different

item difficulty but similar item discrimination. It suggested the

item sampling effect on test content and was consistent with the

pattern found in the average item difficulty based on raw scores.

Since Book-B was equated to Book-A, only the estimated parameters

for Book-A were used in computing the estimated true scores later.

Equating the Estimated Ability Scores

The average anchor item difficulty of the form being equated

to (Book-A), yielded by the two-stage calibration, was used to

adjust for the ability estimates from the form being equated

(Book-B). Since the fixed-b method resulted in estimates that

were already on the same ability scale, no adjustment was needed.

The equivalent ability scores yielded by the two IRT methods

were very similar. The correlation coefficients between the two

sets of equivalent ability scores were computed for various

reduced forms. The significant high correlation, .999 for all the

reduced forms (see APPENDIX 4), showed that the two-stage and the

fixed-b equating methods yielded almost identical equating results

in terms of individual examinees' standings in the examinee group.



TABLE 2: Summary of IRT Calibration

50

Simple Random Sample

Book-A Total # of items 60 60 60
(n=1092) # of anchor items 30 20 12

Estimated a mean 0.340 0.365 0.356

s.d. 0.173 0.179 0.179

Estimated b mean -0.884 -0.544 -0.761

s.d. 2.239 2.290 2.540

Estimated c mean 0.252 0.259 0.249

s.d. 0.046 0.050 0.050

Mean anchor item

difficulty -1.340 -0.620 -0.420

Ability estimates mean 0.003 0.004 0.004

s.d. 0.851 0.864 0.860

Book-B Total # of items 60 60 60

(n=1149) # of anchor items 30 20 12

Two-stage Estimated a mean 0.377 0.421 0.409

Method s.d. 0.165 0.193 0.194

Estimated b mean -1.008 -0.628 -0.531

s.d. 1.891 1.969 2.141

Estimated c mean 0.241 0.279 0.277

s.d. 0.034 0.057 0.057

Mean anchor item

difficulty -1.450 -0.800 -0.540

Ability estimates mean 0.003 0.005 0.005

s.d. 0.868 0.876 0.871

Fixed-b Estimated a mean 0.400 0.429 0.406

Method s.d. 0.164 0.173 0.176

Estimated b mean -0.591 -0.073 -0.079

s.d. 1.951 1.999 2.418

Estimated c mean 0.311 0.353 0.341

s.d. 0.053 0.070 0.068

Ability estimates mean 0.059 0.176 0.174

s.d. 0.880 0.910 0.906

<Note> a = Discrimination Parameter
b = Item Difficulty Parameter
c = Guessing Parameter
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Estimation of the True Scores

With item parameter estimates and equivalent ability

estimates for both examinee groups, the true score estimates on

Book-A for all the 2,241 examinees were obtained by using the

following formula (Lord, 1980):

n
Estimated true score (T) = E Pi(0)

i =1
n

= I {ci+(1-ci)/(1+Exp[ -1.7ai (O -bi)]) };
i=1

where 0 is the examinee's ability and n is the number of items.

The correlation between the estimated true scores resulted from

the two-stage and the fixed-b equating methods was significantly

high, as expected, across all set of test forms.

Tucker's Linear Equating Results

Tucker's linear equating was applied to all the reduced test

forms. The results were summarized in TABLE 3.
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TABLE 3: Summary of Tucker's Linear Equating Results

For the test forms with 30 anchor items:

aA (Alv)=1.5236 &

aB(Blv)=1.5925 &

gs(A)=41.6151 & a2s(A)=32.7416
ils(B)=41.8546 & cy2s(B)=36.0471

Equating equation: 1(b)=.9530(b-41.8546)+41.6151

For the test forms with 20 anchor items:

aA(Alv) =1. 8270 & 1.ts(A) =41. 0976 & a2s(A) =34 .9185
aB(Blv) =1.8605 & 14(3)=41.7714 & a2

s(B)=37.3508

Equating equation: 1(b)=.9669(b-41.7714)+41.0976

For the test forms with 12 anchor items:

aA(AIv)= 2.1554 & 14(A)=41.1826 & CY
2s(A)=32.6102

aB(Blv) =2 . 2419 & gs (B) =41. 2470 & a 2
s (B) =37 .1640

Equating equation: 1(b)=.9367(b-41.2470)+41.1826

Note:

A= Test Form "Book-A" & A= Population taking Book-A
B= Test Form "Book-B" & B= Population taking Book-B
V= Common Items
s= the Synthetic Population
WA= the Weight for Population A = .4873
Ws= the Weight for Population B = .5127
a= regression coefficient
b= the observed score on Book-B
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Accuracy of Equating

The examinees' total raw scores on the 145 common items from

the complete test forms were computed and used as the "true score"

to study the accuracy of equating, because all the anchors in the

reduced test forms were sampled from the 145 common items. The

IRT true score estimates yielded by the two IRT equating,methods,

as well as the scaled scores obtained by Tucker's linear equating,

for all the reduced test forms were correlated to the "true

score". The correlation analyses were summarized in TABLE 4.

IRT True Score Estimates & Tucker's Scaled Scores

Overall, the results of the IRT two-stage and fixed-b

equating were moderately accurate. The correlation coefficients

between the "true scores" and the true score estimates ranged from

.832 to .856, over the three sets of reduced forms. The

correlation coefficients for Tucker's linear equating ranged from

.802 to .832, which also indicated moderate accuracy. The

correlation analyses showed that the equating, regardless of the

equating method, generally ordered the examinees in a way

consistent to their standings based on their true scores.

Although the magnitude of the correlation coefficients were

similar, the IRT equating always had higher correlation

coefficients. It seemed that the two IRT equating methods always

resulted in more accurate scores than Tucker's linear equating.

TABLE 4 also showed that the true score estimates yielded by the

two IRT methods correlated almost perfectly, .999, over various

5?
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reduced forms. It was then concluded that there was no difference

in the results of the two IRT equating methods.

Anchor Effect

For IRT two-stage equating, the correlation coefficient

increased from .832 to .847 to .856, when the number of anchor

items increased from 12 to 20 to 30. For IRT fixed-b equating,

the coefficient increased from .832 to .847 to .854, and for

Tucker's equating it increased from .802 to .823 to .832. The

patterns generally suggested that equating would be improved given

more anchor items, no matter which of the three equating methods

was used. Nevertheless, it should be noted that the improvement

might not be practically significant.

The above findings suggested that, if both the sufficiency

and efficiency of an anchor were concerned in equating tests, test

forms that had at least 20 anchor items or 12 items (1/5 of the

total test in length) were desirable. In summary, anchor length

seemed to have substantial impacts on test equating, regardless of

the method of equating. It was important to include enough number

of anchor items in equating practice.

