
DOCUMENT RESUME

ED 401 283 TM 025 742

AUTHOR van der Linden, Wim J.
TITLE Stochastic Order in Dichotomous Item Response Models

for Fixed Tests, Adaptive Tests, or Multiple
Abilities. Research Report 95-02.

INSTITUTION Twente Univ., Enschede (Netherlands). Dept. of
Education.

PUB DATE Dec 95
NOTE 38p.; Portions of this paper presented at the

European Meeting of the Psychometric Society (9th,
Leiden, Netherlands, July 4-7, 1995).

AVAILABLE FROM Bibliotheek, Faculty of Educational Science and
Technology, University of Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands.

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Ability; *Adaptive Testing; *Computer Assisted

Testing; Foreign Countries; *Item Response Theory;
*Mathematical Models; Multivariate Analysis; *Test
Items

IDENTIFIERS *Dichotomous Variables; *Stochastic Analysis

ABSTRACT
Dichotomous item response theory (IRT) models can be

viewed as families of stochastically ordered distributions of
responses to test items. This paper explores several properties of
such distributiom. The focus j,1 on the conditions under which
stochastic order in families of conditional distriloutions is
transferred to their inverse distributions, from two families 'of
related distributions to a third family, or from multivariate
conditional distributions to a marginal distribution. The main
results are formulated as two theorems that apply immediately to
dichotomous IRT models. One theorem holds for unidimensional models
with fixed item parameters. The other theorem holds for models with
multiple abilities or with random item parameters as used, for
example, in adaptive testing. (Contains 2 tables and 36 references.)
(Author/SLD)

***********************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.



Cr)
00N
8 Stochastic Order in Dichotomous

Item Response Models for Fixed Tests, Research
Report

95-02

Adaptive Tests, or Multiple Abilities

Wim J. van der Linden

department of

EDUCATION
II

Division of Educati aLMeasfame
and Data Analysis

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUC ONAL RESOURCES INFORMATION
CENTER (ERIC)

his document has been reproduced as
received from the person or organization
originating it.
Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL

HAS BEEN GRANTED BY

MEL) 55E-AJ

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

2
BEST COPILAVATIAM.F.

University of Twente



Stochastic Order in Dichotomous Item Response Models for

Fixed Tests, Adaptive Tests, or Multiple Abilities

Wim J. van der Linden

3



Stochastic order in dichotomous item response model for fixed tests, adaptive
tests, or multiple abilities, Wim J. van der Linden - Enschede: University of Twente,
Faculty of Educational Science and Technology, December 1995. - 31 pages.

4



Stochastic Order

1

Abstract

Dichotomous IRT models can be viewed as families of stochastically ordered

distributions of responses to test items. This paper explores several properties of

such distributions. More in particular, it is examined under what conditions

stochastic order in families of conditional distributions is transferred to their inverse

distributions, from two families of related distributions to a third family, or from

multivariate conditional distributions to a marginal distribution. The main results are

formulated as two theorems which immediately apply to dichotomous IRT models.

One theorem holds for unidimensional models with fixed item parameters. The

other theorem holds for models with multiple abilities or with random item

parameters as used, for example, in adaptive testing.
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Stochastic Order in Dichotomous Item Response Theory

Suppose an educational or psychological test consists of a set of n dichotomously

scored items indexed by i=1,...,n. Responses to item i are denoted by a random

variable U. which takes the value 1 for a correct response and the value 0

otherwise. In addition, it is assumed that examinees respond to the test items on

the basis of an ability which can be represented by a (latent) unidimensional

variable 0. Item response theory (IRT) offers various stochastic models to analyze

the responses of examinees to the test items. Basic treatments of IRT are given,

for example, in Hambleton and Swaminathan (1985) and Lord (1980).

Three different ways are available to represent an item response model.