IRT Estimates For Unique Items

There was a concern that the correlation between the true

scores and the true score estimates based on the entire reduced

forms might have been inflated by auto-correlation. Therefore,

the "true scores" were also correlated with the IRT true score

estimates for various reduced forms that did not include any

anchor items (see APPENDIX 5). The same correlation analysis,
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however, was not done for Tucker's linear equating results

because the method was based on the observed test scores as a

whole. In addition, the scaled scores based on only the unique

items could not be computed for Tucker's linear equating results.

It had been shown that IRT methods were more flexible in computing

the scaled scores, after equating, if certain items were ,added or

dropped.

The auto-correlation of concern was due to the overlapped

anchor items in the reduced forms and the complete 145 anchor set.

By correlating the true scores with the true score estimates using

unique items only, the auto-correlation still could not be totally

eliminated. It was because the IRT estimation for the unique

items was still influenced by the characteristics of the anchors,

especially for the study using common-item design. However, by

controlling for part of the auto-correlation, the correlation

analysis results presented in APPENDIX 5 at least provided a

better picture to for understanding the goodness of different

equating methods.

The patterns of the correlation coefficients, discovered in

the previous section of anchor effect, were expected to have some

changes. It was because different numbers of anchor items (12,

20, or 30) were excluded from the correlation analysis. The

results in APPENDIX 5 showed that, despite the slight decrease in

the magnitude of the coefficients, the general patterns did not

change. Therefore, the anchor length effect and the similarity of

the two IRT equating methods, in terms of the equating results,
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were retained.

Another possible explanation for the unchanged patterns was

that the anchor and the unique items in the three pairs of reduced

forms were homogeneous. As a result, the differences in the

correlation coefficients were minimal when the anchor items were

excluded. The correlation analysis for the raw scores had a

similar results. Furthermore, the decrease in the magnitude of

the coefficients could be attributed to the smaller number of

items used in computing the correlation coefficients, after

excluding 12, 20, or 30 common items.

IRT Estimates For Anchor Items

To further investigate the goodness of IRT equating, as well

as the reliability of the anchor, the "true scores" were also

correlated with the IRT true score estimates obtained by using the

anchor items only. The results of the correlation analysis was

summarized in APPENDIX 6.

As before, the patterns of the coefficients still suggested

substantial effect of anchor length. The longer the anchor length

was, the better the equating result would be. The magnitude of

the correlation coefficients did not change much, after excluding

the unique items from the correlation analysis. In addition, the

results of the two IRT equating methods were close as discovered

previously. As before, the reduction in the magnitude of the

coefficients might due to the smaller number of items used in

computing the coefficients.
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In relation to the true score estimates based on the anchor

items only, the "true score" obtained from the 145 anchor items

was regarded as a similar but more reliable measure. It was

because the "true score" was computed using more items. As a

consequence, the "true score" could be used as the criterion

measure to study the concurrent validity of the anchor.

Generally, the high correlation coefficients between the "true

score" and various true score estimates, shown in APPENDIX 6,

provided evidence of high validity for the three anchors. In

average, the coefficient for the 12-item anchor was .832. For the

20-item anchor, it was .847. And for the 30-item anchor, it was

higher, .856.

From the perspective of correlating an ability measure and

its corresponding true score, the coefficients in APPENDIX 6 might

also be regarded as reliability measures. The coefficients, then,

suggested that the anchors ware considerably reliable. Given the

adequate validity and reliability, along with the more accurate

equating results, both IRT two-stage method and fixed-b method

were considered satisfactory.

Critiques on the Criteria of Equating Accuracy

The "true score" obtained from the complete 145 anchor items

was used as a criterion for equating accuracy, because it could be

regarded as the item population from which the common items in the

pairs of the reduced forms were drawn. Nevertheless, this
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criterion was only appropriate when the examinee population and

the testing occasion were fixed.

Despite all the nice features of being longer and thus more

reliable, taken by both of the examinee groups, as well as the

content similarity to the forms being equated, the criterion was

at most a convenient but close approximation to the true score.

Because it was the raw-score total of the zero/one (wrong/right)

coded items, it could not escape from the common drawbacks of raw-

score-based measures. For instance, the characteristics of the

items were not "person-free" and the scores were not "item-free".

Nevertheless, the 145 items constituted a conceptually

reasonable item population, and all the items were taken by the

entire examinee population. As a result, this raw-score-based

criterion was blameless for not being "person-free" or "item-

free".

Alternatively, an IRT estimated score could be computed using

the 145 common items to serve as a criterion of equating accuracy.

Nonetheless, the IRT-based criterion might be biased in favor of

the IRT equating methods. For Tucker's linear equating, which was

quite different for IRT equating, the IRT-based criterion could

underestimate its equating accuracy. Taking into account the

issues, the raw-score-based criterion was used in this study to

obtain a conservative estimate of equating accuracy for IRT

equating.
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Adequacy of the Guessing Parameter

With the above findings on item calibration and equating

accuracy, it was concluded that the three parameter IRT model fit

the minimum competence test data that was used in this study. The

inclusion of the guessing parameter was reasonable because of the

chance of guessing on difficult items, due to the nature of the

multiple-choice format, as well as the strong motive of the

examinees to obtain higher scores. It was also justified by the

empirical results of equating. Therefore, it seemed appropriate

to include the guessing parameter when equating tests or test

forms that had negatively skewed score distributions.

Suggestions

In addition to the current research, another study can be

done to investigate the function of various equating methods, when

the test forms become longer or the number of anchor items are

increased. If the test data of different years are available,

cross-year equating can be done to study the effects of test and

examinee characteristics over time. Validation study could be

conducted to further determine the adequacy of equating, if the

examinees' performances on the formal licensure exams were

available.

Equating accuracy could be better studied if certain unbiased

criteria were identified. Due to the restrictions on the current

research design and the nature of the test items, test forms that

had very short but adequate anchors were not studied. If such

t
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short anchors were available in the future, efficiency of the

anchor could be further studied. Only the three parameter

logistic IRT model was applied in this study, because of the

possibility of examinee's guessing on the difficult items.

However, for a minimum competency test, if guessing is not a major

concern, the two parameter IRT model or the Rasch model might as

well fit the data. Further investigation are needed for the fit

of different IRT models to reduce the cost in the actual equating

process.

For test forms used in personnel selection or certification,

usually a cut-off score is arbitrarily established. It will be

useful to know how the results of equating function with the

arbitrary cut-off standard. For example, it would be interesting

to learn about the influence of the IRT equating on the hit and

miss rates, under the impact of an arbitrary criterion such as

the top 75% of the examinees".

An interesting variation of the current study is to examine

the effect of content mix and equating method on the accuracy of

test equating by comparing the linear and IRT Equating results,

following the same anchor item design of this study. The

manipulation of the content of the test forms is reasonable

because the 255 test items falls into 23 content sub-areas.

Assuming substantial differences among the content areas, from the

big item pool, items could be sampled by different schemes to

obtain reduced test forms that are different in terms of content

mix. In a separate study, four pairs of shorter forms were

66
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created using various sampling schemes, including simple random

sampling, equal weight domain random sampling, proportional weight

domain random sampling, and purposeful sampling. The results

supported that equating accuracy depended on the content

representativeness of the anchor items.
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Appendix 1: Item Sampling Scheme for the Reduced Forms

Simple Random Sampling

Assumption: There is no substantial differences among the items
from the 23 content sub-areas, since all the items are
from a single item pool for emergency medicine.

Method: Mix the items from the 23 content areas and randomly
sample from the pool using a random number table.

Results: Three pairs of reduced test forms.
There are 60 items in each form.

Special design:

The control for the anchor length is incorporated with the simple
random sampling of the test items to study the effect of the
anchor length.

Taking into account the recommended anchor lengths from previous
research findings, three samples consisting 30, 20, and 12 anchor
items are drawn respectively.

The scenarios of the recommendation for the appropriate anchor
length are as follows:

1. at least 20 anchor items, or
2. at least 20% of the total test (Angoff, 1984); and
3. 5 or 6 carefully chosen items may suffice.

Results: Three Pairs of Reduced Test Forms

Items randomly selected for the samples of--

30 anchor and 30 unique items:
Book-A: Length=60 (items)
Book-B: Length=60

20 anchor and 40 unique items:
Book-A: Length=60
Book-B: Length=60

12 anchor and 48 unique items:
Book-A: LENGTH=60
Book-B: LENGTH=60
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Appendix 2: Item Difficulty & Item-Total Correlation for the Items in the Reduced Test Forms
Simple Random Sample with 30 Anchor Items
CLASSICAL ITEM STATISTICS FOR SUBTEST Book-A

NUMBER NUMBER ITEM*TEST CORRELATION
ITEM NAME TRIED RIGHT PERCENT LOGIT/1.7

73

1 0001 1092.0 776.0 .711 .53
2 0002 1092.0 1016.0 .930 1.53
3 0003 1092.0 813.0 .745 .63

4 0004 1092.0 998.0 .914 1.39
5 0005 1092.0 826.0 .756 .67
6 0006 1092.0 945.0 .865 1.09
7 0007 1092.0 554.0 .507 .02
8 0008 1092.0 527.0 .483 -.04
9 0009 1092.0 839.0 .768 .71

10 0010 1092.0 982.0 .899 1.29
11 0011 1092.0 699.0 .640 .34
12 0012 1092.0 950.0 .870 1.12
13 0013 1092.0 456.0 .418 -.20
14 0014 1092.0 883.0 .809 .85
15 0015 1092.0 907.0 .831 .94
16 0016 1092.0 928.0 .850 1.02
17 0017 1092.0 718.0 .658 .38
18 0018 1092.0 768.0 .703 .51
19 0019 1092.0 840.0 .769 .71
20 0020 1092.0 727.0 .666 .41
21 0021 1092.0 655.0 .600 .24
22 0022 1092.0 795.0 .728 .58
23 0023 1092.0 785.0 .719 .55
24 0024 1092.0 832.0 .762 .68

25 0025 1092.0 605.0 .554 .13

26 0026 1092.0 970.0 .888 1.22
27 0027 1092.0 534.0 .489 -.03
28 0028 1092.0 973.0 .891 1.24
29 0029 1092.0 531.0 .486 -.03
30 0030 1092.0 826.0 .756 .67
31 0031 1092.0 720.0 .659 .39
32 0032 1092.0 961.0 .880 1.17
33 0033 1092.0 501.0 .459 -.10
34 0034 1092.0 544.0 .498 .00
35 0035 1092.0 743.0 .680 .44
36 0036 1092.0 769.0 .704 .51
37 0037 1092.0 802.0 .734 .60
38 0038 1092.0 1000.0 .916 1.40
39 0039 1092.0 738.0 .676 .43
40 0040 1092.0 610.0 .559 .14
41 0041 1092.0 716.0 .656 .38
42 0042 1092.0 1015.0 .929 1.52
43 0043 1092.0 656.0 .601 .24
44 0044 1092.0 658.0 .603 .24
45 0045 1092.0 801.0 .734 .60
46 0046 1092.0 748.0 .685 .46
47 0047 1092.0 369.0 .338 -.40
48 0048 1092.0 613.0 .561 .15
49 0049 1092.0 1060.0 .971 2.06
50 0050 1092.0 720.0 .659 .39
51 0051 1092.0 713.0 .653 .37
52 0052 1092.0 971.0 .889 1.23
53 0053 1092.0 470.0 .430 -.16
54 0054 1092.0 584.0 .535 .08
55 0055 1092.0 528.0 .484 -.04
56 0056 1092.0 635.0 .582 .19
57 0057 1092.0 559.0 .512 .03
58 0058 1092.0 764.0 .700 .50
59 0059 1092.0 795.0 .728 .58
60 0060 1092.0 661.0 .605 .25

PEARSON BISERIAL
.109 144
.167 .318
.170 .231
.220 .392

-.020 -.027
.091 .143
.080 .101
.311 .390

-.001 -.001
.144 .246
.003 .004
.074 .117
.109 .137
.353 .509
.099 .147
.192 .294
.281 .363
.075 .099
.198 .274
.108 .139
.135 .171
.133 .178
.112 .150
.131 .180
.120 .151
.207 .344
.191 .239
.110 .184
.285 .357
.204 .279
.208 .269
.043 .070
.137 .171
.181 .226
.127 .166
.098 .130
.085 .114
.153 .276
.005 .006

-.044 -.055
.309 .399
.088 .167
.306 .388
.201 .255
.100 .135
.230 .301
.147 .190
.041 .052
.082 .205
.102 .132
.170 .220
.263 .437
.177 .223
.096 .121
.128 .160
.152 .192
.121 .151
.137 .181
.163 .218
.141 .179



Simple Random Sample with 30 Anchor Items
CLASSICAL ITEM STATISTICS FOR SUBTEST Book-B