The first representation uses the idea of a response function to model the

probabilities by which an examinee responds to an item. Let Prob(Ui=1 10) be the

probability that an examinee with ability level 0 produces a correct response to

the item, and let pi( 8) be defined as the two-parameter logistic (2-PL) function

pi(0) E [ 1 + exp( a i(0--b i))]-1 , ai>0,

(1)

where bi and a.
1

are usually interpreted as the difficulty and discriminating power of

item i, respectively. Then,

Prob{Ui=1 113 }= pi(0) = (1 + exp(ai(0b1)))-1 (2)

is an example of the response function representation of an IRT model.
Alternatives to the two-parameter logistic model are the more sparsely

parameterized Rasch or one-parameter logistic (1-PL) (Fischer & Molenaar, 1995)
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and the Birnbaum or three-parameter logistic (3-PL) model (Hambleton &

Swaminathan, 1985; Lord, 1985). Throughout this paper, when we refer to IRT any

of these three response models is implied. The response function representation is

standard in introductory texts to IRT. This popularity is due to the fact that it allows

for an immediate graphical interpretation of the values of the item parameters. For

dichotomously scored responses only a function for the correct response needs to

be specified; the function for the incorrect response, 1-pi(0), is automatically fixed.

A somewhat more involved representation is based on the idea of a

(parametric) family of probability mass functions (pmfs) for the distribution of Ui.

This family can be denoted as (fi(ui 10 ): where

ui 1 u
fi(ui 10) = Pi(e) [1 NM] 1, (3)

and pi(8) is defined by (1). This representation focusses on the conditional

probability distribution of Ui given 6. It is standard in texts on the statistical

treatment of the estimation of the values of the item and/or ability parameters. Its

product over the items and examinees gives the likelihood function associated with

a set of test data.

The final representation is the one of a (parametric) family of cumulative

distribution functions (cdfs) (Fi(ui 10 ): ...<0<0.5), where

ui

Fi(ui 10) = fi(y10), (4)
y=0

and f.(y 10 ) is given by (3). This representation is the one addressed in the current

paper. In particular, the interest is in the property of stochastic order in families of

cdfs as (4).

7
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It is important to note the subtle differences between the first and the third

representation. Though the logistic function itself has a well-established reputation

as a cdf in certain applications, it is not used as a cdf in the first representation - -let

alone as a family of such functions. Second, the logistic function in (2) is

monotonically increasing in 13 whereas the family of cdfs in (4) is nonincreasinq in

for ur=0,1. Though potentially confusing, these two properties of monotonicity

are closely related via a well-known theorem in statistics reviewed below.

This paper shares the interests in stochastic order in response variables

with several other papers which treat IRT from a nonparametric perspective. Some

useful references are: Ellis and van den Wollenberg (1993); Grayson (1988);

Holland (1981, 1990); Holland and Rosenbaum (1986); Huynh (1994); Junker

(1991, 1993); Mokken (1971, in press); Mokken and Lewis (1982); Molenaar (in

press); Ramsay (1991, in press); Rosenbaum (1984, 1985); Stout (1987, 1990);

Sijtsma (1988); Sijtsma and Junker (1994); and Sijtsma and Meijer (1992).

However, our point of view is fully parametric. Nevertheless, it is believed to be

useful to study the consequences of certain minimal sets of assumption on

response functions even if the abilities of the examinees or the properties of the

items are estimated under a parametric model as in (2). This study may help to

reveal certain structures in the data with otherwise might have gone unnoticed.

Several examples of such structures are discussed at the end of the paper.

Knowledge of such structures can, in turn, suggest new diagnostics with respect to

violations of basic assumptions underlying the model.

The early work of Mokken (1971) as well as the follow up by Holland and

Rosenbaum (1986) and Rosenbaum (1984, 1985) deserve special mention. These

authors derived an important result for conditional covariances between item

response variables from the assumptions of conditionally independent and
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associated items with monotonic response functions. In fact, their result is stronger

than one of the results we derive. On the other hand, our interest is also in the

regression of (functions of) some response variables on (functions of) other

response variables as well as in generalization of the results to multidimensional

response functions and tests with random item parameters as used, for example,

in computerized adaptive testing. The body of this paper, however, consists of a

systematic treatment of the notion of stochastic order in families of (dichotomous)

(multivariate) random variables such as defined in (4). Several properties of these

families will be introduced as a series of lemmas with proofs. The main results are

then formulated as two theorems which follow immediately from the lemmas. One

theorem holds for the conventional case of a unidimensional test with a fixed

design. The other theorem specifies the conditions under which the results hold if

the ability structure underlying the test is multidimensional or the test items are

randomly assigned to the examinees. The final section discusses the application of

the results to the analysis of data obtained through from several fixed and random

test designs, including a well-known adaptive testing design.