ITEM NAME
NUMBER
TRIED

NUMBER
RIGHT PERCENT LOGIT/1.7

ITEM*TEST CORRELATION
PEARSON BISERIAL

1 0001 1149.0 861.0 .749 .64 .101 .137
2 0002 1149.0 1085.0 .944 1.66 .148 .302

3 0003 1149.0 898.0 .782 .75 .142 .199
4 0004 1149.0 1038.0 .903 1.32 .252 .435
5 0005 1149.0 901.0 .784 .76 .031 .044
6 0006 1149.0 998.0 .869 1.11 .150 .237
7 0007 1149.0 595.0 .518 .04 .132 .165
8 0008 1149.0 591.0 .514 .03 .217 .272

9 0009 1149.0 872.0 .759 .67 .006 .008
10 0010 1149.0 1047.0 .911 1.37 .148 .262
11 0011 1149.0 722.0 .628 .31 .123 .157

12 0012 1149.0 984.0 .856 1.05 .060 .093
13 0013 1149.0 495.0 .431 -.16 .202 .255
14 0014 1149.0 998.0 .869 1.11 .333 .528
15 0015 1149.0 987.0 .859 1.06 .123 .192

16 0016 1149.0 1006.0 .876 1.15 .158 .254
17 0017 1149.0 786.0 .684 .45 .351 .459

18 0018 1149.0 762.0 .663 .40 .053 .069
19 0019 1149.0 913.0 .795 .80 .173 .245

20 0020 1149.0 789.0 .687 .46 .132 .173

21 0021 1149.0 714.0 .621 .29 .167 .213

22 0022 1149.0 810.0 .705 .51 .194 .256
23 0023 1149.0 859.0 .748 .64 .210 .286
24 0024 1149.0 876.0 .762 .69 .136 .188
25 0025 1149.0 622.0 .541 .10 .063 .079

26 0026 1149.0 999.0 .869 1.12 .273 .434

27 0027 1149.0 612.0 .533 .08 .192 .241

28 0028 1149.0 1034.0 .900 1.29 .163 .279

29 0029 1149.0 609.0 .530 .07 .285 .358

30 0030 1149.0 917.0 .798 .81 .165 .235
31 0031 1149.0 907.0 .789 .78 .229 .324
32 0032 1149.0 736.0 .641 .34 .182 .234
33 0033 1149.0 633.0 .551 .12 .211 .265

34 0034 1149.0 621.0 .540 .10 .274 .344

35 0035 1149.0 623.0 .542 .10 .160 .201

36 0036 1149.0 861.0 .749 .64 .149 .202

37 0037 1149.0 801.0 .697 .49 .175 .230

38 0038 1149.0 946.0 .823 .91 .192 .282

39 0039 1149.0 594.0 .517 .04 .207 .260
40 0040 1149.0 562.0 .489 -.03 .256 .321
41 0041 1149.0 544.0 .473 -.06 .157 .197

42 0042 1149.0 958.0 .834 .95 .054 .081
43 0043 1149.0 951.0 .828 .92 .289 .427
44 0044 1149.0 724.0 .630 .31 .252 .322
45 0045 1149.0 1017.0 .885 1.20 .124 .204
46 0046 1149.0 677.0 .589 .21 .043 .054

47 0047 1149.0 1032.0 .898 1.28 .126 .215

48 0048 1149.0 914.0 .795 .80 .192 .273
49 0049 1149.0 538.0 .468 -.07 .063 .079
50 0050 1149.0 469.0 .408 -.22 .160 .203

51 0051 1149.0 993.0 .864 1.09 .277 .435

52 0052 1149.0 711.0 .619 .28 .336 .429
53 0053 1149.0 511.0 .445 -.13 .142 .179
54 0054 1149.0 939.0 .817 .88 .090 .131
55 0055 1149.0 536.0 .466 -.08 .111 .139

56 0056 1149.0 1054.0 .917 1.42 .190 .344

57 0057 1149.0 672.0 .585 .20 .051 .064

58 0058 1149.0 912.0 .794 .79 .085 .121

59 0059 1149.0 803.0 .699 .50 .237 .312

60 0060 1149.0 850.0 .740 .61 .164 .221



Simple Random Sample with 20 Anchor Items
CLASSICAL ITEM STATISTICS FOR SUBTEST Book-A

ITEM NAME
NUMBER
TRIED

NUMBER
RIGHT

ITEM*TEST CORRELATION
PERCENT LOGIT/1.7 PEARSON BISERIAL

1 0001 1092.0 776.0 .711 .53 .104 .138
2 0002 1092.0 813.0 .745 .63 .163 .222
3 0003 1092.0 998.0 .914 1.39 .228 .407
4 0004 1092.0 826.0 .756 .67 -.031 -.043
5 0005 1092.0 554.0 .507 .02 .090 .112
6 0006 1092.0 527.0 .483 -.04 .336 .421
7 0007 1092.0 982.0 .899 1.29 .154 .263
8 0008 1092.0 699.0 .640 .34 .009 .011
9 0009 1092.0 456.0 .418 -.20 .098 .124

10 0010 1092.0 883.0 .809 .85 .354 .511
11 0011 1092.0 928.0 .850 1.02 .212 .324
12 0012 1092.0 718.0 .658 .38 .292 .377
13 0013 1092.0 840.0 .769 .71 .219 .303
14 0014 1092.0 727.0 .666 .41 .108 .141
15 0015 1092.0 655.0 .600 .24 .140 .177
16 0016 1092.0 795.0 .728 .58 .122 .163
17 0017 1092.0 832.0 .762 .68 .139 .192
18 0018 1092.0 605.0 .554 .13 .101 .127
19 0019 1092.0 534.0 .489 -.03 .216 .271
20 0020 1092.0 826.0 .756 .67 .211 .289
21 0021 1092.0 632.0 .579 .19 .174 .220
22 0022 1092.0 720.0 .659 .39 .212 .274
23 0023 1092.0 702.0 .643 .35 .115 .148
24 0024 1092.0 961.0 .880 1.17 .042 .068
25 0025 1092.0 501.0 .459 -.10 .147 .185
26 0026 1092.0 544.0 .498 .00 .185 .232
27 0027 1092.0 743.0 .680 .44 .133 .173
28 0028 1092.0 769.0 .704 .51 .110 .146
29 0029 1092.0 802.0 .734 .60 .070 .094
30 0030 1092.0 1000.0 .916 1.40 .168 .303
31 0031 1092.0 738.0 .676 .43 -.005 -.006
32 0032 1092.0 866.0 .793 .79 .345 .489
33 0033 1092.0 610.0 .559 .14 -.021 -.027
34 0034 1092.0 716.0 .656 .38 .324 .418
35 0035 1092.0 1015.0 .929 1.52 .082 .156
36 0036 1092.0 656.0 .601 .24 .309 .391
37 0037 1092.0 658.0 .603 .24 .187 .237
38 0038 1092.0 800.0 .733 .59 .229 .308
39 0039 1092.0 801.0 .734 .60 .089 .119
40 0040 1092.0 770.0 .705 .51 .149 .197
41 0041 1092.0 748.0 .685 .46 .228 .299
42 0042 1092.0 369.0 .338 -.40 .149 .193
43 0043 1092.0 613.0 .561 .15 .036 .045
44 0044 1092.0 738.0 .676 .43 .028 .036
45 0045 1092.0 925.0 .847 1.01 .053 .081
46 0046 1092.0 952.0 .872 1.13 .218 .349
47 0047 1092.0 1060.0 .971 2.06 .074 .184
48 0048 1092.0 720.0 .659 .39 .099 .128
49 0049 1092.0 829.0 .759 .68 .253 .347
50 0050 1092.0 971.0 .889 1.23 .270 .449
51 0051 1092.0 470.0 .430 -.16 .179 .226
52 0052 1092.0 427.0 .391 -.26 -.010 -.013
53 0053 1092.0 627.0 .574 .18 .186 .234
54 0054 1092.0 528.0 .484 -.04 .141 .176
55 0055 1092.0 635.0 .582 .19 .138 .175
56 0056 1092.0 1004.0 .919 1.43 .172 .313
57 0057 1092.0 559.0 .512 .03 .132 .165
58 0058 1092.0 764.0 .700 .50 .157 .207
59 0059 1092.0 913.0 .836 .96 .187 .280
60 0060 1092.0 661.0 .605 .25 .151 .192
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Simple Random Sample with 20 Anchor Items
CLASSICAL ITEM STATISTICS FOR SUBTEST Book-B

ITEM NAME
NUMBER
TRIED

NUMBER
RIGHT PERCENT LOGIT/1.7

ITEM*TEST CORRELATION
PEARSON BISERIAL

1 0001 1149.0 861.0 .749 .64 .096 .131
2 0002 1149.0 898.0 .782 .75 .151 .212
3 0003 1149.0 1038.0 .903 1.32 .235 .405
4 0004 1149.0 901.0 .784 .76 .019 .027
5 0005 1149.0 595.0 .518 .04 .123 .154
6 0006 1149.0 591.0 .514 .03 .232 .290
7 0007 1149.0 1047.0 .911 1.37 .142 .251
8 0008 1149.0 722.0 .628 .31 .116 .149
9 0009 1149.0 495.0 .431 -.16 .186 .235

10 0010 1149.0 998.0 .869 1.11 .333 .527
11 0011 1149.0 1006.0 .876 1.15 .173 .278
12 0012 1149.0 786.0 .684 .45 .361 .471 ,

13 0013 1149.0 913.0 .795 .80 .164 .233
14 0014 1149.0 789.0 .687 .46 .138 .181
15 0015 1149.0 714.0 .621 .29 .148 .189
16 0016 1149.0 810.0 .705 .51 .206 .272
17 0017 1149.0 876.0 .762 .69 .133 .183
18 0018 1149.0 622.0 .541 .10 .078 .098
19 0019 1149.0 612.0 .533 .08 .176 .221
20 0020 1149.0 917.0 .798 .81 .181 .257
21 0021 1149.0 907.0 .789 .78 .250 .354
22 0022 1149.0 736.0 .641 .34 .177 .228
23 0023 1149.0 633.0 .551 .12 .209 .263
24 0024 1149.0 621.0 .540 .10 .280 .351
25 0025 1149.0 623.0 .542 -.10 .164 .206
26 0026 1149.0 643.0 .560 .14 -.007 -.009
27 0027 1149.0 861.0 .749 .64 .160 .219
28 0028 1149.0 801.0 .697 .49 .182 .240
29 0029 1149.0 894.0 .778 .74 .036 .050
30 0030 1149.0 646.0 .562 .15 .179 .225
31 0031 1149.0 946.0 .823 .91 .212 .312
32 0032 1149.0 594.0 .517 .04 .202 .253
33 0033 1149.0 562.0 .489 -.03 .247 .310
34 0034 1149.0 966.0 .841 .98 .189 .286
35 0035 1149.0 544.0 .473 -.06 .146 .183
36 0036 1149.0 986.0 .858 1.06 .257 .399
37 0037 1149.0 951.0 .828 .92 .298 .442
38 0038 1149.0 724.0 .630 .31 .258 .330
39 0039 1149.0 1017.0 .885 1.20 .139 .229
40 0040 1149.0 679.0 .591 .22 .045 .057
41 0041 1149.0 565.0 .492 -.02 .005 .006
42 0042 1149.0 995.0 .866 1.10 .280 .442
43 0043 1149.0 563.0 .490 -.02 .218 .273
44 0044 1149.0 726.0 .632 .32 .228 .292
45 0045 1149.0 1032.0 .898 1.28 .133 .226
46 0046 1149.0 914.0 .795 .80 .172 .245
47 0047 1149.0 469.0 .408 -.22 .164 .207
48 0048 1149.0 1111.0 .967 1.99 .232 .559
49 0049 1149.0 993.0 .864 1.09 .271 .426
50 0050 1149.0 711.0 .619 .28 .342 .436
51 0051 1149.0 939.0 .817 .88 .091 .133
52 0052 1149.0 922.0 .802 .82 -.001 -.001
53 0053 1149.0 536.0 .466 -.08 .108 .136
54 0054 1149.0 942.0 .820 .89 .217 .318
55 0055 1149.0 1054.0 .917 1.42 .175 .316
56 0056 1149.0 672.0 .585 .20 .056 .070
57 0057 1149.0 934.0 .813 .86 .121 .176
58 0058 1149.0 912.0 .794 .79 .059 .084
59 0059 1149.0 1025.0 .892 1.24 .322 .539
60 0060 1149.0 850.0 .740 .61 .179 .242
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Simple Random Sample with 12 Anchor Items
CLASSICAL ITEM STATISTICS FOR SUBTEST Book-A