Stochastic Order

The definition of a family of random variables stochastically ordered in a parameter

is given in many textbooks (e.g., Lehmann, 1986). The same holds for the result

that the expected value of a (monotonic) function of stochastically ordered

variables is increasing in the parameter. A more comprehensive treatment of the

notion of stochastic order typically lacks. Because of the relevance of the concept

of stochastic order for dichotomous IRT, this section of the paper tries to fill the

void. In particular, it examines under what conditions stochastic order is transferred
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to a family of inverse distributions (that is, distributions in which the random

variable and parameter change their status) or from two given families of

distributions to a third family. Then a few properties of stochastic order in families

of multivariate (conditional) cdfs will be presented. The results will be applied to

IRT in a later section.

For simplicity, the same notation will be used for all pdfs and cdfs as well

as for all algebraic functions used in the treatment. Also, without explicit mention it

is assumed that all pdfs and expectations exist. Finally, to avoid complications due

to densities equal to zero for some values of the random variables all definitions

and results are assumed to be formulated only for the supports of their pdfs.

Definition 1 (Monotone likelihood ratio). A family of (conditional) density functions

{f(ylx)} has a monotone likelihood ratio (MLR) in y w.r.t x if for any x1 >x0

f(Ylx1)

f(y Ixo)

does not decrease in y (e.g., Lehmann, 1986, p. 78).

Note that to obtain generality the likelihood ratio is not required to be

strictly increasing in y. The same relaxation is present in the following definition.

Definition 2 (Stochastic order). A family of random variables {Ylx} is stochastic

ordered (SO) in x if, for all y, its cumulative distribution functions, (F(ylx)), do not

increase in x (e.g., Lehmann, 1986, p. 84).

As an important consequence of the fact that no strict order is required in

the definition of SO, it holds that {Y I x} is SO if X and Y are independent. This

implication will be used when we discuss Lemma 10 below.

10
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Observe that both definitions formalize the same idea of a random

variable tending to produce larger values if another variable does the same.

However, MLR is stronger than SO (see Lemma 4 below). MLR is a useful

property in statistical inference whereas the assumption of SO is often made in

statistical modeling because it is weaker and has the nice graphical interpretation

of a family of cdfs being similarly ordered across all possible parameter values for

each possible value of its argument.

It should be noted that though the property of SO seems to imply that the

two variables have positive correlation, this suggestion is misleading. Positive

correlation between variables would involve such properties as symmetry (positive

correlation of X with Y implies correlation of Y with X), transitivity (positive

correlation of X with Y and Y with Z implies positive correlation of X with Z) as well

as correlation between two variables induced by a common covariate. As shown

below, such properties do not hold for SO.

Expected Values

Note that if the above two definitions hold, they also hold for X and/or Y replaced

by nondecreasing functions (pi (X) and W2(Y). The well-known Lemmas 1 and 2

below are based on a multivariate version of this property.

Lemma 1. Let {Yilx; i=1,...,n} be independently distributed with densities f(yilx) and

let y(yi,...,yn) be a function not decreasing in any yi. If {f(yilx)} has MLR in yi

w.r.t. x for all i, then E[T(Y1,...,Yn)lx] is a nondecreasing function of x (Lehmann,

1986, p. 85, Lemma 2(i)).

Lemma 2. Under the same conditions as in Lemma 1, if (Yilx; i= 1,...,n} is SO in x,

11
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then E[y(Yi,...,Yn)lx] is a nondecreasing function of x (Lehmann, 1986, p. 85,

Lemma 2(ii)).

Note that Lemmas 1 and 2 imply that for a single random variable Y the

expected value E[Ylx] is a nondecreasing function of x under the conditions given.

This property is frequently used in the proofs of the lemmas presented below.

Inverse Distributions

The question can be raised under what conditions the properties of MLR and SO

for a family of conditional variables, (Y I x }, imply MLR and/or SO for the inverse

family, (Xi y }. As it turns out, MLR is always symmetric but SO is not. However,

an exception is the case of dichotomous (functions of) random variables for which

the two properties coincide and symmetry of SO is implied. This case is important

for the treatment of SO in dichotomous IRT models. The results are summarized

as follows:

Lemma 3. (f(ylx1,x2)) has MLR in y w.r.t. x1 if and only if (f(x1ly,x2)) has MLR in

x
1

w' rt y for all x2.

Proof. Chen, Chuang and Novick (1981, Theorem 1) offer a version of this lemma

without the conditioning variable x2. Following their argument, for any

y >y, then the following inequalities are equivalent:

f(Y I x1 x2) f(Y lx1 , x2)

f(y ix , x2) f (y 'xi ,x2)

f(y.lxi x2) f(y.lxi , x2)

f(y 'xi , x2) f(y 'xi , x2)

12
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i(y lxi , x2) f(y I x2) f(y lxi , x2) f(y lx2)

Multiplying the left-hand and right-hand side by f(xi .1x2)/f(xi 'Ix2) and

f(x1Ix2)/f(xi lx2), respectively, gives:

f(xi hi, x2) f(xi hi, x2)

O

f(x1 I y , x2) f(x1 ly, x2)

Though this property of symmetry seems to support the intuition of MLR

as 'positive correlation' between two variables in the sense that the events of high

(low) values on two variables tend to occur simultaneously, it is easy to show by

counterexample that this intuition is not valid for SO.

Lemma 4. If (f(ylx1,x2)) has MLR in y w.r.t. x1, then {Ylx1,x2} is SO in x1 and

{X11y,x2} is SO in y.

Proof. From Lehmann (1986, p. 85, Lemma 2(ii)) it follows that the assumption

guarantees that (Ylx1,x2) is SO in x1. The fact that {X11y,x2} is SO in y then

follows from Lemma 3. 0

In the following lemmas, a variable or function is called dichotomous if it

can take two distinct values.

Lemma 5. If Y is dichotomous, then (f(ylx1,x2)) has MLR in y w.r.t. x1 if and only if

(Ylx1,x2) is SO in x1.

Proof. Let Y have possible values y* and y, with y.n. Then for any x1 >x1 the

13
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following inequalities are equivalent:

f(y 'xi x2) f(y 'xi x2)

f(y lxi, x2) f(y 'xi, x2)

1 -f(y Ix1 , x2) f(Y ix1 , x2)

1 -f(y 'xi , x2) f(y Ix1, x2)

41)(1, x2) f(Y x2) ,

and

F(y 'xi, x2) > F(y 'xi , x2).

Since F(y.lx1,x2)=F(y.1 xi .,x2)=1, the required result follows.

Lemma 6. If Y is dichotomous and (Ylxi ,x2) is SO in x1, then (Xi ly,x2) is SO in y.

Proof. Lemmas 3 and 5.

Lemma 7. If X is dichotomous, {f(ylx)} has MLR in y w.r.t. x if and only if (Xly) is

SO in y.

Proof. Lemmas 3 and 5.

Transfer of Stochastic Order

Suppose three families of conditional distributions are given which are related to

each other because they share a common variable. Under what conditions does

14
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SO for two of the families transfer to the third family?

Lemma 8. Let {Zly} and {Ylx} be SO in y and x, respectively. Then {Zlx} is SO in x

if Z and X are independent given Y =y.

Proof. It holds that

Thus,

f(z Ix) = f f(z,y Ix)dy

= fi(zly,x)i(ylx)dy

= f f(z ly)f(y Ix)dy.

F(z Ix) = 1F(z 1Y)f(Y Ix)dy.

F(zly) is decreasing in y and {Ylx} is SO in x. It follows from Lemma 2 that F(zlx)

decreases in x, and thus that {Zlx} is SO.

Lemma 9. If (Ylx) and {Zlx} are SO in x, then (Zly} is SO in y if y is dichotomous

and Z and Y are independent given X=x.

Proof. Lemmas 6 and 8.

The example in Table 1 shows that SO is not transitive. Because

[Table 1 about here]
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P(Y=1 I X=1)=0.30/0.50 < P(Y=1 I X=2)=0.20/0.50 and P(Z=1 I Y=1)=0.30/0.50 <

P(Z=1 I Y=2)=0.25/0.50, it follows that FY ix(y11) > FY ix(y12) and Fz iy(z 11)

Fz iy(z12) for all y and z, respectively. However, Fz 1x(1 Il) < Fz 1x(1 I2) because

P(Z=1 I X=1)=0.2510.50 < P(Z=1 I X=2)=0.3010.50.

It does not hold generally that {Z I y} is SO in y if {Y I x} and (Z I x} are.