ITEM NAME
NUMBER
TRIED

NUMBER
RIGHT

ITEM*TEST CORRELATION
PERCENT LOGIT/1.7 PEARSON BISERIAL

1 0001 1092.0 776.0 .711 .53 .115 .152

2 0002 1092.0 813.0 .745 .63 .168 .228

3 0003 1092.0 554.0 .507 .02 .099 .124
4 0004 1092.0 527.0 .483 -.04 .330 .414

5 0005 1092.0 982.0 .899 1.29 .154 .263

6 0006 1092.0 883.0 .809 .85 .353 .509

7 0007 1092.0 718.0 .658 .38 .289 .373

8 0008 1092.0 727.0 .666 .41 .114 .148

9 0009 1092.0 795.0 .728 .58 .121 .162

10 0010 1092.0 605.0 .554 .13 .089 .112

11 0011 1092.0 534.0 .489 -.03 .215 .269

12 0012 1092.0 826.0 .756 .67 .220 .301 ,

13 0013 1092.0 632.0 .579 .19 .166 .210

14 0014 1092.0 720.0 .659 .39 .202 .262

15 0015 1092.0 702.0 .643 .35 .103 .133

16 0016 1092.0 961.0 .880 1.17 .034 .056

17 0017 1092.0 501.0 .459 -.10 .141 .177

18 0018 1092.0 544.0 .498 .00 .164 .206

19 0019 1092.0 743.0 .680 .44 .137 .179

20 0020 1092.0 769.0 .704 .51 .112 .148
21 0021 1092.0 802.0 .734 .60 .071 .095

22 0022 1092.0 1000.0 .916 1.40 .158 .283

23 0023 1092.0 900.0 .824 .91 .037 .054

24 0024 1092.0 738.0 .676 .43 -.005 -.006
25 0025 1092.0 866.0 .793 .79 .357 .506

26 0026 1092.0 610.0 .559 .14 -.034 -.043
27 0027 1092.0 716.0 .656 .38 .317 .409

28 0028 1092.0 1015.0 .929 1.52 .080 .152

29 0029 1092.0 656.0 .601 .24 .296 .375

30 0030 1092.0 1036.0 .949 1.72 .078 .162

31 0031 1092.0 658.0 .603 .24 .187 .237

32 0032 1092.0 800.0 .733 .59 .204 .274

33 0033 1092.0 801.0 .734 .60 .087 .117

34 0034 1092.0 770.0 .705 .51 .160 .211

35 0035 1092.0 748.0 .685 .46 .223 .292

36 0036 1092.0 369.0 .338 -.40 .152 .197
37 0037 1092.0 613.0 .561 .15 .052 .066

38 0038 1092.0 812.0 .744 .63 .070 .095

39 0039 1092.0 738.0 .676 .43 .016 .020

40 0040 1092.0 925.0 .847 1.01 .068 .104

41 0041 1092.0 952.0 .872 1.13 .213 .340

42 0042 1092.0 1060.0 .971 2.06 .082 .205
43 0043 1092.0 720.0 .659 .39 .096 .124

44 0044 1092.0 1003.0 .918 1.42 .111 .202

45 0045 1092.0 829.0 .759 .68 .252 .346

46 0046 1092.0 773.0 .708 .52 -.011 -.014
47 0047 1092.0 971.0 .889 1.23 .271 .449

48 0048 1092.0 470.0 .430 -.16 .198 .250
49 0049 1092.0 427.0 .391 -.26 -.011 -.013
50 0050 1092.0 627.0 .574 .18 .173 .218

51 0051 1092.0 528.0 .484 -.04 .132 .165

52 0052 1092.0 635.0 .582 .19 .134 .169

53 0053 1092.0 1004.0 .919 1.43 .178 .323

54 0054 1092.0 559.0 .512 .03 .149 .187

55 0055 1092.0 465.0 .426 -.18 .119 .150

56 0056 1092.0 975.0 .893 1.25 .104 .174

57 0057 1092.0 764.0 .700 .50 .154 .203

58 0058 1092.0 913.0 .836 .96 .200 .300
59 0059 1092.0 404.0 .370 -.31 .236 .302
60 0060 1092.0 661.0 .605 .25 .163 .207



Simple Random Sample with 12 Anchor Items
CLASSICAL ITEM STATISTICS FOR SUBTEST Book-B

ITEM NAME
NUMBER
TRIED

NUMBER
RIGHT PERCENT LOGIT/1.7

ITEM*TEST CORRELATION
PEARSON BISERIAL

1 0001 1149.0 861.0 .749 .64 .083 .112
2 0002 1149.0 898.0 .782 .75 .147 .206
3 0003 1149.0 595.0 .518 .04 .121 .151
4 0004 1149.0 591.0 .514 .03 .231 .290
5 0005 1149.0 1047.0 .911 1.37 .154 .273
6 0006 1149.0 998.0 .869 1.11 .318 .504
7 0007 1149.0 786.0 .684 .45 .342 .447
8 0008 1149.0 789.0 .687 .46 .138 .180

9 0009 1149.0 810.0 .705 .51 .190 .251
10 0010 1149.0 622.0 .541 .10 .072 .090
11 0011 1149.0 612.0 .533 .08 .173 .217
12 0012 1149.0 917.0 .798 .81 .180 .257 ,

13 0013 1149.0 907.0 .789 .78 .269 .380
14 0014 1149.0 736.0 .641 .34 .164 .210
15 0015 1149.0 633.0 .551 .12 .205 .258
16 0016 1149.0 621.0 .540 .10 .296 .371
17 0017 1149.0 623.0 .542 .10 .158 .199
18 0018 1149.0 643.0 .560 .14 -.012 -.015
19 0019 1149.0 801.0 .697 .49 .190 .250
20 0020 1149.0 894.0 .778 .74 .043 .060

21 0021 1149.0 646.0 .562 .15 .159 .201
22 0022 1149.0 946.0 .823 .91 .199 .293
23 0023 1149.0 594.0 .517 .04 .201 .252
24 0024 1149.0 562.0 .489 -.03 .237 .297
25 0025 1149.0 966.0 .841 .98 .198 .298
26 0026 1149.0 544.0 .473 -.06 .155 .194
27 0027 1149.0 986.0 .858 1.06 .262 .407
28 0028 1149.0 958.0 .834 .95 .064 .095
29 0029 1149.0 951.0 .828 .92 .301 .445
30 0030 1149.0 724.0 .630 .31 .263 .336
31 0031 1149.0 1017.0 .885 1.20 .134 .221
32 0032 1149.0 679.0 .591 .22 .063 .080
33 0033 1149.0 995.0 .866 1.10 .278 .439
34 0034 1149.0 677.0 .589 .21 .030 .038
35 0035 1149.0 563.0 .490 -.02 .196 .246
36 0036 1149.0 726.0 .632 .32 .245 .313
37 0037 1149.0 1032.0 .898 1.28 .136 .231
38 0038 1149.0 914.0 .795 .80 .179 .255
39 0039 1149.0 610.0 .531 .07 .209 .262
40 0040 1149.0 538.0 .468 -.07 .072 .090
41 0041 1149.0 469.0 .408 -.22 .160 .203
42 0042 1149.0 1111.0 .967 1.99 .235 .565
43 0043 1149.0 993.0 .864 1.09 .278 .436
44 0044 1149.0 711.0 .619 .28 .330 .421
45 0045 1149.0 511.0 .445 -.13 .135 .170
46 0046 1149.0 939.0 .817 .88 .080 .117
47 0047 1149.0 1104.0 .961 1.88 .132 .300
48 0048 1149.0 546.0 .475 -.06 .054 .067
49 0049 1149.0 922.0 .802 .82 -.004 -.006
50 0050 1149.0 536.0 .466 -.08 .093 .116
51 0051 1149.0 1054.0 .917 1.42 .187 .338
52 0052 1149.0 1034.0 .900 1.29 .174 .297
53 0053 1149.0 672.0 .585 .20 .045 .057
54 0054 1149.0 793.0 .690 .47 .108 .142
55 0055 1149.0 934.0 .813 .86 .134 .194
56 0056 1149.0 912.0 .794 .79 .075 .107
57 0057 1149.0 681.0 .593 .22 .213 .269

58 0058 1149.0 1025.0 .892 1.24 .316 .529

59 0059 1149.0 944.0 .822 .90 .090 .131

60 0060 1149.0 850.0 .740 .61 .177 .240
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Appendix 3: Descriptive Statistics and Correlation Analyses
for the Full Test Forms and the Reduced Test Forms

<Note> A= Items for Book-A B= Items for Book-B
UA= Items unique to Book-A UB= Items unique to Book-B
Z= Common items to both books

All Items In Book-A
Variable Cases
A 1092
Z 1092
UA 1092

Mean
145.1575
105.4570
39.7005

Std Dev
18.0890
13.7665
5.2857

Variables
A
A UA
Z UA

Cases
1092
1092
1092

Cross-Prod Dev
266634.4029
90352.5055
59871.4258

Variance-Covar
244.3945
82.8162
54.8776

A
A 1.0000
Z .9814**
UA .8662**
* Signif. LE .05

- - Correlation Coefficients
Z UA
.9814** .8662**

1.0000 .7542**
.7542** 1.0000
** Signif. LE .01 (2-tailed)

All Items in Book-B
Variable Cases
B 1149
Z 1149
UB 1149

Mean
143.7502
107.7206
36.0296

Std Dev
17.3289
13.1129
5.2337

Variables
B Z
B UB
Z UB

Cases
1149
1149
1149

Cross-Prod Dev
255342.8198
89392.4926
57947.4987

Variance-Covar
222.4241
77.8680
50.4769

B

UB

B
1.0000
.9788**
.8586**

Correlation Coefficients
Z UB
.9788** .8586**

1.0000 .7355**
.7355** 1.0000

Simple Random Sample with 30 Anchor Items-- For examinees taking Book-A
Variable Cases Mean Std Dev
A 1092 41.2839 5.6591
Z 1092 21.6648 3.1982
UA 1092 19.6190 3.3297

Variables

A
A UA
Z UA

Cases Cross-Prod Dev

1092
1092
1092

17001.9011
17938.0952
5842.5714

Variance-Covar

15.5838
16.4419
5.3552

A
A 1.0000
Z .8610**
UA .8726**

* Signif. LE .05

Correlation Coefficients
Z UA
.8610** .8726**

1.0000 .5029**
.5029** 1.0000

** - Signif. LE .01 (2-tailed)
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Simple Random Sample with 30 Anchor Items-- For examinees taking Book-B

Variable Cases Mean Std Dev
B 1149 42.1836 6.0472
Z 1149 22.0888 3.2776
UB 1149 20.0949 3.6187

Variables Cases Cross-Prod Dev Variance-Covar
B Z 1149 19640.2689 17.1082
B UB 1149 22339.9835 19.4599
Z UB 1149 7307.3238 6.3653

Correlation Coefficients
B Z UB

B 1.0000 .8632** .8893**
Z .8632** 1.0000 .5367**
UB .8893** .5367** 1.0000

* - Signif. LE .05 ** Signif. LE .01 (2-tailed)

Simple Random Sample with 20 Anchor Items-- For examinees taking Book-A

Variable Cases Mean Std Dev
A 1092 40.7427 5.8903
Z 1092 13.7125 2.5710
UA 1092 27.0302 4.1416

Variables Cases Cross-Prod Dev Variance-Covar
A Z 1092 13175.1996 12.0763
A UA 1092 24677.4918 22.6191
Z UA 1092 5963.4890 5.4661

Correlation Coefficients
A Z UA

A 1.0000 .7974** .9272**
Z .7974** 1.0000 .5133**
UA .9272** .5133** 1.0000
* - Signif. LE .05 ** Signif. LE .01 (2-tailed)

Simple Random Sample with 20 Anchor Items-- For examinees taking Book-B

Variable Cases Mean Std Dev
B 1149 42.1149 6.1097
Z 1149 14.0914 2.5827
UB 1149 28.0235 4.3793

Variables Cases Cross-Prod Dev Variance-Covar
B Z 1149 14246.9373 12.4102
B UB 1149 28605.8982 24.9180
Z UB 1149 6589.5326 5.7400

Correlation Coefficients
B Z UB

B 1.0000 .7865** .9313**
Z .7865** 1.0000 .5075**
UB .9313** .5075** 1.0000
* Signif. LE .05 ** Signif. LE .01 (2-tailed)
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Simple Random Sample with 12 Anchor Items-- For examinees taking Book-A

Variable
A

UA

Cases
1092
1092
1092

Mean
40.8654
8.0037

32.8617

Std Dev
5.7666
1.9513
4.5439

Variables

A
A UA

UA

Cases Cross-Prod Dev

1092
1092
1092

8953.5385
27325.6731
4799.5531

Variance-Covar

8.2067
25.0464
4.3992

A
A 1.0000
Z .7293**
UA .9559**
* Signif. LE .05

Correlation Coefficients
Z UA
.7293** .9559**

1.0000 .4962**
.4962** 1.0000
** Signif. LE .01 (2-tailed)

Simple Random Sample with 12 Anchor Items-- For examinees taking'Book-B

Variable
B

UB

Cases
1149
1149
1149

Mean
41.5605
8.2907

33.2698

Std Dev
6.0250
1.8701
4.9109

Variables
B Z
B UB
Z UB

Cases
1149
1149
1149

Cross-Prod Dev
9000.7972

32672.2489
4985.8869

Variance-Covar
7.8404

28.4601
4.3431

B
B 1.0000
Z .6958**
UB .9619**
* Signif. LE .05

Correlation Coefficients
Z UB
.6958** .9619**

1.0000 .4729**
.4729** 1.0000
** Signif. LE .01 (2-tailed)
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APPENDIX 4: Correlation Between Estimates of Ability Scores on Book-B,
given by IRT Two-Stage and Fixed-b Equating,
for the Three Reduced Item Samples

<Note>
B_ABIL = the ability score yielded by two-stage equating
FB_ABIL= the ability score yielded by fixed-b equating
The estimates on Book-B are equivalent to the scores on Book-A.