By symmetry, (Ylz) would also be SO in z, which contradicts the earlier conclusion

that SO is not symmetric. Thus the intuitive notion of two variables correlating

positively if they have a 'common covariate' does not apply here either.

Multivariate Conditioning Variables

Families of conditional distributions with more than one conditioning variable are

introduced and the question is raised if the property of SO is maintained if the

transition to a single conditioning variable is made. The question is relevant for the

treatment of stochastic order in IRT models for multivariate abilities or when an

item parameter becomes stochastic and the model implies stochastic order w.r.t.

this parameter as well. For simplicity, only the case of two conditioning variables is

discussed but generalization to larger numbers of conditioning variables is readily

obtained.

The family {Y I xi,x2} is defined to be SO in x1 and x2 if F(y I xi,x2) is

nondecreasing in x1 for all x2 and in x2 for all x1. The following lemma identifies a

condition under which SO is transferred to {Y I x1 }:

Lemma 10. Let Y be a continuous random variable with density function f(y).

Further, (Ylxi,x2) is assumed to be SO in x1 and x2. Then (Ylxi) is SO in x1 if

(X2Ix1) is SO in x1.

16



Proof. The lemma is proved as follows:

f(Y 'xi) = ff(y,x2ixodx2

.ff(y ,x2)f(x2 'xi )dx2.
Thus,

F(y Ixi ) = 1F(Y ,x2)f(x2 Ixt )dx2.
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Since F(ylxi,x2) is decreasing in x2 and {X21x1} is SO in xi, it follows from Lemma

2 that (Ylxi) is SO in xi.

Note that the fact that condition of (X2 I xi) being SO in x1 implies that

Lemma 10 holds if X1 and X2 are independent. A direct proof of this implication

can be based on the fact that under independence

F(y 'xi) = 1F(y lxi,x2)f(x2 'xi )dx2 = 1F(y lxi,x2)f(x2)dx2 Since F(ylxi,x2) and

f(y) are continuous, f(y) does not change sign, and f f(y)dy converges by

definition, the weighted mean-value theorem for integrals (Apostol, 1967, sect.

3.19) shows that there exist a constant c such thatF(y 'xi) = F(y Ixi,c)ff(x2)dx2

= F(y Ixi,c), which, by assumption, is decreasing in xi.

The lemma thus shows that to proceed from a multivariate to a marginal

condition, the multivariate condition has to demonstrate SO itself. The lemma is

also given in van der Linden and Vos (in press). Note that for X1 and X2 being

independent, Lemma 8 is a special case of Lemma 10.

Multivariate Distributions

A multivariate family of random variables (Yi,...,Yn I x} is defined to be SO in x if

(F(yi,...,yn I x)} does not increase in x for all (yi,...,yn).

17
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The example in Table 2 shows that SO in a series of families of univariate

[Table 2 about here)

distribution functions does not imply multivariate SO. For example, Fyi x(010) =

(0.25+0.15)/0.50 > Fy x(011) = (0.10+0.00)/0.50. The same relation holds for

Fy2 x(0 fix). However, Fy1 y2 1)(0,010) = 0.05/0.50 < Fy1 y2 x(1,0 (1) =

0.10/0.50.

The following lemma identifies a condition under which multivariate SO

does follow from univariate SO:

Lemma 11. If each {Yilx}, i=1,...,n, is SO in x, then (Yi,...,Ynlx) is SO in x if {Yilx},

i=1,...,n, are independent.

Proof. The lemma follows immediately from the fact that the univariate cdfs are

nonnegative and do not increase in x.

The reverse implication, however, does hold generally:

Lemma 12. If (Y1,...,Yn I x} is SO in x, then any subset of variables is SO in x.

Proof. A proof will be given for the case of two variables. For any x >x,

F(y ,y2(x ) 5_ F(yi ,y2 lx)

for all values of (y1, y2). Thus,

18
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F(yi Ix') = lim F(y1,y2 Ix)

< lim Y2) F(yi ,y21x)

F(Yi Ix)

for all values of y1.