Simple Random Sample with 30 Common Items

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
B_ABIL 1149 0.1134 0.8687 130.2400 -2.4600 , 2.5010
FB_ABIL 1149 0.0588 0.8800 67.5220 -2.5650 2.4810

Pearson Correlation Coefficients / Prob > IRI under Ho: Rho=0 / N = 1149

B_ABIL

FB_ABIL

B_ABIL
1.00000
0.0

0.99985
0.0001

FB_ABIL
0.99985
0.0001

1.00000
0.0

Simple Random Sample with 20 Common Items

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
B_ABIL 1149 0.1852 0.8764 212.7530 -2.5390 2.6440
FB_ABIL 1149 0.1755 0.9101 201.6550 -2.6070 2.6560

Pearson Correlation Coefficients / Prob > IRI under Ho: Rho=0 / N = 1149

B_ABIL

FB_ABIL

B_ABIL
1.00000
0.0

0.99964
0.0001

FB_ABIL
0.99964
0.0001

1.00000
0.0

Simple Random Sample with 12 Common Items

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
B_ABIL 1149 0.1247 0.8718 143.3110 -3.0090 2.3830
FB_ABIL 1149 0.1742 0.9062 200.1360 -2.9870 2.4640

Pearson Correlation Coefficients / Prob > IRI under Ho: Rho=0 / N = 1149

B_ABIL

FB_ABIL

B_ABIL
1.00000
0.0

0.99956
0.0001

FB_ABIL
0.99956
0.0001

1.00000
0.0
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APPENDIX 5: For Unique Items Only- -
Correlation between the "true scores" and various true score estimates,
for the three reduced item samples

<Note>
TSCORE = True score
Estimated True Score yielded by

USIMP12 = Estimates for the
USIMP20 = Estimates for the
USIMP30 = Estimates for the

Estimated True Score yielded by
UFSIMP12 = Estimates for the
UFSIMP20 = Estimates for the
UFSIMP30 = Estimates for the

Variable N Mean

Two-stage Equating for Unique Items Only
simple random sample with 12 common items
simple random sample with 20 common items
simple random sample with 30 common items
Fixed-b equating for Unique Items Only
simple random sample with 12 common items
simple random sample with 20 common items
simple random sample with 30 common items

TSCORE 2241 106.6176
USIMP12 2241 33.1168
USIMP20 2241 27.3623
USIMP30 2241 19.7641
UFSIMP12 2241 33.2057
UFSIMP20 2241 27.3424
UFSIMP30 2241 19.6963

Correlation
Analysis

Simple Statistics

Std Dev

13.4799
3.2176
2.8840
2.1050
3.2823
2.9387
2.1169

Sum Minimum Maximum

238930 44.0000 136.0000
74215 22.1991 40.5889
61319 18.3461 34.2786
44291 13.7153 25.0766
74414 22.2598 40.7793
61274 18.3461 34.3009
44139 13.7153 25.0436

/ Pearson Correlation Coefficients

TSCORE USIMP12 USIMP20

/ Prob > IRI under Ho: Rho = 0

USIMP30 UFSIMP12 UFSIMP20

/ N = 2241

UFSIMP30

TSCORE 1.0000 0.8318 0.8470 0.8537 0.8317 0.8467 0.8522

0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

USIMP12 0.8318 1.0000 0.9773 0.9265 0.9993 0.9768 0.9253

0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001

USIMP20 0.8470 0.9773 1.0000 0.9465 0.9779 0.9996 0.9446

0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001

USIMP30 0.8537 0.9265 0.9465 1.0000 0.9260 0.9463 0.9994

0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001

UFSIMP12 0.8317 0.9993 0.9779 0.9260 1.0000 0.9778 0.9243

0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001

UFSIMP20 0.8467 0.9768 0.9996 0.9463 0.9778 1.0000 0.9449

0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001

UFSIMP30 0.8522 0.9253 0.9446 0.9994 0.9243 0.9449 1.0000

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
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APPENDIX 6: For Common Items Only-
Correlation between the "true scores" and various true score estimates,
for the three reduced item samples

<Note>
TSCORE = True score
Estimated
CSIMP12
CSIMP20
CSIMP30

Estimated
CFSIMP12
CFSIMP20
CFSIMP30

True Score yielded by Two-stage Equating for Common Items Only
= Estimates for the simple random sample with 12 common items

Estimates for the simple random sample with 20 common items
Estimates for the simple random sample with 30 common items

True Score yielded by Fixed-b equating for Common Items Only
= Estimates for the simple random sample with 12 common items
= Estimates for the simple random sample with 20 common items
= Estimates for the simple random sample with 30 common items

Simple Statistics
Variable N Mean Std Dev

TSCORE 2241 106.6176 13.4799
CSIMP12 2241 8.0957 1.1063
CSIMP20 2241 13.8994 1.5741
CSIMP30 2241 21.8360 2.0762
CFSIMP12 2241 8.1256 1.1265
CFSIMP20 2241 13.8877 1.6041
CFSIMP30 2241 21.7685 2.0946

Sum Minimum Maximum

238930 44.0000 136.0000
18142 4.6514 10.4574
31149 8.9312 17.4499
48934 15.1866 26.4787
18209 4.6663 10.5060
31122 8.9312 17.4601
48783 15.1866 26.4546

Correlation Analysis

/Pearson Correlation Coefficients /Prob>IRI under Ho: Rho=0 /N=2241

TSCORE CSIMP12 CSIMP20 CSIMP30 CFSIMP12 CFSIMP20 CFSIMP30

TSCORE 1.0000 0.8315 0.8474 0.8568 0.8315 0.8471 0.8552
0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CSIMP12 0.8315 1.0000 0.9773 0.9267 0.9993 0.9769 0.9255
0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001

CSIMP20 0.8474 0.9773 1.0000 0.9468 0.9778 0.9996 0.9449
0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001

CSIMP30 0.8568 0.9267 0.9468 1.0000 0.9264 0.9468 0.9994
0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001

CFSIMP12 0.8315 0.9993 0.9778 0.9264 1.0000 0.9778 0.9247
0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001

CFSIMP20 0.8471 0.9769 0.9996 0.9468 0.9778 1.0000 0.9454
0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001

CFSIMP30 0.8552 0.9255 0.9449 0.9994 0.9247 0.9454 1.0000
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
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