Functions of Random Variables

The following lemma summarizes several results for (multivariate) functions of

random variables with the property of stochastic order in a common conditioning

variable:

Lemma 13. Let (Yilx), i=1,...,n, be independent and SO in x, and let

Pi = 91(Y1,-,Yp), = W2(Yp+1,...,Yq) and 4)3 = (p3(yq+1,...,yn), 0<p<q<n, be

nondecreasing in each of their arguments. If 93 is (1) dichotomous or a (2)

nondecreasing function of lin yi with each yi dichotomous, it holds that:

(1) (4)142,03Ix) is SO in x;

(2) (00214)3) is SO in (p3 ;

(3) (oiltp3), j=1,2, is SO in tp3;

(4) {oilx,(pid, j: k =1,...,3, is SO in x for all values of ya;

(5) { X l(pj,y3), j=1,2, is SO in (p3 for all values of (pi;

(6) {4)1%43}, j #k=1,2, is SO in (p3 for all values of (Pk

Proof. The parts of the lemma are proved as follows:

(1) (0114 j=1,...,3, are independent and SO in x. Hence, Lemma 11 gives

the required result.
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(2) For the cdf of the joint conditional distribution, it holds that

F(T1,921(p3) = f F(yi ,y2 I 93,x)f(x I 93)dx

= JF(wl,T2Ix)f(xI(P3)dx.

From Lemmas 13(1) and 12 it follows that F(y1,y2 lx) does not increase

in x and that (03 Ix) is SO in x. If (p3 is dichotomous, Lemma 6 shows

that; {X03) is SO in (1)3. If (p3 is an nondecreasing function of

yi, it follows from Lemma 4 together with Grayson's (1988; see

IrscOluynh, 1994) result of MLR for the family of density functions

associated with
i=q +1

Y
i
ix that (X IT3) is also SO in x. In either case,

Lemma 2 gives us the desired result.

(3) Lemmas 13(2) and 12.

(4) As (tii and 4k are independent given x,

F(yi lx,(pk) = F((pj Ix) ,

and the result follows immediately.

(5) Lemmas 13(4) and 6.

(6) It holds that

F(Ci l(POP3) = f F((pi,x yk,y3)dx

= 1F((pi I x)f(x I yk,(P3)dx.

By assumption F(yilx ) is not increasing in x whereas Lemma 13(5)

shows that {X I (pk,y3 is SO in (p3 for all values of (pk. Thus, Lemma 2

gives the desired result. ci
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Main Theorems

The main results for the conditional expectations and covariances between

functions on variables (Yi I x) and (Yi I x1,x21, are formulated in the

following two theorems.

Theorem 1. Let {Yilx}, i=1,...,n, be independent and SO in x, and let

(P1 = (P1(Y1 (P2 = (P2(Yp and (1)3 = (p3(yq+1,...,yn), 0<p<q<n, be

nondecreasing in each of their arguments. If (p3 is (1) dichotomous or a (2)

nondecreasing function of Z yi with each yi dichotomous, then:

(1) E(4ji(p3), j=1,2, is a nondecreasing function of (p3;

(2) Coy( (01421(P3 ) > 0;

(3) Cov(Ojoh) 0, j,k=1,...,3; j#k.

Proof. The three parts of the theorem are proved as follows:

(1) Lemmas 13(3) and 2.

(2) Note that

Cov(01,021(3) = Cov((01,E(02101)1Y3))

Let T(T1,cp3) E(021(pi,y3). Lemmas 13(6) and 2 show that T is a

nondecreasing function of (p3. It is now to be proved that
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Cov(01,t(01,(P3) I (P3) = E(41 t(01 03) I 93] E(01 193)E(t41,(p3) 1(1)3)

= E[f(1)1 E(01))T(01,(P3) 1931

0.

Following an argument in Casella and Berger (1990, sect. 4.7.2),

ER01 -E(01 ))-r (4)1 (P3) I (P31

= E1(01 -E(01))T(01 (P3)I( _00,0)($1 -E(01)) I (P31

+ ER(01 -E(01))T(01,(P3)1[0,...)(01 -E(01)) (P31

ER(1)1 -E (01 ))T(E (4) i I (P3), 93)1 ( _.,0)(01 -E(4)1 )) I931

+ E[01 -E(01))T(E(01 'T3)03)1[0,0001 -E(01)) I93]
= i(E(01193),(P3)E(01-E(01)193)

= 0.

(3) It holds that

Cov((t),(1)k) = E(Cov((1),(IN I X)) + Cov(E(0) I X),E(Ok I X)).

From the previous part of the theorem it follows that the first term is the

expected value of a nonnegative statistic. As E(41) 1 X) and E(Ok I X) are

nondecreasing in X, a repetition of the argument in the previous part of

this proof shows that the second term is nonnegative.

It is important to observe that all three implications in Theorem 1 address

properties of regression and covariance functions which can be observed in large

samples. We will return to this point in the last section when applications to IRT

are discussed more directly. Individual parts of the theorem can be found in other

places in the psychometric literature. However, they were established using

different methods of proof than the one based on the set of lemmas derived
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above. The covariance property in the third part of the theorem was given earlier in

Mokken (1971) and Holland (1981). Esary, Proschan, and Walkup (1967) define

the covariance property in the third part of the theorem as association between the

underlying sets of random variables but gave no conditions under which the

property of association holds. Ahmed, Leon, and Proschan (1981, sect. 3.5) derive

association between (1)1 and 02 under the same conditions as used here. Ellis

(1993) proofs the third part of the theorem to be valid for any subpopulation of

examinees. An important reference is Rosenbaum (1984) who gives a version of

the second part of the theorem not based on the assumption on (1)3 made here.

Finally, Junker (1993) establishes the first part of the theorem as the property of

manifest homogeneity.

All assumptions of Theorem 1 are assumed to hold in the next theorem.

The use of double indices is only to refer to rows and columns in an item x person

matrix with response data. The critical event in the theorem is the presence of

more than one parameters needed to characterize the distributions of the

variables.

Theorem 2. Let {Yijlx1,x2}, i=1,...,n, j=1,...,m, be independent and SO in x1 and x2.

P and 0 are defined to be the sets of indices of two disjoint subsets of variables of

(Yii;1=1,...,n, j=1,...,m}. Let (pp=cpp(.) and (pc).(pd.) be two functions

nondecreasing in each of the variables with indices in P and Q, respectively. It is

assumed that yo(.) is either dichotomous or nondecreasing in ZoDE Q yii with

each yij dichotomous. Finally, {X2Ix1 } and {Xi lx2} are assumed to be SO in x1 and

x2, respectively. It holds that:

(1) E(OK lxv ), K=P,Q, is a nondecreasing function of xv, v=0,1;
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(2) E(Op Ixv,y0) is a nondecreasing function of xv, v=1,2, for all values of

(PC).

Proof. The two parts of this theorem follow immediately from the previous lemmas:

(1) Lemmas 13(1), 10, 12, and 2.

(2) Theorem 2(1) and Lemma 13(4) (conditional independence).

This theorem identifies the conditions under which order with respect to one

parameter is maintained in a response model with more than one random person

or a person and an item parameter. For example, the theorem implies that the

expected sum of scores in any part of the data matrix is ordered in either

parameter provided the parameters are independent or stochastically ordered

themselves. The same feature holds for the expected column and row sums of the

data matrix. The theorem thus reveals the conditions under which the row and

column sums are ordered by a person and item parameter. Other consequences

from the two theorems are presented in more detail in the corollaries in the next

section.

Applications to IRT

As explained in the introduction, a dichotomous IRT model can be represented by

a family of cdfs {F(uil A : -.<0<.} fully determined by the probabilities

{fi(110 ): -.<0<.} modeled as a (strictly) increasing function of 0 (Lemma 6).

Since (F(ui IA )1 is (strictly) decreasing in 0, this family is SO in 0. Also, because

the response variables Ui are dichotomous, it holds that {f(uil 0 )} has MLR in ui
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w.r.t. 8. Finally, the usual assumption of local independence between response

variables for different items guarantees the conditional independence required in

some of the lemmas and the two theorems above.

As already observed, both theorems involve several properties which can

be observed in large samples of test data. The most important properties implied

by Theorem 1 are summarized in Corollary 1. Some of these properties have also

been listed elsewhere (see, for example, Rosenbaum, 1984, or Sijtsma & Junker,

1994).

Corollary 1. For any dichotomous IRT model with a single ability parameter and a

fixed test design it holds that:

(1) conditional item n -values given the (number-right) score on another item

or subtest are nondecreasing functions of the conditioning score;

(2) item-rest regression, defined as the regression of an item score on the

(number-right) score on the remaining items, is a nondecreasing function

of the latter;

(3) the probability of passing a cutoff score on a subtest is a nondecreasing

function of the number-right score on another subtest;

(4) if n. and it are the Tr -values of item i in a high-scoring and low -

scoring subpopulation, respectively, it holds that DErci
H

--iri is

nonnegative;

(5) all correlations between item score are nonnegative;

(6) all item-rest correlations (item discrimination indices) are nonnegative;

(7) all previous properties hold in any subpopulation defined by number-right

scores on other items or subtests;

(8) all previous properties hold for weighted scores, provided the weights are
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nonnegative.

Several of these properties do already have a long tradition as a criterion

for item selection in classical item analysis. For example, attempts to maximize the

internal consistency of a test have always been directed at removing items with

negative intercorrelations and/or item-rest correlations from the test. In addition,

the corollary confirms the status of D, typically defined using Kelley's (1939) 27%

rule, as a quick alternative to the item discrimination index which was popular in

the pre-computer era. The notion that so-called formula scoring can be treated as

equivalent to simple number-right scoring is another intuitive notion given a

mathematical basis by the corollary. The corollary finally implies that classical item

analysis is an effective first step to weed out items not fitting a dichotomous IRT

model.

Corollary 2. In an IRT model, the properties of SO hold for a single item difficulty

or ability parameter if: (1) the values of the item difficulty parameter are fixed; or

(2) the values of the item difficulty parameters are random but all items are

administered to the same examinees.

In both test designs, the ability of the examinees and the item difficulty

parameter are independent. Since independence implies that the distribution of

one parameter is (not strictly) SO in the other, Theorem 2 holds. An example of

the second design is a test sampled at random from an item pool and then

administered to all of the examinees in the sample (domain-referenced testing).

On the other hand, in adaptive testing, the assumption of independence

between the parameters is unlikely to hold since adaptive procedures invariable
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use item selection rules in which more able examinees tend to get more difficult

items. This feature, however, suggests that the use of such rules may lead to

distributions of the values of the difficulty parameter which are SO in the ability

parameter. Suppose no constraints on the availability of the values of the item

difficulty parameter exist in the item pool. The following corollary shows that the

results in Theorem 2 apply to a currently popular procedure of adaptive testing:

Corollary 3. For an adaptive test from a 1-PL item pool based on the maximum

information principle in combination with EAP estimation of ability, the distribution

of any monotonically nondecreasing function of the examinee's response vector is

SO in 0.

The following argument explains the corollary. Let e k = -bk be the value

of the easiness parameter of the kth item in the adaptive test. Then

ek = ek(u1,...,uk = E(O(u1,...,u0). However, since (9lu1,..,u0) is SO in

(Lemma 6), it follows that e k(u1,...,u0) is nondecreasing in each of its

arguments. Because {U1,...,U0 10 } is SO in 9, it follows that

{ ek(U1,...,U0)10) is SO in 0 (Lemma 2). Note that Lemma 6 holds for any prior

f(0 ). In a fully Bayesian procedure, the prior can thus be chosen to be

independent of the one for the item parameter to allow us to ignore the items in

the pool not used in the test (for this condition of independence, see Mislevy &

Wu, 1988).

The following corollary summarizes a result for IRT models with a two-

dimensional ability structure:

27



Stochastic Order

24

Corolla if {01102}4. The result in Theorem 2 holds marginally in ei is a

location family with conditional pdfs f(01gie2).

The fact that location families have the property of SO is well documented

(e.g., Lehmann, 1986, p. 84-85). An important application is the case of a bivariate

normal ability distribution with constant conditional variances. As the values of the

ability parameters are not controlled by design, it is a matter of empirical fact

whether or not the condition in this corollary holds satisfactorily in practice. A

statistical test for this condition could be based on the class of models with

multivariate ability presented in Glas (1992).
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Table 1

Numerical example showinq that SO is not transitive

X=1 X=2

Y=1 Y=2 Y=1 Y=2

Z=1 .20 .05 .10 .20

Z=2 .10 .15 .10 .10

34



Stochastic Order

31

Table 2

Numerical example showing that univariate

SO does not imply multivariate SO

X=1 X=2

Y1=1 Y2=2 Y1 =1
1

1
Y2=2

Y2=1 .25 .05 .10 .10

Y2=2 .15 .15 .00 .30
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